51
|
Thoren AE, Helps SC, Nilsson M, Sims NR. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. J Neurochem 2006; 97:968-78. [PMID: 16606370 DOI: 10.1111/j.1471-4159.2006.03778.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia.
Collapse
Affiliation(s)
- Anna E Thoren
- Centre for Neuroscience and Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
52
|
Silva MC, Rocha J, Pires CS, Ribeiro LC, Brolese G, Leite MC, Almeida LMV, Tramontina F, Ziegler DR, Gonçalves CA. Transitory gliosis in the CA3 hippocampal region in rats fed on a ketogenic diet. Nutr Neurosci 2006; 8:259-64. [PMID: 16491652 DOI: 10.1080/10284150500475032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ketogenic diet (KD) is a high-fat, low-protein and low-carbohydrate diet included as medical practice against seizure disorders, particularly in children refractory to conventional anti-epileptic drug treatment. However, the molecular basis of its therapeutic effect remains unclear. Considering the growing evidence for the importance of glial cells for neuronal development, survival and plasticity, we investigated astrocyte protein markers from KD fed rats, in different regions of hippocampus, a brain structure commonly involved in seizure disorders. We found a transitory increment in GFAP in the CA3 hippocampal region, but not in the CA1 or dentate gyrus (DG). This change was not accompanied by changes in S100B content or glutamine synthetase activity. In order to evaluate possible hippocampal involvement we investigated spatial-cognitive behavior using the water-maze task. No changes were observed. This transitory gliosis in CA3 could be related to, or precede, other associated changes proposed to be involved in the attenuation of seizure disorders. These data reinforce the importance of hippocampal astrocytes as cell targets during KD feeding.
Collapse
Affiliation(s)
- M C Silva
- Programa de Pós-Graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, Ibarrola D, Izquierdo M, Coltel N, Gharib B, Grau GE, Cozzone PJ. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci 2006; 25:7352-8. [PMID: 16093385 PMCID: PMC6725296 DOI: 10.1523/jneurosci.1002-05.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.
Collapse
Affiliation(s)
- Marie-France Penet
- Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6612, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
STADLIN ALFREDA, LAU JOSEPHINEW, SZETO YK. A Selective Regional Response of Cultured Astrocytes to Methamphetaminea. Ann N Y Acad Sci 2006; 844:108-121. [DOI: 10.1111/j.1749-6632.1998.tb08226.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Bos IWM, Hoogland G, Meine Jansen CF, Willigen GV, Spierenburg HA, van den Berg LH, de Graan PNE. Increased glutamine synthetase but normal EAAT2 expression in platelets of ALS patients. Neurochem Int 2006; 48:306-11. [PMID: 16426705 DOI: 10.1016/j.neuint.2005.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/09/2005] [Accepted: 09/27/2005] [Indexed: 11/26/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease and glutamate excitotoxicity has been implicated in its pathogenesis. Platelets contain a glutamate uptake system and express components of the glutamate-glutamine cycle, such as the predominant glial excitatory amino acid transporter 2 (EAAT2). In several neurological diseases platelets have proven to be systemic markers for the disease. We compared properties of key components of the glutamate-glutamine cycle in blood platelets of ALS patients and healthy controls. Platelets were analyzed for (3)H-glutamate uptake in the presence or absence of thrombin and for EAAT2 and glutamine synthetase protein expression by Western blotting. Platelets of ALS patients showed a 37% increase in expression of glutamine synthetase, but normal expression of glutamate transporter EAAT2. Glutamate uptake in resting or thrombin-stimulated platelets did not differ significantly between platelets from ALS patients and controls. Thrombin-stimulation resulted in about a seven-fold increase in glutamate uptake. Our data suggest that glutamine synthetase may be a peripheral marker of ALS and encourage further investigation into the role of this enzyme in ALS.
Collapse
Affiliation(s)
- I W M Bos
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
56
|
Hoshi A, Nakahara T, Kayama H, Yamamoto T. Ischemic tolerance in chemical preconditioning: Possible role of astrocytic glutamine synthetase buffering glutamate-mediated neurotoxicity. J Neurosci Res 2006; 84:130-41. [PMID: 16688719 DOI: 10.1002/jnr.20869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutamine synthetase (GS), localized to astrocyte is a key enzyme in the glutamate-glutamine pathway in the brain. 3-Nitropropionic acid (3-NPA) is an irreversible inhibitor of succinate dehydrogenase in the tricarboxylic-acid cycle, and provides ischemic tolerance to the brain. So far, there have been no reports on the relationship of astrocytic GS and ischemic tolerance by chemical preconditioning. In order to test the hypothesis that astrocytes serve a pivotal role in 3-NPA-induced chemical preconditioning, we have investigated the temporal profile of GS expression in astrocyte parallel with those of glial fibrillary acidic protein and heat-shock protein 70 (HSP70). In our rat model of permanent focal ischemia, preconditioning with 3-NPA singnificantly reduced the subsequent neurological deficits and infarct volume within 24-72 hours after treatment. Immunohistochemically, protoplasmic astrocytes in the cortex and striatum were activated in terms of upregulation of GS and more abundant protoplasmic processes with 3-NPA preconditioning, however, HSP70 expression could not be induced. Thus, the activation of astrocytes and upregulation of GS play an important role in 3-NPA-induced preconditioning but HSP70 does not. In view of glutamate being imposed on the cerebral ischemic damage, the astrocytic GS may contribute to 3-NPA-induced ischemic tolerance.
Collapse
Affiliation(s)
- Akihiko Hoshi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | | | | | | |
Collapse
|
57
|
Battú CE, Godinho GFRS, Thomazi AP, de Almeida LMV, Gonçalves CA, Kommers T, Wofchuk ST. Ontogenetic Changes in Glial Fibrillary Acid Protein Phosphorylation, Glutamate Uptake and Glutamine Synthetase Activity in Olfactory Bulb of Rats. Neurochem Res 2005; 30:1101-8. [PMID: 16292502 DOI: 10.1007/s11064-005-7587-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Phosphorylation of the glial fibrillary acidic protein (GFAP) in hippocampal and cerebellar slices from immature rats is stimulated by glutamate. This effect occurs via a group II metabotropic glutamate receptor in the hippocampus and an NMDA ionotropic receptor in the cerebellum. We investigated the glutamate modulation of GFAP phosphorylation in the olfactory bulb slices of Wistar rats of different ages (post-natal day 15 = P15, post-natal day 21 = P21 and post-natal day 60 = P60). Our results showed that glutamate stimulates GFAP phosphorylation in young animals and this is mediated by NMDA receptors. We also observed a decrease in glutamate uptake at P60 compared to P15, a finding similar to that found in the hippocampus. The activity of glutamine synthetase was elevated after birth, but was found to decrease with development from P21 to P60. Together, these data confirm the importance of glutamatergic transmission in the olfactory bulb, its developmental regulation in this brain structure and extends the concept of glial involvement in glutamatergic neuron-glial communication.
Collapse
Affiliation(s)
- Cíntia Eickhoff Battú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, 90035-003, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
58
|
Thoren AE, Helps SC, Nilsson M, Sims NR. Astrocytic function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2005; 25:440-50. [PMID: 15674239 DOI: 10.1038/sj.jcbfm.9600035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes play many roles essential for normal brain activity. The ability of these cells to recover after temporary focal cerebral ischemia is likely to be one important determinant of the extent of brain dysfunction and tissue damage. We have assessed astrocytic function based on the incorporation of radiolabel from 1-14C-acetate into glutamine at 1 hour of recirculation after middle cerebral artery occlusion for 2 or 3 hours in rats. There were marked differences in the response between subregions within the tissue subjected to ischemia, but the overall pattern of changes was similar after each ischemic period. The striatum, which forms part of the severely ischemic focal tissue during arterial occlusion, showed a large (44% to 68%) decrease in glutamine labeling compared with equivalent tissue from the contralateral hemisphere. In contrast, 14C-glutamine content was not significantly altered in perifocal tissue in the cerebral cortex, which was subjected to more moderate ischemia. Cortical focal tissue also was not significantly affected, but the response was much more variable between rats. In these brain subregions, the extent of recovery of the 14C-acetate metabolism after ischemia was not a good predictor of the likelihood of subsequent infarct development. Interestingly, a similar pattern of responses persisted when recirculation was extended to 4 hours. These results indicate that many astrocytes, particularly in the cortex, remain viable and capable of at least some complex oxidative metabolism during the first few hours of recirculation.
Collapse
Affiliation(s)
- Anna E Thoren
- Centre for Neuroscience and Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
59
|
Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004; 23:91-147. [PMID: 14766318 DOI: 10.1016/j.preteyeres.2003.12.001] [Citation(s) in RCA: 737] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal ischemia is a common cause of visual impairment and blindness. At the cellular level, ischemic retinal injury consists of a self-reinforcing destructive cascade involving neuronal depolarisation, calcium influx and oxidative stress initiated by energy failure and increased glutamatergic stimulation. There is a cell-specific sensitivity to ischemic injury which may reflect variability in the balance of excitatory and inhibitory neurotransmitter receptors on a given cell. A number of animal models and analytical techniques have been used to study retinal ischemia, and an increasing number of treatments have been shown to interrupt the "ischemic cascade" and attenuate the detrimental effects of retinal ischemia. Thus far, however, success in the laboratory has not been translated to the clinic. Difficulties with the route of administration, dosage, and adverse effects may render certain experimental treatments clinically unusable. Furthermore, neuroprotection-based treatment strategies for stroke have so far been disappointing. However, compared to the brain, the retina exhibits a remarkable natural resistance to ischemic injury, which may reflect its peculiar metabolism and unique environment. Given the increasing understanding of the events involved in ischemic neuronal injury it is hoped that clinically effective treatments for retinal ischemia will soon be available.
Collapse
Affiliation(s)
- Neville N Osborne
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | | | |
Collapse
|
60
|
Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, Tsuda M, Fujiwara M, Asano T, Sakaki T, Miyasaki A, Park D, Siesjö BK. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003; 54:732-47. [PMID: 14681883 DOI: 10.1002/ana.10751] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brief focal ischemia leading to temporary neurological deficits induces delayed hyperintensity on T1-weighted magnetic resonance imaging (MRI) in the striatum of humans and rats. The T1 hyperintensity may stem from biochemical alterations including manganese (Mn) accumulation after ischemia. To clarify the significance of this MRI modification, we investigated the changes in the dorsolateral striatum of rats from 4 hours through 16 weeks after a 15-minute period of middle cerebral artery occlusion (MCAO), for MRI changes, Mn concentration, neuronal number, reactivities of astrocytes and microglia/macrophages, mitochondrial Mn-superoxide dismutase (Mn-SOD), glutamine synthetase (GS), and amyloid precursor protein. The cognitive and behavioral studies were performed in patients and rats and compared with striatal T1 hyperintensity to show whether alteration in brain function correlated with MRI and histological changes. The T1-weighted MRI signal intensity of the dorsolateral striatum increased from 5 days to 4 weeks after 15-minute MCAO, and subsequently decreased until 16 weeks. The Mn concentration of the dorsolateral striatum increased after ischemia in concert with induction of Mn-SOD and GS in reactive astrocytes. The neuronal survival ratio in the dorsolateral striatum decreased significantly from 4 hours through 16 weeks, accompanied by extracellular amyloid precursor protein accumulation and chronic glial/inflammatory responses. The patients and rats with neuroradiological striatal degeneration had late-onset cognitive and/or behavioral declines after brief focal ischemia. This study suggests that (1) the hyperintensity on T1-weighted MRI after mild ischemia may involve tissue Mn accumulation accompanied by Mn-SOD and GS induction in reactive astrocytes, (2) the MRI changes correspond to striatal neurodegeneration with a chronic inflammatory response and signs of oxidative stress, and (3) the subjects with these MRI changes are at risk for showing a late impairment of brain function even though the transient ischemia is followed by total neurological recovery.
Collapse
Affiliation(s)
- Masayuki Fujioka
- Department of Neurosurgery and Neuroscience, Critical Care and Emergency Medical Center, Nara Prefectural Hospital, Nara Medical University, 840 Shijo, Kashihara, Nara 634-0813, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lee DR, Helps SC, Gibbins IL, Nilsson M, Sims NR. Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res 2003; 989:221-30. [PMID: 14556944 DOI: 10.1016/s0006-8993(03)03373-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of glia to recover essential functions following a period of focal cerebral ischemia is likely to be one important factor influencing the severity of tissue damage that subsequently develops. In this study, we have compared changes in immunoreactivity of markers specific for astrocytes, NG2-positive glia and neurons in tissue subregions during early reperfusion following 3 h of middle cerebral artery occlusion to provide insights into possible differential susceptibility of these cell populations. Under the conditions used, infarction ultimately encompasses most of the perfusion territory of the occluded artery. Nonetheless, alterations in immunoreactivity during the first 3 h of recirculation were restricted to brain regions that had been subjected to severe ischemia. In the striatum, cellular immunoreactivity for NG2 and neuronal markers, NeuN and microtubule-associated protein 2, was greatly reduced by 1 h of reperfusion and declined further at 3 h. NG2 labeling of blood vessels in the striatum appeared post-ischemically, mimicking expression of this protein during development. Less severe changes were seen in the neuronal markers in overlying cerebral cortex. In contrast to the losses of other cellular proteins, immunoreactivity for the astrocytic marker, glial fibrillary acidic protein, was preserved in all tissue that had been subjected to severe ischemia and labeling of another astrocytic protein, glutamine synthetase, was increased by 3 h of reperfusion. These findings provide the first evidence of marked sensitivity of NG2-immunoreactivity to severe ischemia and suggest a greater initial resistance of astrocytes compared with neurons and NG2-positive glia to ischemia-reperfusion damage.
Collapse
Affiliation(s)
- Diane R Lee
- Centre for Neuroscience and Department of Medical Biochemistry, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | | | | | | | | |
Collapse
|
62
|
Ma W, Shang-Feaster G, Okada PJ, Kernie SG. Elevated cerebrospinal fluid levels of glutamate in children with bacterial meningitis as a predictor of the development of seizures or other adverse outcomes. Pediatr Crit Care Med 2003; 4:170-5. [PMID: 12749647 DOI: 10.1097/01.pcc.0000059735.08694.8f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Evaluation of elevated cerebrospinal fluid levels of glutamate in children with bacterial meningitis as a predictor of seizures or other adverse outcomes. DESIGN Prospective cohort study with controls. SETTING A 36-bed pediatric intensive care unit and primary pediatric referral center. PATIENTS From 1999 to 2001, a total of 55 patients, between the ages of 0 and 18 yrs, with lumbar punctures performed for suspected meningitis. MEASUREMENTS AND MAIN RESULTS A total of 23 patients had bacterial meningitis confirmed by cerebrospinal fluid/blood culture and elevated cerebrospinal fluid white blood cell counts, and 32 patients, who tested negative, were included as controls. The median age for the patients with meningitis was 1.0 yr (range, 0.0-15.2 yrs), and in the culture-negative group (control group), the median age was 0.3 yrs (range, 0.0-17.0 yrs). The average cerebrospinal fluid white blood cell count was 2707 +/- 3897 in the group with bacterial infection, whereas in the control group, the average was 148 +/- 259 (p < .01). Patients with bacterial meningitis had a mean cerebrospinal fluid glutamate level of 60.5 +/- 88.4 mol/L, whereas the mean cerebrospinal fluid glutamate level in the control group was 4.9 +/- 11.0 mol/L (p < .01). However, only 10 of 23 children with bacterial meningitis had a second lumbar puncture performed during the study. There was no correlation between the cerebrospinal fluid white blood cell count and cerebrospinal fluid glutamate levels in either the study or control patients. None of the control patients developed seizures or neurologic deficits, despite some patients having elevated glutamate levels. However, four patients with bacterial meningitis developed seizures after admission to the hospital, and ten were discharged with at least some neurologic sequelae attributable to their infection. Two out of the three who developed seizures and had a repeat lumbar puncture demonstrated persistent elevation of cerebrospinal fluid glutamate levels. In addition, 70% of patients (7 of 10) with Streptococcus pneumoniae meningitis developed neurologic complications (p = .04). CONCLUSIONS Bacterial meningitis in children causes an increase in cerebrospinal fluid glutamate that in many cases persists over time. However, in this limited study, neither higher nor persistent elevation of cerebrospinal fluid glutamate levels is predictive of which patients might develop seizures or other apparent immediate adverse outcomes after invasive infection. The responsible organism seems to have far more significance in predicting the development of adverse sequelae.
Collapse
Affiliation(s)
- William Ma
- Department of Pediatrics, University of Texas, Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | |
Collapse
|
63
|
Dienel GA, Cruz NF, Ball K, Popp D, Gokden M, Baron S, Wright D, Wenger GR. Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res 2003; 961:201-12. [PMID: 12531487 DOI: 10.1016/s0006-8993(02)03945-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Functional neurological outcome after transient ischemia might be improved by timely therapeutic intervention. To determine if restorative behavioral therapy influences damage, improves task learning, or alters astrocyte metabolic activity after ischemia, rats (food-restricted to 85% of free-feeding weight) were (a) first trained to respond on one of two levers under a fixed-ratio 20 schedule of food presentation (FR20), then (b) subjected to sham manipulation of carotid arteries or 10 min ischemia by four-vessel occlusion, followed by (c) 4 days of operant testing or inactivity, (d) then all rats were tested under a FR20 lever reversal task for 4 weeks, and (e) 3 days after the last behavioral session astrocyte metabolism was assayed by local uptake of [2-14C]acetate. Mild loss of hippocampal neurons occurred in ischemic rats with or without training after ischemia. Glial fibrillary acidic protein-positive astrocytes were present in similar numbers throughout brains of sham control and ischemic rats. Mild ischemia did not impair learning, and no changes in FR20 reversal learning were detected in sham vs. ischemic rats. Net [14C]acetate uptake was unaffected by ischemia but [14C]acetate uptake increased 15-24% (P<0.05; n=12-15/group) in specific structures (caudate, primary motor and sensorimotor cortex, CA1 hippocampus, subcortical white matter) in the pooled groups of rats that had 4 days FR20 testing vs. inactivity before reversal learning. 'Behavioral therapy' (operant testing on the 4 days immediately following either sham manipulation or ischemia) did not alter ischemic outcome, but was associated with higher acetate utilization in regions involved in motor activities.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions. Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia. Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas. In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.
Collapse
Affiliation(s)
- I Suárez
- Departamento de Biología Celular y Genética, Facultad de Biología, Universidad de Alcalá, 28871, Madrid, Spain.
| | | | | |
Collapse
|
65
|
Kokubo Y, Matson GB, Liu J, Mancuso A, Kayama T, Sharp FR, Weinstein PR. Correlation between changes in apparent diffusion coefficient and induction of heat shock protein, cell-specific injury marker expression, and protein synthesis reduction on diffusion-weighted magnetic resonance images after temporary focal cerebral ischemia in rats. J Neurosurg 2002; 96:1084-93. [PMID: 12066911 DOI: 10.3171/jns.2002.96.6.1084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors investigated the relationship between the time course of apparent diffusion coefficient (ADC) changes and stress protein induction, ischemic neuroglial damage, and cerebral protein synthesis (CPS) after temporary focal cerebral ischemia in rats. METHODS In Group I, ADC changes were measured on magnetic resonance (MR) images obtained during the second half of a 1-hour middle cerebral artery (MCA) occlusion, during a 1-hour reperfusion, and after 23 hours of reperfusion in rats. Immunohistochemical studies for heat shock protein (hsp) 70, glial fibrillary acidic protein (GFAP), and neuronal nuclear (NeuN) protein were performed. In Group II, CPS was assessed using autoradiographic studies obtained after occlusion. At 36 minutes of occlusion, MR imaging demonstrated significantly less ADC reduction in the frontoparietal cortex (82 +/- 9% of the contralateral hemisphere) than in the striatum (64 +/- 11%; p < 0.05). After 1 hour of reperfusion, the lesion resolved and the difference between cortex and striatum was no longer evident. After 23 hours of reperfusion, the ADC lesion recurred in striatum (76 +/- 12%) compared with frontoparietal cortex (100 +/- 11%; p < 0.05). Immunohistochemical studies showed hsp 70 expression and an increased GFAP reactivity localized in the frontoparietal cortex of the ischemic hemisphere, along with a significant drop in striatal NeuN immunoreactivity. A trend toward greater reduction in striatal CPS (53 +/- 15%) than in frontoparietal cortex CPS (78 +/- 23%) was also observed. CONCLUSIONS Sequential ADC maps correlate with the expression of neuroglial stress and injury markers after temporary focal ischemia in rats, distinguishing the striatum (infarct core) from the cortex (ischemic penumbra). A greater reduction in striatal CPS further supports the conclusion that the striatum is more susceptible to temporary MCA occlusion than the cortex.
Collapse
Affiliation(s)
- Yasuaki Kokubo
- Department of Neurological Surgery, University of California at San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Kruchkova Y, Ben-Dror I, Herschkovitz A, David M, Yayon A, Vardimon L. Basic fibroblast growth factor: a potential inhibitor of glutamine synthetase expression in injured neural tissue. J Neurochem 2001; 77:1641-9. [PMID: 11413247 DOI: 10.1046/j.1471-4159.2001.00390.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basic fibroblast growth factor (bFGF) was recently shown to promote the survival of neural cells and tissues, raising hopes for its therapeutic potential in degenerative disorders of the CNS. Here we examine the effect of bFGF on the expression of glutamine synthetase, a key enzyme in the detoxification of the neurotransmitter glutamate. Expression of this enzyme is regulated by systemic glucocorticoids and, in chick neural retina tissue, is restricted to Müller glial cells. We report that exogenous supply of bFGF to retinal explants inhibits hormonal induction of glutamine synthetase expression. This inhibition appears to be mediated by the c-Jun protein which accumulated, in response to bFGF, exclusively in Müller glial cells. Ischemic conditions, which reportedly stimulate the release of endogenous bFGF, also led to an increase in c-Jun protein and a decline in glutamine synthetase expression. This decline could be competitively prevented by a soluble fibroblast growth factor receptor but not by a soluble epidermal growth factor receptor. The finding that endogenous release of bFGF or its exogenous supply down-regulates glutamine synthetase expression suggests that in addition to its reported neuroprotective effect, bFGF may exacerbate glutamate mediated neurotoxicity through direct down-regulation of glutamine synthetase.
Collapse
Affiliation(s)
- Y Kruchkova
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
67
|
Schmidt-Ott KM, Xu AD, Tuschick S, Liefeldt L, Kresse W, Verkhratsky A, Kettenmann H, Paul M. Hypoxia reverses dibutyryl-cAMP-induced stellation of cultured astrocytes via activation of the endothelin system. FASEB J 2001; 15:1227-9. [PMID: 11344096 DOI: 10.1096/fj.00-0625fje] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K M Schmidt-Ott
- Institute of Clinical Pharmacology and Toxicology, Freie Universität Berlin, Benjamin Franklin Medical Center, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Nishiyama T, Nishukawa S, Tamai M. Müller cells in the preconditioned retinal ischemic injury rat. TOHOKU J EXP MED 2000; 191:221-32. [PMID: 11038014 DOI: 10.1620/tjem.191.221] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of Müller cells in the preconditioned retinal ischemic injury rat was investigated. In anesthetized Sprague Dawley rats, retinal ischemia for 5 minutes constituted the preconditioning stimulus for the left eye. After 24 hours, both eyes were clamped for 60 minutes. In 30, 60, 90, and 120, minutes and 1 day, 3 days, and 7 days after ischemia, electroretinograms were recorded, and the eyeballs were enucleated. After fixation with 4% paraformaldehyde, the avidin-biotin-peroxidase technique was applied to show glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP). Furthermore, for the solubilized retinas, Western blot analysis and enzyme-linked immunosorbent assay were performed to detect GS and GFAP in the extracts. Preconditioning performed 24 hours before ischemia significantly improved the recovery of the a-, and b-waves 1 day after 60 minute ischemia. In the 30, 60, 90, and 120 minutes after ischemia, the recovery of the a-wave only was observed. There was a nonsignificant trend toward greater recovery in the first 120 minutes after 60 minute ischemia, especially in the b-wave. GS immunoreactivity had no significant difference between non-preconditioned and preconditioned groups 30, 60, 90, and 120 minutes after ischemia. In 1 day after ischemia, GS immunoreactivity decreased in both groups. In 3 and 7 days after ischemia, GS immunoreactivity recovered only in the preconditioned group. The retinas at 3 and 7 days after 1 hour of ischemia showed increased GFAP immunoreactivity in the non-preconditioned group. In the preconditioned group, only slight GFAP immunoreactivity was observed. These results suggested that the mechanism of preconditioned retinal ischemia may be related to Müller cells in the retina.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Ophthalmology Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
69
|
Tumani H, Smirnov A, Barchfeld S, Olgemöller U, Maier K, Lange P, Brück W, Nau R. Inhibition of glutamine synthetase in rabbit pneumococcal meningitis is associated with neuronal apoptosis in the dentate gyrus. Glia 2000; 30:11-8. [PMID: 10696140 DOI: 10.1002/(sici)1098-1136(200003)30:1<11::aid-glia2>3.0.co;2-e] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptosis of dentate granular cells in the hippocampal formation during bacterial meningitis may be mediated by glutamate toxicity. For this reason, we studied the relationship between glutamine synthetase activity and regional neuronal apoptosis in rabbits with experimental pneumococcal meningitis. The duration of meningitis was 24 h, and the treatment was started 16 h after infection. Significant increases of glutamine synthetase protein concentration (P < 0.05) were found in the frontal cortex of rabbits with meningitis (n = 7) and rabbits with meningitis receiving ceftriaxone treatment (n = 12) as compared to the control animals (n = 14). No significant differences were seen in the hippocampal formation. The enzymatic activity of glutamine synthetase also was elevated in the frontal cortex (P < 0.05), but not in the hippocampal formation of rabbits with meningitis. After intravenous administration of L-methionine sulfoximine (specific inhibitor of glutamine synthetase) in rabbits with meningitis treated with ceftriaxone (n = 10), the concentration of neuron-specific enolase in CSF (P = 0.025) and the density of apoptotic neurons in the dentate gyrus quantified with the in-situ tailing reaction (P = 0.043) were higher than in meningitic animals receiving only ceftriaxone (n = 10). In conclusion, the inability of hippocampal glutamine synthetase to metabolize excess amounts of glutamate may contribute to neuronal apoptosis in the hippocampal formation during meningitis.
Collapse
Affiliation(s)
- H Tumani
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Smirnov AV, Tumani H, Henne S, Barchfeld S, Olgemöller U, Wiltfang J, Lange P, Mäder M, Nau R. Glutamine synthetase in experimental meningitis: increased ratio of the subunits 3 and 2 may indicate enhanced activity. Clin Chim Acta 2000; 292:1-12. [PMID: 10686272 DOI: 10.1016/s0009-8981(99)00180-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutamine synthetase (GS) activity is higher in the neocortex but not in the hippocampal formation of rabbit brain during Streptococcus pneumoniae meningitis compared to the respective brain region of uninfected control animals. One-dimensional polyacrylamide gel electrophoresis (1D-SDS-PAGE) revealed an apparent molecular mass (M(r)) of 44000 Dalton (Da) for GS from rabbit brain. After two-dimensional gel electrophoresis (2D-PAGE), followed by Coomassie-blue staining, GS separated into three distinct spots (S1, S2, S3). One additional spot (S4) occurred on the immunoblot. All four GS spots exhibited the same M(r) (44000 Da), but differed in their isoelectric points. Densitometric evaluation of the two-dimensional maps revealed a strong increase of optical density (OD) of S3 in the frontal cortex of infected animals. The calculated OD ratio S3/S2 in the frontal cortex from rabbits with meningitis was 1.75+/-0.68 (mean+/-standard deviation). Compared to controls (0. 85+/-0.39), this value was significantly increased (p=0.0006). In the hippocampal formation, the ratio S3/S2 was nearly unchanged during meningitis. It is suggested that the ratio S3/S2 may indicate a neuroprotective feature of rabbit brain during meningitis since neuronal apoptosis occurs only in the dentate gyrus and not in the frontal cortex.
Collapse
Affiliation(s)
- A V Smirnov
- Department of Neurology, University of Gottingen, Robert-Koch-Strasse 40, D-37075, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Huang PP, Esquenazi S, Le Roux PD. Cerebral cortical neuron apoptosis after mild excitotoxic injury in vitro: different roles of mesencephalic and cortical astrocytes. Neurosurgery 1999; 45:1413-22. [PMID: 10598709 DOI: 10.1097/00006123-199912000-00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Increasing evidence supports the presence of neuronal apoptosis after ischemic or excitotoxic brain injury. Astrocytes, which exhibit significant regional differences in function, may exert a protective effect on neurons exposed to ischemic injury. We examined the effects of astrocytes derived from different regions of the central nervous system on neuronal apoptosis after mild excitotoxic injury in tissue culture. METHODS Purified astrocyte cultures derived from P4 rat cerebral cortex or mesencephalon showed transient cell swelling but no cell death when exposed to 50 micromol/L glutamate for 5 minutes. When mixed neuronal/glial cocultures were exposed to the same glutamate dose, neuron death was observed. Necrotic and apoptotic cell death during 24 hours was examined using morphological criteria, nuclear staining, triphosphate nick end labeling, and trypan blue exclusion. RESULTS We found that cortical neurons that elaborate a more extensive dendritic arbor when grown on homotypic astrocytes are more likely to undergo apoptosis than neurons with a limited dendritic arbor grown on heterotypic astrocytes. By contrast, a similar number of neurons undergo necrotic cell death. CONCLUSION This finding may be associated with 1) increased vulnerability of neurons with a more elaborate dendrite structure to mild excitotoxic injury, or 2) regional differences in the ability of astrocytes to attenuate apoptosis.
Collapse
Affiliation(s)
- P P Huang
- Department of Neurosurgery, New York University Medical Center, and The New York Veterans Affairs Medical Center, 10016, USA
| | | | | |
Collapse
|
72
|
Melani A, Pantoni L, Corsi C, Bianchi L, Monopoli A, Bertorelli R, Pepeu G, Pedata F. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke 1999; 30:2448-54; discussion 2455. [PMID: 10548683 DOI: 10.1161/01.str.30.11.2448] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE While a number of studies have investigated transmitter outflow in anesthetized animals after middle cerebral artery occlusion (MCAO) performed by craniectomy, studies have never been performed after MCAO induced by intraluminal filament. In addition, it has been reported that after MCAO, infarct volume correlates with functional outcome and with transmitter outflow, although there are no studies that demonstrate a direct correlation between transmitter outflow and functional outcome. The purpose of the present study was to assess excitatory amino acids, gamma-aminobutyric acid, taurine, and adenosine outflow in awake rats after intraluminal MCAO and to determine whether, in the same animal, outflow was correlated with neurological outcome and histological damage. METHODS Vertical microdialysis probes were placed in the striatum of male Wistar rats. After 24 hours, permanent MCAO was induced by the intraluminal suture technique. The transmitter concentrations in the dialysate were determined by high-performance liquid chromatography. Twenty-four hours after MCAO, neurological deficit and histological outcome were evaluated. RESULTS All transmitters significantly increased after MCAO. Twenty-four hours after MCAO, the rats showed a severe sensorimotor deficit and massive ischemic damage in the striatum and in the cortex (9+/-2% and 25+/-6% of hemispheric volume, respectively). Significant correlations were found between the efflux of all transmitters, neurological score, and striatal infarct volume. CONCLUSIONS In this study, for the first time, amino acid and adenosine extracellular concentrations during MCAO by the intraluminal suture technique were determined in awake and freely moving rats, and a significant correlation was found between transmitter outflow and neurological deficit. The evaluation of neurological deficit, histological damage, and transmitter outflow in the same animal may represent a useful approach for studying neuroprotective properties of new drugs/agents against focal ischemia.
Collapse
Affiliation(s)
- A Melani
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Stanimirovic DB, Ball R, Small DL, Muruganandam A. Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro. Int J Dev Neurosci 1999; 17:173-84. [PMID: 10452361 DOI: 10.1016/s0736-5748(99)00028-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glutamate plays an important role in brain development, physiological function, and neurodegeneration. Astrocytes control synaptic concentration of glutamate via the high affinity glutamate transporters, GLT-1 and GLAST, and the glutamate catabolizing enzyme, glutamine synthetase. In this study we show that astrocytes cultured from rat brain in various stages of development including embryonic (E18), postnatal (P1-P21) and mature (P50), show distinct patterns of GLT-1 and GLAST expression, glutamine synthetase activity, and phenotypic changes induced by dibutyryl-cyclic adenosine monophosphate. The transcripts for GLT-1 message were detectable in embryonic astrocytes only, whereas the GLAST message was highly expressed in E18 and P1-P4 astrocyte cultures, declined in P10-P21, and was undetectable in P50 astrocytes. Uptake of 3H-glutamate correlated well with GLAST expression in astrocyte cultures of all developmental stages. Glutamine synthetase activity significantly declined from high embryonic levels in P4 astrocytes and remained low throughout postnatal maturation. Exposure of astrocyte cultures to the differentiating agent, db-cAMP (250-500 microM; 6 days), resulted in a pronounced stellation, up-regulation of GLT-1 and GLAST in E18, and GLAST in P4 cultures, while it was ineffective in P10 astrocytes. By contrast, db-cAMP induced a more pronounced stimulation of glutamine synthetase activity (up to 10-fold above basal) in P10 than in E18 cultures (up to 2 times above basal). The differences in expression/inducibility of glutamate transporters and glutamine synthetase observed in astrocyte cultures derived from various stages of fetal and postnatal development suggest that astrocytes in vivo might also respond differently to environmental or injurious stimuli during development and maturation.
Collapse
Affiliation(s)
- D B Stanimirovic
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ONT, Canada.
| | | | | | | |
Collapse
|
74
|
Heidinger V, Hicks D, Sahel J, Dreyfus H. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions. Glia 1999; 25:229-39. [PMID: 9932869 DOI: 10.1002/(sici)1098-1136(19990201)25:3<229::aid-glia3>3.0.co;2-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses.
Collapse
Affiliation(s)
- V Heidinger
- Laboratoire de Physiopathologie Rétinienne, Médicale A, Centre Hospitalier et Universitaire de Strasbourg, France.
| | | | | | | |
Collapse
|
75
|
Kato H, Kogure K. Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol Neurobiol 1999; 19:93-108. [PMID: 10079969 DOI: 10.1023/a:1006920725663] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia. 2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion. 3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia. 4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death. 5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.
Collapse
Affiliation(s)
- H Kato
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
76
|
|
77
|
Karikó K, Harris VA, Rangel Y, Duvall ME, Welsh FA. Effect of cortical spreading depression on the levels of mRNA coding for putative neuroprotective proteins in rat brain. J Cereb Blood Flow Metab 1998; 18:1308-15. [PMID: 9850143 DOI: 10.1097/00004647-199812000-00005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that cortical spreading depression (CSD) induces neuronal tolerance to a subsequent episode of ischemia. The objective of the present investigation was to determine whether CSD alters levels of mRNA coding for putative neuroprotective proteins. Unilateral CSD was evoked in male Wistar rats by applying 2 mol/L KCl over the frontal cortex for 2 hours. After recovery for 0, 2, or 24 hours, levels of several mRNA coding for neuroprotective proteins were measured bilaterally in parietal cortex using Northern blot analysis. Levels of c-fos mRNA and brain-derived neurotrophic factor (BDNF) mRNA were markedly elevated at 0 and 2 hours, but not 24 hours after CSD. Tissue plasminogen activator (tPA) mRNA levels were also significantly increased at 0 and 2 hours, but not 24 hours after CSD. Levels of the 72-kDa heat-shock protein (hsp72) mRNA were not significantly increased by CSD, except for a small elevation (20%) at 2 hours recovery. Levels of the 73-kDa heat-shock cognate (hsc73) mRNA were slightly, but significantly, increased at 2 and 24 hours of recovery. Finally, levels of mRNA for protease nexin-1 and glutamine synthetase were not significantly altered by CSD at any time studied. The current results support the hypothesis that neuronal tolerance to ischemia after CSD may be mediated by increased expression of FOS, BDNF, or tPA, but not by increased expression of hsp72, hsc73, nexin-1, or glutamine synthetase.
Collapse
Affiliation(s)
- K Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | |
Collapse
|
78
|
Håberg A, Qu H, Haraldseth O, Unsgård G, Sonnewald U. In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1998; 18:1223-32. [PMID: 9809511 DOI: 10.1097/00004647-199811000-00008] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Astrocytes play a pivotal role in cerebral glutamate homeostasis. After 90 minutes of middle cerebral artery occlusion in the rat, the changes induced in neuronal and astrocytic metabolism and in the neuronal-astrocytic interactions were studied by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy and HPLC analysis of amino acids of the lateral caudoputamen and lower parietal cortex, representing the putative ischemic core, and the upper frontoparietal cortex, corresponding to the putative penumbra. In the putative ischemic core, evidence of compromised de novo glutamate synthesis located specifically in the glutamatergic neurons was detected, and a larger proportion of glutamate was derived from astrocytic glutamine. In the same region, pyruvate carboxylase activity, representing the anaplerotic pathway in the brain and exclusively located in astrocytes, was abolished. However, astrocytic glutamate uptake and conversion to glutamine took place, and cycling of intermediates in the astrocytic tricarboxylic acid cycle was elevated. In the putative penumbra, glutamate synthesis was improved compared with the ischemic core, the difference appeared to be brought on by better neuronal de novo glutamate synthesis, combined with normal levels of glutamate formed from astrocytic glutamine. In both ischemic regions, gamma-aminobutyric acid synthesis directly from glucose was reduced to about half, indicating impaired pyruvate dehydrogenase activity; still, gamma-aminobutyric acid reuptake and cycling was increased. The results obtained in the current study demonstrate that by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy, specific metabolic alterations in small regions within the rat brain suffering a focal ischemic lesion can be studied.
Collapse
Affiliation(s)
- A Håberg
- Institute of Pharmacology and Toxicology, Norwegian University of Science and Technology, Department of Neurosurgery, University Hospital, Trondheim
| | | | | | | | | |
Collapse
|
79
|
Noack H, Lindenau J, Rothe F, Asayama K, Wolf G. Differential expression of superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 1998; 23:285-97. [PMID: 9671959 DOI: 10.1002/(sici)1098-1136(199808)23:4<285::aid-glia1>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To examine the cellular distribution of radical scavenging enzymes in glia, in comparison to that in neurons and their behaviour during excitotoxically induced neurodegenerative processes, protein levels and the cellular localization of cytosolic and mitochondrial superoxide dismutase (Cu/Zn- and Mn-SOD) were investigated in the rat brain undergoing quinolinic acid (Quin)-induced neurodegeneration. Evidence for the specificity of the applied antibodies to detect immunocytochemically these SOD isoforms was obtained from electron microscopy and Western blotting. In control striatum Mn-SOD was clearly confined to neurons, whereas Cu/Zn-SOD was found, rather delicately, only in astrocytes. Microglia failed to stain with antibodies to both SOD isoforms. Quin application resulted in an initial formation of oxygen and nitrogen radicals as determined by the decline in the ratio of ascorbic to dehydroascorbic acid and by increased levels of nitrated proteins, an indicator for elevated peroxynitrite formation. Morphologically, massive neuronal damage was seen in parallel. Astroglia remained intact but showed initially decreased glutamine synthetase activities. The levels of Mn-SOD protein increased 2-fold 24 h after Quin injection (Western blotting) and declined only slowly over the time period considered (10 days). Cu/Zn-SOD levels increased only 1.3-fold. Immunocytochemical studies revealed that the increase in Mn-SOD is confined to neurons, whereas that of Cu/Zn-SOD was observed only in astroglial cells. Quiescent microglial cells were, as a rule, free of immunocytochemically detectable SOD, whereas in activated microglia a few Mn-SOD immunolabeled mitochondria occurred. Our results suggest a differential protective response in the Quin lesioned striatum in that Mn-SOD is upregulated in neurons and Cu/Zn-SOD in astroglia. Both SOD-isoforms are assumed to be induced to prevent oxidative and nitric oxide/peroxynitrite-mediated damage. In the border zone of the lesion core this strategy may contribute to resist the noxious stimulus.
Collapse
Affiliation(s)
- H Noack
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
80
|
Bhardwaj SK, Sharma P, Kaur G. Alterations in free radical scavenger system profile of type I diabetic rat brain. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 35:187-202. [PMID: 10343979 DOI: 10.1007/bf02815124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The activities of the enzymes related to glutathione synthesis, degradation, and functions as well as reactive oxygen scavenging enzymes were analyzed in different brain regions, such as cerebral hemisphere, cerebellum, brainstem, thalamus, and hypothalamus after 1 and 3 mo of streptozotocin-induced diabetes in rats. Parallel studies were also made in age-matched control rats and insulin-treated diabetic rats. The content of glutathione (GSH) and its synthesizing enzyme gamma-glutamylcystein synthetase and also superoxide dismutase (SOD) and catalase activities (reactive oxygen scavenging enzymes) were significantly decreased from almost all the brain regions studied. However, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), gamma-glutamyl transpeptidase (gamma-GTP), and glutamine synthetase (GS) activities were increased in the diabetic rat brain. Insulin treatment to the diabetic rats resulted in partial to full recovery in these enzymes activities. The present results emphasize the potentially serious alterations of brain free radical scavenger system in uncontrolled Type I diabetes.
Collapse
Affiliation(s)
- S K Bhardwaj
- Department of Biotechnology, Guru Nank Dev University, Amritsar, India
| | | | | |
Collapse
|
81
|
Nakajima Y, Fujimiya M, Maeda T, Mori A. Morphological investigation of the neuroprotective effects of graded hypothermia after diverse periods of global cerebral ischemia in gerbils. Brain Res 1997; 765:113-21. [PMID: 9310401 DOI: 10.1016/s0006-8993(97)00522-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypothermia is known to be the most effective method to protect the neuronal damage induced by ischemia. In the present study, we investigated the histopathological consequences of hippocampal CA1 pyramidal neurons as well as the glial reactions in the hippocampus, after diverse periods of ischemic insult at graded intra-ischemic hypothermia ranging from 32 to 20 degrees C. Gerbils were exposed to forebrain ischemia by clamping the bilateral common carotid arteries for 5-120 min depending upon the temperatures. The morphological study was performed 7 days after ischemia or sham-operation. Histopathological evaluation of delayed neuronal death (DND) was performed by Cresyl violet (CV) staining and MAP2 immunoreactivity. Glial reactions were examined by GFAP immunostaining and isolectin B4 histochemistry, corresponding to astrocytes and microglia, respectively. The forebrain ischemia at 32 degrees C for 10 min and at 28 degrees C for 20 min did not induce DND in the CA1 region. However, the ischemia at 32 degrees C for 20 min and at 28 degrees C for 30 min caused extensive degeneration of CA1 pyramidal neurons as observed in normothermic ischemic animals. Under the condition of deep hypothermia, the ischemia for 60 min at 24 degrees C and for 120 min at 20 degrees C which were the longest durations of each temperature within the limitation of the animal survival following 7 days, induced no DND in CA1 pyramidal neurons. The reactive changes of astrocytes were observed not only in ischemic animals with DND, but also in ischemic animals without DND. Computer image analysis showed that the area fraction of GFAP-positive structures in the CA1 region was significantly increased in both ischemic cases with and without DND compared with each sham group. In contrast, the distribution of activated microglia was much more restricted to the CA1 region and they were always accompanied by DND at 7 days postischemia. The present results demonstrate the remarkable neuroprotective effect of deep hypothermia that has been widely used in cardiovascular surgeries as the cerebroprotective strategy during total circulatory cessation. The findings also suggest that even under the condition of hypothermia, glial reactions may play an important role in neuronal survival and death after ischemia.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Second Surgery, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | |
Collapse
|
82
|
Sankaran B, Clemens J, Haley BE. A comparison of changes in nucleotide-protein interactions in the striatal, hippocampus and paramedian cortex after cerebral ischemia and reperfusion: correlations to regional vulnerability. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:237-50. [PMID: 9221922 DOI: 10.1016/s0169-328x(97)00055-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[32P]Azido-purine analogs of ATP and GTP were used to detect changes in phosphorylation and nucleotide binding induced by ischemia and subsequent reperfusion in rat brain striatum, hippocampus and paramedian cortex (PM cortex) tissues. Major changes in phosphorylation were observed for a 130-kDa protein, tentatively identified as the Ca2+ transport ATPase, and calcium/calmodulin-dependent protein kinase II (CaM Kinase II) in all tissues. However, recovery of the phosphorylation of the 130-kDa protein occurred only in the PM cortex on reperfusion. A 200-300% increase in [32P]8N3ATP photoinsertions was observed in the striatum and hippocampus regions for a 43-kDa protein with an isoelectric point of 6.8. This protein was identified as glutamine synthetase (GS) and the increase in binding was found to be due to both increased copy number and activation by Mn2+. An increase in [32P]8N3GTP photoinsertion into a 55-kDa protein, identified as the beta-subunit of tubulin, was found only in the striatum and hippocampus. This indicates the depolymerization of microtubulin in these tissues. These changes correlate to the vulnerability of the striatum and hippocampus to ischemia-induced neuronal death.
Collapse
Affiliation(s)
- B Sankaran
- College of Pharmacy, University of Kentucky, Lexington, USA
| | | | | |
Collapse
|
83
|
Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L. Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 1997; 94:7024-9. [PMID: 9192685 PMCID: PMC21278 DOI: 10.1073/pnas.94.13.7024] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neurotransmitter glutamate is neurotoxic when it is accumulated in a massive amount in the extracellular fluid. Excessive release of glutamate has been shown to be a major cause of neuronal degeneration after central nervous system injury. Under normal conditions, accumulation of synaptically released glutamate is prevented, at least in part, by a glial uptake system in which the glia-specific enzyme glutamine synthetase (GS) plays a key role. We postulated that glial cells cannot cope with glutamate neurotoxicity because the level of GS is not high enough to catalyze the excessive amounts of glutamate released by damaged neurons. We examined whether elevation of GS expression in glial cells protects against neuronal degeneration in injured retinal tissue. Analysis of lactate dehydrogenase efflux, DNA fragmentation, and histological sections revealed that hormonal induction of the endogenous GS gene in retinal glial cells correlates with a decline in neuronal degeneration, whereas inhibition of GS activity by methionine sulfoximine leads to increased cell death. A supply of purified GS enzyme to the culture medium of retinal explants or directly to the embryo in ovo causes a dose-dependent decline in the extent of cell death. These results show that GS is a potent neuroprotectant and that elevation of GS expression in glial cells activates an endogenous mechanism whereby neurons are protected from the deleterious effects of excess glutamate in extracellular fluid after trauma or ischemia. Our results suggest new approaches to the clinical handling of neuronal degeneration.
Collapse
Affiliation(s)
- R Gorovits
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
84
|
Jørgensen OS, Hansen LI, Hoffman SW, Fülöp Z, Stein DG. Synaptic remodeling and free radical formation after brain contusion injury in the rat. Exp Neurol 1997; 144:326-38. [PMID: 9168833 DOI: 10.1006/exnr.1996.6372] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to explore whether bilateral frontal cortex contusion in rats would demonstrate changes relevant for understanding the pathology of frontal lobe injury in humans. Rats were allowed to survive for 3, 7, or 18 days postinjury (dpi). In the contused rats, albumin was trapped in frontal cortices, as well as in other brain areas, showing that neurons were exposed to plasma components. In the sham-operated rats, which had only craniotomy but no penetration of dura, the level of trapped albumin was also increased compared to intact controls, suggesting a partial lesion-like condition. Choline acetyltransferase activity was severely decreased in the frontal cortices of contused rats, compared to the sham-operated controls. The decrease was most pronounced at 3 dpi and less pronounced 18 dpi, suggesting that after the initial damage, regeneration of the cholinergic terminals occurred. The concentration of the mature presynaptic membrane protein D3(SNAP-25) was also decreased in the frontal cortices of contused rats at 3 and 7 dpi, whereas it was normalized at 18 dpi. Previously, we have evaluated changes in the rate of synaptic remodeling in brain injury by calculating the ratio of the neural cell adhesion molecule (NCAM) to D3(SNAP-25). The NCAM/D3(SNAP-25) ratio at 3 dpi was elevated by more than 60% in the frontal cortices of contused rats, suggesting a high initial rate of synaptic remodeling. The ratios were smaller at 7 and 18 dpi, suggesting that after the initial burst, the rate of remodeling leveled off. In contrast, astrocyte activation was less pronounced at 3 dpi than at 7 and 18 dpi, as measured by the levels of glial fibrillary acidic protein and glutamine synthetase immunoactivities. The immunoreactivity of glutamine synthetase more than doubled in the contused brains but its enzymatic activity increased less than 50%, suggesting that many enzymatic centers had been inactivated by free radicals. Calculated as the difference between the relative immunoreactivity and the relative enzymatic activity the "lost glutamine synthetase activity" increased continuously in frontal cortex and striatum from 3 to 18 dpi, indicating the production of free radicals long after the initial contusion event. In conclusion, following frontal cortical contusions the early synaptic damage was partly compensated by synaptic remodeling. We suggest that the continuous production of free radicals may have contributed to the declining remodeling rate and impair functional recovery.
Collapse
Affiliation(s)
- O S Jørgensen
- Department of Pharmacology, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
85
|
Koyama Y, Kimura Y, Baba A. Induction of glutamine synthetase by L-alpha-aminoadipate in developmental stages of cultured astrocytes. Neurosci Lett 1997; 223:65-8. [PMID: 9058424 DOI: 10.1016/s0304-3940(97)13393-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effect of L-alpha-aminoadipate (L alpha AA), a gliotoxic L-glutamate analogue, on glutamine synthetase (GS) activity of rat cultured astrocytes was examined, L alpha AA at sub-toxic concentrations (less than 0.5 mM, for 48 h) increased GS activity of cultured astrocytes. This increase was prevented by 10 microM cycloheximide, an inhibitor of protein synthesis. L alpha AA increased GS activities of astrocytes cultured in three different conditions, i.e. 12-day-old, 5-233k-old and dibutyryl cAMP(DBcAMP)-induced differentiated cultures. Insulin (10 micrograms/ml) and hydrocortisone (10 microM) increased GS activity of 12-day-old cultured cells, but not that of 5-weeks-old and DBcAMP-treated cells. The increase in GS activity was observed after a transient treatment with L alpha AA for 4 h. These results show that the induction of GS by L alpha AA is not related to developmental stages of astrocytes in culture.
Collapse
Affiliation(s)
- Y Koyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | |
Collapse
|
86
|
Abstract
Metabolic integrity of glial cells in field CA1 of the guinea pig hippocampus is critical to maintenance of synaptic transmission (Keyser and Pellmar [1994] Glia 10:237-243). To determine if this tight glial-neuronal coupling is equally important in other brain regions, we compared the effect of fluoroacetate (FAC), a glial specific metabolic blocker, on synaptic transmission in field CA1 to synaptic transmission in area dentata (DG). FAC was significantly more effective in decreasing synaptic potentials in CA1 than in DG. A similar regional disparity in the FAC-induced decrease in ATP levels was evident. Isocitrate, a glial specific metabolic substrate, prevented the FAC-induced synaptic depression in both CA1 and DG. The results suggest that glia of CA1 and dentate respond differently to metabolic challenge. Modulation of this glial-neuronal coupling could provide a regionally specific mechanism for synaptic plasticity. Additionally, site-specific glial-neuronal interactions can impact on a variety of physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- D O Keyser
- Physiology Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889-5607, USA
| | | |
Collapse
|
87
|
Gorovits R, Yakir A, Fox LE, Vardimon L. Hormonal and non-hormonal regulation of glutamine synthetase in the developing neural retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:321-9. [PMID: 9037548 DOI: 10.1016/s0169-328x(96)00213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two isoforms of the glucocorticoid receptor, with apparent molecular mass of 90 and 95 kDa, are expressed in embryonic chicken neural retina. The 95-kDa receptor represents a hyperphosphorylated form of the 90-kDa receptor. Activation of the glucocorticoid receptor by cortisol results in a dose-dependent increase in receptor phosphorylation, translocation of receptor molecules into the nucleus and a decline in the total amount of the receptor. Activation of the glucocorticoid receptor can also be observed in the developing retinal tissue in ovo. At late embryonic ages, when the systemic level of glucocorticoids increases, a substantial quantity of receptor molecules becomes translocated into the nucleus, the relative level of the 95-kDa isoform increases, and the total amount of receptor declines. Activation of the receptor molecules in ovo correlates directly with an increase in transcription of the glucocorticoid-inducible gene, glutamine synthetase. The close correlation between the increase in systemic glucocorticoids, activation of glucocorticoid receptor molecules and induction of glutamine synthetase gene transcription suggests that glucocorticoids are directly involved in the developmental control of glutamine synthetase expression. Long-term organ culturing of embryonic retinal tissue in the absence of hormone results in an increase in glutamine synthetase expression. This increase, which is only 5 to 10% of that observed in ovo, is not mediated by activated receptor molecules and represents a mechanism for non-hormonal regulation of glutamine synthetase.
Collapse
Affiliation(s)
- R Gorovits
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
88
|
Abstract
Glutamate is thought to act as a neurotransmitter of the sensory hair cells of the organ of Corti. Glutamine synthetase could be involved in a type of glutamate-glutamine cycle in the cochlea which could clear glutamate off the synaptic cleft and replenish the hair cell glutamate neurotransmitter store. Using both light and electron microscopic immunocytochemistry to localize this enzyme in the guinea pig cochlea, we have observed immunoreactive satellite glial cells surrounding parvalbumin-immunoreactive primary auditory neurons in the spiral ganglion. Glutamine synthetase was also detected in Schwann cells of the osseous spiral lamina which form the myelin sheath of nerve fibers. On the contrary, no immunoreactivity could be observed in the cochlear nerve and in the organ of Corti, although this organ contains structures able to take up glutamate. Although they confirm earlier works involving glutamine synthetase in the conversion of L-[3H]glutamate taken up by glial cells, our results suggest that the cochlear glutamate-glutamine cycle is not primarily involved in the recycling and replenishment of hair cell neurotransmitter glutamate. Alternatively, it is proposed that glutamine synthetase functions to limit the perilymphatic glutamate concentrations.
Collapse
MESH Headings
- Animals
- Cochlea/enzymology
- Cochlea/ultrastructure
- Fluorescent Antibody Technique
- Frozen Sections
- Glutamate-Ammonia Ligase/metabolism
- Glutamic Acid/metabolism
- Guinea Pigs
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/enzymology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/enzymology
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- Microscopy, Electron
- Neuroglia/cytology
- Neuroglia/enzymology
- Neuroglia/ultrastructure
- Organ of Corti/enzymology
- Parvalbumins/chemistry
- Schwann Cells/cytology
- Schwann Cells/enzymology
- Schwann Cells/ultrastructure
- Spiral Ganglion/cytology
- Spiral Ganglion/enzymology
- Spiral Ganglion/ultrastructure
- Tissue Fixation
- Tissue Preservation
- Vestibulocochlear Nerve/enzymology
Collapse
Affiliation(s)
- M Eybalin
- INSERM U-254 Neurobiologie de l'Audition-Plasticité Synaptique, Montpellier, France.
| | | | | |
Collapse
|
89
|
Yamazaki S, Fukui K, Kawashima H, Kuge Y, Miyake Y, Kangawa K. Uptake of radioactive octanoate in astrocytoma cells: basic studies for application of [11C]octanoate as a PET tracer. Ann Nucl Med 1996; 10:395-9. [PMID: 9006724 DOI: 10.1007/bf03164800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fatty acids are taken up and metabolized in the brain. In vitro uptake experiments on astrocytoma cells were carried out to assess the potential use of [1-11C]octanoate as a positron emission tomography (PET) tracer for astroglial functions. Uptake of [1-14C]octanoate increased in a time-dependent fashion until 60 min after application. The uptake of [1-11C]octanoate showed similar results to that of [1-14C]octanoate until 10 min. As for medium pH, [1-14C]octanoate uptake increased gradually with the decrease in pH. We also examined the effects of glutamate, glucose deprivation and hypoxia on the uptake of octanoate and found that these conditions did not bring about any change in the extent of [1-14C]octanoate uptake. These results show that the octanoate uptake was not influenced by any of several pathological conditions. When the number of astrocytes increases in the area of hypoglycemia or hypoxia near a brain lesion, the amount of octanoate uptake also increases, so this indicates the possibility that 11C-octanoate will detect a brain lesion.
Collapse
Affiliation(s)
- S Yamazaki
- Institute for Biofunctional Research Co., Ltd., Osaka, Japan
| | | | | | | | | | | |
Collapse
|
90
|
Yamashita K, Vogel P, Fritze K, Back T, Hossmann KA, Wiessner C. Monitoring the temporal and spatial activation pattern of astrocytes in focal cerebral ischemia using in situ hybridization to GFAP mRNA: comparison with sgp-2 and hsp70 mRNA and the effect of glutamate receptor antagonists. Brain Res 1996; 735:285-97. [PMID: 8911667 DOI: 10.1016/0006-8993(96)00578-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the temporo-spatial expression of astrocyte glial fibrillary acidic protein (gfap) and sulfated glycoprotein 2 (sgp-2) mRNAs in comparison to 70-kDa heat shock protein (hsp70) mRNA by in situ hybridisation in rats subjected to permanent occlusion of the middle cerebral artery (MCA). Gfap mRNA started to increase in the cingulate cortex of the lesioned hemisphere 6 h after MCA occlusion and gradually spread over the lateral part of the ipsilateral cortex and the striatum from 12 h to 3 days, peaking at 3 days after MCA occlusion. Gfap mRNA also increased in the contralateral cingulate cortex and corpus callosum at 12 and 24 h. Hsp70 mRNA increased markedly in the ipsilateral cortex adjacent to the ischemic lesion, and slightly within the lesion area from 3 to 24 h and disappeared after 3 days. By 7 days, gfap and sgp-2 mRNAs were increased markedly in the peri-infarct area, and in the ipsilateral thalamus parallel with the delayed neuronal damage, whereas the widespread increase of gfap mRNA in the ipsilateral hemisphere declined. Post-occlusion treatment with the glutamate receptor antagonists MK-801 and NBQX slightly attenuate the induction of gfap but did not qualitatively affect the topical expression pattern. Within the cingulate cortex MK-801 treatment resulted in a significant decrease of the signal intensity at all survival times, reflecting most likely an attenuation of lesion-induced spreading depression like depolarization waves by MK-801. The area of hsp70 expression was reduced by both MK-801 and NBQX, most likely reflecting the decrease of the lesion area by both treatment regimens. Our study thus revealed an early and widespread increase of gfap mRNA in the non-ischemic area including the contralateral hemisphere starting between 3 and 6 h, and a delayed circumscribed expression in the peri-infarct border zone after 1 week. Comparison with the expression of hsp70 mRNA suggests that the absence of an early gfap mRNA induction in the peri-lesion zone reflects an impairment of astrocytic function which may be of importance for infarct growth during the early evolution of the pathological process.
Collapse
Affiliation(s)
- K Yamashita
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Kelleher JA, Chan TY, Chan PH, Gregory GA. Protection of astrocytes by fructose 1,6-bisphosphate and citrate ameliorates neuronal injury under hypoxic conditions. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00328-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
92
|
Krajnc D, Neff NH, Hadjiconstantinou M. Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 1996; 707:134-7. [PMID: 8866724 DOI: 10.1016/0006-8993(95)01372-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposing 7-day-old rat pups to hypoxia, 8% oxygen/92% nitrogen, for 3 h alters glutamate (GLU), glutamine and glutamine synthetase (GS) activity in the striatum, frontal cortex and hippocampus. Immediately following the hypoxic insult there is a rapid transient elevation of GLU followed by a fall and then recovery to control values within 6 h. Glutamine content initially decreased after the termination of the insult, rose thereafter and approached control values within 6 h. GS activity was depressed after hypoxia and gradually returned to normal levels within 6 h. GS mRNA was increased in the three brain regions studied after hypoxia and returned to control values within 24 h. These results suggest that hypoxia alters GLU metabolism in the immature brain.
Collapse
Affiliation(s)
- D Krajnc
- Department of Psychiatry, Ohio State University College of Medicine, Colombus 43210, USA
| | | | | |
Collapse
|
93
|
Loo DT, Althoen MC, Cotman CW. Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity. J Neurosci Res 1995; 42:184-91. [PMID: 8568918 DOI: 10.1002/jnr.490420205] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serum-free mouse embryo (SFME) cells derived in a defined serum-free medium have been cultured for more than 200 generations and display properties of neural progenitor cells. SFME cells express the neuroepithelial stem cell marker nestin in defined serum-free medium. Exposure of SFME cells to transforming growth factor beta (TGF-beta) or serum decreases nestin expression and induces the astrocyte marker glial fibrillary acidic protein, suggesting that SFME cells differentiate into astrocytes upon exposure to TGF-beta or serum. We examined the expression by SFME cells of the functional central nervous system (CNS) astrocyte marker glutamine synthetase (GS). GS activity is induced in SFME cells upon exposure to TFG-beta or serum. The induction of GS activity was dose- and time-dependent and was reversible. Retinoic acid, hydrocortisone, and dibutyryl cyclic AMP also induced GS expression. The induction of GS activity was accompanied by an increase in the level of GS mRNA and protein. This work provides further evidence that SFME cells represent neural progenitor cells which differentiate into functional astrocytes upon exposure to TGF-beta or serum.
Collapse
Affiliation(s)
- D T Loo
- Irvine Research Unit in Brain Aging, University of California, USA
| | | | | |
Collapse
|
94
|
Ohnishi M, Watanabe Y, Shibuya T. Potentiation of excito-toxicity by glutamate uptake inhibitor rather than glutamine synthetase inhibitor. JAPANESE JOURNAL OF PHARMACOLOGY 1995; 68:315-21. [PMID: 7474555 DOI: 10.1254/jjp.68.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neuroprotective functions of glia cells in the presence of excessive amounts of extracellular glutamate (Glu) were examined using glia-rich and glia-poor cultured cerebellar granule cells that contained the same number of neurons. In order to focus on the metabolic enzyme glutamine synthetase (GS) and the uptake system in glia cells, selective inhibitors such as L-methionine sulfoximine (MSO) and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) were used as pharmacological tools. The increased amount of lactate dehydrogenase (LDH) leakage induced by 50 microM Glu and SITS was equivalent to that of 1 mM Glu. However, the simultaneous treatment with 50 microM Glu and 5 microM MSO did not increase the LDH leakage. The larger quantities of extracellular Glu were sustained in both glia-rich and glia-poor cultures. After the administration of Glu and MSO, however, the larger quantities of Glu were not sustained. Taking these results into consideration, the Glu uptake system in glia cells seems to be more important than the Glu metabolic enzyme system in the regulation of neuronal protection from Glu toxicity.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Pharmacology, Tokyo Medical College, Japan
| | | | | |
Collapse
|
95
|
Kato H, Kogure K, Araki T, Itoyama Y. Astroglial and microglial reactions in the gerbil hippocampus with induced ischemic tolerance. Brain Res 1994; 664:69-76. [PMID: 7895048 DOI: 10.1016/0006-8993(94)91955-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Preconditioning of the brain with sublethal ischemia protects against neuronal damage following subsequent longer periods of ischemia (ischemic tolerance). In this study, we investigated astroglial and microglial reactions in the hippocampus following ischemia in a gerbil model of ischemic tolerance. Two minutes of forebrain ischemia (preconditioning ischemia) or sham operation was followed by 3 min of ischemia (second ischemia) 3 days later. The brains were perfusion-fixed after 4 h, 1 day, 2 days, and 7 days. Paraffin sections were used for the visualization of astrocytes by immunostaining against glial fibrillary acidic protein (GFAP) and for the visualization of microglia by histochemical staining with isolectin-B4 from Griffonia simplicifolia. The preconditioning ischemia induced a moderate increase in astroglial and microglial staining. Two days after the second ischemia, GFAP staining further increased in astrocytes in the hippocampus with ischemic tolerance. In the CA1 region of the hippocampus without ischemic tolerance, in contrast, microglial activation with increased staining and morphological changes was pronounced. After 7 days, neuronal destruction resulted in the CA1 region without tolerance, where hypertrophic reactive astroglia and reactive microglia with phagocytic transformation accumulated intensely. However, the ischemic preconditioning prevented the CA1 neuronal damage and the activation of microglia was subsiding after 7 days. Thus, activation of glial cells occurred in a graded fashion in response to different degrees of neuronal injury. Astroglial but not microglial activation may have implications in neuronal survival in ischemic tolerance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Kato
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
96
|
Huang R, Hertz L. Effect of anoxia on glutamate formation from glutamine in cultured neurons: dependence on neuronal subtype. Brain Res 1994; 660:129-37. [PMID: 7827989 DOI: 10.1016/0006-8993(94)90846-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthesis and release of glutamate formed from labeled glutamine were studied in primary cultures of the glutamatergic cerebellar granule cells and of the mainly GABAergic cerebral cortical neurons under anoxic conditions and under normoxic control conditions. Under both control and anoxic conditions cerebellar granule cells synthesized and released glutamate more intensely than cerebral cortical neurons, but this difference was enhanced under anoxic conditions. Thus, under normoxic conditions synthesis of intracellular labeled glutamate from glutamine was twice as high in cerebellar granule cell neurons as in cerebral cortical neurons during 30 min of incubation, but the release of newly synthesized labeled glutamate to the extracellular medium from cerebellar granule cell neurons was more than 4 times higher than the release from cerebral cortical neurons during 30 min of incubation. Based on these observations it is suggested that a major reason for the increase in extracellular glutamate concentration during brain ischemia may be enhanced production and release of glutamate, especially in glutamatergic neurons.
Collapse
Affiliation(s)
- R Huang
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
97
|
Lazarini F, Boussin F, Deslys JP, Tardy M, Dormont D. Astrocyte gene expression in experimental mouse scrapie. J Comp Pathol 1994; 111:87-98. [PMID: 7962730 DOI: 10.1016/s0021-9975(05)80114-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biological hallmark of transmissible spongiform encephalopathies is a significant accumulation, in brain, of the scrapie prion protein (PrPsc), often associated with an increased glial fibrillary acidic protein (GFAP) expression. This study was focused on astrocyte gene expression during scrapie development over a period of 172 days in intracerebrally inoculated newborn mice. The levels of expression of PrP and two specific astrocyte proteins, -GFAP and glutamine synthetase (GS)-, were investigated by Western and Northern blots. In brain, a 10-fold increased expression of GFAP mRNAS was demonstrated from 112 days post-inoculation to 172 days, whereas the "upregulation" of GS mRNAs was two-fold. GFAP was observed to increase 10- to 20-fold in scrapie-infected brain from day 112 to day 172, while PrP showed a three- to four-fold elevation. Both proteins were found in greater amount in the frontal cortex and cerebellum of animals with clinical scrapie than in those given an injection of normal brain. PrPsc was detected in scrapie brain from day 84 after inoculation, and thereafter increased about 20-fold until day 172. On the other hand, the concentration of glutamine synthetase remained constant in brain throughout the scrapie disease. To conclude, these results show that GFAP and GS mRNAs are differently upregulated in brain in the scrapie mouse model.
Collapse
Affiliation(s)
- F Lazarini
- Laboratoire de Neuropathologie Expérimentale et Neurovirologie, CRSSA, Commissariat à l'Energie Atomique, DPTE/DSV, Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
98
|
Sallanon-Moulin M, Touret M, Didier-Bazes M, Roudier V, Fages C, Tardy M, Jouvet M. Glutamine synthetase modulation in the brain of rats subjected to deprivation of paradoxical sleep. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 22:113-20. [PMID: 7912399 DOI: 10.1016/0169-328x(94)90038-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the level of glutamine synthetase (GS), an enzyme mainly located in astrocytes, were investigated in rat brain after deprivation of paradoxical sleep (PSD) and during recovery. An immunotitration method was used to evaluate the relative level of GS in brain tissue. At the end of a 24 h PSD, a significant increase in GS protein was observed both in the frontoparietal cortex (CX) and in the locus coeruleus area (LC). Four hours later during recovery, the level of GS protein returned to normal level in the CX but fell below control levels in the LC. In contrast, in the CX, the level of glial fibrillary acidic protein, an astroglial marker, did not change after PSD or during recovery. GS mRNA was quantified in the entire cortex by northern blot hybridization using of an oligonucleotidic GS-cDNA probe. We observed an increase in the GS mRNA level in the cortex of PSD rats of the same magnitude as the increase in GS protein. Both GS mRNA and GS protein tended to return to control values 4 h later during recovery. These results are discussed with particular attention to stress effects and possible physiological mechanisms regarding the regulation of amino acid levels by neurotransmitters during prolonged waking or neuronal excitation.
Collapse
Affiliation(s)
- M Sallanon-Moulin
- Department of experimental medicine, Claude Bernard University, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Kish SJ, Chang LJ, Dixon LM, Robitaille Y, DiStefano L. Cerebellar glutamate metabolizing enzymes in spinocerebellar ataxia type I. Metab Brain Dis 1994; 9:97-103. [PMID: 7914669 DOI: 10.1007/bf01996077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We measured the levels of three glutamate metabolizing enzymes, namely, glutamate dehydrogenase (GDH), aspartate aminotransferase (AAT), and glutamine synthetase (GS) in cerebellar and occipital cortices of nine patients with dominantly-inherited olivopontocerebellar atrophy (OPCA; spinocerebellar ataxia type I). As compared with the controls, mean GDH activities in cerebellar cortex of the OPCA patients were normal whereas levels of AAT (-17%) and the glial enzyme GS (-27%) were significantly reduced. No statistically significant changes were observed in occipital cortex, a morphologically unaffected brain area. We suggest that the decreased GS levels could reflect impaired capacity of astrocytes to metabolize glutamate which might contribute to the degenerative processes in OPCA cerebellum.
Collapse
Affiliation(s)
- S J Kish
- Human Neurochemical Pathology Lab, Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
100
|
Kelleher JA, Gregory GA, Chan PH. Effect of fructose-1,6-bisphosphate on glutamate uptake and glutamine synthetase activity in hypoxic astrocyte cultures. Neurochem Res 1994; 19:209-15. [PMID: 7910381 DOI: 10.1007/bf00966818] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Astrocytes are important in regulating the microenvironment of neurons both by catabolic and synthetic pathways. The glutamine synthetase (GS) activity observed in astrocytes affects neurons by removing toxic substances, NH3 and glutamate; and by providing an important neuronal substrate, glutamine. This glutamate cycle might play a critical role during periods of hypoxia and ischemia, when an increase in extracellular excitatory amino acids is observed. It was previously shown in our laboratory that fructose-1,6-bisphosphate (FBP) protected cortical astrocyte cultures from hypoxic insult and reduced ATP loss following a prolonged (18-30 hrs) hypoxia. In the present study we established the effects of FBP on the level of glutamate uptake and GS activity under normoxic and hypoxic conditions. Under normoxic conditions, [U-14C]glutamate uptake and glutamine production were independent of FBP treatment; whereas under hypoxic conditions, the initial increase in glutamate uptake and an overall increase in glutamine production in astrocytes were FBP-dependent. Glutamine synthetase activity was dependent on FBP added during the 22 hours of either normoxic- or hypoxic-treatment, hence significant increases in activity were observed due to FBP regardless of the oxygen/ATP levels in situ. These studies suggest that activation of GS by FBP may provide astrocytic protection against hypoxic injury.
Collapse
Affiliation(s)
- J A Kelleher
- Department of Neurology, School of Medicine, University of California, San Francisco 94143-0114
| | | | | |
Collapse
|