51
|
Jaikhan P, Boonyarat C, Arunrungvichian K, Taylor P, Vajragupta O. Design and Synthesis of Nicotinic Acetylcholine Receptor Antagonists and their Effect on Cognitive Impairment. Chem Biol Drug Des 2015; 87:39-56. [DOI: 10.1111/cbdd.12627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Pattaporn Jaikhan
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
| | - Chantana Boonyarat
- Department of Pharmaceutical Chemistry; Faculty of Pharmaceutical Science; KhonKaen University; KhonKaen 4000 Thailand
| | - Kuntarat Arunrungvichian
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California; San Diego 9500 Gilman Drive La Jolla CA 92093-0657 USA
| | - Palmer Taylor
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California; San Diego 9500 Gilman Drive La Jolla CA 92093-0657 USA
| | - Opa Vajragupta
- Center of Excellence for Innovation in Drug Design and Discovery; Faculty of Pharmacy; Mahidol University; 447 Sri-Ayudya Road Bangkok 10400 Thailand
| |
Collapse
|
52
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
53
|
Abstract
INTRODUCTION Neuropathic pain is difficult to relieve with standard analgesics and tends to be resistant to opioid therapy. Sigma-1 receptors activated during neuropathic injury may sustain pain. Neuropathic injury activates sigma-1 receptors, which results in activation of various kinases, modulates the activity of multiple ion channels, ligand activated ion channels and voltage-gated ion channels; alters monoamine neurotransmission and dampens opioid receptors G-protein activation. Activation of sigma-1 receptors tonically inhibits opioid receptor G-protein activation and thus dampens analgesic responses. Therefore, sigma-1 receptor antagonists are potential analgesics for neuropathic and adjuvants to opioid therapy. AREAS COVERED This article reviews the importance of sigma-1 receptors as pain generators in multiple animal models in order to illustrate both the importance of these unique receptors in pathologic pain and the potential benefits to sigma-1 receptor antagonists as analgesics. EXPERT OPINION Sigma-1 receptor antagonists have a great potential as analgesics for acute neuropathic injury (herpes zoster, acute postoperative pain and chemotherapy induced neuropathy) and may, as an additional benefit, prevent the development of chronic neuropathic pain. Antagonists are potentially effective as adjuvants to opioid therapy when used early to prevent analgesic tolerance. Drug development is complicated by the complexity of sigma-1 receptor pharmacodynamics and its multiple targets, the lack of a specific sigma-1 receptor antagonist, and potential side effects due to on-target toxicities (cognitive impairment, depression).
Collapse
Affiliation(s)
- Mellar P Davis
- Case Western Reserve University, Taussig Cancer Institute, Cleveland Clinic Lerner School of Medicine, Palliative Medicine and Supportive Oncology Services, Division of Solid Tumor, The Cleveland Clinic , 9500 Euclid Ave, Cleveland, OH 44195 , USA
| |
Collapse
|
54
|
Ramakrishnan NK, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy. Mol Imaging Biol 2015; 17:364-72. [PMID: 25449772 DOI: 10.1007/s11307-014-0808-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model. PROCEDURES Sigma-1 receptor occupancy (RO) in the rat brain by cutamesine was determined using 1-[2-(3,4-dimethoxyphenethyl)]-4-(3-phenylpropyl)piperazine ([(11)C]SA4503) and positron emission tomography (PET), and tissue cutamesine levels were measured by ultra performance liquid chromatography (UPLC)-MS. RO was calculated from a Cunningham-Lassen plot, based on the total distribution volume of [(11)C]SA4503 determined by Logan graphical analysis. Cognitive performance was assessed using the passive avoidance (PA) test. RESULTS Cutamesine at a dose of 1.0 mg/kg reversed REM SD-induced cognitive deficit and occupied 92 % of the sigma-1 receptor population. A lower dose (0.3 mg/kg) occupied 88 % of the receptors but did not significantly improve cognition. CONCLUSION The anti-amnesic effect of cutamesine in this animal model may be related to longer exposure at a higher dose and/or drug binding to secondary targets.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience 2015; 300:1-9. [PMID: 25956258 DOI: 10.1016/j.neuroscience.2015.04.067] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory deficits in the offspring of dams with MTHFR deficiency or dietary deficiencies of critical methyl donors. We suggest that deficiencies in maternal one-carbon metabolism during pregnancy can contribute to hippocampal dysfunction in offspring through apoptosis or altered choline metabolism.
Collapse
Affiliation(s)
- N M Jadavji
- Departments of Human Genetics and Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada.
| | - L Deng
- Departments of Human Genetics and Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada.
| | - O Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, USA.
| | - M A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, USA.
| | - R Rozen
- Departments of Human Genetics and Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
56
|
Therapeutic Effects of TianDiJingWan on the Aβ 25-35-Induced Alzheimer's Disease Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:307350. [PMID: 25815030 PMCID: PMC4357045 DOI: 10.1155/2015/307350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022]
Abstract
The main purpose of this study was to demonstrate the therapeutic effects and mechanism of TDJW, a modern Chinese medicine prescription developed based on the basic traditional Chinese medicine theory of “tonifying the kidney essence,” on the Aβ25–35-induced AD rats. The AD model was established by the intracerebroventricular administrations of Aβ25–35 into the hippocampus CA1 tissue of SD male rats. 72 rats were randomly divided into six groups: sham operation, AD model, donepezil, high TDJW group, medium TDJW group, and low TDJW group. After oral administration of TDJW, the results of Morris water maze and step-down test showed that the learning and memory abilities of AD rats were significantly improved. And biochemical measurement demonstrated that Ach and Glu in hippocampus tissues of AD rats were increased as well. Moreover, the Aβ deposits and p-Tau aggregations in hippocampus CA1 tissues of AD rats were attenuated as observed in the micrographs of immunohistochemistry study, and the results of ELISA indicated that the expressions of TNF-α, IL-1β, and IL-6 in hippocampus tissues were significantly decreased. In conclusion, the present study demonstrated that TDJW could be used as a promising therapeutic agent for the clinical applications of AD treatment in patients.
Collapse
|
57
|
MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology (Berl) 2014; 231:4007-18. [PMID: 24687411 DOI: 10.1007/s00213-014-3536-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE We have recently shown that chronic exposure to 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") of adolescent mice exacerbates dopamine neurotoxicity and neuroinflammatory effects elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the substantia nigra and striatum at adulthood. OBJECTIVES The present study investigated whether the amplification of MPTP effects by previous treatment with MDMA extends to the limbic and cortical regions and consequently affects cognitive performance. METHODS Mice received MDMA (10 mg/kg, twice a day/twice a week) for 9 weeks, followed by MPTP (20 mg/kg × 4 administrations), starting 2 weeks after MDMA discontinuation. Complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) were evaluated by immunohistochemistry in both the hippocampus and the medial prefrontal cortex (mPFC) to measure microglia and astroglia activation. These neurochemical evaluations were paired with an assessment of cognitive performance by means of the novel object recognition (NOR) and spontaneous alternation tasks. RESULTS MPTP administration to MDMA-pretreated mice elicited a stronger activation of CD11b and GFAP in both the hippocampus and the mPFC compared with either substance administered alone. Furthermore, NOR performance was lower in MDMA-pretreated mice administered MPTP compared with mice that received either substance alone. CONCLUSIONS These results demonstrate that MDMA-MPTP negative interactions extend to the limbic and cortical regions and may result in cognitive impairment, providing further evidence that exposure to MDMA may amplify the effects of later neurotoxic insults.
Collapse
|
58
|
Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism. Biochem J 2014; 461:205-12. [PMID: 24800750 DOI: 10.1042/bj20131568] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperhomocysteinaemia can contribute to cognitive impairment and brain atrophy. MTRR (methionine synthase reductase) activates methionine synthase, which catalyses homocysteine remethylation to methionine. Severe MTRR deficiency results in homocystinuria with cognitive and motor impairments. An MTRR polymorphism may influence homocysteine levels and reproductive outcomes. The goal of the present study was to determine whether mild hyperhomocysteinaemia affects neurological function in a mouse model with Mtrr deficiency. Mtrr+/+, Mtrr+/gt and Mtrrgt/gt mice (3 months old) were assessed for short-term memory, brain volumes and hippocampal morphology. We also measured DNA methylation, apoptosis, neurogenesis, choline metabolites and expression of ChAT (choline acetyltransferase) and AChE (acetylcholinesterase) in the hippocampus. Mtrrgt/gt mice exhibited short-term memory impairment on two tasks. They had global DNA hypomethylation and decreased choline, betaine and acetylcholine levels. Expression of ChAT and AChE was increased and decreased respectively. At 3 weeks of age, they showed increased neurogenesis. In the cerebellum, mutant mice had DNA hypomethylation, decreased choline and increased expression of ChAT. Our work demonstrates that mild hyperhomocysteinaemia is associated with memory impairment. We propose a mechanism whereby a deficiency in methionine synthesis leads to hypomethylation and compensatory disturbances in choline metabolism in the hippocampus. This disturbance affects the levels of acetylcholine, a critical neurotransmitter in learning and memory.
Collapse
|
59
|
Skuza G, Sadaj W, Kabziński M, Cassano G, Gasparre G, Abate C, Berardi F. The effects of new sigma (σ) receptor ligands, PB190 and PB212, in the models predictive of antidepressant activity. Pharmacol Rep 2014; 66:320-4. [DOI: 10.1016/j.pharep.2013.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 02/03/2023]
|
60
|
Su J, Hato-Yamada N, Araki H, Yoshimura H. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors. J Pharmacol Sci 2013; 123:246-55. [PMID: 24162025 DOI: 10.1254/jphs.13145fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.
Collapse
Affiliation(s)
- Jing Su
- Department of Pharmacology and Pharmacy, Ehime University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
61
|
Zhang H, Zhang Y, Xu H, Wang L, Zhao J, Wang J, Zhang Z, Tan Q, Kong J, Huang Q, Li XM. Locomotor activity and anxiety status, but not spatial working memory, are affected in mice after brief exposure to cuprizone. Neurosci Bull 2013; 29:633-41. [PMID: 23990221 DOI: 10.1007/s12264-013-1369-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/09/2012] [Indexed: 02/02/2023] Open
Abstract
Chronic long-term exposure to cuprizone causes severe brain demyelination in mice, which leads to changes in locomotion, working memory and anxiety. These findings suggest the importance of intact myelin for these behaviors. This study aimed to investigate the possible behavioral changes in mice with mild oligodendrocyte/myelin damage that parallels the white matter changes seen in the brains of patients with psychiatric disporders. We used the cuprizone-treated mouse model to test both tissue changes and behavioral functions (locomotor activity, anxiety status, and spatial working memory). The results showed that mice given cuprizone in their diet for 7 days had no significant myelin breakdown as evaluated by immunohistochemical staining for myelin basic protein, while the number of mature oligodendrocytes was reduced. The number and length of Caspr protein clusters, a structural marker of the node of Ranvier, did not change. The locomotor activity of the cuprizone-treated mice increased whereas their anxiety levels were lower than in normal controls; spatial working memory, however, did not change. These results, for the first time, link emotion-related behavior with mild white matter damage in cuprizone-treated mice.
Collapse
Affiliation(s)
- Handi Zhang
- Mental Health Center, Shantou University, Shantou, 515065, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 2013; 34:532-66. [PMID: 23922215 DOI: 10.1002/med.21297] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sigma-2 receptor is highly expressed in various rapidly proliferating cancer cells and regarded as a cancer cell biomarker. Selective sigma-2 ligands have been shown to specifically label the tumor sites, induce cancer cells to undergo apoptosis, and inhibit tumor growth. Sigma-2 ligands are potentially useful as cancer diagnostics, anticancer therapeutics, or adjuvant anticancer treatment agents. However, both the cloning of this receptor and the identification of its endogenous ligand have not been successful, and the lack of structural information has severely hindered the understanding of its physiological roles, its signaling pathways, and the development of more selective sigma-2 ligands. Recent data have implicated that sigma-2 binding sites are within the lipid rafts and that PGRMC1 (progesterone receptor membrane component 1) complex and sigma-2 receptor may be coupled with EGFR (epidermal growth factor receptor), mTOR (mammalian target of rapamycin), caspases, and ion channels. Due to its promising applications in cancer management, there are rapidly increasing research efforts that are being directed into this field. This review article updates the current understanding of sigma-2 receptor and its potential physiological roles, applications, interaction with other effectors, with special focuses on the development of sigma-2 ligands, their chemical structures, pharmacological profiles, applications in imaging and anticancer therapy.
Collapse
Affiliation(s)
- Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical College, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong, 523808, China
| | | | | | | |
Collapse
|
63
|
Pabba M. The essential roles of protein-protein interaction in sigma-1 receptor functions. Front Cell Neurosci 2013; 7:50. [PMID: 23630466 PMCID: PMC3633076 DOI: 10.3389/fncel.2013.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohan Pabba
- Neurosciences Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
64
|
Kocahan S, Akillioglu K, Binokay S, Sencar L, Polat S. The Effects of N-Methyl-d-Aspartate Receptor Blockade During The Early Neurodevelopmental Period on Emotional Behaviors and Cognitive Functions of Adolescent Wistar Rats. Neurochem Res 2013; 38:989-96. [DOI: 10.1007/s11064-013-1008-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
|
65
|
The novel δ opioid receptor agonist KNT-127 produces distinct anxiolytic-like effects in rats without producing the adverse effects associated with benzodiazepines. Neuropharmacology 2012; 67:485-93. [PMID: 23246531 DOI: 10.1016/j.neuropharm.2012.11.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 11/20/2022]
Abstract
We previously reported that a δ opioid receptor agonist SNC80 produced potent anxiolytic-like effects in rodents. Recently, we succeeded in synthesizing a novel δ opioid receptor agonist KNT-127. In this study, we investigated the anxiolytic-like effects of KNT-127 using three different rat models of innate anxiety. In an elevated plus-maze test, KNT-127 (0.3, 1, and 3.0 mg/kg, s.c.) significantly and dose-dependently increased the time rats spent in the open arms 30 min after administration. The magnitude of the KNT-127 (3.0 mg/kg, s.c.)-induced anxiolytic-like effects was similar to that produced by diazepam (1.0 mg/kg, s.c.), a benzodiazepine anxiolytic. The anxiolytic-like effects of KNT-127 (3.0 mg/kg, s.c.) were abolished by pretreatment with naltrindole (0.1 mg/kg, s.c.), a selective δ opioid receptor antagonist, suggesting that KNT-127-induced anxiolytic-like effects are mediated by δ opioid receptors. These findings were supported by results obtained from light/dark and open-field tests. Interestingly, in contrast to diazepam (1.0 mg/kg, s.c.), KNT-127 (3.0 mg/kg, s.c.) caused no significant performance changes in the Y-maze test, the ethanol-induced sleeping test, and footprint test. This is the first study to demonstrate that the novel δ opioid receptor agonist KNT-127 produces distinct anxiolytic-like effects in rats, without producing the adverse effects associated with benzodiazepines.
Collapse
|
66
|
Jadavji NM, Deng L, Leclerc D, Malysheva O, Bedell BJ, Caudill MA, Rozen R. Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus. Mol Genet Metab 2012; 106:149-59. [PMID: 22521626 DOI: 10.1016/j.ymgme.2012.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 11/21/2022]
Abstract
The brain is particularly sensitive to folate metabolic disturbances, since methyl groups are critical for its functions. Methylenetetrahydrofolate reductase (MTHFR) generates the primary circulatory form of folate required for homocysteine remethylation to methionine. Neurological disturbances have been described in homocystinuria caused by severe MTHFR deficiency. The goal of this study was to determine if behavioral anomalies are present in severe Mthfr-deficient (Mthfr(-/-)) mice and to identify neurobiological changes that could contribute to these anomalies. Adult male mice of 3 Mthfr genotypes (+/+, +/-, -/-) were tested on motor, anxiety, exploratory and cognitive tasks. Volumes (whole brain and hippocampus) and morphology, global DNA methylation, apoptosis, expression of choline acetyltransferase (ChAT) and glucocorticoid receptor (GR), and concentrations of choline metabolites were assessed in hippocampus. Mthfr(-/-) mice had impairments in motor function and in short- and long-term memory, increased exploratory behavior and decreased anxiety. They showed decreased whole brain and hippocampal volumes, reduced thickness of the pyramidal cell layer of CA1 and CA3, and increased apoptosis in hippocampus. There was a disturbance in choline metabolism as manifested by differences in acetylcholine, betaine or glycerophosphocholine concentrations, and by increased ChAT levels. Mthfr(-/-) mice also had increased GR mRNA and protein. Our study has revealed significant anomalies in affective behavior and impairments in memory of Mthfr(-/-) mice. We identified structural changes, increased apoptosis, altered choline metabolism and GR dysregulation in hippocampus. These findings, as well as some similar observations in cerebellum, could contribute to the behavioral changes and suggest that choline is a critical metabolite in homocystinuria.
Collapse
Affiliation(s)
- Nafisa M Jadavji
- Department of Human Genetics, McGill University, Montreal Children's Hospital Research Institute, 4060 Ste. Catherine West, Montreal, Canada H3Z 2Z3.
| | | | | | | | | | | | | |
Collapse
|
67
|
Sugiyama A, Saitoh A, Iwai T, Takahashi K, Yamada M, Sasaki-Hamada S, Oka JI, Inagaki M, Yamada M. Riluzole produces distinct anxiolytic-like effects in rats without the adverse effects associated with benzodiazepines. Neuropharmacology 2012; 62:2489-98. [PMID: 22377384 DOI: 10.1016/j.neuropharm.2012.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
In this study, we investigated the anxiolytic-like effect of riluzole using three different innate anxiety models in rats. In the elevated plus-maze test, riluzole significantly increased the time spent in, and entries into, the open arm after 60 min administration. This finding was supported by results obtained from light/dark and open-field tests. The magnitude of the anxiolytic-like effects of riluzole in each of the behavioral models was similar to those produced by a benzodiazepine, diazepam, suggesting that riluzole has a robust anxiolytic-like activity in rats. To clarify the involvement of sodium channels in this anxiolytic activity, we examined the effect of a co-administered sodium channel activator, veratrine. The anxiolytic-like action of riluzole was diminished by veratrine in the elevated plus-maze, light/dark and open-field tests. Based on these results, it is suggested that the anxiolytic mechanism of riluzole is clearly distinct from that of diazepam. In addition, to examine whether riluzole directly and non-selectively affected the GABA(A)-benzodiazepine receptor complex, we performed three behavioral tests (footprint analysis, Y-maze test and the ethanol-induced sleeping time test) that are closely related to the GABA(A)-benzodiazepine pathways. In contrast to diazepam, riluzole produced no significant effects in these tests. Here, we provide the first report demonstrating that riluzole produces distinct anxiolytic-like effects in rats without the adverse effects associated with benzodiazepines.
Collapse
Affiliation(s)
- Azusa Sugiyama
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ghiasvand M, Rezayof A, Zarrindast MR, Ahmadi S. Activation of cannabinoid CB1 receptors in the central amygdala impairs inhibitory avoidance memory consolidation via NMDA receptors. Neurobiol Learn Mem 2011; 96:333-8. [DOI: 10.1016/j.nlm.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 12/14/2022]
|
69
|
van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PGM, Dierckx RA. The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 2011; 221:543-54. [PMID: 20060423 DOI: 10.1016/j.bbr.2009.12.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/26/2009] [Indexed: 12/31/2022]
Abstract
This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.
Collapse
Affiliation(s)
- Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T. Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma 1 (σ1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 2011; 25:1101-17. [PMID: 20829307 DOI: 10.1177/0269881110379286] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetrahydro-N, N-dimethyl-2, 2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73) binds to muscarinic acetylcholine and sigma(1) (σ(1)) receptors with affinities in the low micromolar range. We characterized its anti-amnesic and neuroprotective potentials in pharmacological and pathological amnesia models. Spatial working memory was evaluated using spontaneous alternation in the Y-maze and non-spatial memory using passive avoidance procedures. ANAVEX2-73 (0.01-3.0 mg/kg i.p.) alleviated the scopolamine- and dizocilpine-induced learning impairments. ANAVEX2-73 (300 µg/kg) also reversed the learning deficits in mice injected with Aβ(25-35) peptide, a non-transgenic Alzheimer's disease model. When the drug was injected simultaneously with Aβ(25-35), 7 days before the tests, it blocked the appearance of learning impairments. This protective activity was confirmed since ANAVEX2-73 blocked the Aβ(25-35)-induced oxidative stress in the hippocampus. This effect was differentially sensitive to the muscarinic receptor antagonist scopolamine or the σ(1) protein antagonist BD1047, confirming the mixed muscarinic/σ(1) pharmacological action. Finally, its unique demethyl metabolite, ANAVEX19-144, was also effective and ANAVEX2-73 presented a longer duration of action, effective 12 h before Aβ(25-35), than its related compound ANAVEX1-41. The neuroprotective activity of ANAVEX2-73, its mixed cholinergic/σ(1) activity, its low active dose range and its long duration of action together reinforce its therapeutic potential in Alzheimer's disease.
Collapse
|
71
|
Xu H, Yang HJ, Rose GM, Li XM. Recovery of behavioral changes and compromised white matter in C57BL/6 mice exposed to cuprizone: effects of antipsychotic drugs. Front Behav Neurosci 2011; 5:31. [PMID: 21747763 PMCID: PMC3130148 DOI: 10.3389/fnbeh.2011.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/13/2011] [Indexed: 01/31/2023] Open
Abstract
Recent animal and human studies have suggested that the cuprizone (CPZ, a copper chelator)-fed C57BL/6 mouse may be used as an animal model of schizophrenia. The goals of this study were to see the recovery processes of CPZ-induced behavioral changes and damaged white matter and to examine possible effects of antipsychotic drugs on the recovery processes. Mice were fed a CPZ-containing diet for 5 weeks then returned to normal food for 3 weeks, during which period mice were treated with different antipsychotic drugs. Various behaviors were measured at the end of CPZ-feeding phase as well as on the 14th and 21st days after CPZ withdrawal. The damage to and recovery status of white matter in the brains of mice were examined. Dietary CPZ resulted in white matter damage and behavioral abnormalities in the elevated plus-maze (EPM), social interaction (SI), and Y-maze test. EPM performance recovered to normal range within 2 weeks after CPZ withdrawal. Alterations in SI showed no recovery. Antipsychotics did not alter animals’ behavior in either of these tests during the recovery period. Altered performance in the Y-maze showed some recovery in the vehicle group; atypical antipsychotics, but not haloperidol, significantly promoted this recovery process. The recovery of damaged white matter was incomplete during the recovery period. None of the drugs significantly promoted the recovery of damaged white matter. These results suggest that CPZ-induced white matter damage and SI deficit may be resistant to the antipsychotic treatment employed in this study. They are in good accordance with the clinical observations that positive symptoms in schizophrenic patients respond well to antipsychotic drugs while social dysfunction is usually intractable.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale Carbondale, IL, USA
| | | | | | | |
Collapse
|
72
|
Yang HJ, Wang L, Cheng Q, Xu H. Abnormal behaviors and microstructural changes in white matter of juvenile mice repeatedly exposed to amphetamine. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:542896. [PMID: 22937267 PMCID: PMC3420535 DOI: 10.1155/2011/542896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/24/2011] [Accepted: 05/02/2011] [Indexed: 11/18/2022]
Abstract
Amphetamine (AMP) is an addictive CNS stimulant and has been commonly abused by adolescents and young adults, during which period brain white matter is still developing. This study was to examine the effect of a nonneurotoxic AMP on the white matter of juvenile mice. d-AMP (1.0 mg/kg) was given to young male C57BL/6 mice once a day for 21 days. The spatial working memory and locomotion of mice were measured at the end. Then, mice were sacrificed and their brains were processed for morphological analyses to examine the white matter structure and for Western blot analysis to measure three main proteins expressed in mature oligodendrocytes. AMP-treated mice displayed higher locomotion and spatial working memory impairment and showed lower levels of Nogo-A and GST-pi proteins in frontal cortex and lower MBP protein in the frontal cortex and hippocampus. They also had fewer mature oligodendrocytes and weak MBP immunofluorescent staining in the same two brain regions. But the striatum was spared. These results suggest that the late-developing white matter is vulnerable to AMP treatment which is able to increase striatal and cortical dopamine. Both the compromised white matter and increased dopamine may contribute to the observed behavioral changes in AMP-treated mice.
Collapse
Affiliation(s)
- Hong-Ju Yang
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale, 1135 Lincoln Drive, Carbondale, IL 62901, USA
| | - Lijun Wang
- Department of Computer Science, Southern Illinois University Carbondale, IL 62901-4328, USA
| | - Qiang Cheng
- Department of Computer Science, Southern Illinois University Carbondale, IL 62901-4328, USA
| | - Haiyun Xu
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale, 1135 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
73
|
Figueiró M, Ilha J, Linck VM, Herrmann AP, Nardin P, Menezes CB, Achaval M, Gonçalves CA, Porciúncula LO, Nunes DS, Elisabetsky E. The Amazonian herbal Marapuama attenuates cognitive impairment and neuroglial degeneration in a mouse Alzheimer model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:327-333. [PMID: 20739160 DOI: 10.1016/j.phymed.2010.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED Alzheimer's disease (AD) is expected to affect more than 22 million people worldwide by 2025, causing devastating suffering and enormous costs to families and society. AD is a multifactorial disease, with a complex pathological mosaic. In rodents, AD-like dementia can be induced by cerebral microinjection of Aβ peptide, leading to amyloid deposits, amnesia and various features of neurodegeneration. Marapuama (Ptychopetalum olacoides) is regarded as a "brain tonic" in the Amazon region and shows a nootropic profile in rodents. AIM OF THE STUDY Because a specific extract (POEE) of Marapuama was shown to possess promnesic and anti-amnesic properties, the aim of this study was to verify if POEE is also effective against Aβ(1-42)-induced cognitive deficit in mice. Additionally, Aβ deposits (Congo red), GFAP immunoreactivity (immunohistochemistry), and neurodegenerative changes in the hippocampal pyramidal layer (Nissl) were examined as measures of Aβ(1-42)-induced neurodegeneration. MATERIALS AND METHODS CF1 mice were subjected to the experimental Alzheimer model with the Aβ(1-42) i.c.v. administration. The effects of POEE 800 mg/kg were evaluated over 14 consecutive days of treatment. RESULTS The data show that 14 days of oral treatment with POEE (800 mg/kg) was effective in preventing Aβ-induced cognitive impairment, without altering the levels of BDNF and with parallel reductions in Aβ deposits and astrogliosis. CA1 hippocampus loss induced by Aβ(1-42) was also diminished in POEE-treated mice. CONCLUSION This study offers evidence of functional and neuroprotective effects of two weeks treatment with a Ptychopetalum olacoides extract against Aβ peptide-induced neurotoxicity in mice. Given the multifactorial nature of neurodegeneration, the considerable potential for an AChE inhibitor displaying associated neuroprotective properties such as here reported warrants further clinic evaluation.
Collapse
Affiliation(s)
- M Figueiró
- Laboratório de Etnofarmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010; 31:557-66. [PMID: 20869780 PMCID: PMC2993063 DOI: 10.1016/j.tips.2010.08.007] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 01/13/2023]
Abstract
Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intramitochondrial calcium (Ca(2+)) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca(2+) homeostasis and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here, we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and ER-nucleus crosstalk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs might relate to this unique action of Sig-1Rs.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, suite 3304, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
75
|
|
76
|
Linck VM, da Silva AL, Figueiró M, Caramão EB, Moreno PRH, Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:679-683. [PMID: 19962290 DOI: 10.1016/j.phymed.2009.10.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aromatherapy uses essential oils (EOs) for several medical purposes, including relaxation. The association between the use of aromas and a decrease in anxiety could be a valuable instrument in managing anxiety in an ever increasing anxiogenic daily life style. Linalool is a monoterpene commonly found as the major volatile component of EOs in several aromatic plant species. Adding to previously reported sedative effects of inhaled linalool, the aim of this study was to investigate the effects of inhaled linalool on anxiety, aggressiveness and social interaction in mice. Additionally, we investigated the effects of inhaled linalool on the acquisition phase of a step-down memory task in mice. Inhaled linalool showed anxiolytic properties in the light/dark test, increased social interaction and decreased aggressive behavior; impaired memory was only seen the higher dose of linalool. These results strengthen the suggestion that inhaling linalool rich essential oils can be useful as a mean to attain relaxation and counteract anxiety.
Collapse
Affiliation(s)
- V M Linck
- Laboratório de Etnofarmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
77
|
Bliss JM, Gray EE, Dhaka A, O'Dell TJ, Colicelli J. Fear learning and extinction are linked to neuronal plasticity through Rin1 signaling. J Neurosci Res 2010; 88:917-26. [PMID: 19830836 DOI: 10.1002/jnr.22252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The amygdala is known to have a crucial role in both the acquisition and extinction of conditioned fear, but the physiological changes and biochemical mechanisms underlying these forms of learning are only partly understood. The Ras effector Rin1 activates Abl tyrosine kinases and Rab5 GTPases and is highly expressed in mature neurons of the telencephalon including the amygdala, where it inhibits the acquisition of fear memories (Rin1(-/-) mice show enhanced learning of conditioned fear). Here we report that Rin1(-/-) mice exhibit profound deficits in both latent inhibition and fear extinction, suggesting a critical role for Rin1 in gating the acquisition and persistence of cue-dependent fear conditioning. Surprisingly, we also find that depotentiation, a proposed cellular mechanism of extinction, is enhanced at lateral-basolateral (LA-BLA) amygdaloid synapses in Rin1(-/-) mice. Inhibition of a single Rin1 downstream effector pathway, the Abl tyrosine kinases, led to reduced amygdaloid depotentiation, arguing that proper coordination of Abl and Rab5 pathways is critical for Rin1-mediated effects on plasticity. While demonstrating a correlation between amygdala plasticity and fear learning, our findings argue against models proposing a direct causative relationship between amygdala depotentiation and fear extinction. Taken together, the behavior and physiology of Rin1(-/-) mice provide new insights into the regulation of memory acquisition and maintenance. In addition, Rin1(-/-) mice should prove useful as a model for pathologies marked by enhanced fear acquisition and retention, such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Joanne M Bliss
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
78
|
Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter PJ, Morelli M, Tasker RA, Herrera-Marschitz M. Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 2009; 202:1-14. [PMID: 20012537 DOI: 10.1007/s00221-009-2103-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/13/2009] [Indexed: 01/04/2023]
Abstract
There is no established treatment for the long-term effects produced by perinatal asphyxia. Thus, we investigated the neuroprotection provided by nicotinamide against the effects elicited by perinatal asphyxia on hippocampus and behaviour observed at 30-90 days of age. Asphyxia was induced by immersing foetuses-containing uterine horns, removed from ready-to-deliver rats into a water bath at 37 degrees C for 20 min. Caesarean-delivered siblings were used as controls. Saline or nicotinamide (0.8 mmol/kg, i.p.) was administered to control and asphyxia-exposed animals 24, 48, and 72 h after birth. The animals were examined for morphological changes in hippocampus, focusing on delayed cell death and mossy fibre sprouting, and behaviour, focusing on cognitive behaviour and anxiety. At the age of 30-45 days, asphyxia-exposed rats displayed (1) increased apoptosis, assessed in whole hippocampus by nuclear Hoechst staining, and (2) increased mossy fibre sprouting, restricted to the stratum oriens of dorsal hippocampus, assessed by Timm's staining. Rats from the same cohorts displayed (3) deficits in non-spatial working memory, assessed by a novel object recognition task, and (4) increased anxiety, assessed by an elevated plus-maze test when examined at the age of 90 days. Nicotinamide prevented the effects elicited by perinatal asphyxia on apoptosis, working memory, and anxiety.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70,000, Santiago 7, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lo PS, Wu CY, Sue HZ, Chen HH. Acute neurobehavioral effects of toluene: Involvement of dopamine and NMDA receptors. Toxicology 2009; 265:34-40. [DOI: 10.1016/j.tox.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 12/25/2022]
|
80
|
Zarrindast MR, Jafari-Sabet M, Rezayat M, Djahanguiri B, Rezayof A. INVOLVEMENT OF NMDA RECEPTORS IN MORPHINE STATE–DEPENDENT LEARNING IN MICE. Int J Neurosci 2009; 116:731-43. [PMID: 16753898 DOI: 10.1080/00207450600675068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present study, the effects of intracerebroventricular (i.c.v.) injection of NMDA receptor agonist and antagonist on impairment of memory formation and the state-dependent learning by morphine have been investigated in mice. Pretraining administration of morphine (5 mg/kg; s.c.) decreased the learning of one-trial passive avoidance task. Pretest administration of morphine (5 mg/kg) induced state-dependent learning acquired under pretraining morphine influence. Pretest administration of NMDA receptor agonist, L-glutamate (0.00001 and 0.0001 and 0.001 microg/mouse, i.c.v.) following pretraining saline treatment did not affect retention. Amnesia induced by pretraining morphine was significantly reversed by pretest administration of L-glutamate (0.0001 and 0.001 microg/mouse, i.c.v.). Pretest administration of noncompetitive NMDA receptor antagonist, MK-801 (0.5, 1, and 2 microg/mouse, i.c.v.) significantly impaired memory formation. Amnesia induced by pretraining morphine was increased by pretest administration of MK-801 (2 microg/mouse, i.c.v.). Pretest coadministration of L-glutamate (0.0001 and 0.001 microg/mouse, i.c.v.) or MK-801 (0.5, 1, and 2 microg/mouse, i.c.v.) with morphine (5 mg/kg, s.c.) increased and decreased morphine state-dependent learning, respectively. The results suggest that NMDA receptors are involved in morphine state-dependent learning in mice.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Major depression and anxiety are two of the major psychiatric disorders that have some overlapping pathophysiologies, the most significant being the dysfunction in the monoaminergic, GABAergic and glutamatergic systems. A large number of drugs that alter these neurotransmitter levels/systems are effective in the treatment of major depression and anxiety. However, full remission of the clinical symptoms has not been achieved, perhaps owing to the complex pathophysiology of the diseases. Thus, the search for newer targets and target-specific drugs continues. Recently, the role of sigma-receptors, particularly the sigma-1 receptor subtype, has been identified as a target for the pathophysiology of neuropsychiatric disorders, and sigma-1 receptor modulators are considered to be the drugs of the future for the treatment of major depression and anxiety. The present review attempts to discuss the role of sigma-1 receptors in the pathophysiology of major depression and anxiety and also tries to position the use of its receptor modulators in the treatment of these two major disorders. The role of sigma-1 receptors in the mechanism of antidepressant action of venlafaxine, bupropion, neurosteroids and one of the herbal antidepressants, berberine, is reviewed. Although, sigma-1 receptor modulators may be future therapeutic options, either as individual agents or adjuvants in the treatment of mental disorders, the topic needs further preclinical and clinical exploration.
Collapse
Affiliation(s)
- Shrinivas K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
82
|
Cystine accumulation in the CNS results in severe age-related memory deficits. Neurobiol Aging 2009; 30:987-1000. [DOI: 10.1016/j.neurobiolaging.2007.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/21/2007] [Accepted: 09/18/2007] [Indexed: 11/22/2022]
|
83
|
Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka Y, Hishinuma T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol Lett 2009; 189:78-83. [PMID: 19463927 DOI: 10.1016/j.toxlet.2009.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/10/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is widely used as a flame retardant and is suspected to be stable in the environment with possible widespread human exposures. In the present study, we investigated the behavioral effects of TBBPA and measured the levels of TBBPA in the brain after oral administration in mice. Acute treatment with TBBPA (5mg/kg body weight) 3h before the open-field test induced an increase in the horizontal movement activities. In contextual fear conditioning paradigm, mice treated with TBBPA (0.1mg/kg or 5mg/kg body weight) showed more freezing behavior than vehicle-treated mice. In addition, TBBPA (0.1mg/kg body weight) significantly increased the spontaneous alternation behavior in the Y-maze test. The levels of TBBPA in the brain following TBBPA treatment were determined by using LC/ESI-MS/MS system. In the brain regions examined, high amounts of TBBPA were detected in the striatum after treatment with 0.1mg/kg or 5mg/kg body weight TBBPA, whereas non-specific accumulation of TBBPA in the brain was found after treatment with 250 mg/kg body weight TBBPA. These results suggest that TBBPA accumulates in brain regions including the striatum and induces the behavioral alterations. Together, the possibility of widespread human exposure to TBBPA warrants further studies to characterize its neurotoxicity.
Collapse
Affiliation(s)
- Akira Nakajima
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
84
|
da Silva AL, Ferreira JG, da Silva Martins B, Oliveira S, Mai N, Nunes DS, Elisabetsky E. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama). Physiol Behav 2008; 95:88-92. [DOI: 10.1016/j.physbeh.2008.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/29/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
85
|
Lucas G, Rymar VV, Sadikot AF, Debonnel G. Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 2008; 11:485-95. [PMID: 18364064 DOI: 10.1017/s1461145708008547] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, we evaluated the ability of the selective sigma1 agonist SA 4503 to produce changes in brain function, similar to those elicited by classical antidepressants. We focused more specifically on the influence of SA 4503 on central serotonergic (5-HT) transmission, and on hippocampal cell proliferation. A 2-d continuous treatment with SA 4503 (1-40 mg/kg.d) increased 5-HT neuron firing rate in a dose-dependent, bell-shaped manner, with a culminating effect of +90% at 10 mg/kg.d. The same dose induced the appearance of a 5-HT1A receptor-mediated inhibitory tonus on hippocampal pyramidal neurons, as revealed by intravenous injections of the selective 5-HT1A antagonist WAY 100635. Moreover, continuous administration of SA 4503 (3 and 10 mg/kg.d, 3 d) dose-dependently enhanced the number of bromodeoxyuridine-positive cells in the subgranular zone of the hippocampus (+48% and +94%, respectively), thus indicating an increased cell proliferation. Finally, a single administration of SA 4503 (3 and 10 mg/kg i.p.) increased the time spent swimming in the forced swimming test. Together, these results provide both functional and behavioural evidence that this compound has an important antidepressant potential. Further, the fact that the functional changes occurred within a short time-frame (2-3 d) suggest that this antidepressant potential might have a rapid onset of action.
Collapse
Affiliation(s)
- Guillaume Lucas
- Centre de Recherche Fernand Séguin, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
86
|
Nooshinfar E, Lashgari R, Haghparast A, Sajjadi S. NMDA receptors are involved in Ginkgo extract-induced facilitation on memory retention of passive avoidance learning in rats. Neurosci Lett 2008; 432:206-11. [DOI: 10.1016/j.neulet.2007.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 11/25/2007] [Accepted: 12/05/2007] [Indexed: 11/15/2022]
|
87
|
Akhter N, Shiba K, Ogawa K, Tsuji S, Kinuya S, Nakajima K, Mori H. A change of in vivo characteristics depending on specific activity of radioiodinated (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-pIV] as a ligand for sigma receptor imaging. Nucl Med Biol 2008; 35:29-34. [PMID: 18158940 DOI: 10.1016/j.nucmedbio.2007.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/12/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
The radioiodinated (+)-p-iodovesamicol [(+)-pIV], which shows a high binding affinity for sigma-1 (sigma-1) receptors, is prepared by an exchange reaction. The specific activity (SA) is fairly low and therefore is insufficient for clinical use. In this study, we prepared (+)-[(125)I]pIV with a high SA from tributylstannyl precursor and compared the in vivo characteristics between high and low SA by imaging sigma-1 receptors in the central nervous system. In the biodistribution study, a difference in brain accumulation was observed between the two methods. At 30 min postinjection, the brain accumulation (1.58%ID/g) of low SA [0.6-1.1 TBq/mmol (16-30 Ci/mmol)] (+)-[(125)I]pIV was higher than that (1.34%ID/g) of high SA [>88.8 TBq/mmol (>2400 Ci/mmol)] (+)-[(125)I]pIV. In the blocking study, the brain uptake of high SA (+)-[(125)I]pIV was reduced more significantly by the coadministration of sigma ligands such as pentazocine, haloperidol or SA4503 than that of low SA (+)-[(125)I]pIV. These results showed that nonspecific binding of high SA (+)-[(125)I]pIV in the brain was lower than that of low SA (+)-[(125)I]pIV, and high SA (+)-[(125)I]pIV bound more specifically to sigma-1 receptors in the brain than low SA (+)-[(125)I]pIV. In contrast, in the blood-binding study, high SA (+)-[(125)I]pIV (58.4%) bound to blood cells with higher affinity than low SA (+)-[(125)I]pIV (46.0%). In metabolite studies, blood metabolites of high SA (+)-[(125)I]pIV (57.3+/-3.5%) were higher than those of low SA (+)-[(125)I]pIV (45.5+/-4.1%) at 30 min postinjection. Higher SA may be apt to bind to blood cells with higher affinity and to be metabolized faster.
Collapse
Affiliation(s)
- Nasima Akhter
- Department of Biotracer Medicine, Kanazawa University, Kanazawa 920-8640, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M. Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 2007; 185:595-601. [PMID: 17989968 DOI: 10.1007/s00221-007-1186-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
A large body of clinical evidence suggests a possible association between perinatal asphyxia and the onset of early, as well as long-term, neurological and psychiatric disorders including cognitive deficits. The present study investigated cognitive and motor function modifications in a well characterized and clinically relevant experimental rat model of human perinatal asphyxia. The results reported here show that adult rats exposed to a single (20 min) asphyctic episode at delivery displayed: (a) a deficit in non-spatial memory, assessed in a novel object recognition task; (b) an impaired motor coordination, measured by the rotarod test. On the other hand, gross motor activity and spatial memory, evaluated in both the Y maze and the Barnes maze, were not affected by perinatal asphyxia. The results of this study provide further insights into the long-term effects of perinatal asphyxia on neurobehavioural functions.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
89
|
Espallergues J, Lapalud P, Christopoulos A, Avlani VA, Sexton PM, Vamvakides A, Maurice T. Involvement of the sigma1 (sigma1) receptor in the anti-amnesic, but not antidepressant-like, effects of the aminotetrahydrofuran derivative ANAVEX1-41. Br J Pharmacol 2007; 152:267-79. [PMID: 17641675 PMCID: PMC1978257 DOI: 10.1038/sj.bjp.0707386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/04/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Tetrahydro-N, N-dimethyl-5, 5-diphenyl-3-furanmethanamine hydrochloride (ANAVEX1-41) is a potent muscarinic and sigma(1) (sigma (1)) receptor ligand. The sigma (1) receptor modulates glutamatergic and cholinergic responses in the forebrain and selective agonists are potent anti-amnesic and antidepressant DRUGS. WE HAVE HERE ANALYSED THE SIGMA (1) COMPONENT IN THE BEHAVIOURAL EFFECTS OF ANAVEX1-41. EXPERIMENTAL APPROACH Binding of ANAVEX1-41 to muscarinic and sigma (1) receptors were measured using cell membranes. Behavioural effects of ANAVEX1-41 were tested in mice using memory (spontaneous alternation, passive avoidance, water-maze) and antidepressant-like activity (forced swimming) procedures. KEY RESULTS In vitro, ANAVEX1-41 was a potent muscarinic (M(1)>M(3), M(4)>M(2) with K(i) ranging from 18 to 114 nM) and selective sigma (1) ligand (sigma (1), K(i)=44 nM; sigma (2), K(i)=4 microM). In mice, ANAVEX1-41 failed to affect learning when injected alone (0.03-1 mg kg(-1)), but attenuated scopolamine-induced amnesia with a bell-shaped dose response (maximum at 0.1 mg kg(-1)). The sigma (1) antagonist BD1047 blocked the anti-amnesic effect of ANAVEX1-41 on both short- and long-term memories. Pretreatment with a sigma (1) receptor-directed antisense oligodeoxynucleotide prevented effects of ANAVEX1-41 only in the passive avoidance procedure, measuring long-term memory. ANAVEX1-41 reduced behavioural despair at 30 and 60 mg kg(-1), without involving the sigma (1) receptor, as it was not blocked by BD1047 or the antisense oligodeoxynucleotide. CONCLUSIONS AND IMPLICATIONS ANAVEX1-41 is a potent anti-amnesic drug, acting through muscarinic and sigma (1) receptors. The latter component may be involved in the enhancing effects of the drug on long-term memory processes.
Collapse
Affiliation(s)
- J Espallergues
- CNRS, FRE2693 Montpellier, France
- University of Montpellier II Montpellier, France
- INSERM, U 710 Montpellier, France
- EPHE Paris, France
| | - P Lapalud
- CNRS, FRE2693 Montpellier, France
- University of Montpellier II Montpellier, France
| | - A Christopoulos
- Monash University, Department of Pharmacology Clayton, Victoria, Australia
| | - V A Avlani
- Monash University, Department of Pharmacology Clayton, Victoria, Australia
| | - P M Sexton
- Monash University, Department of Pharmacology Clayton, Victoria, Australia
| | | | - T Maurice
- CNRS, FRE2693 Montpellier, France
- University of Montpellier II Montpellier, France
- INSERM, U 710 Montpellier, France
- EPHE Paris, France
| |
Collapse
|
90
|
Akhter N, Shiba K, Ogawa K, Kinuya S, Nakajima K, Mori H. In vivo characterization of radioiodinated (+)-2-[4-(4-iodophenyl) piperidino] cyclohexanol as a potential sigma-1 receptor imaging agent. Nucl Med Biol 2007; 34:697-702. [PMID: 17707810 DOI: 10.1016/j.nucmedbio.2007.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 04/12/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
In this study, the (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[(125)I]-p-iodovesamicol] [(+)-[(125)I]pIV], which is reported to bind with high affinity to sigma-1 receptors in vitro, was tested for its usefulness in imaging sigma-1 receptors in the central nervous system (CNS) in vivo. In biodistribution studies, significant amounts (approximately 3% of the injected dose) of (+)-[(125)I]pIV accumulated in rat brain, and its retention was prolonged. In blocking studies, the accumulation of (+)-[(125)I]pIV in the rat brain was significantly reduced by the coadministration of sigma-ligands such as pentazocine (5.0 micromol), haloperidol (0.5 micromol) or SA4503 (0.5 micromol). The blocking effect of pentazocine (selective sigma-1 ligand) was similar to the blocking effects of SA4503 and haloperidol [nonselective sigma (sigma-1 and sigma-2) ligands]. Ex vivo autoradiography of the rat brain at 45 min following intravenous injection of (+)-[(125)I]pIV showed high localization in brain areas rich in sigma-1 receptors. Thus, the distribution of (+)-[(125)I]pIV was thought to bind to sigma-1 receptors in the CNS in vivo. These results indicate that radioiodinated (+)-pIV may have the potential to image sigma-1 receptors in vivo.
Collapse
Affiliation(s)
- Nasima Akhter
- Department of Biotracer Medicine, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
91
|
da Silva AL, Piato AL, Ferreira JG, Martins BS, Nunes DS, Elisabetsky E. Promnesic effects of Ptychopetalum olacoides in aversive and non-aversive learning paradigms. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:449-57. [PMID: 17023132 DOI: 10.1016/j.jep.2006.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 08/01/2006] [Accepted: 08/21/2006] [Indexed: 05/12/2023]
Abstract
Homemade remedies with Ptychopetalum olacoides (PO) roots are used by Amazonian peoples for treating various age-related conditions. We previously reported that Ptychopetalum olacoides ethanol extract significantly improved step-down inhibitory avoidance long-term memory in adult and reversed memory deficits in aging mice. Adding to previous data, this study shows that a single i.p. administration of Ptychopetalum olacoides ethanol extract (POEE 50 and 100 mg/kg) improved step-down inhibitory avoidance short-term memory (STM) 3 h after training in adult (2.5 month) mice; comparable results were obtained with POEE given p.o. at 800 mg/kg. Moreover, memory improvement was also observed in aging (14 months) mice presenting memory deficit as compared to adult mice. Furthermore, POEE (100 mg/kg) improved non-aversive memory systems in adult mice in an object recognition paradigm. Consistently with its traditional use this study add to previously reported data and reinforces that POEE facilitates memory processes. Although the acetylcholinesterase inhibitory properties described for this extract may be of relevance for improving memory processes, the molecular mechanism(s) underlying the memory improvement here reported needs further scrutiny.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratório de Etnofarmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | | | | | | | | | | |
Collapse
|
92
|
Nakajima A, Yamakuni T, Matsuzaki K, Nakata N, Onozuka H, Yokosuka A, Sashida Y, Mimaki Y, Ohizumi Y. Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J Pharmacol Exp Ther 2007; 321:784-90. [PMID: 17289833 DOI: 10.1124/jpet.106.117010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have indicated that learning-induced activation of extracellular signal-regulated kinase (ERK) signaling via N-methyl-D-aspartate (NMDA) receptors is required for consolidation of the resultant learning. These findings raise an idea that control of ERK signaling may be a potential target for treatment of cognitive dysfunction. Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from Citrus depressa, enhances cAMP/protein kinase A/ERK signaling in cultured rat hippocampal neurons and PC12D cells. Here, we, for the first time, present the evidence that this natural compound reverses learning impairment associated with NMDA receptor antagonism by activation of ERK in the hippocampus. Treatment with 50 mg/kg nobiletin reversed the NMDA receptor antagonist MK-801 (dizocilpine maleate)-induced learning impairment in mice. Western blot analysis also showed that nobiletin reversed MK-801-induced inhibition of learning-associated ERK activation in the hippocampus of the animals. Furthermore, consistent with these results, in cultured rat hippocampal neurons, nobiletin restored MK-801-induced impairment of NMDA-stimulated phosphorylation of ERK in a concentration-dependent manner. Taken together, the present study suggests that compounds that activate ERK signaling improve cognitive deficits associated with NMDA receptor hypofunction and that nobiletin may give us a new insight into therapeutic drug development for neurological disorders exhibiting cognitive impairment accompanied by a hypofunction of NMDA receptor-ERK signaling.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-6-11-404 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Hughes RN. Neotic preferences in laboratory rodents: Issues, assessment and substrates. Neurosci Biobehav Rev 2007; 31:441-64. [PMID: 17198729 DOI: 10.1016/j.neubiorev.2006.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/18/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022]
Abstract
Neotic preference refers to the extent to which animals prefer stimuli of differing novelty value. Degree of novelty is determined by within- and between-trials habituation and amount of temporal (novelty) and spatial change (complexity) in stimulation which in turn will determine the amount of curiosity-based approach (neophilia) or fear-based avoidance (neophobia) of novel stimuli. Tests of genuine neotic preferences enable direct assessments of responsiveness to temporal and spatial changes and include measurements of novel versus familiar locations (such as novelty-related location preferences), responsiveness to stimulus complexity (such as object exploration) and learning for exploratory rewards (such as light-contingent bar-pressing). Effects of brain lesions and peripherally administered drugs have implicated several brain areas and neurotransmitters that subserve memory, fear and reward in neotic preferences namely the hippocampus and ACh (memory), the amygdala, GABA and 5-HT (fear), and the mesolimbic DA reward system. However, more attention should be paid to the complexity of interactions between different brain and neurotransmitter systems and improvements in methodology before conclusions should be drawn about the neurobiological basis of neotic preferences.
Collapse
Affiliation(s)
- Robert N Hughes
- Department of Psychology, University of Canterbury, Ilam Road, Private Bag 4800, Christchurch 8020, New Zealand.
| |
Collapse
|
94
|
Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 2006; 149:998-1012. [PMID: 17057756 PMCID: PMC2014636 DOI: 10.1038/sj.bjp.0706927] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The acetylcholinesterase inhibitor, donepezil, is also a high affinity sigma(1) receptor agonist. We examined the involvement of sigma(1) receptors in its anti-amnesic and neuroprotective properties against amyloid beta(25-35) peptide-induced toxicity in mice. EXPERIMENTAL APPROACH Mice were given an intracerebroventricular (i.c.v.) injection of Abeta(25-35) peptide (9 nmol) 7-9 days before being tested for spontaneous alternation and passive avoidance. Hippocampal lipid peroxidation was measured 7 days after Abeta(25-35) injection to evaluate oxidative stress. Donepezil, the sigma(1) agonist PRE-084 or the cholinesterase (ChE) inhibitors tacrine, rivastigmine and galantamine were administered either 20 min before behavioural sessions to check their anti-amnesic effects, or 20 min before Abeta(25-35) injection, or 24 h after Abeta(25-35) injection and then once daily before behavioural sessions, to check their pre- and post-i.c.v. neuroprotective activity, respectively. KEY RESULTS All the drugs tested were anti-amnesic, but only the effects of PRE-084 and donepezil were prevented by the sigma(1) antagonist BD1047. Only PRE-084 and donepezil showed neuroprotection when administered pre i.c.v.; they blocked lipid peroxidation and learning deficits, effects inhibited by BD1047. Post i.c.v., PRE-084 and donepezil showed complete neuroprotection whereas the other ChE inhibitors showed partial effects. BD1047 blocked these effects of PRE-084, attenuated those of donepezil, but did not affect the partial effects of the other ChE inhibitors. CONCLUSIONS AND IMPLICATIONS The potent anti-amnesic and neuroprotective effects of donepezil against Abeta(25-35)-induced toxicity involve both its cholinergic and sigma(1) agonistic properties. This dual action may explain its sustained activity compared to other ChE inhibitors.
Collapse
|
95
|
Vignes M, Maurice T, Lanté F, Nedjar M, Thethi K, Guiramand J, Récasens M. Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res 2006; 1110:102-15. [PMID: 16859659 DOI: 10.1016/j.brainres.2006.06.062] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/29/2022]
Abstract
Naturally occurring polyphenols are potent antioxidants. Some of these compounds are also ligands for the GABA(A) receptor benzodiazepine site. This feature endows them with sedative properties. Here, the anxiolytic activity of the green tea polyphenol (-)-epigallocatechin gallate (EGCG) was investigated after acute administration in mice, using behavioral tests (elevated plus-maze and passive avoidance tests) and by electrophysiology on cultured hippocampal neurons. Patch-clamp experiments revealed that EGCG (1-10 muM) had no effect on GABA currents. However, EGCG reversed GABA(A) receptor negative modulator methyl beta-carboline-3-carboxylate (beta-CCM) inhibition on GABA currents in a concentration dependent manner. This was also observed at the level of synaptic GABA(A) receptors by recording spontaneous inhibitory synaptic transmission. In addition, EGCG consistently inhibited spontaneous excitatory synaptic transmission. Behavioral tests indicated that EGCG exerted both anxiolytic and amnesic effects just like the benzodiazepine drug, chlordiazepoxide. Indeed, EGCG in a dose-dependent manner both increased the time spent in open arms of the plus-maze and decreased the step-down latency in the passive avoidance test. GABA(A) negative modulator beta-CCM antagonized EGCG-induced amnesia. Finally, state-dependent learning was observable after chlordiazepoxide and EGCG administration using a modified passive avoidance procedure. Optimal retention was observed only when animals were trained and tested in the same state (veh-veh or drug-drug) and significant retrieval alteration was observed in different states (veh-drug or drug-veh). Moreover, EGCG and chlordiazepoxide fully generalized in substitution studies, indicating that they induced indistinguishable chemical states for the brain. Therefore, our data support that EGCG can induce anxiolytic activity which could result from an interaction with GABA(A) receptors.
Collapse
Affiliation(s)
- Michel Vignes
- Laboratory Oxidative Stress and Neuroprotection, University of Montpellier II, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
96
|
Maurice T, Grégoire C, Espallergues J. Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 2006; 84:581-97. [PMID: 16945406 DOI: 10.1016/j.pbb.2006.07.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/30/2006] [Accepted: 07/07/2006] [Indexed: 01/05/2023]
Abstract
Steroids from peripheral sources or synthesized in the brain, i.e. neurosteroids, exert rapid modulations of neurotransmitter responses through specific interactions with membrane receptors, mainly the gamma-aminobutyric acid type A (GABA(A)) receptor and N-methyl-d-aspartate (NMDA) type of glutamate receptor. Progesterone and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) act as inhibitory steroids while pregnenolone sulfate or dehydroepiandrosterone sulfate act as excitatory steroids. Some steroids also interact with an atypical protein, the sigma(1) (sigma(1)) receptor. This receptor has been cloned in several species and is centrally expressed in neurons and oligodendrocytes. Activation of the sigma(1) receptor modulates cellular Ca(2+) mobilization, particularly from endoplasmic reticulum pools, and contributes to the formation of lipid droplets, translocating towards the plasma membrane and contributing to the recomposition of lipid microdomains. The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions. Analysis of the sigma(1) protein sequence confirmed homologies with the ERG2/emopamil binding protein family but also with the steroidogenic enzymes isopentenyl diphosphate isomerase and 17beta-estradiol dehydrogenase. Biochemical and physiological arguments for an interaction of neuro(active)steroids with the sigma(1) receptor are analyzed and the impact on physiopathological outcomes in neuroprotection is illustrated.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U. 710, Montpellier, F-34095 France University of Montpellier II, Montpellier, F-34095 France c EPHE, Paris, F-75007 France.
| | | | | |
Collapse
|
97
|
Romieu P, Lucas M, Maurice T. Sigma1 receptor ligands and related neuroactive steroids interfere with the cocaine-induced state of memory. Neuropsychopharmacology 2006; 31:1431-43. [PMID: 16132061 DOI: 10.1038/sj.npp.1300885] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present series of experiments examined the involvement of the sigma(1) receptor and related neuroactive steroids in the memory state induced by a very low dose of cocaine. Using a modified passive avoidance procedure in mice, we examined whether cocaine induces state-dependent (StD) learning. Animals trained and tested with saline or the same dose of cocaine (0.1 or 0.3 mg/kg) showed correct retention, measured using two independent parameters: the retention latency and a ratio between the retention latency and the last training latency. Animals trained with cocaine (0.1 mg/kg) and tested with saline or cocaine (0.03, 0.3 mg/kg), or trained with saline and tested with cocaine, showed altered retention parameters, demonstrating that StD occurred. Therefore, cocaine administered before training produced a chemical state used as an endogenous cue to insure optimal retention. Since sigma(1) receptor activation is an important event during the acquisition of cocaine reward, we tested several sigma(1) ligands and related neurosteroids. The sigma(1) agonist igmesine or antagonist BD1047 failed to produce StD, but modified the cocaine state. Among neuroactive steroids, pregnanolone and allopregnanolone, positive modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor, produced StD. However, steroids also acting as sigma(1) agonists, dehydroepiandrosterone (3beta-hydroxy-5alpha-androsten-17-one (DHEA)), pregnenolone, or antagonist, progesterone, failed to induce StD but modified the cocaine state. Furthermore, optimal retention was observed with mice trained with (igmesine or DHEA)+cocaine and tested with a higher dose of cocaine, or with mice trained with (BD1047 or progesterone)+cocaine and tested with vehicle. This study demonstrated that: (i) low doses of cocaine induce a chemical state/memory trace sustaining StD; (ii) modulation of the sigma(1) receptor activation, although insufficient to provoke StD, modulates the cocaine state; (iii) neuroactive steroids exert a unique role in state-dependent vs state-independent learning, via GABA(A) or sigma(1) receptor modulation, and are able to affect the cocaine-induced mnesic trace at low brain concentrations.
Collapse
Affiliation(s)
- Pascal Romieu
- Behavioral Neuropharmacology Group, INSERM U. 336, Institut de Biologie, Montpellier, France
| | | | | |
Collapse
|
98
|
|
99
|
Meunier J, Ieni J, Maurice T. Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas. J Pharmacol Exp Ther 2006; 317:1307-19. [PMID: 16551835 DOI: 10.1124/jpet.106.101527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Donepezil is a potent acetylcholinesterase inhibitor that also interacts with the sigma1 receptor, an intracellular neuromodulatory protein. In the present study, we analyzed the antiamnesic and neuroprotective activities of donepezil in a mouse hypoxia model induced by repetitive CO exposure, comparing donepezil's pharmacological profile with other cholinesterase inhibitors tacrine, rivastigmine, and galanthamine, and the reference sigma1 agonist igmesine. CO exposure induced, after 7 days, hippocampal neurodegeneration, analyzed by Cresyl violet staining, and behavioral alterations, measured using spontaneous alternation and passive avoidance responses. When injected 20 min before the behavioral tests, i.e., 7 to 8 days after CO, all drugs showed antiamnesic properties. Preadministration of the sigma1 receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD1047) blocked only the igmesine and donepezil effects. The neuroprotective activity of the drugs was tested by injection 20 min before the first CO exposure (preinsult protection) or by injection 1 h after the last CO exposure (postinsult protection). All drugs alleviated the hypoxia-induced neurodegeneration and behavioral impairments when injected before CO exposure. Preadministration of BD1047 blocked both the igmesine and donepezil effects. However, when injected after CO exposure, only igmesine and donepezil induced effective neuroprotection, and the morphological and behavioral effects were BD1047-sensitive. These results showed that donepezil is a potent antiamnesic and neuroprotective compound against the neurodegeneration induced by excitotoxic insult, and its pharmacological actions as both an acetylcholinesterase inhibitor and sigma1 receptor agonist contribute to its marked efficacy. In particular, the drug is a more potent postinsult protecting agent compared with more selective cholinesterase inhibitors.
Collapse
Affiliation(s)
- Johann Meunier
- INSERM U.710, EPHE, University of Montpellier II, c.c. 105, place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | | | | |
Collapse
|
100
|
Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT. Interaction with sigma(1) protein, but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther 2006; 317:606-14. [PMID: 16397090 DOI: 10.1124/jpet.105.097394] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we examined the interaction of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-1H-inden-1-one hydrochloride (donepezil), a potent cholinesterase inhibitor, with two additional therapeutically relevant targets, N-methyl-d-aspartate (NMDA) and sigma(1) receptors. Donepezil blocked the responses of recombinant NMDA receptors expressed in Xenopus oocytes. The blockade was voltage-dependent, suggesting a channel blocker mechanism of action, and was not competitive at either the l-glutamate or glycine binding sites. The low potency of donepezil (IC(50) = 0.7-3 mM) suggests that NMDA receptor blockade does not contribute to the therapeutic actions of donepezil. Of potential therapeutic relevance, donepezil binds to the sigma(1) receptor with high affinity (K(i) = 14.6 nM) in an in vitro preparation (Neurosci Lett 260:5-8, 1999). Thus, we sought to determine whether an interaction with the sigma(1) receptor may occur in vivo under physiologically relevant conditions by evaluating the sigma(1) receptor dependence effects of donepezil in behavioral tasks. Donepezil showed antidepressant-like activity in the mouse-forced swimming test as did the sigma(1) receptor agonist igmesine. This effect was not displayed by the other cholinesterase inhibitors, rivastigmine and tacrine. The donepezil and igmesine effects were blocked by preadministration of the sigma(1) receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine (BD1047) and an in vivo antisense probe treatment. The memory-enhancing effect of donepezil was also investigated. All cholinesterase inhibitors attenuated dizocilpine-induced learning impairments. However, only the donepezil and igmesine effects were blocked by BD1047 or the antisense treatment. Therefore, donepezil behaved as an effective sigma(1) receptor agonist on these behavioral responses, and an interaction of the drug with the sigma(1) receptor must be considered in its pharmacological actions.
Collapse
Affiliation(s)
- Tangui Maurice
- Unité 710 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Pratique des Hautes Etudes, Université de Montpellier II, Montpellier, France.
| | | | | | | | | |
Collapse
|