51
|
Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype. Front Aging Neurosci 2021; 13:697621. [PMID: 34408644 PMCID: PMC8365336 DOI: 10.3389/fnagi.2021.697621] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
52
|
Li M, Zhao J, Tang Q, Zhang Q, Wang Y, Zhang J, Hao Y, Bai X, Lu Z. Lamivudine improves cognitive decline in SAMP8 mice: Integrating in vivo pharmacological evaluation and network pharmacology. J Cell Mol Med 2021; 25:8490-8503. [PMID: 34374199 PMCID: PMC8419189 DOI: 10.1111/jcmm.16811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The reverse transcriptase inhibitors such as lamivudine (3TC) play important roles in anti‐ageing, but their effects on neurodegenerative diseases caused by ageing are not clear, especially on the functions of the nervous system such as cognition. In this study, we administered 3TC to senescence‐accelerated mouse prone 8 (SAMP8) mice by gastric perfusion (100 mg/kg) for 4 weeks. Our results showed that 3TC significantly improved the ageing status of SAMP8 mice, especially the decline of cognitive ability evaluated by the Morris water maze test. To further investigate the molecular mechanisms of improving the ageing status of SAMP8 mice by 3TC, the qPCR and tissue staining methods were used to study the brain tissues (i.e., hippocampus and cortex) of mice, while the network pharmacology analysis was applied to investigate the potential targets of 3TC. The results showed that the mRNA levels of genes related to long interspersed element‐1, type 1 interferon response, the senescence‐associated secretion phenotype and the Alzheimer's disease in the hippocampus and cortex of SAMP8 mice were increased due to senescence, but this trend was reversed partially by 3TC. Results of histological studies showed that 3TC reduced the death of hippocampal neurons, while the results of network pharmacology analysis indicated that 3TC may exert its influence through multiple pathways, including the oestrogen signalling and the PI3K/Akt and neuroactive ligand‐receptor interaction signalling pathways, which we have verified through in vitro experiments. These findings provide evidence for the therapeutic potential of 3TC in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Zhao
- Department of Radiology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingchen Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
53
|
Peixoto Pinheiro B, Adel Y, Knipper M, Müller M, Löwenheim H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front Aging Neurosci 2021; 13:708190. [PMID: 34408646 PMCID: PMC8366269 DOI: 10.3389/fnagi.2021.708190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
54
|
Sasaki K, Geribaldi-Doldan N, Szele FG, Isoda H. Grape skin extract modulates neuronal stem cell proliferation and improves spatial learning in senescence-accelerated prone 8 mice. Aging (Albany NY) 2021; 13:18131-18149. [PMID: 34319910 PMCID: PMC8351719 DOI: 10.18632/aging.203373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
In recent years, the number of patients with neurodegenerative illness such as Alzheimer’s disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aβ-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Noelia Geribaldi-Doldan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
55
|
Zhang S, Duan J, Du Y, Xie J, Zhang H, Li C, Zhang W. Long Non-coding RNA Signatures Associated With Liver Aging in Senescence-Accelerated Mouse Prone 8 Model. Front Cell Dev Biol 2021; 9:698442. [PMID: 34368149 PMCID: PMC8339557 DOI: 10.3389/fcell.2021.698442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juanjuan Duan
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yu Du
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Haijing Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Changyu Li
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,National and Local United Engineering Research Center for Panax Notoginseng Resources Protection and Utilization Technology, Kunming, China
| |
Collapse
|
56
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
57
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
58
|
Saeki N, Inui-Yamamoto C, Kuraki M, Itoh S, Inubushi T, Okamoto M, Akiyama S, Wakisaka S, Abe M. Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit reduced entoconid in the lower second molar. Arch Oral Biol 2021; 128:105172. [PMID: 34058725 DOI: 10.1016/j.archoralbio.2021.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The position and size of the major cusps in mammalian molars are arranged in a characteristic pattern that depends on taxonomy. In humans, the cusp which locates distally within each molar is smaller than the mesially located cusp, which is referred to as "distal reduction". Although this concept has been well-recognized, it is still unclear how this reduction occurs. Current study examined whether senescence-accelerating mouse prone 8 (SAMP8) mice could be a possible animal model for studying how the mammalian molar cusp size is determined. DESIGN SAMP8 mice were compared with parental control (SAMR1) mice. Microcomputed tomography images of young and aged mice were captured to observe molar cusp morphologies. Cusp height from cement-enamel junction and mesio-distal length of molars were measured. The statistical comparison of the measurements was performed by Mann-Whitney U test. RESULTS SAMP8 mice showed reduced development of the disto-lingual cusp (entoconid) of lower second molar when compared with SAMR1 mice. The enamel thickness and structure was disturbed at entoconid, and aged SAMP8 mice displayed severe wear of the entoconid in lower second molar. These phenotypes were observed on both sides of the lower second molar. CONCLUSIONS In addition to the general senescence phenotype observed in SAMP8 mice, this strain may genetically possess molar cusp phenotypes which is determined prenatally. Further, SAMP8 mice would be a potential model strain to study the genetic causes of the distal reduction of molar cusp size.
Collapse
Affiliation(s)
- Naoya Saeki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan; Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Chizuko Inui-Yamamoto
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Moe Kuraki
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigehisa Akiyama
- Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka, Japan.
| |
Collapse
|
59
|
An Examination of Lactobacillus paracasei GKS6 and Bifidobacterium lactis GKK2 Isolated from Infant Feces in an Aged Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6692363. [PMID: 33927778 PMCID: PMC8052140 DOI: 10.1155/2021/6692363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Supplementary which could maintain normal physiological mechanisms and functions while aging has drawn our attention due to the population aging in recent years. Probiotics have been believed with desirable properties such as antioxidation and anti-inflammatory for delaying the aging process. However, the age-related experiments conducted in the mammalian models with probiotics were few. In this study, we demonstrated the effects of administration of probiotics Lactobacillus paracasei GKS6 (GKS6) and Bifidobacterium lactis GKK2 (GKK2), respectively, at the dosage of 5.0 × 109 cfu/kg BW/day for fourteen weeks in senescence-accelerated mouse prone 8 (SAMP8) mice. The three-month-old SAMP8 mice were divided into three groups: control, mice fed with GKS6, and mice fed with GKK2. There were ten females and ten males in each group. The SAMP8 mice fed with probiotics GKS6 and GKK2 showed a significantly lower degree of aging followed by Takeda's grading method on the eleventh week of the experiment. The GKK2 group showed significantly increased forelimb grip strength in male SAMP8 mice and muscle fiber number in both genders. Compared to the control, both GKS6 and GKK2 presented a significant increase in liver superoxide dismutase and catalase activities. In addition, a significant decrease in the levels of liver thiobarbituric acid-reactive substances was observed in the probiotics group. These results suggested that probiotics GKS6 and GKK2 could act as antioxidants in delaying the process of aging and preventing age-related muscle loss.
Collapse
|
60
|
Beuckmann CT, Suzuki H, Musiek ES, Ueno T, Sato T, Bando M, Osada Y, Moline M. Evaluation of SAMP8 Mice as a Model for Sleep-Wake and Rhythm Disturbances Associated with Alzheimer's Disease: Impact of Treatment with the Dual Orexin (Hypocretin) Receptor Antagonist Lemborexant. J Alzheimers Dis 2021; 81:1151-1167. [PMID: 33843668 PMCID: PMC8293654 DOI: 10.3233/jad-201054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Many patients with Alzheimer’s disease (AD) display circadian rhythm and sleep-wake disturbances. However, few mouse AD models exhibit these disturbances. Lemborexant, a dual orexin receptor antagonist, is under development for treating circadian rhythm disorders in dementia. Objective: Evaluation of senescence-accelerated mouse prone-8 (SAMP8) mice as a model for sleep-wake and rhythm disturbances in AD and the effect of lemborexant by assessing sleep-wake/diurnal rhythm behavior. Methods: SAMP8 and control senescence-accelerated mouse resistant-1 (SAMR1) mice received vehicle or lemborexant at light onset; plasma lemborexant and diurnal cerebrospinal fluid (CSF) orexin concentrations were assessed. Sleep-wake behavior and running wheel activity were evaluated. Results: Plasma lemborexant concentrations were similar between strains. The peak/nadir timing of CSF orexin concentrations were approximately opposite between strains. During lights-on, SAMP8 mice showed less non-rapid eye movement (non-REM) and REM sleep than SAMR1 mice. Lemborexant treatment normalized wakefulness/non-REM sleep in SAMP8 mice. During lights-off, lemborexant-treated SAMR1 mice showed increased non-REM sleep; lemborexant-treated SAMP8 mice displayed increased wakefulness. SAMP8 mice showed differences in electroencephalogram architecture versus SAMR1 mice. SAMP8 mice exhibited more running wheel activity during lights-on. Lemborexant treatment reduced activity during lights-on and increased activity in the latter half of lights-off, demonstrating a corrective effect on overall diurnal rhythm. Lemborexant delayed the acrophase of activity in both strains by approximately 1 hour. Conclusion: SAMP8 mice display several aspects of sleep-wake and rhythm disturbances in AD, notably mistimed activity. These findings provide some preclinical rationale for evaluating lemborexant in patients with AD who experience sleep-wake and rhythm disturbances.
Collapse
Affiliation(s)
| | | | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
61
|
Chen LH, Wang MF, Chang CC, Huang SY, Pan CH, Yeh YT, Huang CH, Chan CH, Huang HY. Lacticaseibacillus paracasei PS23 Effectively Modulates Gut Microbiota Composition and Improves Gastrointestinal Function in Aged SAMP8 Mice. Nutrients 2021; 13:nu13041116. [PMID: 33805289 PMCID: PMC8067042 DOI: 10.3390/nu13041116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Probiotics are reported to improve gastrointestinal (GI) function via regulating gut microbiota (GM). However, exactly how probiotics influence GM and GI function in elders is poorly characterized. Therefore, in this study, we assessed the effect of the probiotic Lacticaseibacillus paracasei PS23 (LPPS23) on the GM and GI function of aged mice. There were four groups of senescence-accelerated mouse prone-8 (SAMP8) mice (n = 4): a non-treated control group, a saline control group, a low dose LPPS23 group (1 × 108 colony-forming unit (CFU)/mouse/day), and a high dose LPPS23 group (1 × 109 CFU/mouse/day). Non-treated mice were euthanized at 16 weeks old, and others were euthanized at 28 weeks old. The next-generation sequencing results revealed that LPPS23 enriched Lactobacillus and Candidatus_Saccharimonas, while the abundance of Lachnospiraceae_UCG_001 decreased in aged mice given LPPS23. The abundance of Lactobacillus negatively correlated with the abundance of Erysipelotrichaceae. Moreover, LPPS23 improved the GI function of aged mice due to the longer intestine length, lower intestinal permeability, and higher phagocytosis in LPPS23-treated mice. The ELISA results showed that LPPS23 attenuated the alterations of pro-inflammatory factors and immunoglobulins. The abundance of LPPS23-enriched Lactobacillus was positively correlated with healthy GI function, while Lachnospiraceae_UCG_001, which was repressed by LPPS23, was negatively correlated with a healthy GI function in the aged mice according to Spearman’s correlation analysis. Taken together, LPPS23 can effectively modulate GM composition and improve GI function in aged SAMP8 mice.
Collapse
Affiliation(s)
- Li-Han Chen
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan;
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (C.-H.H.)
- Biomedical Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (C.-H.H.)
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Hung Chan
- Graduate Institute of Bioengineering, Tatung University, Taipei 10452, Taiwan;
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: ; Tel.: +886-6600-2178
| |
Collapse
|
62
|
Narukawa M, Takahashi S, Kamiyoshihara A, Matsumiya K, Misaka T. Comparison between the timing of the occurrence of taste sensitivity changes and short-term memory decline due to aging in SAMP1 mice. PLoS One 2021; 16:e0248673. [PMID: 33755681 PMCID: PMC7987193 DOI: 10.1371/journal.pone.0248673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Several studies have suggested that cognitive impairment affects taste sensitivity. However, the mechanism behind this is still unclear. In this study, we focused on short-term memory. Using senescence-accelerated mouse prone 1 (SAMP1) mice, we compared whether the effects of aging are observed earlier in taste sensitivity or short-term memory. We used 8-week-old mice as the young group, and 70- and 80-week-old mice as aged groups. Taste sensitivity was evaluated using a 48-hour two-bottle preference test, and short-term memory was evaluated using the Y-maze test. SAMP1 mice showed apparently changes in taste sensitivity at 70-weeks-old. However, the influence of aging on spontaneous alternation behavior, which is indicative of short-term memory alterations, was not observed in 70-week-old mice. At 80-weeks-old, the influence of aging was observed, and spontaneous alternation behavior was significantly decreased. This suggests that age-dependent changes in taste sensitivity occur prior to short-term memory function decline. In addition, there was no significant influence of aging on the mRNA expression of long-term potentiation-related genes in the hippocampus of 80-week-old mice. Therefore, the age-related decline of short-term memory may not affect taste sensitivity.
Collapse
Affiliation(s)
- Masataka Narukawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
- * E-mail: (MN); (TM)
| | - Suzuka Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aya Kamiyoshihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Takumi Misaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (MN); (TM)
| |
Collapse
|
63
|
The Function of Sialidase Revealed by Sialidase Activity Imaging Probe. Int J Mol Sci 2021; 22:ijms22063187. [PMID: 33804798 PMCID: PMC8003999 DOI: 10.3390/ijms22063187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.
Collapse
|
64
|
Hoshino K, Uchinami Y, Uchida Y, Saito H, Morimoto Y. Interleukin-1β Modulates Synaptic Transmission and Synaptic Plasticity During the Acute Phase of Sepsis in the Senescence-Accelerated Mouse Hippocampus. Front Aging Neurosci 2021; 13:637703. [PMID: 33643027 PMCID: PMC7902794 DOI: 10.3389/fnagi.2021.637703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Aging and pre-existing cognitive impairment are considered to be independent risk factors for sepsis-associated encephalopathy. This study aimed to investigate the manner in which aging and pre-existing cognitive dysfunction modified neuroinflammation, synaptic plasticity, and basal synaptic transmission during the acute phase of sepsis using Senescence-Accelerated Mice Prone 8 (SAMP8) and Senescence-Accelerated Resistant Mice 1 (SAMR1). Methods We used 6-month-old SAMP8 and SAMR1. Sepsis was induced using cecal ligation and puncture (CLP). The animal's hippocampi and blood were collected for subsequent investigations 24 h after surgery. Results Long-term potentiation (LTP) was impaired in the Shaffer-collateral (SC)-CA1 pathway of the hippocampus in SAMP8 without surgery compared to the age-matched SAMR1, which was reflective of cognitive dysfunction in SAMP8. CLP impaired the SC-CA1 LTP in SAMR1 compared to the sham-operated controls, but not in SAMP8. Moreover, CLP decreased the input-output curve and increased the paired-pulse ratio in SAMP8, suggesting the reduced probability of basal synaptic transmission due to sepsis. Immunohistochemical analysis revealed that CLP elevated IL-1β levels, especially in the hippocampi of SAMP8 with microglial activation. In vivo peripheral IL-1 receptor antagonist (IL-1ra) administration in the septic SAMP8 revealed that the neuroinflammation was not correlated with the peripheral elevation of IL-1β. Ex vivo IL-1ra administration to the hippocampus ameliorated LTP impairment in SAMR1 and the reduction in basal transmission in SAMP8 after sepsis. Conclusions The mechanism of the modulation of synaptic transmission and synaptic plasticity by the acute stage of sepsis differed between SAMR1 and SAMP8. These changes were related to centrally derived IL-1 receptor-mediated signaling and were accompanied by microglial activation, especially in SAMP8.
Collapse
Affiliation(s)
- Koji Hoshino
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuka Uchinami
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yosuke Uchida
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hitoshi Saito
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuji Morimoto
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
65
|
Minami A, Fujita Y, Goto J, Iuchi A, Fujita K, Mikami Y, Shiratori M, Ishii A, Mitragotri S, Iwao Y, Kanazawa H, Kurebayashi Y, Takahashi T, Otsubo T, Ikeda K, Suzuki T. Enhancement of elastin expression by transdermal administration of sialidase isozyme Neu2. Sci Rep 2021; 11:3302. [PMID: 33558588 PMCID: PMC7870814 DOI: 10.1038/s41598-021-82820-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly. In the present study, we showed that a lower layer of the dermis and muscle showed relatively intense sialidase activity. The sialidase activity in the skin decreased with aging. Choline and geranate (CAGE), one of the ionic liquids, can deliver the sialidase subcutaneously while maintaining the enzymatic activity. The elastin level in the dermis was increased by applying sialidase from Arthrobacter ureafaciens (AUSA) with CAGE on the skin for 5 days in rats and senescence-accelerated mice prone 1 and 8. Sialidase activity in the dermis was considered to be mainly due to Neu2 based on the expression level of sialidase isozyme mRNA. Transdermal administration of Neu2 with CAGE also increased the level of elastin in the dermis. Therefore, not only Neu1 but also Neu2 would be involved in elastic fiber assembly. Transdermal administration of sialidase is expected to be useful for improvement of wrinkles and skin disorders due to the loss of elastic fibers.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Jun Goto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayano Iuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yasunori Iwao
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
66
|
Dietary Protein Source Influences Brain Inflammation and Memory in a Male Senescence-Accelerated Mouse Model of Dementia. Mol Neurobiol 2020; 58:1312-1329. [PMID: 33169333 DOI: 10.1007/s12035-020-02191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Dementia is a pathological condition characterized by a decline in memory, as well as in other cognitive and social functions. The cellular and molecular mechanisms of brain damage in dementia are not completely understood; however, neuroinflammation is involved. Evidence suggests that chronic inflammation may impair cognitive performance and that dietary protein source may differentially influence this process. Dietary protein source has previously been shown to modify systemic inflammation in mouse models. Thus, we aimed to investigate the effect of chronic dietary protein source substitution in an ageing and dementia male mouse model, the senescence-accelerated mouse-prone 8 (SAMP8) model. We observed that dietary protein source differentially modified memory as shown by inhibitory avoidance testing at 4 months of age. Also, dietary protein source differentially modified neuroinflammation and gliosis in male SAMP8 mice. Our results suggest that chronic dietary protein source substitution may influence brain ageing and memory-related mechanisms in male SAMP8 mice. Moreover, the choice of dietary protein source in mouse diets for experimental purposes may need to be carefully considered when interpreting results.
Collapse
|
67
|
Abstract
Cellular senescence is a cell cycle arrest in damaged or aged cells. Although this represents a critical mechanism of tumor suppression, persistence of senescent cells during aging induces chronic inflammation and tissue dysfunction through the adoption of the senescence-associated secretory phenotype (SASP). This has been shown to promote the progression of age-associated diseases such as Alzheimer's disease, pulmonary fibrosis, and atherosclerosis. As the global population ages, the role of cellular senescence in disease is becoming a more critical area of research. In this review, mechanisms, biomarkers, and pathology of cellular senescence and SASP are described with a brief discussion of literature supporting a role for cellular senescence in veterinary diseases. Cell culture and mouse models used in senescence studies are also reviewed including the senescence-accelerated mouse-prone (SAMP), senescence pathway knockout mice (p53, p21 [CDKN1A], and p16 [CDKN2A]), and the more recently developed senolysis mice, which allow for direct visualization and elimination (or lysis) of senescent cells in live mice (p16-3MR and INK-ATTAC). These and other mouse models have demonstrated the importance of cellular senescence in embryogenesis and wound healing but have also identified a therapeutic benefit for targeting persistent senescent cells in age-associated diseases including neurodegeneration, diabetes, and cardiac fibrosis.
Collapse
Affiliation(s)
- Jessica Beck
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Purdue University, West Lafayette, IN, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Curtis Harris
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
68
|
Luciano-Mateo F, Cabré N, Baiges-Gaya G, Fernández-Arroyo S, Hernández-Aguilera A, Elisabet Rodríguez-Tomàs E, Arenas M, Camps J, Menéndez JA, Joven J. Systemic overexpression of C-C motif chemokine ligand 2 promotes metabolic dysregulation and premature death in mice with accelerated aging. Aging (Albany NY) 2020; 12:20001-20023. [PMID: 33104522 PMCID: PMC7655213 DOI: 10.18632/aging.104154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Injection of tissues with senescent cells induces changes that mimic aging, and this process is delayed in mice engineered to eliminate senescent cells, which secrete proinflammatory cytokines, including C-C motif chemokine ligand 2 (Ccl2). Circulating levels of Ccl2 correlate with age, but the impact of Ccl2 on tissue homeostasis has not been established. We generated an experimental model by crossbreeding mice overexpressing Ccl2 with progeroid mice bearing a mutation in the lamin A (Lmna) gene. Wild-type animals and progeroid mice that do not overexpress Ccl2 were used as controls. Ccl2 overexpression decreased the lifespan of the progeroid mice and induced the dysregulation of glycolysis, the citric acid cycle and one-carbon metabolism in skeletal muscle, driving dynamic changes in energy metabolism and DNA methylation. This impact on cellular bioenergetics was associated with mitochondrial alterations and affected cellular metabolism, autophagy and protein synthesis through AMPK/mTOR pathways. The data revealed the ability of Ccl2 to promote death in mice with accelerated aging, which supports its putative use as a biomarker of an increased senescent cell burden and for the assessment of the efficacy of interventions aimed at extending healthy aging.
Collapse
Affiliation(s)
- Fedra Luciano-Mateo
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Noemí Cabré
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Gerard Baiges-Gaya
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Salvador Fernández-Arroyo
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Elisabet Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43204, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Javier A Menéndez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17007, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Department of Medicine and Surgery, Reus 43201, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain.,The Campus of International Excellence Southern Catalonia, Tarragona 43003, Spain
| |
Collapse
|
69
|
Neuroinflammaging underlies emotional disturbances and circadian rhythm disruption in young male senescence-accelerated mouse prone 8 mice. Exp Gerontol 2020; 142:111109. [PMID: 33069781 DOI: 10.1016/j.exger.2020.111109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Aging causes psychological dysfunction and neurodegeneration, and can lead to cognitive impairments. Although numerous studies have reported that neurodegeneration and subsequent cognitive impairments are involved in neuroinflammation, relationship between psychological disturbance and neuroinflammation with aging (neuroinflammaging) remains unclear. Here, to clarify the relationship, we examined whether neuroinflammaging affects emotional behaviors in senescence-accelerated mouse prone 8 (SAMP8) mice. Microglial inflammatory responses to a subsequent lipopolysaccharide (LPS) challenge were significantly enhanced in male SAMP8 mice relative to normal aging senescence-accelerated mouse resistant 1 (SAMR1) mice at 17 weeks, but not 8 weeks of age. LPS injection also significantly increased brain and systemic inflammation in SAMP8 mice at 17 weeks. In a battery of behavioral tests, SAMP8 mice at 17 weeks, but not 8 weeks, exhibited anxiety- and depression-like behaviors and circadian rhythm disruption. Taken together, SAMP8 mice at 17 weeks possess a brain microenvironment in which it is easier to trigger neuroinflammatory priming; this may lead to an emergence of anxiety- and depression-like behaviors and circadian rhythm disruption. These findings provide new insights into the temporal relationship between neuroinflammaging and emotion.
Collapse
|
70
|
Okuda M, Fujita Y, Takada-Takatori Y, Sugimoto H, Urakami K. Aromatherapy improves cognitive dysfunction in senescence-accelerated mouse prone 8 by reducing the level of amyloid beta and tau phosphorylation. PLoS One 2020; 15:e0240378. [PMID: 33052945 PMCID: PMC7556469 DOI: 10.1371/journal.pone.0240378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is known to be the most common cause of dementia. We previously described the benefits of aromatherapy on the cognitive function of patients with AD utilizing various aromatic essential oils; however, its mechanism of action remains poorly understood. Consequently, in the present study, this mechanism was thoroughly evaluated employing a dementia mice model, specifically the senescence-accelerated mouse prone 8. The mice were exposed to a mixture of lemon and rosemary oil at nighttime as well as to a mixture of lavender and orange oil in the daytime for 2 months. The cognitive function of the mice was assessed before and after treatment with the aromatic essential oils using the Y-maze test. Moreover, the brain levels of amyloid beta (Aβ), abnormally phosphorylated tau, and brain-derived neurotrophic factor (BDNF) were measured following treatment. The benefits of aromatherapy on the cognitive function in mice were confirmed. It was also established that the brain levels of Aβ and abnormally phosphorylated tau were considerably lower in the aromatherapy group, while the levels of BDNF were marginally higher. These results suggest that aromatherapy employing these aromatic essential oils is beneficial for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Michiaki Okuda
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail:
| | - Yuki Fujita
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuki Takada-Takatori
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College, Kyotanabe, Kyoto, Japan
| | - Hachiro Sugimoto
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
| | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
71
|
Allison DB, Ren G, Peliciari-Garcia RA, Mia S, McGinnis GR, Davis J, Gamble KL, Kim JA, Young ME. Diurnal, metabolic and thermogenic alterations in a murine model of accelerated aging. Chronobiol Int 2020; 37:1119-1139. [PMID: 32819176 DOI: 10.1080/07420528.2020.1796699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Senescence-Accelerated Mouse-Prone 8 (SAMP8) mice exhibit characteristics of premature aging, including hair loss, cognitive dysfunction, reduced physical activity, impaired metabolic homeostasis, cardiac dysfunction and reduced lifespan. Interestingly, circadian disruption can induce or augment many of these same pathologies. Moreover, previous studies have reported that SAMP8 mice exhibit abnormalities in circadian wheel-running behavior, indicating possible alterations in circadian clock function. These observations led to the hypothesis that 24 h rhythms in behavior and/or circadian clock function are altered in SAMP8 mice and that these alterations may contribute to perturbations in whole-body metabolism. Here, we report that 6-month-old SAMP8 mice exhibit a more prominent biphasic pattern in daily behaviors (food intake and physical activity) and whole-body metabolism (energy expenditure, respiratory exchange ratio), relative to SAMR1 control mice. Consistent with a delayed onset of food intake at the end of the light phase, SAMP8 mice exhibit a phase delay (1.3-1.9 h) in 24 h gene expression rhythms of major circadian clock components (bmal1, rev-erbα, per2, dbp) in peripheral tissues (liver, skeletal muscle, white adipose tissue [WAT], brown adipose tissue [BAT]). Forcing mice to consume food only during the dark period improved alignment of both whole-body metabolism and oscillations in expression of clock genes in peripheral tissues between SAMP8 and SAMR1 mice. Next, interrogation of metabolic genes revealed altered expression of thermogenesis mediators (ucp1, pgc1α, dio2) in WAT and/or BAT in SAMP8 mice. Interestingly, SAMP8 mice exhibit a decreased tolerance to an acute (5 h) cold challenge. Moreover, SAMP8 and SAMR1 mice exhibited differential responses to a chronic (1 week) decrease in ambient temperature; the greatest response in whole-body substrate selection was observed in SAMR1 mice. Collectively, these observations reveal differential behaviors (e.g. 24 h food intake patterns) in SAMP8 mice that are associated with perturbations in peripheral circadian clocks, metabolism and thermogenesis.
Collapse
Affiliation(s)
- David B Allison
- School of Public Health, Indiana University , Bloomington, Indiana, USA
| | - Guang Ren
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo , Diadema, São Paulo, Brazil
| | - Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Jennifer Davis
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Jeong-A Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| |
Collapse
|
72
|
Unno K, Takagi Y, Konishi T, Suzuki M, Miyake A, Kurotaki T, Hase T, Meguro S, Shimada A, Hasegawa-Ishii S, Pervin M, Taguchi K, Nakamura Y. Mutation in Sodium-Glucose Cotransporter 2 Results in Down-Regulation of Amyloid Beta (A4) Precursor-Like Protein 1 in Young Age, Which May Lead to Poor Memory Retention in Old Age. Int J Mol Sci 2020; 21:ijms21155579. [PMID: 32759773 PMCID: PMC7432872 DOI: 10.3390/ijms21155579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Senescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the Slc5a2 gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition. Here, we examined the mutation effect in SGLT2 on brain function and longevity. No differences were found in the survival curve, depression-like behavior, and age-related brain atrophy between SAMP10-ΔSglt2 and SAMP10(+). However, memory retention was lower in SAMP10-ΔSglt2 mice than SAMP10(+). Amyloid beta (A4) precursor-like protein 1 (Aplp1) expression was significantly lower in the hippocampus of SAMP10-ΔSGLT2 than in SAMP10(+) at 2 months of age, but was similar at 12 months of age. CaM kinase-like vesicle association (Camkv) expression was remarkably lower in SAMP10(+). These genes have been reported to be involved in dendrite function. Amyloid precursor proteins have been reported to involve in maintaining homeostasis of glucose and insulin. These results suggest that mutation in SGLT2 results in down-regulation of Aplp1 in young age, which can lead to poor memory retention in old age.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiichi Takagi
- Production Center for Experimental Animals, Japan SLC Incorporated, 85 Ohara, Kita-ku, Hamamatsu, Shizuoka 433-8102, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Mitsuhiro Suzuki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Akiyuki Miyake
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Takumi Kurotaki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Monira Pervin
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
73
|
Duan R, Xue X, Zhang QQ, Wang SY, Gong PY, E Y, Jiang T, Zhang YD. ACE2 activator diminazene aceturate ameliorates Alzheimer's disease-like neuropathology and rescues cognitive impairment in SAMP8 mice. Aging (Albany NY) 2020; 12:14819-14829. [PMID: 32701063 PMCID: PMC7425432 DOI: 10.18632/aging.103544] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
Previously, we revealed that brain Ang-(1-7) deficiency was involved in the pathogenesis of sporadic Alzheimer's disease (AD). We speculated that restoration of brain Ang-(1-7) levels might have a therapeutic effect against AD. However, the relatively short duration of biological effect limited the application of Ang-(1-7) in animal experiments. Since Ang-(1-7) is generated by its metabolic enzyme ACE2, we then tested the efficacy of an ACE2 activator diminazene aceturate (DIZE) on AD-like neuropathology and cognitive impairment in senescence-accelerated mouse prone substrain 8 (SAMP8) mice, an animal model of sporadic AD. Eight-month-old SAMP8 mice were injected intraperitoneally with vehicle or DIZE once a day for 30 consecutive days. DIZE markedly elevated brain Ang-(1-7) and MAS1 levels. Meanwhile, DIZE significantly reduced the levels of Aβ1-42, hyperphosphorylated tau and pro-inflammatory cytokines in the brain. The synaptic and neuronal losses in the brain were ameliorated by DIZE. Importantly, DIZE improved spatial cognitive functions in the Morris water maze test. In conclusion, this study demonstrates that DIZE ameliorates AD-like neuropathology and rescues cognitive impairment in SAMP8 mice. These beneficial effects of DIZE may be achieved by activating brain ACE2/Ang-(1-7)/MAS1 axis. These findings highlight brain ACE2/Ang-(1-7)/MAS1 axis as a potential target for the treatment of sporadic AD.
Collapse
Affiliation(s)
- Rui Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Qiao-Quan Zhang
- Department of Pathology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Ying-Dong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| |
Collapse
|
74
|
Xiyang YB, Liu R, Wang XY, Li S, Zhao Y, Lu BT, Xiao ZC, Zhang LF, Wang TH, Zhang J. COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway. Front Aging Neurosci 2020; 12:215. [PMID: 32754029 PMCID: PMC7365906 DOI: 10.3389/fnagi.2020.00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer’s disease (Martinez-Losa et al., 2018). In this study, we established and characterized the genomic profiles of genes expressed in the hippocampus of Senescence-Accelerated Mouse-prone 8 (SAMP8) mice, and revealed differential expression of COX5A among 12-month-aged SAMP8 mice and 2-month-aged SAMP8 mice. Newly established transgenic mice with systemic COX5A overexpression (51% increase) resulted in the improvement of spatial recognition memory and hippocampal synaptic plasticity, recovery of hippocampal CA1 dendrites, and activation of the BDNF/ERK1/2 signaling pathway in vivo. Moreover, mice with both COX5A overexpression and BDNF knockdown showed a poor recovery in spatial recognition memory as well as a decrease in spine density and branching of dendrites in CA1, when compared to mice that only overexpressed COX5A. In vitro studies supported that COX5A affected neuronal growth via BDNF. In summary, this study was the first to show that COX5A in the hippocampus plays a vital role in aging-related cognitive deterioration via BDNF/ERK1/2 regulation, and suggested that COX5A may be a potential target for anti-senescence drugs.
Collapse
Affiliation(s)
- Yan-Bin Xiyang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ruan Liu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ya Zhao
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Zhi-Cheng Xiao
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia
| | - Lian-Feng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
75
|
Improvement of Learning and Memory in Senescence-Accelerated Mice by S-Allylcysteine in Mature Garlic Extract. Nutrients 2020; 12:nu12061834. [PMID: 32575593 PMCID: PMC7353456 DOI: 10.3390/nu12061834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
S-allylcysteine (SAC), a major thioallyl compound contained in mature garlic extract (MGE), is known to be a neuroactive compound. This study was designed to investigate the effects of SAC on primary cultured hippocampal neurons and cognitively impaired senescence-accelerated mice prone 10 (SAMP10). Treatment of these neurons with MGE or SAC significantly increased the total neurite length and number of dendrites. SAMP10 mice fed MGE or SAC showed a significant improvement in memory dysfunction in pharmacological behavioral analyses. The decrease of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and phosphorylated α-calcium/calmodulin-dependent protein kinase II (CaMKII) in the hippocampal tissue of SAMP10 mice fed MGE or SAC was significantly suppressed, especially in the MGE-fed group. These findings suggest that SAC positively contributes to learning and memory formation, having a beneficial effect on brain function. In addition, multiple components (aside from SAC) contained in MGE could be useful for improving cognitive function by acting as neurotrophic factors.
Collapse
|
76
|
Tsuboi I, Harada T, Hirabayashi Y, Aizawa S. Dynamics of hematopoiesis is disrupted by impaired hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis. Ann Hematol 2020; 99:1515-1523. [PMID: 32506245 DOI: 10.1007/s00277-020-04095-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory disorder. We found recently that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated mice (SAMP1/TA-1) but not in senescence-resistant control mice (SAMR1). In this study, we analyzed the dynamics of hematopoiesis in this mouse model of HLH. When treated repeatedly with LPS, the numbers of myeloid progenitor cells (CFU-GM) and B-lymphoid progenitor cells (CFU-preB) in the bone marrow (BM) rapidly decreased after each treatment in both strains. The number of CFU-GM in SAMP1/TA-1 and SAMR1, and of CFU-preB in SAMR1, returned to pretreatment levels by 7 days after each treatment. However, the recovery in the number of CFU-preB in SAMP1/TA-1 was limited. In both strains, the BM expression of genes encoding positive regulators of myelopoiesis (granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6), and negative regulators of B lymphopoiesis (tumor necrosis factor (TNF)-α) was increased. The expression of genes encoding positive regulators of B lymphopoiesis (stromal-cell derived factor (SDF)-1, IL-7, and stem cell factor (SCF)) was persistently decreased in SAMP1/TA-1 but not in SAMR1. Expression of the gene encoding p16INK4a and the proportion of β-galactosidase-positive cells were increased in cultured stromal cells obtained from LPS-treated SAMP1/TA-1 but not in those from LPS-treated SAMR1. LPS treatment induced qualitative changes in stromal cells, which comprise the microenvironment supporting appropriate hematopoiesis, in SAMP1/TA-1; these stromal cell changes are inferred to disrupt the dynamics of hematopoiesis. Thus, hematopoietic tissue is one of the organs that suffer life-threatening damage in HLH.
Collapse
Affiliation(s)
- Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-machi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-machi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
77
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
78
|
Pellegrini C, Daniele S, Antonioli L, Benvenuti L, D’Antongiovanni V, Piccarducci R, Pietrobono D, Citi V, Piragine E, Flori L, Ippolito C, Segnani C, Palazon-Riquelme P, Lopez-Castejon G, Martelli A, Colucci R, Bernardini N, Trincavelli ML, Calderone V, Martini C, Blandizzi C, Fornai M. Prodromal Intestinal Events in Alzheimer's Disease (AD): Colonic Dysmotility and Inflammation Are Associated with Enteric AD-Related Protein Deposition. Int J Mol Sci 2020; 21:ijms21103523. [PMID: 32429301 PMCID: PMC7278916 DOI: 10.3390/ijms21103523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that intestinal dysfunctions may represent early events in Alzheimer’s disease and contribute to brain pathology. This study examined the relationship between onset of cognitive impairment and colonic dysfunctions in a spontaneous AD model before the full development of brain pathology. SAMP8 mice underwent Morris water maze and assessment of faecal output at four, six and eight months of age. In vitro colonic motility was examined. Faecal and colonic Aβ, tau proteins, α-synuclein and IL-1β were assessed by ELISA. Colonic citrate synthase activity was assessed by spectrophotometry. Colonic NLRP3, caspase-1 and ASC expression were evaluated by Western blotting. Colonic eosinophil density and claudin-1 expression were evaluated by immunohistochemistry. The effect of Aβ on NLRP3 signalling and mitochondrial function was tested in cultured cells. Cognitive impairment and decreased faecal output occurred in SAMP8 mice from six months. When compared with SAMR1, SAMP8 animals displayed: (1) impaired in vitro colonic contractions; (2) increased enteric AD-related proteins, IL-1β, active-caspase-1 expression and eosinophil density; and (3) decreased citrate synthase activity and claudin-1 expression. In THP-1 cells, Aβ promoted IL-1β release, which was abrogated upon incubation with caspase-1 inhibitor or in ASC-/- cells. Aβ decreased mitochondrial function in THP-1 cells. In SAMP8, enteric AD-related proteins deposition, inflammation and impaired colonic excitatory neurotransmission, occurring before the full brain pathology development, could contribute to bowel dysmotility and represent prodromal events in AD.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Vanessa D’Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Deborah Pietrobono
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
| | - Pablo Palazon-Riquelme
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK; (P.P.-R.); (G.L.-C.)
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK; (P.P.-R.); (G.L.-C.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56126 Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
- Correspondence: (C.M.); (C.B.); Tel.: +39-050-221-2115 (C.M.); +39-050-221-8753 (C.B.)
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
- Correspondence: (C.M.); (C.B.); Tel.: +39-050-221-2115 (C.M.); +39-050-221-8753 (C.B.)
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| |
Collapse
|
79
|
Long-Term Feeding of a High-Fat Diet Ameliorated Age-Related Phenotypes in SAMP8 Mice. Nutrients 2020; 12:nu12051416. [PMID: 32423039 PMCID: PMC7285040 DOI: 10.3390/nu12051416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
High-fat diets (HFD) have been thought to increase the risk of obesity and metabolic syndrome, as well as shorten lifespan. On the other hand, chrono-nutritional studies have shown that time-restricted feeding during active phase significantly suppresses the induction of HFD-induced obesity in mouse model. However, the long-term effects of time-restricted HFD feeding on aging are unknown. Therefore, in this study, we set up a total of four groups: mutual combination of ad libitum feeding or night-time-restricted feeding (NtRF) and an HFD or a control diet. We examined their long-term effects in a senescence-accelerated mouse strain, SAMP8, for over a year. Hearing ability, cognitive function, and other behavioral and physiological indexes were evaluated during the study. Unexpectedly, SAMP8 mice did not show early onset of death caused by the prolonged HFD intake, and both HFD and NtRF retarded age-related hearing loss (AHL). NtRF improved grip strength and cognitive memory scores, while HFD weakly suppressed age-related worsening of the appearance scores associated with the eyes. Notably, the HFD also retarded the progression of AHL in both DBA/2J and C57BL/6J mice. These results suggest that HFD prevents aging unless metabolic disorders occur and that HFD and NtRF are independently effective in retarding aging; thus, the combination of HFD and chrono-nutritional feeding may be an effective anti-aging strategy.
Collapse
|
80
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
81
|
Shimizu C, Wakita Y, Tsuchiya Y, Nabeshima T. Influence of Housing Systems on Physical, Emotional, and Cognitive Functions with Aging in DBA/2CrSlc Mice. Animals (Basel) 2020; 10:ani10040746. [PMID: 32344780 PMCID: PMC7222825 DOI: 10.3390/ani10040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Many scientists carefully monitor the experimental protocols, mouse strain , use of group-housing, and atmospheric enrichment in a housing-cage, but not commercially available housing-systems. The environmental conditions of mice as well as humans affects their emotional behaviors or physical activities. However, limited information is available regarding the influence of housing systems on experimental data. We used two types of housing system in the same laboratory. The difference in the structure of the two cages (chamber vs. individually ventilated cages: IVC) was whether the mouse could dangle or not. The dangling increases the amounts and quality of physical activities. Using the two-different housing systems, we investigated whether differences in physical, emotional, and cognitive functions can be observed in mice with aging. The IVC group demonstrated significantly less food intake, higher body weight, lower rectal core temperature, less muscle and balancing powers with aging, and fewer anxiety-like behaviors than the chamber group. Based on this experiment, the daily physical activities derived from housing systems significantly affected the results of body weight, body temperature, as well as their behaviors. Scientists should pay attention to the structure of housing systems and experimental parameters, particularly when changing the housing systems. Abstract Environmental conditions, including enrichment and stress, affect animal behaviors, but limited information is available regarding the differences in animal functions between the chamber (ventilated system) vs. IVC (individually ventilated cages) housing systems. Therefore, the effects of different housing systems were examined on physical, emotional, and cognitive functions and the intestinal flora with aging. DBA/2CrSlc mice were divided into chamber and IVC groups. Differences in the structure of the two cages considered whether the mouse could dangle or not. Physical, emotional, and cognitive functions were examined using the open field, black and white box, object recognition, horizontal bar, wire hanging, balancing, footprint, and locomotor tests. The IVC group demonstrated significantly less food intake, higher body weight (by approximately 5 g), lower rectal core temperature, less muscle and balancing powers with aging, and fewer anxiety-like behaviors than the chamber group. No differences were observed in the cognitive function and intestinal microbiota between the groups. The housing environment affected the rodent basal temperature and body weight as well as the physical and emotional functions. Scientists should be attentive to the type of cages used in the housing system for an experiment, especially when comparing the results with animals reared in different systems.
Collapse
Affiliation(s)
- Chikako Shimizu
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (Y.W.); (Y.T.)
- Correspondence: ; Tel.: +81-54-629-7980
| | - Yoshihisa Wakita
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (Y.W.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (Y.W.); (Y.T.)
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University,1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;
- NPO Japanese Drug Organization of Appropriate Use and Research, 3-1509 Omoteyama, Tenpaku-ku, Nagoya, Aichi 468-0069, Japan
| |
Collapse
|
82
|
A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice. Pharmaceutics 2020; 12:pharmaceutics12030284. [PMID: 32235699 PMCID: PMC7151078 DOI: 10.3390/pharmaceutics12030284] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade.
Collapse
|
83
|
Yang X, Yu D, Xue L, Li H, Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 2020; 10:475-487. [PMID: 32140393 PMCID: PMC7049608 DOI: 10.1016/j.apsb.2019.07.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis, Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus acidophilus. This study aims to investigate the effects of ProBiotic-4 on the microbiota–gut–brain axis and cognitive deficits, and to explore the underlying molecular mechanism using senescence-accelerated mouse prone 8 (SAMP8) mice. ProBiotic-4 was orally administered to 9-month-old SAMP8 mice for 12 weeks. We observed that ProBiotic-4 significantly improved the memory deficits, cerebral neuronal and synaptic injuries, glial activation, and microbiota composition in the feces and brains of aged SAMP8 mice. ProBiotic-4 substantially attenuated aging-related disruption of the intestinal barrier and blood–brain barrier, decreased interleukin-6 and tumor necrosis factor-α at both mRNA and protein levels, reduced plasma and cerebral lipopolysaccharide (LPS) concentration, toll-like receptor 4 (TLR4) expression, and nuclear factor-κB (NF-κB) nuclear translocation in the brain. In addition, not only did ProBiotic-4 significantly decreased the levels of γ-H2AX, 8-hydroxydesoxyguanosine, and retinoic-acid-inducible gene-I (RIG-I), it also abrogated RIG-I multimerization in the brain. These findings suggest that targeting gut microbiota with probiotics may have a therapeutic potential for the deficits of the microbiota–gut–brain axis and cognitive function in aging, and that its mechanism is associated with inhibition of both TLR4-and RIG-I-mediated NF-κB signaling pathway and inflammatory responses.
Collapse
Key Words
- 8-OHdG, 8-hydroxydesoxyguanosine
- AAMI, age-associated memory impairment
- AD, Alzheimer's disease
- BBB, blood–brain barrier
- CFU, colony-forming units
- Cognitive decline
- ELISA, enzyme-linked immunosorbent assay
- F/B, Firmicutes/Bacteroidetes
- GFAP, glial fibrillary acidic protein
- HE, hematoxylin and eosin
- IHC, immunohistochemistry
- IL-6, interleukin-6
- Iba-1, ionized calcium binding adaptor molecule-1
- LPS, lipopolysaccharide
- MCI, mild cognitive impairment
- Microbiota–gut–brain axis
- NF-κB
- NF-κB, nuclear factor-κB
- NMDS, non-metric multidimensional scaling
- OTU, operational taxonomic unit
- PAMP, pathogen-associated molecular pattern
- Probiotics
- RIG-I
- RIG-I, retinoic-acid-inducible gene-I
- SAMP8 mice
- SAMP8, senescence-accelerated mouse prone 8
- SYN, synaptophysin
- TEM, transmission electron microscopy
- TLR4
- TLR4, toll-like receptor 4
- TNF-α, tumor necrosis factor-α
- VE-cadherin, vascular endothelial-cadherin
- ZO-1, zona occluden-1
Collapse
|
84
|
Abstract
The respiratory system plays an essential role for human life. This system (like all others) undergoes physiological regeneration due to many types of stem cells found both in the respiratory tract itself and in the alveoli. The stem cell hierarchy is very extensive due to their variety in the lungs and is still not completely understood.The best described lung stem cells are alveolar type II cells, which as progenitor lung stem cells are precursors of alveolar type I cells, i.e., cells that perform gas exchange in the lungs. These progenitor stem cells, which reside in alveoli corners, express high levels of surfactant protein C (SFTPC). Despite the fact that type II pneumocytes occupy only 7-10% of the lung surface, there are almost twice as many as alveolar type I cells occupying almost 95% of the surface.Other stem cells making up the lung regenerative potential have also been identified in the lungs. Both endothelial, mesodermal, and epithelial stem cells are necessary for the lungs to function properly and perform their physiological functions.The lungs, like all other organs, undergo an aging process. As a result of this process, not only the total number of cells changes, the percentage of particular types of cells, but also their efficiency is reduced. With age, the proliferative potential of lung stem cells also decreases, not just their number. This brings about the need to increase the intensity of research in the field of regenerative medicine.
Collapse
Affiliation(s)
- Andrzej Ciechanowicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical Univeristy of Warsaw, Warsaw, Poland.
| |
Collapse
|
85
|
Sripanidkulchai B. Benefits of aged garlic extract on Alzheimer's disease: Possible mechanisms of action. Exp Ther Med 2019; 19:1560-1564. [PMID: 32010339 PMCID: PMC6966106 DOI: 10.3892/etm.2019.8390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has become a growing health concern in aging societies. β-amyloid (Aβ) formation in vulnerable brain regions, such as the hippocampus and cerebral cortex is a major neuropathological feature of the disease. Currently, there is no specific drug available for the treatment of AD. However, due to its high antioxidant activity, aged garlic extract (AGE) has been widely used to prevent chronic diseases, such as cancer and cardiovascular disease. A number of studies on the benefits of AGE against cognitive and memory deficits have also been published. This review aimed to summarize the information related to the effects of AGE on learning memory in order to obtain a better understanding of its mechanisms of action. This review also presents an overview of the pathogenesis of AD, and summarizes the main ingredients and neuroprotective effects of AGE against cognitive and learning memory deficits. The mechanisms of action of AGE are also discussed.
Collapse
Affiliation(s)
- Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
86
|
He C, Wu Q, Hayashi N, Nakano F, Nakatsukasa E, Tsuduki T. Carbohydrate-restricted diet alters the gut microbiota, promotes senescence and shortens the life span in senescence-accelerated prone mice. J Nutr Biochem 2019; 78:108326. [PMID: 31952014 DOI: 10.1016/j.jnutbio.2019.108326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
This study examined the effects of a carbohydrate-restricted diet on aging, brain function, intestinal bacteria and the life span to determine long-term carbohydrate-restriction effects on the aging process in senescence-accelerated prone mice (SAMP8). Three-week-old male SAMP8 were divided into three groups after a week of preliminary feeding. One group was given a controlled diet, while the others fed on high-fat and carbohydrate-restricted diets, respectively. The mice in each group were further divided into two subgroups, of which one was the longevity measurement group. The other groups fed ad libitum until the mice were 50 weeks old. Before the test period termination, passive avoidance test evaluated the learning and memory abilities. Following the test period, serum and various mice organs were obtained and submitted for analysis. The carbohydrate-restricted diet group exhibited significant decrease in the survival rate as compared to the other two diet groups. The passive avoidance test revealed a remarkable decrease in the learning and memory ability of carbohydrate-restricted diet group as compared to the control-diet group. Measurement of lipid peroxide level in tissues displayed a marked increase in the brain and spleen of carbohydrate-restricted diet group than the control-diet and high-fat diet groups. Furthermore, notable serum IL-6 and IL-1β level (inflammation indicators) elevations, decrease in Enterobacteria (with anti-inflammatory action), increase in inflammation-inducing Enterobacteria and lowering of short-chain fatty acids levels in cecum were observed in the carbohydrate-restricted diet group. Hence, carbohydrate-restricted diet was revealed to promote aging and shortening of life in SAMP8.
Collapse
Affiliation(s)
- Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Qiming Wu
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Nao Hayashi
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Fumika Nakano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Eriko Nakatsukasa
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
87
|
Bando M, Masumoto S, Kuroda M, Tsutsumi R, Sakaue H. Effect of olive oil consumption on aging in a senescence-accelerated mice-prone 8 (SAMP8) model. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:241-247. [PMID: 31656282 DOI: 10.2152/jmi.66.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Mediterranean diets have been linked to a reduced risk of cancer, vascular illnesses, Parkinson's and Alzheimer's disease. Olive oil is the primary fat source in the Mediterranean diet ; however, only a few studies have investigated the effect of olive oil on aging. In the present study, we aimed to determine whether consumption of olive oil significantly influences aging and memory in senescence-accelerated mouse-prone 8 (SAMP8). Methods : SAMP8 and senescence-accelerated mouse resistant 1 (SAMR1) mice were fed either 7% soy oil or 1% olive oil and 6% soy oil during a six-month study period. Reduction in memory in passive avoidance learning was examined after two months from the initiation of the experiment. Results : The weight of organs including the liver, kidney, spleen, and fat tissue changed significantly and memory performance was reduced in SAMP8 than in SAMR1 mice. There were no significant differences in SAMP8 and SAMR1 mice; however, blood triglyceride level decreased significantly in SAMP8 mice fed on olive oil. Conclusions : These results suggest that consuming olive oil may not have a protective role in aging and memory recall, but beneficial effects may be related to improvement in lipid metabolism. J. Med. Invest. 66 : 241-247, August, 2019.
Collapse
Affiliation(s)
- Masahiro Bando
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saeko Masumoto
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
88
|
Chawalitpong S, Ichikawa S, Uchibori Y, Nakamura S, Katayama S. Long-Term Intake of Glucoraphanin-Enriched Kale Suppresses Skin Aging via Activating Nrf2 and the TβRII/Smad Pathway in SAMP1 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9782-9788. [PMID: 31390859 DOI: 10.1021/acs.jafc.9b02725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulforaphane, a potent antioxidant compound, is unstable at ambient temperature, whereas its precursor glucoraphanin is stable and metabolized to sulforaphane. Thus, we hypothesized that glucoraphanin-rich diet could effectively induce antioxidant enzyme activities and investigated the protective effects of long-term intake of a glucoraphanin-enriched kale (GEK) diet on skin aging in senescence-accelerated mouse prone 1 (SAMP1) mice. The senescence grading score was significantly lower after treatment with GEK for 39 weeks than that of the control mice. GEK also suppressed the thinning of the dorsal skin layer. Moreover, the GEK treatment enhanced the collagen production and increased the nuclear translocation of Nrf2 and HO-1 expression level in the skin tissue. TβRII and Smad3 expressions were clearly higher in the GEK-treated group than in the control group. Thus, GEK suppressed senescence in SAMP1 mice by enhancing the antioxidant activity and collagen production via the TβRII/Smad3 pathway, suggesting its practical applications for protection against skin aging.
Collapse
Affiliation(s)
- Supatta Chawalitpong
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Saki Ichikawa
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Yuki Uchibori
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| |
Collapse
|
89
|
Chou MY, Chen YJ, Lin LH, Nakao Y, Lim AL, Wang MF, Yong SM. Protective Effects of Hydrolyzed Chicken Extract (Probeptigen®/Cmi-168) on Memory Retention and Brain Oxidative Stress in Senescence-Accelerated Mice. Nutrients 2019; 11:E1870. [PMID: 31408929 PMCID: PMC6722682 DOI: 10.3390/nu11081870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
The senescence-accelerated prone (SAMP8) mouse model shows age-dependent deterioration in learning and memory and increased oxidative stress in the brain. We previously showed that healthy subjects on a six-week supplementation of a chicken meat hydrolysate (ProBeptigen®/CMI-168) demonstrated enhanced and sustained cognitive performance up until two weeks after the termination of supplementation. In this study, we investigate the effect of ProBeptigen on the progression of age-related cognitive decline. Three-month old SAMP8 mice were orally administered different doses of ProBeptigen (150,300 or 600 mg/kg/day) or saline daily for 13 weeks. Following ProBeptigen supplementation, mice showed lower scores of senescence and improved learning and memory in avoidance tasks. ProBeptigen treatment also increased antioxidant enzyme activity and dopamine level while reducing protein and lipid peroxidation and mitochondrial DNA damage in the brain. Microarray analysis of hippocampus revealed several processes that may be involved in the improvement of cognitive ability by ProBeptigen, including heme binding, insulin growth factor (IGF) regulation, carboxylic metabolic process, oxidation-reduction process and endopeptidase inhibition. Genes found to be significantly altered in both ProBeptigen treated male and female mice include Mup1, Mup17, Mup21, Ahsg and Alb. Taken together, these results suggest a potential anti-aging effect of ProBeptigen in alleviating cognitive deficits and promoting the antioxidant defense system.
Collapse
Affiliation(s)
- Ming-Yu Chou
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
- Quanzhou Preschool Education College, Quanzhou 362000, China
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Liang-Hung Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yoshihiro Nakao
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore
| | - Ai Lin Lim
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan.
| | - Shan May Yong
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore.
| |
Collapse
|
90
|
Shimizu C, Wakita Y, Kihara M, Kobayashi N, Tsuchiya Y, Nabeshima T. Association of Lifelong Intake of Barley Diet with Healthy Aging: Changes in Physical and Cognitive Functions and Intestinal Microbiome in Senescence-Accelerated Mouse-Prone 8 (SAMP8). Nutrients 2019; 11:nu11081770. [PMID: 31374892 PMCID: PMC6723110 DOI: 10.3390/nu11081770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Barley intake reportedly reduces the risk of cardiovascular disease, but effects on the systemic phenotypes during healthy aging have not yet been examined. Therefore, we examined the effects of barley on the lifespan; behavioral phenotypes, such as locomotor activity, and cognitive functions, and intestinal microbiome in the senescence-accelerated mouse-prone 8 (SAMP8) mouse. We prepared two mild high-fat diets by adding lard, in which the starch components of AIN-93G were replaced by rice or barley "Motchiriboshi." SAMP8 (four weeks old, male) mice were fed AIN-93G until eight weeks old, and then rice (rice group) or barley diet (rice: barley = 1:4, barley group) until death. Changes in aging-related phenotypes, object and spatial recognition, locomotor and balancing activities, and the intestinal microbiome were recorded. Moreover, plasma cholesterol levels were analyzed at 16 weeks old. Barley intake prolonged the lifespan by approximately four weeks, delayed locomotor atrophy, and reduced balancing ability and spatial recognition. Barley intake significantly increased the medium and small particle sizes of high-density lipoprotein (HDL) cholesterol, which is associated with a reduced risk of total stroke. The Bacteroidetes to Firmicutes ratio in the barley group was significantly higher than that in the rice group during aging. Thus, lifelong barley intake may have positive effects on healthy aging.
Collapse
Affiliation(s)
- Chikako Shimizu
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD, 10 Okatome, Yaizu, Shizuoka 425-0013, Japan.
| | - Yoshihisa Wakita
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD, 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Makoto Kihara
- Bioresources Research and Development Department, SAPPORO BREWERIES LTD, 37-1, Nittakizaki, Ota, Gunma 370-0393, Japan
| | - Naoyuki Kobayashi
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD, 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD, 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- NPO Japanese Drug Organization of Appropriate Use and Research, 3-1509 Omoteyama, Tenpaku-ku, Nagoya, Aichi 468-0069, Japan
| |
Collapse
|
91
|
Nair RR, Corrochano S, Gasco S, Tibbit C, Thompson D, Maduro C, Ali Z, Fratta P, Arozena AA, Cunningham TJ, Fisher EMC. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30:173-191. [PMID: 31203387 PMCID: PMC6759662 DOI: 10.1007/s00335-019-09807-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Samanta Gasco
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Zeinab Ali
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Abraham Acevedo Arozena
- Unidad de Investigación Hospital Universitario de Canarias, FUNCANIS, Instituto de Tecnologías Biomédicas ULL, and CIBERNED, La Laguna, 38320, Tenerife, Spain
| | | | - Elizabeth M C Fisher
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
92
|
Zhang L, Chen C, Mak MSH, Lu J, Wu Z, Chen Q, Han Y, Li Y, Pi R. Advance of sporadic Alzheimer's disease animal models. Med Res Rev 2019; 40:431-458. [DOI: 10.1002/med.21624] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Lili Zhang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Chen Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Marvin SH Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
| | - Junfeng Lu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Zeqing Wu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Qiuhe Chen
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic University, Hung Hom Hong Kong
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co LtdGuangzhou China
| | - Rongbiao Pi
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou China
- International Joint Laboratory<SYSU‐PolyU HK>of Novel Anti‐Dementia Drugs of GuangzhouGuangzhou China
- National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐Sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
93
|
Sesame Lignans Suppress Age-Related Cognitive Decline in Senescence-Accelerated Mice. Nutrients 2019; 11:nu11071582. [PMID: 31336975 PMCID: PMC6682928 DOI: 10.3390/nu11071582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Sesame lignans, which are biologically active compounds present in sesame seeds and oil, are known to have neuroprotective effects in several models of brain dysfunction. However, the effects of sesame lignans on age-related brain dysfunction are not clear and were thus investigated in the present study using a senescence-accelerated mouse (SAMP10). Two-month-old male SAMP10 mice were administrated a basal diet with 0% or 0.05% sesame lignans for two months, or with 0%, 0.02%, or 0.05% sesame lignans for 10 months and subjected to step-through passive avoidance tasks and forced swim tests. Reactive carbonyl species (RCs) were evaluated as markers of oxidative stress using a recently developed comprehensive analytical method. Both learning time in passive avoidance tasks and immobile time in forced swim tests became longer with aging (p < 0.05). However, the administration of sesame lignans significantly ameliorated age-related effects in both tests (p < 0.05). Age-related increases in RCs such as 4-hydroxy-2-nonenal in the cerebral cortex and liver were reduced in mice fed sesame lignans. These results suggest that sesame lignans can prevent age-related brain dysfunction via anti-oxidative activity.
Collapse
|
94
|
Skorski M, Bamunusinghe D, Liu Q, Shaffer E, Kozak CA. Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups. PLoS One 2019; 14:e0219576. [PMID: 31291374 PMCID: PMC6619830 DOI: 10.1371/journal.pone.0219576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023] Open
Abstract
Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5–96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.
Collapse
Affiliation(s)
- Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
95
|
Tsuduki T. Health Benefit of the Japanese Diet ~Exploring the Significance of Staple Food~. J JPN SOC FOOD SCI 2019. [DOI: 10.3136/nskkk.66.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
96
|
Mouse models for microphthalmia, anophthalmia and cataracts. Hum Genet 2019; 138:1007-1018. [PMID: 30919050 PMCID: PMC6710221 DOI: 10.1007/s00439-019-01995-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022]
Abstract
Mouse mutants are a long-lasting, valuable tool to identify genes underlying eye diseases, because the absence of eyes, very small eyes and severely affected, cataractous eyes are easily to detect without major technical equipment. In mice, actually 145 genes or loci are known for anophthalmia, 269 for microphthalmia, and 180 for cataracts. Approximately, 25% of the loci are not yet characterized; however, some of the ancient lines are extinct and not available for future research. The phenotypes of the mutants represent a continuous spectrum either in anophthalmia and microphthalmia, or in microphthalmia and cataracts. On the other side, mouse models are still missing for some genes, which have been identified in human families to be causative for anophthalmia, microphthalmia, or cataracts. Finally, the mouse offers the possibility to genetically test the roles of modifiers and the role of SNPs; these aspects open new avenues for ophthalmogenetics in the mouse.
Collapse
|
97
|
Jiang J, Liu G, Shi S, Li Y, Li Z. Effects of manual acupuncture combined with donepezil in a mouse model of Alzheimer's disease. Acupunct Med 2019; 37:64-71. [PMID: 30843424 DOI: 10.1136/acupmed-2016-011310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To explore whether combined therapy with donepezil and acupuncture is better than treatment with donepezil or acupuncture individually in a rat model of Alzheimer's disease. METHODS In this study, we randomly divided 40 7.5-month-old senescence-accelerated mouse prone 8 (SAMP8) male mice into four groups: SAMP8, SAMP8+D, SAMP8+MA and SAMP8+D+MA. An additional 10 7.5-month-old SAMR1 male mice were included as a healthy control group (SAMR1). Mice in the SAMP8+D group were given donepezil at a dose of 0.65 µg/g/day; mice in the SAMP8+MA group underwent manual acupuncture at GV20, GV26 and Yintang for 20 min per day; mice in the SAMP8+D+MA received both donepezil and manual acupuncture; and mice in the SAMR1 and SAMP8 groups underwent restraint only to control for the effects of handling. After the 15-day treatment, the Morris water maze test, micro-PET(positron-emission tomography), H&E (haematoxylin and eosin) staining, and immunohistochemistry were used to study the differences between donepezil (SAMP8+D), acupuncture (SAMP8+MA), and donepezil combined with acupuncture (SAMP8+D+MA) therapy for the treatment of Alzheimer's disease. RESULTS We found that, compared with the untreated SAMP8 group, donepezil, manual acupuncture, and combined therapy with donepezil and manual acupuncture all improved spatial learning and memory ability, the level of glucose metabolism in the brain, and the content of Aβ amyloid in the cortex. Moreover, combined therapy outperformed treatment with donepezil or acupuncture individually in the SAMP8 mice. CONCLUSION This study shows that the combination of manual acupuncture and donepezil in an Alzheimer's disease animal model is superior to acupuncture and donezepil alone. However, randomised controlled trials should be undertaken to clarify the clinical efficacy of combination therapy.
Collapse
Affiliation(s)
- Jing Jiang
- 1 Beijing University of Chinese Medicine, Beijing, China
| | - Gang Liu
- 2 Community Health Service Center of Dongcheng District, Beijing, China
| | - Suhua Shi
- 3 Third affiliated hospital of Beijing university of Chinese medicine, Beijing, China
| | - Yujie Li
- 1 Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- 1 Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
98
|
Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep 2019; 9:3671. [PMID: 30842523 PMCID: PMC6403313 DOI: 10.1038/s41598-019-40253-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Polyphenols have been examined for their beneficial effects on health, particularly in rodents, but their lifelong effects are unclear. Lemons (Citrus limon), containing lemon polyphenols (LPP), are widely consumed but the effects of LPP on aging are unknown. Therefore, we examined the effects of LPP on aging such as aging-related scores, locomotor activity, cognitive functions, and intestinal microbiome using senescence-accelerated mouse prone 1 (SAMP1) and senescence-accelerated resistant mouse 1 (SAMR1). All mice had ad libitum access to water (P1_water group, SAMR1) or 0.1% LPP (P1_LPP group). In the P1_LPP group, LPP intake prolonged the lifespan by approximately 3 weeks and delayed increases in aging-related scores (e.g., periophthalmic lesions) and locomotor atrophy. The P1_water group showed large changes in the intestinal microbiome structure, while the R1 and P1_LPP groups did not. The phylum Bacteroidetes/Firmicutes, which is associated with obesity, in the P1_water group was significantly lower and higher than that in the P1_LPP and R1 groups, respectively. Although the relative abundance of Lactobacillus significantly increased in both P1 groups with aging, the P1_LPP group showed a significantly lower increase than the P1_water group. Thus, lifelong intake of LPP may have anti-aging effects on both phenotypes and the intestinal environment.
Collapse
|
99
|
Tsuboi I, Harada T, Hirabayashi Y, Aizawa S. Senescence-accelerated mice (SAMP1/TA-1) treated repeatedly with lipopolysaccharide develop a condition that resembles hemophagocytic lymphohistiocytosis. Haematologica 2019; 104:1995-2005. [PMID: 30819910 PMCID: PMC6886438 DOI: 10.3324/haematol.2018.209551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis is a life-threatening systemic hyperinflammatory disorder with primary and secondary forms. Primary hemophagocytic lymphohistiocytosis is associated with inherited defects in various genes that affect the immunological cytolytic pathway. Secondary hemophagocytic lymphohistiocytosis is not inherited, but complicates various medical conditions including infections, autoinflammatory/autoimmune diseases, and malignancies. When senescence-accelerated mice (SAMP1/TA-1) with latent deterioration of immunological function and senescence-resistant control mice (SAMR1) were treated repeatedly with lipopolysaccharide, SAMP1/TA-1 mice displayed the clinicopathological features of hemophagocytic lymphohistiocytosis such as hepatosplenomegaly, pancytopenia, hypofibrinogenemia, hyperferritinemia, and hemophagocytosis. SAMR1 mice showed no features of hemophagocytic lymphohistiocytosis. Lipopolysaccharide induced upregulation of proinflammatory cytokines such as interleukin-1β, interleukin-6, tumor necrosis factor-α, and interferon-γ, and interferon-γ-inducible chemokines such as c-x-c motif chemokine ligands 9 and 10 in the liver and spleen in both SAMP1/TA-1 and SAMR1 mice. However, upregulation of proinflammatory cytokines and interferon-γ-inducible chemokines in the liver persisted for longer in SAMP1/TA-1 mice than in SAMR1 mice. In addition, the magnitude of upregulation of interferon-γ in the liver and spleen after lipopolysaccharide treatment was greater in SAMP1/TA-1 mice than in SAMR1 mice. Furthermore, lipopolysaccharide treatment led to a prolonged increase in the proportion of peritoneal M1 macrophages and simultaneously to a decrease in the proportion of M2 macrophages in SAMP1/TA-1 mice compared with SAMR1 mice. Lipopolysaccharide appeared to induce a hyperinflammatory reaction and prolonged inflammation in SAMP1/TA-1 mice, resulting in features of secondary hemophagocytic lymphohistiocytosis. Thus, SAMP1/TA-1 mice represent a useful mouse model to investigate the pathogenesis of bacterial infection-associated secondary hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo .,Cellular and Molecular Toxicology Division, National Center for Biological Safety and Research, National Institute of Health Science, Kawasaki, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo
| | - Yoko Hirabayashi
- Cellular and Molecular Toxicology Division, National Center for Biological Safety and Research, National Institute of Health Science, Kawasaki, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo
| |
Collapse
|
100
|
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J Endocrinol 2019; 240:R47-R72. [PMID: 30475219 DOI: 10.1530/joe-18-0532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|