51
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
52
|
Wang Y, Peng Y, Zhang B, Zhang X, Li H, Wilson AJ, Mineev KS, Wang X. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem Sci 2019; 10:7584-7590. [PMID: 31588309 PMCID: PMC6761861 DOI: 10.1039/c9sc02474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
A peptide inhibitor was designed in silico and validated experimentally to disrupt homotrimeric transmembrane helix assembly.
Protein–protein interactions are involved in diverse biological processes. These interactions are therefore vital targets for drug development. However, the design of peptide modulators targeting membrane-based protein–protein interactions is a challenging goal owing to the lack of experimentally-determined structures and efficient protocols to probe their functions. Here we employed rational peptide design and molecular dynamics simulations to design a membrane-insertable peptide that disrupts the strong trimeric self-association of the fifth transmembrane domain (TMD5) of the oncogenic Epstein–Barr virus (EBV) latent membrane protein-1 (LMP-1). The designed anti-TMD5 peptide formed 1 : 2 heterotrimers with TMD5 in micelles and inhibited TMD5 oligomerization in bacterial membranes. Moreover, the designed peptide inhibited LMP-1 homotrimerization based on NF-κB activity in EVB positive lymphoma cells. The results indicated that the designed anti-TMD5 peptide may represent a promising starting point for elaboration of anti-EBV therapeutics via inhibition of LMP-1 oligomerization. To the best of our knowledge, this represents the first example of disrupting homotrimeric transmembrane helices using a designed peptide inhibitor.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals , Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Bo Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Hongyuan Li
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , 117997 , Russian
| | - Xiaohui Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,Department of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
53
|
Cyclin-dependent kinase 1 and survivin as potential therapeutic targets against nasal natural killer/T-cell lymphoma. J Transl Med 2019; 99:612-624. [PMID: 30664711 DOI: 10.1038/s41374-018-0182-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 01/30/2023] Open
Abstract
Nasal natural killer/T-cell lymphoma (NNKTL) is closely associated with Epstein-Barr virus (EBV) and is characterized by poor prognosis, resulting from rapid progression of lesions in the affected organs. Recent data have shown that NNKTL is associated with the aberrant expression of cyclin-dependent kinase 1 (CDK1) and its downstream target survivin, but little is known about the functional roles of CDK1 and survivin in NNKTL. In the current study, we show that knockdown of the EBV-encoded oncoprotein latent membrane protein 1 (LMP1) induces downregulation of CDK1 and survivin in NNKTL cells. Immunohistochemistry detected CDK1 and survivin expression in LMP1-positive cells of NNKTL biopsy specimens. Inhibition of CDK1 and survivin in NNKTL cells with several inhibitors led to a dose-dependent decrease in cell proliferation. In addition, the Sp1 inhibitor mithramycin, which can downregulate both CDK1 and survivin, significantly suppressed the growth of established NNKTL in a murine xenograft model. Our results suggest that LMP1 upregulation of CDK1 and survivin may be essential for NNKTL progression. Furthermore, targeting CDK1 and survivin with Sp1 inhibitors such as mithramycin may be an effective approach to treat NNKTL, which is considered to be a treatment-refractory lymphoma.
Collapse
|
54
|
Efficient Epstein-Barr Virus Progeny Production Mediated by Cancer-Derived LMP1 and Virally-Encoded microRNAs. Microorganisms 2019; 7:microorganisms7050119. [PMID: 31052238 PMCID: PMC6560388 DOI: 10.3390/microorganisms7050119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV) genomes, particularly their latent genes, are heterogeneous among strains. The heterogeneity of EBV-encoded latent membrane protein 1 (LMP1) raises the question of whether there are functional differences between LMP1 expressed by cancer-associated EBV and that by non-cancerous strains. Here, we used bacterial artificial chromosome (BAC)-cloned EBV genomes retaining all virally encoded microRNA (miRNA) genes to investigate the functions of cancer-derived LMP1 in the context of the EBV genome. HEK293 cells were stably transfected with EBV-BAC clone DNAs encoding either nasopharyngeal carcinoma (NPC)-derived CAO-LMP1 (LMP1CAO) or LMP1 from a prototype B95-8 strain of EBV (LMP1B95-8). When an EBV-BAC clone DNA encoding LMP1CAO was stably transfected into HEK293 cells, it generated many more stable transformants than the control clone encoding LMP1B95-8. Furthermore, stably transfected HEK293 cells exhibited highly efficient production of progeny virus. Importantly, deletion of the clustered viral miRNA genes compromised the ability to produce progeny viruses. These results indicate that cancer-derived LMP1 and viral miRNAs together are necessary for efficient production of progeny virus, and that the resulting increase in efficiency contributes to EBV-mediated epithelial carcinogenesis.
Collapse
|
55
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
56
|
Ali A, Khan A, Kaushik AC, Wang Y, Ali SS, Junaid M, Saleem S, Cho WCS, Mao X, Wei DQ. Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein-Barr virus (EBV). Sci Rep 2019; 9:720. [PMID: 30679646 PMCID: PMC6346095 DOI: 10.1038/s41598-018-37070-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is a member of the Herpesviridae family and causes infectious mononucleosis, Burkitt's lymphoma, and nasopharyngeal carcinoma. Even in the United States of America, the situation is alarming, as EBV affects 95% of the young population between 35 and 40 years of age. In this study, both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted by using the ElliPro and NetCTL.1.2 webservers for EBV proteins (GH, GL, GB, GN, GM, GP42 and GP350). Molecular modelling tools were used to predict the 3D coordinates of peptides, and these peptides were then docked against the MHC molecules to obtain peptide-MHC complexes. Studies of their post-docking interactions helped to select potential candidates for the development of peptide vaccines. Our results predicted a total of 58 T-cell epitopes of EBV; where the most potential were selected based on their TAP, MHC binding and C-terminal Cleavage score. The top most peptides were subjected to MD simulation and stability analysis. Validation of our predicted epitopes using a 0.45 µM concentration was carried out by using a systems biology approach. Our results suggest a panel of epitopes that could be used to immunize populations to protect against multiple diseases caused by EBV.
Collapse
Affiliation(s)
- Arif Ali
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Wang
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shoaib Saleem
- Center for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xueying Mao
- Qianweichang College, Shanghai University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
57
|
Abstract
Malignancies were one of the earliest recognized manifestations that led to the description of the acquired immune deficiency syndrome (AIDS). The majority of cancers in AIDS patients are associated with coinfection with oncogenic viruses, such as Epstein-Barr virus, human herpesvirus 8, and human papillomavirus, with resulting malignancies occurring secondary to diminished immune surveillance against viruses and virus-infected tumor cells. Over 50% of AIDS lymphomas are associated with Epstein-Barr virus (EBV) and/or HHV8 infection. HHV8-associated diseases include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). EBV is associated with several malignancies, including Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Coinfection with HIV and HPV is associated with an increased risk of various squamous cell carcinomas of epithelial tissues. HAART has significantly impacted the incidence, management, and prognosis of AIDS-related malignancies. In addition to changing the natural history of HIV infection in regard to incidence and survival, HAART has dramatically decreased the incidence of certain virally mediated HIV-associated malignancies such as KS and primary CNS lymphoma. The beneficial effects of HAART on these tumors are attributed to drug-mediated HIV suppression and immune reconstitution. However, HAART has had a less favorable impact on EBV- and HPV-related malignancies. This chapter presents an overview of HIV-associated malignancies mediated by HHV-8, EBV, and HPV, and reviews the effect of HAART on the epidemiology, presentation, treatment, and outcomes of these cancers.
Collapse
|
58
|
Bomken S, van der Werff Ten Bosch J, Attarbaschi A, Bacon CM, Borkhardt A, Boztug K, Fischer U, Hauck F, Kuiper RP, Lammens T, Loeffen J, Neven B, Pan-Hammarström Q, Quinti I, Seidel MG, Warnatz K, Wehr C, Lankester AC, Gennery AR. Current Understanding and Future Research Priorities in Malignancy Associated With Inborn Errors of Immunity and DNA Repair Disorders: The Perspective of an Interdisciplinary Working Group. Front Immunol 2018; 9:2912. [PMID: 30619276 PMCID: PMC6299915 DOI: 10.3389/fimmu.2018.02912] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Patients with inborn errors of immunity or DNA repair defects are at significant risk of developing malignancy and this complication of their underlying condition represents a substantial cause of morbidity and mortality. Whilst this risk is increasingly well-recognized, our understanding of the causative mechanisms remains incomplete. Diagnosing cancer is challenging in the presence of underlying co-morbidities and frequently other inflammatory and lymphoproliferative processes. We lack a structured approach to management despite recognizing the competing challenges of poor response to therapy and increased risk of toxicity. Finally, clinicians need guidance on how to screen for malignancy in many of these predisposing immunodeficiencies. In order to begin to address these challenges, we brought together representatives of European Immunology and Pediatric Haemato-Oncology to define the current state of our knowledge and identify priorities for clinical and research development. We propose key developmental priorities which our two communities will need to work together to address, collaborating with colleagues around the world.
Collapse
Affiliation(s)
- Simon Bomken
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bénédicte Neven
- Department of Pediatric Hematology-Immunology, Hospital Necker-Enfants Malades, Assistance Publique-Hôspitaux de Paris, INSERM, Paris, France
| | | | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Research Unit Pediatric Hematology and Immunology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Arjan C Lankester
- Section Immunology, Department of Pediatrics, Hematology and Stem Cell Transplantation, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew R Gennery
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
59
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
60
|
Abstract
Epstein-Barr virus (EBV) is one of the most widespread human pathogens. EBV infection is usually asymptomatic, and it establishes life-long latent infection. EBV latent infection sometimes causes various tumorigenic diseases, such as EBV-related lymphoproliferative diseases, Burkitt lymphomas, Hodgkin lymphomas, NK/T-cell lymphomas, and epithelial carcinomas. EBV-encoded latent genes are set of viral genes that are expressed in latently infected cells. They include virally encoded proteins, noncoding RNAs, and microRNAs. Different latent gene expression patterns are noticed in different types of EBV-infected cells. Viral latent gene products contribute to EBV-mediated B cell transformation and likely contribute to lymphomagenesis and epithelial carcinogenesis as well. Many biological functions of viral latent gene products have been reported, making difficult to understand a whole view of EBV latency. In this review, we will focus on latent gene functions that have been verified by genetic experiments using EBV mutants. We will also summarize how viral latent genes contribute to EBV-mediated B cell transformation, Burkitt lymphomagenesis, and epithelial carcinogenesis.
Collapse
|
61
|
Poly(ADP-ribose) polymerase 1 is necessary for coactivating hypoxia-inducible factor-1-dependent gene expression by Epstein-Barr virus latent membrane protein 1. PLoS Pathog 2018; 14:e1007394. [PMID: 30395643 PMCID: PMC6237423 DOI: 10.1371/journal.ppat.1007394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/15/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is the major transforming protein of Epstein-Barr virus (EBV) and is critical for EBV-induced B-cell transformation in vitro. Poly(ADP-ribose) polymerase 1 (PARP1) regulates accessibility of chromatin, alters functions of transcriptional activators and repressors, and has been directly implicated in transcriptional activation. Previously we showed that LMP1 activates PARP1 and increases Poly(ADP-ribos)ylation (PARylation) through PARP1. Therefore, to identify targets of LMP1 that are regulated through PARP1, LMP1 was ectopically expressed in an EBV-negative Burkitt’s lymphoma cell line. These LMP1-expressing cells were then treated with the PARP inhibitor olaparib and prepared for RNA sequencing. The LMP1/PARP targets identified through this RNA-seq experiment are largely involved in metabolism and signaling. Interestingly, Ingenuity Pathway Analysis of RNA-seq data suggests that hypoxia-inducible factor 1-alpha (HIF-1α) is an LMP1 target mediated through PARP1. PARP1 is acting as a coactivator of HIF-1α-dependent gene expression in B cells, and this co-activation is enhanced by LMP1-mediated activation of PARP1. HIF-1α forms a PARylated complex with PARP1 and both HIF-1α and PARP1 are present at promoter regions of HIF-1α downstream targets, leading to accumulation of positive histone marks at these regions. Complex formation, PARylation and binding of PARP1 and HIF-1α at promoter regions of HIF-1α downstream targets can all be attenuated by PARP1 inhibition, subsequently leading to a buildup of repressive histone marks and loss of positive histone marks. In addition, LMP1 switches cells to a glycolytic ‘Warburg’ metabolism, preferentially using aerobic glycolysis over mitochondrial respiration. Finally, LMP1+ cells are more sensitive to PARP1 inhibition and, therefore, targeting PARP1 activity may be an effective treatment for LMP1+ EBV-associated malignancies. Epstein-Barr virus (EBV) is one of the most ubiquitous human viruses, with over 90% of adults worldwide harboring lifelong latent EBV infection in a small fraction of their B-lymphocytes. EBV is known to cause lymphoproliferative disorders and is associated with several other types of cancer, including Hodgkin's lymphoma, Burkitt's lymphoma and Nasopharyngeal carcinoma. However, in most cases, the approach to EBV-positive lymphomas does not differ from EBV-negative lymphomas of the same histology. Latent membrane protein 1 (LMP1) is the major transforming protein of EBV and is critical for EBV-induced B-cell transformation in vitro. LMP1 activates several epigenetic regulators to modify host gene expression, including the chromatin-modifying enzyme Poly(ADP-ribose) polymerase 1, or PARP1. In the current study we have determined that LMP1 can activate PARP1 to increase hypoxia-inducible factor 1-alpha (HIF-1α)-dependent gene expression, leading to a change in host cell metabolism indicative of a ‘Warburg effect’ (aerobic glycolysis). This subsequently provides a proliferative advantage to LMP1-expressing cells. The LMP1-induced increase in HIF-1α-dependent gene expression, alteration of cellular metabolism, and accelerated cellular proliferation, can be offset with the PARP inhibitor olaparib. Therefore, targeting PARP1 activity may be an effective treatment for LMP1+ EBV-associated malignancies.
Collapse
|
62
|
Korch C, Varella-Garcia M. Tackling the Human Cell Line and Tissue Misidentification Problem Is Needed for Reproducible Biomedical Research. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.yamp.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
63
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
64
|
Vrzalikova K, Ibrahim M, Nagy E, Vockerodt M, Perry T, Wei W, Woodman C, Murray P. Co-Expression of the Epstein-Barr Virus-Encoded Latent Membrane Proteins and the Pathogenesis of Classic Hodgkin Lymphoma. Cancers (Basel) 2018; 10:cancers10090285. [PMID: 30149502 PMCID: PMC6162670 DOI: 10.3390/cancers10090285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is present in the tumour cells of a subset of patients with classic Hodgkin lymphoma (cHL), yet the contribution of the virus to the pathogenesis of these tumours remains only poorly understood. The EBV genome in virus-associated cHL expresses a limited subset of genes, restricted to the non-coding Epstein-Barr virus-encoded RNAs (EBERs) and viral miRNA, as well as only three virus proteins; the Epstein-Barr virus nuclear antigen-1 (EBNA1), and the two latent membrane proteins, known as LMP1 and LMP2, the latter of which has two isoforms, LMP2A and LMP2B. LMP1 and LMP2A are of particular interest because they are co-expressed in tumour cells and can activate cellular signalling pathways, driving aberrant cellular transcription in infected B cells to promote lymphomagenesis. This article seeks to bring together the results of recent studies of the latent membrane proteins in different B cell systems, including experiments in animal models as well as a re-analysis of our own transcriptional data. In doing so, we summarise the potentially co-operative and antagonistic effects of the LMPs that are relevant to B cell lymphomagenesis.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Correspondence: ; Tel.: +44-121-414-4021
| | - Maha Ibrahim
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Eszter Nagy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Martina Vockerodt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Institute of Anatomy and Cell Biology, Georg-August University of Göttingen, 37099 Göttingen, Germany
| | - Tracey Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S102HQ, UK
| | - Ciaran Woodman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Paul Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic
| |
Collapse
|
65
|
Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2018; 92:JVI.00280-18. [PMID: 29950415 DOI: 10.1128/jvi.00280-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
EBV latent membrane protein 1 (LMP1) is released from latently infected tumor cells in small membrane-enclosed extracellular vesicles (EVs). Accumulating evidence suggests that LMP1 is a major driver of EV content and functions. LMP1-modified EVs have been shown to influence recipient cell growth, migration, differentiation, and regulation of immune cell function. Despite the significance of LMP1-modified exosomes, very little is known about how this viral protein enters or manipulates the host EV pathway. In this study, LMP1 deletion mutants were generated to assess protein regions required for EV trafficking. Following transfection of LMP1 or mutant plasmids, EVs were collected by differential centrifugation, and the levels of specific cargo were evaluated by immunoblot analysis. The results demonstrate that, together, the N terminus and transmembrane region 1 of LMP1 are sufficient for efficient sorting into EVs. Consistent with these findings, a mutant lacking the N terminus and transmembrane domains 1 through 4 (TM5-6) failed to be packaged into EVs, and exhibited higher colocalization with endoplasmic reticulum and early endosome markers than the wild-type protein. Surprisingly, TM5-6 maintained the ability to colocalize and form a complex with CD63, an abundant exosome protein that is important for the incorporation of LMP1 into EVs. Other mutations within LMP1 resulted in enhanced levels of secretion, pointing to potential positive and negative regulatory mechanisms for extracellular vesicle sorting of LMP1. These data suggest new functions of the N terminus and transmembrane domains in LMP1 intra- and extracellular trafficking that are likely downstream of an interaction with CD63.IMPORTANCE EBV infection contributes to the development of cancers, such as nasopharyngeal carcinoma, Burkitt lymphoma, Hodgkin's disease, and posttransplant lymphomas, in immunocompromised or genetically susceptible individuals. LMP1 is an important viral protein expressed by EBV in these cancers. LMP1 is secreted in extracellular vesicles (EVs), and the transfer of LMP1-modified EVs to uninfected cells can alter their physiology. Understanding the cellular machinery responsible for sorting LMP1 into EVs is limited, despite the importance of LMP1-modified EVs. Here, we illustrate the roles of different regions of LMP1 in EV packaging. Our results show that the N terminus and TM1 are sufficient to drive LMP1 EV trafficking. We further show the existence of potential positive and negative regulatory mechanisms for LMP1 vesicle sorting. These findings provide a better basis for future investigations to identify the mechanisms of LMP1 targeting to EVs, which could have broad implications in understanding EV cargo sorting.
Collapse
|
66
|
Caves EA, Cook SA, Lee N, Stoltz D, Watkins S, Shair KHY. Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 2018; 3:e00152-18. [PMID: 30021875 PMCID: PMC6052337 DOI: 10.1128/msphere.00152-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that establishes a latent reservoir in peripheral B-lymphocytes with sporadic reactivation. EBV also infects epithelial cells, predominantly resulting in a lytic infection, which may contribute to EBV transmission from saliva. In the nasopharynx, EBV infection can lead to the clonal expansion of a latently infected cell and the development of nasopharyngeal carcinoma (NPC). The mechanisms governing EBV pathogenesis in nasopharyngeal epithelium are largely unknown. An advanced understanding would depend on a physiologically relevant culture model of polarized airway epithelium. The recent application of the organotypic raft culture in keratinocytes has demonstrated great promise for the use of polarized cultures in the study of EBV permissive replication. In this study, the adaptation of an air-liquid interface (ALI) culture method using transwell membranes was explored in an EBV-infected NPC cell line. In the EBV-infected NPC HK1 cell line, ALI culture resulted in the completion of EBV reactivation, with global induction of the lytic cascade, replication of EBV genomes, and production of infectious progeny virus. We propose that the ALI culture method can be widely adopted as a physiologically relevant model to study EBV pathogenesis in polarized nasal epithelial cells. IMPORTANCE Lifting adherent cells to the air-liquid interface (ALI) is a method conventionally used to culture airway epithelial cells into polarized apical and basolateral surfaces. Reactivation of Epstein-Barr virus (EBV) from monolayer epithelial cultures is sometimes abortive, which may be attributed to the lack of authentic reactivation triggers that occur in stratified epithelium in vivo In the present work, the ALI culture method was applied to study EBV reactivation in nasopharyngeal epithelial cells. The ALI culture of an EBV-infected cell line yielded high titers and can be dissected by a variety of molecular virology assays that measure induction of the EBV lytic cascade and EBV genome replication and assembly. EBV infection of polarized cultures of primary epithelial cells can be challenging and can have variable efficiencies. However, the use of the ALI method with established EBV-infected cell lines offers a readily available and reproducible approach for the study of EBV permissive replication in polarized epithelia.
Collapse
Affiliation(s)
- Elizabeth A Caves
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah A Cook
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy H Y Shair
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
67
|
Smatti MK, Al-Sadeq DW, Ali NH, Pintus G, Abou-Saleh H, Nasrallah GK. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front Oncol 2018; 8:211. [PMID: 29951372 PMCID: PMC6008310 DOI: 10.3389/fonc.2018.00211] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA lymphotropic herpesvirus and the causative agent of infectious mononucleosis. EBV is highly prevalent since it affects more than 90% of individuals worldwide and has been linked to several malignancies including PTLDs, which are one of the most common malignancies following transplantation. Among all the EBV genes, most of the recent investigations focused on studying the LMP-1 oncogene because of its high degree of polymorphism and association with tumorigenic activity. There are two main EBV genotypes, Type 1 and 2, distinguished by the differences in the EBNA-2 gene. Further sub genotyping can be characterized by analyzing the LMP-1 gene variation. The virus primarily transmits through oral secretions and persists as a latent infection in human B-cells. However, it can be transmitted through organ transplantations and blood transfusions. In addition, symptoms of EBV infection are not distinguishable from other viral infections, and therefore, it remains questionable whether there is a need to screen for EBV prior to blood transfusion. Although the process of leukoreduction decreases the viral copies present in the leukocytes, it does not eliminate the risk of EBV transmission through blood products. Here, we provide a review of the EBV epidemiology and the genetic variability of the oncogene LMP-1. Then, we underscore the findings of recent EBV seroprevalence and viremia studies among blood donors as a highly prevalent transfusion transmissible oncovirus.
Collapse
Affiliation(s)
| | - Duaa W. Al-Sadeq
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Nadima H. Ali
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
68
|
The EBV-Encoded Oncoprotein, LMP1, Induces an Epithelial-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling. Cancers (Basel) 2018; 10:cancers10050130. [PMID: 29723998 PMCID: PMC5977103 DOI: 10.3390/cancers10050130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
The Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) oncogene can induce profound effects on epithelial growth and differentiation including many of the features of the epithelial-to-mesenchymal transition (EMT). To better characterise these effects, we used the well-defined Madin Darby Canine Kidney (MDCK) epithelial cell model and found that LMP1 expression in these cells induces EMT as defined by characteristic morphological changes accompanied by loss of E-cadherin, desmosomal cadherin and tight junction protein expression. The induction of the EMT phenotype required a functional CTAR1 domain of LMP1 and studies using pharmacological inhibitors revealed contributions from signalling pathways commonly induced by integrin–ligand interactions: extracellular signal-regulated kinases/mitogen-activated protein kinases (ERK-MAPK), PI3-Kinase and tyrosine kinases, but not transforming growth factor beta (TGFβ). More detailed analysis implicated the CTAR1-mediated induction of Slug and Twist in LMP1-induced EMT. A key role for β1 integrin signalling in LMP1-mediated ERK-MAPK and focal adhesion kianse (FAK) phosphorylation was observed, and β1 integrin activation was found to enhance LMP1-induced cell viability and survival. These findings support an important role for LMP1 in disease pathogenesis through transcriptional reprogramming that enhances tumour cell survival and leads to a more invasive, metastatic phenotype.
Collapse
|
69
|
Kiaris H, Ergazaki M, Segas J, Spandidos DA. Detection of Epstein-Barr virus Genome in Squamous Cell Carcinomas of the Larynx. Int J Biol Markers 2018; 10:211-5. [PMID: 8750647 DOI: 10.1177/172460089501000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epstein-Barr virus (EBV) is a B-lymphotropic virus with a tumorigenic potential. EBV infection has been recognized as the main cause of nasopharyngeal carcinoma and Burkitt's lymphoma. The aim of our study was to determine the incidence of EBV in squamous cell carcinomas of the larynx. We employed for our analysis a sensitive polymerase chain reaction (PCR) assay, followed by restriction fragment length polymorphism (RFLP) for further confirmation of the specificity of the PCR-amplification reaction. Our analysis revealed that 9 of 27 (33%) specimens harbored the EBV genome in the tumor tissue while only 4 (15%) specimens from adjacent normal tissue exhibited evidence of EBV infection. Three were EBV positive for both normal and tumor tissue. No association has been found with disease stage, histological differentiation and nodes at pathology. The relatively high incidence of EBV in the tumor tissue (33%) of patients with laryngeal cancer, as compared to the low (15%) incidence of the virus genome detected in the adjacent normal tissue of the patients, indicates a probable role of EBV in the development of the disease.
Collapse
Affiliation(s)
- H Kiaris
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | |
Collapse
|
70
|
Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, Ishikawa K, Wakisaka N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci 2018; 109:272-278. [PMID: 29247573 PMCID: PMC5797826 DOI: 10.1111/cas.13473] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein‐Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre‐invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1‐expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development.
Collapse
Affiliation(s)
- Tomokazu Yoshizaki
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Mitsuharu Aga
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Miyako Hatano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takayoshi Ueno
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuya Ishikawa
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Naohiro Wakisaka
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
71
|
The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 2018; 516:55-70. [PMID: 29329079 DOI: 10.1016/j.virol.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus LMP1 is an oncoprotein required for immortalizing B lymphocytes and also plays important roles in transforming non-lymphoid tissue. The discovery of LMP1 protein interactions will likely generate targets to treat EBV-associated cancers. Here, we define the broader LMP1 interactome using the recently developed BioID method. Combined with mass spectrometry, we identified over 1000 proteins across seven independent experiments with direct or indirect relationships to LMP1. Pathway analysis suggests that a significant number of the proteins identified are involved in signal transduction and protein or vesicle trafficking. Interestingly, a large number of proteins thought to be important in the formation of exosomes and protein targeting were recognized as probable LMP1 interacting partners, including CD63, syntenin-1, ALIX, TSG101, HRS, CHMPs, and sorting nexins. Therefore, it is likely that LMP1 modifies protein trafficking and exosome biogenesis pathways. In support of this, knock-down of syntenin-1 and ALIX resulted in reduced exosomal LMP1.
Collapse
|
72
|
The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency. Blood Adv 2017; 1:2712-2723. [PMID: 29296923 DOI: 10.1182/bloodadvances.2017009670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in genes encoding the signaling protein tumor necrosis factor receptor-associated factor 3 (TRAF3) are commonly found in human B-cell malignancies, especially multiple myeloma and B-cell lymphoma (BCL). B-cell TRAF3 deficiency results in enhanced cell survival, elevated activation receptor signaling, and increased activity of certain transcriptional pathways regulating expression of prosurvival proteins. A recent analysis of TRAF3 protein staining of ∼300 human BCL tissue samples revealed that a higher proportion of samples expressing the oncogenic Epstein-Barr virus-encoded protein latent membrane protein 1 (LMP1) showed low/negative TRAF3 staining than predicted. LMP1, a dysregulated mimic of the CD40 receptor, binds TRAF3 more effectively than CD40. We hypothesized that LMP1 may sequester TRAF3, reducing its availability to inhibit prosurvival signaling pathways in the B cell. This hypothesis was addressed via 2 complementary approaches: (1) comparison of TRAF3-regulated activation and survival-related events with relative LMP1 expression in human BCL lines and (2) analysis of the impact upon such events in matched pairs of mouse BCL lines, both parental cells and subclones transfected with inducible LMP1, either wild-type LMP1 or a mutant LMP1 with defective TRAF3 binding. Results from both approaches showed that LMP1-expressing B cells display a phenotype highly similar to that of B cells lacking TRAF3 genes, indicating that LMP1 can render B cells functionally TRAF3 deficient without TRAF3 gene mutations, a finding of significant relevance to selecting pathway-targeted therapies for B-cell malignancies.
Collapse
|
73
|
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) is expressed in multiple human malignancies, including nasopharyngeal carcinoma and Hodgkin and immunosuppression-associated lymphomas. LMP1 mimics CD40 signaling to activate multiple growth and survival pathways, in particular, NF-κB. LMP1 has critical roles in Epstein-Barr virus (EBV)-driven B-cell transformation, and its expression causes fatal lymphoproliferative disease in immunosuppressed mice. Here, we review recent developments in studies of LMP1 signaling, LMP1-induced host dependency factors, mouse models of LMP1 lymphomagenesis, and anti-LMP1 immunotherapy approaches.
Collapse
Affiliation(s)
- Liang Wei Wang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Sizun Jiang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
74
|
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2017; 91:JVI.00312-17. [PMID: 28794023 DOI: 10.1128/jvi.00312-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers.IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology.
Collapse
|
75
|
Nakanishi Y, Wakisaka N, Kondo S, Endo K, Sugimoto H, Hatano M, Ueno T, Ishikawa K, Yoshizaki T. Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Rev 2017; 36:435-447. [PMID: 28819752 PMCID: PMC5613035 DOI: 10.1007/s10555-017-9693-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is very common in southern China and Southeast Asia. In regions where NPC is endemic, undifferentiated subtypes constitute most cases and are invariably associated with Epstein-Barr virus (EBV) infection, whereas the differentiated subtype is more common in other parts of the world. Undifferentiated NPC is a unique malignancy with regard to its epidemiology, etiology, and clinical presentation. Clinically, NPC is highly invasive and metastatic, but sensitive to both chemotherapy and radiotherapy (RT). Overall prognosis has dramatically improved over the past three decades because of advances in management, including the improvement of RT technology, the broader application of chemotherapy, and more accurate disease staging. Despite the excellent local control with modern RT, distant failure remains a challenging problem. Advances in molecular technology have helped to elucidate the molecular pathogenesis of NPC. This article reviews the contribution of EBV gene products to NPC pathogenesis and the current management of NPC.
Collapse
Affiliation(s)
- Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Miyako Hatano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Kazuya Ishikawa
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Japan.
| |
Collapse
|
76
|
Knecht H, Mai S. LMP1 and Dynamic Progressive Telomere Dysfunction: A Major Culprit in EBV-Associated Hodgkin's Lymphoma. Viruses 2017; 9:v9070164. [PMID: 28654015 PMCID: PMC5537656 DOI: 10.3390/v9070164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is expressed in germinal-center-derived, mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells in classical EBV-positive Hodgkin's lymphoma (cHL). LMP1 expression in EBV-negative H-cell lines results in a significantly increased number of RS cells. In a conditional, germinal-center-derived B-cell in vitro system, LMP1 reversibly down-regulates the shelterin proteins, telomeric repeat binding factor (TRF)1, TRF2, and protection of telomeres (POT)1. This down-regulation is associated with progressive 3D shelterin disruption, resulting in telomere dysfunction, progression of complex chromosomal rearrangements, and multinuclearity. TRF2 appears to be the key player. Thus, we hypothesize that the 3D interaction of telomeres and TRF2 is disrupted in H cells, and directly associated with the formation of H and RS cells. Using quantitative 3D co-immuno-TRF2-telomere fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) applied to monolayers of primary H and RS cells, we demonstrate TRF2-telomere dysfunction in EBV-positive cHL. However, in EBV-negative cHL a second molecular mechanism characterized by massive up-regulation of TRF2, but attrition of telomere signals, is also identified. These facts point towards a shelterin-related pathogenesis of cHL, where two molecularly disparate mechanisms converge at the level of 3D Telomere-TRF2 interactions, leading to the formation of RS cells.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Haematology, Department of Medicine, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada.
- Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Sabine Mai
- Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
77
|
Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol 2017; 67:91-100. [PMID: 28456604 DOI: 10.1016/j.semcdb.2017.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Herpesviruses are remarkable pathogens possessing elaborate mechanisms to seize various host cellular components for immune evasion, replication, and virion egress. As viruses are dependent upon their hosts, investigating this intricate interplay has revealed that the exosome pathway is utilised by alpha (Herpes Simplex Virus 1), beta (Human Cytomegalovirus, and Human Herpesvirus 6) and gamma (Epstein-Barr Virus, and Kaposi Sarcoma-associated Herpesvirus) herpesviruses. Virions and exosomes share similar properties and functions. For example, exosomes are small membranous nanovesicles (30-150nm) released from cells that contain proteins, DNA, and various coding and non-coding RNA species. Given exosomes can shuttle various molecular cargo from a donor to recipient cell, they serve as important vehicles facilitating cell-cell communication. Therefore, exploitation by herpesviruses impacts several aspects of infection including: i) acquisition of molecular machinery for secondary envelopment and viral assembly, ii) export of immune-related host proteins from infected cells, iii) enhancing infection in surrounding cells via transfer of viral proteins, mRNA and miRNA, and iv) regulation of viral protein expression to promote persistence. Studying the dichotomy that exists between host exosomes and herpesviruses has two benefits. Firstly, it will reveal the precise pathogenic mechanisms viruses have evolved, generating knowledge for antiviral development. Secondly, it will shed light upon fundamental exosome characteristics that remain unknown, including cargo selection, protein trafficking, and non-canonical biogenesis.
Collapse
|
78
|
Linke-Serinsöz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol 2017; 34:352-363. [PMID: 28506687 DOI: 10.1053/j.semdp.2017.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The contribution of Epstein Barr virus (EBV) and Kaposi sarcoma herpes virus (KSHV) to the development of specific types of malignant lymphomas occurring in the human immunodeficiency virus (HIV) setting has been extensively studied since the beginning of the HIV epidemic 35 years ago. The introduction of highly active antiretroviral therapies (HAART) in 1996 has changed dramatically the incidence of HIV-related malignancies. Nevertheless, malignant lymphomas continue to be the major group of malignances observed in HIV infected individuals, and the most common cause of cancer related-deaths. Common features of the predominant B-cell lymphomas in the HIV+ setting are the frequent plasmacytoid morphology of the neoplastic cells, advanced stage, aggressive disease and frequent extranodal involvement. In this article, we review the evolving concepts and definitions of the various EBV-associated lymphomas in HIV+ patients, including diffuse large B-cell lymphoma, Burkitt lymphoma, classical Hodgkin lymphoma, plasmablastic lymphoma and primary effusion lymphoma. The current knowledge regarding the pathogenesis of these malignancies, the interplay between HIV and EBV co-infection in the development of certain HIV related lymphomas, and the emerging paradigm that suggests that HIV may play a direct role in lymphomagenesis are explored as well.
Collapse
Affiliation(s)
- Ebru Linke-Serinsöz
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology, University Hospital Tübingen, Eberhard-Karls-University of Tübingen and Comprehensive Cancer Center, Tübingen, Germany.
| |
Collapse
|
79
|
Li XM, Xiao WH, Zhao HX. Prognostic significance of latent membrane protein 1 expression in non-Hodgkin lymphoma: A meta-analysis. Medicine (Baltimore) 2017; 96:e6512. [PMID: 28383415 PMCID: PMC5411199 DOI: 10.1097/md.0000000000006512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The prognostic value of latent membrane protein 1 (LMP1) in non-Hodgkin lymphoma (NHL) has been evaluated in several studies. However, the conclusions remain controversial. METHODS We searched relevant literatures from Embase, PubMed, and China National Knowledge Infrastructure Platform databases and performed a meta-analysis to evaluate the prognostic significance of LMP1 expression in NHL. Pooled hazard ratio (HR), 95% confidence interval (CI), and P value were calculated. Nine relevant studies were analyzed in this meta-analysis. We performed a pooled analysis to assess the association between LMP1 expression and overall survival of NHL patients. RESULTS Our results revealed that LMP1-positive NHL patients had significantly poorer outcomes than LMP1-negative patients (HR = 2.13, 95% CI = 1.31-3.46, Pheterogeneity = 0.005, I = 63.5%). Furthermore, in the subgroup analysis stratified by country, a statistically significant association was found among Chinese (HR = 2.80, 95% CI = 1.53-5.15, Pheterogeneity = 0.342, I = 6.9%); however, no statistically significant relations were found among Japanese (HR = 1.55, 95% CI = 0.74-3.24, Pheterogeneity = 0.020, I = 65.7%). CONCLUSION The expression of LMP1 can be considered a poor predictor of survival in patients with NHL. In addition, LMP1 expression assessment could provide more detailed information for patients with NHL and could be used to optimize therapeutic schemes.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Department of Medical Oncology, Chinese PLA General Hospital
| | - Wen-Hua Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Hui-Xia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
80
|
Mouse model of Epstein-Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease. Proc Natl Acad Sci U S A 2017; 114:4751-4756. [PMID: 28351978 DOI: 10.1073/pnas.1701836114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a major cause of immunosuppression-related B-cell lymphomas and Hodgkin lymphoma (HL). In these malignancies, EBV latent membrane protein 1 (LMP1) and LMP2A provide infected B cells with surrogate CD40 and B-cell receptor growth and survival signals. To gain insights into their synergistic in vivo roles in germinal center (GC) B cells, from which most EBV-driven lymphomas arise, we generated a mouse model with conditional GC B-cell LMP1 and LMP2A coexpression. LMP1 and LMP2A had limited effects in immunocompetent mice. However, upon T- and NK-cell depletion, LMP1/2A caused massive plasmablast outgrowth, organ damage, and death. RNA-sequencing analyses identified EBV oncoprotein effects on GC B-cell target genes, including up-regulation of multiple proinflammatory chemokines and master regulators of plasma cell differentiation. LMP1/2A coexpression also up-regulated key HL markers, including CD30 and mixed hematopoietic lineage markers. Collectively, our results highlight synergistic EBV membrane oncoprotein effects on GC B cells and provide a model for studies of their roles in immunosuppression-related lymphoproliferative diseases.
Collapse
|
81
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
82
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
83
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
84
|
Medina-Ortega ÁP, López-Valencia D, Mosquera-Monje SL, Mora-Obando DL, Dueñas-Cuéllar RA. Virus de Epstein-Barr y su relación con el desarrollo del cáncer. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n2a03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
85
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
86
|
Development of a 2-chamber culture system for impedimetric monitoring of cell-cell interaction. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-1207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
87
|
Abstract
Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.
Collapse
|
88
|
Zhan Z, Sun Z, Li J, Ye Q, Zhuo S, Xie S. Differentiation of highly metastatic nasopharyngeal carcinoma cells using multiphoton microscopy. SPIE PROCEEDINGS 2016; 10024:1002430. [DOI: 10.1117/12.2245983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | | | | | - Qing Ye
- Fujian Medical Univ. (China)
| | | | | |
Collapse
|
89
|
Wei F, Zhu Q, Ding L, Liang Q, Cai Q. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis. Virol Sin 2016; 31:395-405. [PMID: 27624182 DOI: 10.1007/s12250-016-3817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 11/27/2022] Open
Abstract
The cell membrane regulates many physiological processes including cellular communication, homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exploit the host cell membrane to avoid immune surveillance and promote viral replication. Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.
Collapse
Affiliation(s)
- Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Ding
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing Liang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
90
|
Epstein-Barr Virus Oncoprotein LMP1 Mediates Epigenetic Changes in Host Gene Expression through PARP1. J Virol 2016; 90:8520-30. [PMID: 27440880 DOI: 10.1128/jvi.01180-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The latent infection of Epstein-Barr virus (EBV) is associated with 1% of human cancer incidence. Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) that mediate EBV replication during latency. In this study, we detail the mechanisms that drive cellular PARylation during latent EBV infection and the effects of PARylation on host gene expression and cellular function. EBV-infected B cells had higher PAR levels than EBV-negative B cells. Moreover, cellular PAR levels were up to 2-fold greater in type III than type I latently infected EBV B cells. We identified a positive association between expression of the EBV genome-encoded latency membrane protein 1 (LMP1) and PAR levels that was dependent upon PARP1. PARP1 regulates gene expression by numerous mechanisms, including modifying chromatin structure and altering the function of chromatin-modifying enzymes. Since LMP1 is essential in establishing EBV latency and promoting tumorigenesis, we explored the model that disruption in cellular PARylation, driven by LMP1 expression, subsequently promotes epigenetic alterations to elicit changes in host gene expression. PARP1 inhibition resulted in the accumulation of the repressive histone mark H3K27me3 at a subset of LMP1-regulated genes. Inhibition of PARP1, or abrogation of PARP1 expression, also suppressed the expression of LMP1-activated genes and LMP1-mediated cellular transformation, demonstrating an essential role for PARP1 activity in LMP1-induced gene expression and cellular transformation associated with LMP1. In summary, we identified a novel mechanism by which LMP1 drives expression of host tumor-promoting genes by blocking generation of the inhibitory histone modification H3K27me3 through PARP1 activation. IMPORTANCE EBV is causally linked to several malignancies and is responsible for 1% of cancer incidence worldwide. The EBV-encoded protein LMP1 is essential for promoting viral tumorigenesis by aberrant activation of several well-known intracellular signaling pathways. We have identified and defined an additional novel molecular mechanism by which LMP1 regulates the expression of tumor-promoting host genes. We found that LMP1 activates the cellular protein PARP1, leading to a decrease in a repressive histone modification, accompanied by induction in expression of multiple cancer-related genes. PARP1 inhibition or depletion led to a decrease in LMP1-induced cellular transformation. Therefore, targeting PARP1 activity may be an effective treatment for EBV-associated malignancies.
Collapse
|
91
|
Kase S, Adachi H, Osaki M, Murakami M, Sairenji T, Hashimoto K, Teramoto H, Yamamoto S, Makino H, Shimizu E, Watanabe T, Ohsawa T, Hagari Y, Mihara M, Ito H. Epstein-Barr Virus-Infected Malignant T/NK-Cell Lymphoma in a Patient with Hypersensitivity to Mosquito Bites. Int J Surg Pathol 2016; 12:265-72. [PMID: 15306941 DOI: 10.1177/106689690401200310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report an autopsy case of Epstein-Barr virus (EBV)-infected malignant lymphoma in a young male who had hypersensitivity to mosquito bites. The autopsy revealed multiple confluent lymphoma lesions in the lungs, and on the right leg irregular-shaped skin ulcers were seen. The left pleural effusion also contained a large number of lymphoma cells. The lymphoma cells were determined as T/NK-cell type cells by immunohistochemistry. EBV DNA was detected most intensively in the lungs and EBV-encoded small RNAs-positive lymphoma cells were also observed in the lungs at a high frequency. EBV latent membrane protein-1 expression and a high Ki-67 labeling indices were noted in the lymphoma cells of the lung lesions. These findings indicate that the development of the malignant lymphoma was associated with the proliferation of EBV-infected lymphoma cells, and the cells that infiltrated the whole the body, especially the lungs, caused the patient's death.
Collapse
Affiliation(s)
- Satoru Kase
- Division of Organ Pathology, Department of Microbiology and Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Post-transplant Lymphoproliferative Disorder (PTLD): Infection, Cancer? CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Lei KF, Tseng HP, Lee CY, Tsang NM. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device. Sci Rep 2016; 6:25557. [PMID: 27150137 PMCID: PMC4858876 DOI: 10.1038/srep25557] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsueh-Peng Tseng
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yi Lee
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
94
|
Yang S, Li SS, Yang XM, Yin DH, Wang L. Embelin prevents LMP1-induced TRAIL resistance via inhibition of XIAP in nasopharyngeal carcinoma cells. Oncol Lett 2016; 11:4167-4176. [PMID: 27313761 DOI: 10.3892/ol.2016.4522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/15/2016] [Indexed: 01/21/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in the majority of tumor cells, whilst sparing normal cells. However, the potential use of TRAIL in the treatment of cancer is limited by the inevitable emergence of drug resistance. The present study reports the upregulation of latent membrane protein 1 (LMP1)-induced TRAIL resistance via the enhanced expression of X-linked inhibitor of apoptosis protein (XIAP) in nasopharyngeal carcinoma (NPC) cells. LMP1-positive NPC cells were indicated to be more sensitive to TRAIL compared with LMP1-negative NPC cells in three NPC cell lines. CNE-1 is a LMP1-negative NPC cell line that was transfected with pGL6-LMP1; following which, sensitivity to TRAIL decreased. LMP1-induced TRAIL resistance was associated with the decreased cleavage of caspase-8,-3 and -9, BH3 interacting domain death agonist (Bid) and mitochondrial depolarization, without any effects on the expression of the death receptors, B-cell lymphoma (Bcl)-2 and Bcl-extra long. Knockdown of XIAP with small interfering RNA increased caspase-3 and -9 and Bid cleavage, and prevented LMP1-induced TRAIL resistance. Furthermore, embelin, the inhibitor of XIAP, prevented LMP1-induced TRAIL resistance in the Epstein-Barr virus (EBV)-positive CNE-1-LMP1 and C666-1 NPC cell lines. However, embelin did not enhance TRAIL-induced apoptosis in NP-69, which was used as a benign nasopharyngeal epithelial cell line. These data show that LMP1 inhibits TRAIL-mediated apoptosis by upregulation of XIAP. Embelin may be used in an efficacious and safe manner to prevent LMP1-induced TRAIL resistance. The present study may have implications for the development and validation of novel strategies to prevent TRAIL resistance in EBV-positive NPC.
Collapse
Affiliation(s)
- Shu Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shi-Sheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xin-Ming Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Dan-Hui Yin
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
95
|
Banko AV, Lazarevic IB, Folic MM, Djukic VB, Cirkovic AM, Karalic DZ, Cupic MD, Jovanovic TP. Characterization of the Variability of Epstein-Barr Virus Genes in Nasopharyngeal Biopsies: Potential Predictors for Carcinoma Progression. PLoS One 2016; 11:e0153498. [PMID: 27071030 PMCID: PMC4829223 DOI: 10.1371/journal.pone.0153498] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is a significant factor in the pathogenesis of nasopharyngeal carcinoma, especially in the undifferentiated carcinoma of nasopharyngeal type (UCNT, World Health Organization type III), which is the dominant histopathological type in high-risk areas. The major EBV oncogene is latent membrane protein 1 (LMP1). LMP1 gene shows variability with different tumorigenic and immunogenic potentials. EBV nuclear antigen 1 (EBNA1) regulates progression of EBV-related tumors; however, the influence of EBNA1 sequence variability on tumor pathogenesis is controversial. The aims of this study were to characterize polymorphisms of EBV genes in non-endemic nasopharyngeal carcinoma biopsies and to investigate potential sequence patterns that correlate with the clinical presentation of nasopharyngeal carcinoma. In total, 116 tumor biopsies of undifferentiated carcinoma of nasopharyngeal type (UCNT), collected from 2008 to 2014, were evaluated in this study. The genes EBNA2, LMP1, and EBNA1 were amplified using nested-PCR. EBNA2 genotyping was performed by visualization of PCR products using gel electrophoresis. Investigation of LMP1 and EBNA1 included sequence, phylogenetic, and statistical analyses. The presence of EBV DNA was significantly distributed between TNM stages. LMP1 variability showed six variants, with the detection of the first China1 and North Carolina variants in European nasopharyngeal carcinoma biopsies. Newly discovered variants Srb1 and Srb2 were UCNT-specific LMP1 polymorphisms. The B95-8 and North Carolina variants are possible predictors for favorable TNM stages. In contrast, deletions in LMP1 are possible risk factors for the most disfavorable TNM stage, independent of EBNA2 or EBNA1 variability. A newly discovered EBNA1 subvariant, P-thr-sv-5, could be a potential diagnostic marker, as it represented a UCNT-specific EBNA1 subvariant. A particular combination of EBNA2, LMP1, and EBNA1 polymorphisms, type 1/Med/P-thr was identified as a possible risk factor for TNM stage IVB or progression to the N3 stage.
Collapse
Affiliation(s)
- Ana V. Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Ivana B. Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miljan M. Folic
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vojko B. Djukic
- Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andja M. Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Z. Karalic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja D. Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tanja P. Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
96
|
Wang B, Song B, Oster C, Cao J, Raza A, Wang J. Coexistence of intestinal Kaposi sarcoma and plasmablastic lymphoma in an HIV/AIDS patient: case report and review of the literature. J Gastrointest Oncol 2016; 7:S88-95. [PMID: 27034819 PMCID: PMC4783623 DOI: 10.3978/j.issn.2078-6891.2015.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection or acquired immunodeficiency disease (AIDS) is associated with increased risk for various malignancies including Kaposi sarcoma (KS) and lymphoma. We report a rare case of coexistence of KS and plasmablastic lymphoma (PBL) in the gastrointestinal (GI) tract in a HIV/AIDS patient. A brief review of literature is also presented.
Collapse
Affiliation(s)
- Bing Wang
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| | - Bingbing Song
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| | - Cyrus Oster
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| | - Jeffery Cao
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| | - Anwar Raza
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| | - Jun Wang
- Department of Pathology, Loma Linda University Medical Center, CA 92354, USA
| |
Collapse
|
97
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
98
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
99
|
Yakovleva LS, Senyuta NB, Goncharova EV, Scherback LN, Smirnova RV, Pavlish OA, Gurtsevitch VE. Epstein–Barr Virus LMP1 oncogene variants in cell lines of different origin. Mol Biol 2015. [DOI: 10.1134/s0026893315050210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
100
|
Kikuchi K, Noguchi Y, de Rivera MWGN, Hoshino M, Sakashita H, Yamada T, Inoue H, Miyazaki Y, Nozaki T, González-López BS, Ide F, Kusama K. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol 2015; 37:3389-404. [PMID: 26449822 DOI: 10.1007/s13277-015-4167-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022] Open
Abstract
A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
| | - Yoshihiro Noguchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | | | - Miyako Hoshino
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Hideaki Sakashita
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tadashige Nozaki
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, 573-1211, Japan
| | - Blanca Silvia González-López
- Department of Oral Pathology, Faculty of Dentistry, Autonomous University State of México, Jesús Carranza esquina paseo Tollocan, C.P. 50130, Toluca, Mexico
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|