51
|
Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2013; 2:e00813. [PMID: 23908768 PMCID: PMC3728621 DOI: 10.7554/elife.00813] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI:http://dx.doi.org/10.7554/eLife.00813.001 Individual cells within the human body must grow, divide or specialize to perform the tasks required of them. The fates of these cells are often directed by proteins in the Ras family, which detect signals from elsewhere in the body and orchestrate responses within each cell. The activities of these proteins must be tightly controlled, because cancers and developmental diseases can result if Ras proteins are not properly regulated. Binding to the small molecule GTP activates Ras and causes conformational changes that allow it to interact with other proteins in various signaling pathways in the cell. GTP is loaded into Ras by proteins called nucleotide exchange factors, which can replace ‘used’ nucleotides with ‘fresh’ ones to activate Ras. These nucleotide exchange factors are also tightly regulated. For example, the genes for many exchange factors are only switched on after particular signals are received, which can restrict their presence to defined times and locations (e.g., cells or tissues). Also, when activating signals are absent, nucleotide exchange factors commonly reside in the cytoplasm, whereas the Ras proteins remain bound to lipid membranes inside the cell. RasGRP1 is a nucleotide exchange factor that controls the development of immune cells, and leukemia and lupus can result if it is not regulated correctly. However, many questions about RasGRP1 remain unanswered, including how it is able to remain inactive, and how it is activated by various different signals. Iwig et al. have now revealed the mechanisms through which RasGRP1 suppresses Ras signaling in immune cells by solving the structures of two fragments of RasGRP1 and then using a combination of structural, biochemical and cell-based methods to explore how it is activated. These analyses revealed that inactive RasGRP1 adopts a conformation in which one of its regulatory elements blocks access to the Ras binding site. Surprisingly, RasGRP1 can form dimers; this hides the portions of the protein that associate with the membrane and thereby keeps RasGRP1 away from Ras. Iwig et al. also found that two signals, calcium ions and a lipid called diacylglycerol, overcome these inhibitory mechanisms by changing the conformation of RasGRP1 and recruiting it to the membrane. These studies provide a framework for understanding how disease-associated mutations in RasGRP1 bypass the regulatory mechanisms that insure proper immune cell development, and will be critical for developing therapeutic agents that inhibit RasGRP1 activity. DOI:http://dx.doi.org/10.7554/eLife.00813.002
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States ; California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Tyrosine 416 is phosphorylated in the closed, repressed conformation of c-Src. PLoS One 2013; 8:e71035. [PMID: 23923048 PMCID: PMC3724807 DOI: 10.1371/journal.pone.0071035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.
Collapse
|
53
|
Wu Y, Feng ZJ, Gao SB, Matkar S, Xu B, Duan HB, Lin X, Li SH, Hua X, Jin GH. Interplay between menin and K-Ras in regulating lung adenocarcinoma. J Biol Chem 2012; 287:40003-11. [PMID: 23027861 DOI: 10.1074/jbc.m112.382416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MEN1, which encodes the nuclear protein menin, acts as a tumor suppressor in lung cancer and is often inactivated in human primary lung adenocarcinoma. Here, we show that the inactivation of MEN1 is associated with increased DNA methylation at the MEN1 promoter by K-Ras. On one hand, the activated K-Ras up-regulates the expression of DNA methyltransferases and enhances the binding of DNA methyltransferase 1 to the MEN1 promoter, leading to increased DNA methylation at the MEN1 gene in lung cancer cells; on the other hand, menin reduces the level of active Ras-GTP at least partly by preventing GRB2 and SOS1 from binding to Ras, without affecting the expression of GRB2 and SOS1. In human lung adenocarcinoma samples, we further demonstrate that reduced menin expression is associated with the enhanced expression of Ras (p < 0.05). Finally, excision of the Men1 gene markedly accelerates the K-Ras(G12D)-induced tumor formation in the Men1(f/f);K-Ras(G12D/+);Cre ER mouse model. Together, these findings uncover a previously unknown link between activated K-Ras and menin, an important interplay governing tumor activation and suppression in the development of lung cancer.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Basic Medical Sciences, Medical College, Zhongshan Hospital, Xiamen University, 361005 Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS). Proc Natl Acad Sci U S A 2012; 109:16190-5. [PMID: 22988110 DOI: 10.1073/pnas.1212759109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.
Collapse
|
55
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
56
|
Functional diversification of the Tubby-like protein gene families (TULPs) during eukaryotic evolution. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2011.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Rom S, Pacifici M, Passiatore G, Aprea S, Waligorska A, Valle LD, Peruzzi F. HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1836-44. [PMID: 21745501 PMCID: PMC3527102 DOI: 10.1016/j.bbamcr.2011.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/13/2022]
Abstract
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.
Collapse
Affiliation(s)
- Slava Rom
- Temple University School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA
| | - Marco Pacifici
- LSU Health Sciences Center, School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Giovanni Passiatore
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY
| | | | - Agnieszka Waligorska
- LSU Health Sciences Center, School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Luis Del Valle
- LSU Health Sciences Center, School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA
| | - Francesca Peruzzi
- LSU Health Sciences Center, School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA
| |
Collapse
|
58
|
Sacco E, Farina M, Greco C, Lamperti S, Busti S, Degioia L, Alberghina L, Liberati D, Vanoni M. Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnol Adv 2011; 30:154-68. [PMID: 21851854 DOI: 10.1016/j.biotechadv.2011.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
The multi-domain protein hSos1 plays a major role in cell growth and differentiation through its Ras-specific guanine nucleotide exchange domain whose complex regulation involves intra-molecular, inter-domain rearrangements. We present a stochastic mathematical model describing intra-molecular regulation of hSos1 activity. The population macroscopic effect is reproduced through a Monte-Carlo approach. Key model parameters have been experimentally determined by BIAcore analysis. Complementation experiments of a Saccharomyces cerevisiae cdc25(ts) strain with Sos deletion mutants provided a comprehensive data set for estimation of unknown parameters and model validation. The model is robust against parameter alteration and describes both the behavior of Sos deletion mutants and modulation of activity of the full length molecule under physiological conditions. By incorporating the calculated effect of amino acid changes at an inter-domain interface, the behavior of a mutant correlating with a developmental syndrome could be simulated, further validating the model. The activation state of Ras-specific guanine nucleotide exchange domain of hSos1 arises as an "emergent property" of its multi-domain structure that allows multi-level integration of a complex network of intra- and inter-molecular signals.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Fukuda N, Ishii J, Kondo A. Gγ recruitment system incorporating a novel signal amplification circuit to screen transient protein-protein interactions. FEBS J 2011; 278:3086-94. [DOI: 10.1111/j.1742-4658.2011.08232.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Mangeot PE, Dollet S, Girard M, Ciancia C, Joly S, Peschanski M, Lotteau V. Protein transfer into human cells by VSV-G-induced nanovesicles. Mol Ther 2011; 19:1656-66. [PMID: 21750535 DOI: 10.1038/mt.2011.138] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identification of new techniques to express proteins into mammal cells is of particular interest for both research and medical purposes. The present study describes the use of engineered vesicles to deliver exogenous proteins into human cells. We show that overexpression of the spike glycoprotein of the vesicular stomatitis virus (VSV-G) in human cells induces the release of fusogenic vesicles named gesicles. Biochemical and functional studies revealed that gesicles incorporated proteins from producer cells and could deliver them to recipient cells. This protein-transduction method allows the direct transport of cytoplasmic, nuclear or surface proteins in target cells. This was demonstrated by showing that the TetR transactivator and the receptor for the murine leukemia virus (MLV) envelope [murine cationic amino acid transporter-1 (mCAT-1)] were efficiently delivered by gesicles in various cell types. We further shows that gesicle-mediated transfer of mCAT-1 confers to human fibroblasts a robust permissiveness to ecotropic vectors, allowing the generation of human-induced pluripotent stem cells in level 2 biosafety facilities. This highlights the great potential of mCAT-1 gesicles to increase the safety of experiments using retro/lentivectors. Besides this, gesicles is a versatile tool highly valuable for the nongenetic delivery of functions such as transcription factors or genome engineering agents.
Collapse
|
61
|
Novel postentry inhibitor of human immunodeficiency virus type 1 replication screened by yeast membrane-associated two-hybrid system. Antimicrob Agents Chemother 2011; 55:4251-60. [PMID: 21746942 DOI: 10.1128/aac.00299-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV) Gag protein targets to the plasma membrane and assembles into viral particles. In the next round of infection, the mature Gag capsids disassemble during viral entry. Thus, Gag plays a central role in the HIV life cycle. Using a yeast membrane-associated two-hybrid assay based on the SOS-RAS signaling system, we developed a system to measure the Gag-Gag interaction and isolated 6 candidates for Gag assembly inhibitors from a chemical library composed of 20,000 small molecules. When tested in the human MT-4 cell line and primary peripheral blood mononuclear cells, one of the candidates, 2-(benzothiazol-2-ylmethylthio)-4-methylpyrimidine (BMMP), displayed an inhibitory effect on HIV replication, although a considerably high dose was required. Unexpectedly, neither particle production nor maturation was inhibited by BMMP. Confocal microscopy confirmed that BMMP did not block Gag plasma membrane targeting. Single-round infection assays with envelope-pseudotyped and luciferase-expressing viruses revealed that BMMP inhibited HIV replication postentry but not simian immunodeficiency virus (SIV) or murine leukemia virus infection. Studies with HIV/SIV Gag chimeras indicated that the Gag capsid (CA) domain was responsible for the BMMP-mediated HIV postentry block. In vitro studies indicated that BMMP accelerated disassembly of HIV cores and, conversely, inhibited assembly of purified CA protein in a dose-dependent manner. Collectively, our data suggest that BMMP primarily targets the HIV CA domain and disrupts viral infection postentry, possibly through inducing premature disassembly of HIV cores. We suggest that BMMP is a potential lead compound to develop antiretroviral drugs bearing novel mechanisms of action.
Collapse
|
62
|
Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32:760-72. [PMID: 21387466 PMCID: PMC3118925 DOI: 10.1002/humu.21492] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/23/2011] [Indexed: 01/03/2023]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype-phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies.
Collapse
Affiliation(s)
- Francesca Lepri
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
- Ospedale Pediatrico “Bambino Gesù,”IRCCS, Rome, Italy
| | - Alessandro De Luca
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata,”Rome, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-MalpighiBologna, Italy
| | | | - Francesca Pantaleoni
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | - Viviana Cordeddu
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | | | - Maria L Dentici
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
- Ospedale Pediatrico “Bambino Gesù,”IRCCS, Rome, Italy
| | - Viviana Caputo
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | - Serenella Venanzi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| | | | - Ines Kavamura
- Medical Genetics, Federal University of Sao PauloSao Paulo, Brazil
| | - Maria F Faienza
- Department of Biomedicine of Developmental Age, University of BariBari, Italy
| | - Alba Pilotta
- AuxoendocrinologiaOspedale Pediatrico, Brescia, Italy
| | - Franco Stanzial
- Servizio aziendale di Consulenza GeneticaOspedale di Bolzano, Italy
| | | | - Orazio Gabrielli
- Istituto di Scienze Materno-Infantili, Università Politecnica delle MarcheAncona, Italy
| | - Bruno Marino
- Division of Pediatric Cardiology, Department of Pediatrics, “Sapienza” UniversityRome, Italy
| | - Giovanni Neri
- Istituto di Genetica Medica, Università Cattolica del Sacro CuoreRome, Italy
| | | | | | - Isabella Torrrente
- IRCCS Casa Sollievo della SofferenzaLaboratorio Mendel, San Giovanni Rotondo, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università Milano Bicocca A.O. S Gerardo Fondazione MBBMMonza, Italy
| | - Laura Mazzanti
- Dipartimento di Pediatria, Università degli Studi di BolognaBologna, Italy
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro CuoreRome, Italy
| | | | - Bruce D Gelb
- Child Health and Development Institute, Mount Sinai School of MedicineNew York, New York
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
63
|
D’Ambrosio SM, Han C, Pan L, Kinghorn AD, Ding H. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 2011; 409:465-9. [PMID: 21596018 PMCID: PMC3148526 DOI: 10.1016/j.bbrc.2011.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of the EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway.
Collapse
Affiliation(s)
- Steven M. D’Ambrosio
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Chunhua Han
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Haiming Ding
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
64
|
Yuan T, Wang Y, Pao L, Anderson SM, Gu H. Lactation defect in a widely used MMTV-Cre transgenic line of mice. PLoS One 2011; 6:e19233. [PMID: 21559430 PMCID: PMC3084790 DOI: 10.1371/journal.pone.0019233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/23/2011] [Indexed: 01/15/2023] Open
Abstract
Background MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines. Methodology/Principal Findings To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development. Conclusions/Significance The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the controls did not include mice expressing only Cre recombinase.
Collapse
Affiliation(s)
- Taichang Yuan
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Yongping Wang
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Lily Pao
- Cancer Biology Program, Division of Hematology and Oncology, Department of Medicine, Beth Israel and Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steve M. Anderson
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Haihua Gu
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
65
|
Zhang X, Lin SM, Chen TY, Liu M, Ye F, Chen YR, Shi L, He YL, Wu LX, Zheng SQ, Zhao YR, Zhang SL. Asialoglycoprotein receptor interacts with the preS1 domain of hepatitis B virus in vivo and in vitro. Arch Virol 2011; 156:637-45. [PMID: 21207081 DOI: 10.1007/s00705-010-0903-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The preS1 domain of the large envelope protein has been identified as an essential viral structure involved in hepatitis B virus (HBV) attachment. However, the cellular receptor(s) for HBV has not yet been identified. AIMS To identify a cell-surface receptor for HBV, which could elucidate the molecular mechanism of HBV infection. METHODS A novel yeast two-hybrid system was used to screen proteins interacting with the preS1 region of HBV. Their interaction was verified by yeast cotransformation, coimmunoprecipitation and mammalian two-hybrid assay, while their intracellular and tissue localization was analyzed by confocal microscopy and immunohistochemistry, respectively. RESULTS Asialoglycoprotein receptor (ASGPR) interacted specifically and directly with the preS1 domain of HBV in vivo and in vitro. The levels of expression of preS1 and ASGPR in the liver were similar and correlated with each other. CONCLUSIONS ASGPR is a candidate receptor for HBV that mediates further steps of HBV entry.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Raffaello A, Rizzuto R. Mitochondrial longevity pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:260-8. [DOI: 10.1016/j.bbamcr.2010.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|
67
|
Sato T, Enkhbat A, Yoshioka K. Role of plasma membrane localization of the scaffold protein JSAP1 during differentiation of cerebellar granule cell precursors. Genes Cells 2010; 16:58-68. [PMID: 21156008 DOI: 10.1111/j.1365-2443.2010.01465.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously reported that the scaffold protein c-Jun NH₂-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) functions in cerebellar granule cell precursors (GCPs) to promote their cell-cycle exit and differentiation. In this study, we used immunocytochemistry to examine the subcellular distribution of JSAP1 in proliferating cultured GCPs. We found that when stimulated with fibroblast growth factor-2 (FGF-2), a factor that promotes GCP differentiation through JNK and extracellular signal-regulated kinase (ERK) signaling, JSAP1 translocated to the plasma membrane and colocalized with activated JNK and ERK. In transfected cells expressing a constitutively activated FGF receptor (FGFR), JSAP1 and the activated FGFR colocalized at the plasma membrane with not only activated but also unphosphorylated and inactive JNK and ERK. These colocalizations did not occur when a mutant JSAP1 lacking the JNK-binding domain was substituted for wild-type JSAP1. Biochemical analyses of transfected cells showed that activated FGFR increased JSAP1's affinity for JNK and ERK and that JSAP1 enhanced FGFR-induced JNK and ERK activation. Collectively, these results suggest that when stimulated by FGFR, JSAP1 translocates to the plasma membrane, where it recruits JNK and ERK and facilitates their activation, leading to the differentiation of cerebellar GCPs.
Collapse
Affiliation(s)
- Tokiharu Sato
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
68
|
p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene 2010; 29:3677-90. [DOI: 10.1038/onc.2010.128] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
69
|
The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2. Mol Genet Genomics 2010; 283:439-49. [DOI: 10.1007/s00438-010-0528-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/22/2010] [Indexed: 01/26/2023]
|
70
|
Abstract
Networks of fixed topology are used to summarize the collective understanding of the flow of signaling information within a cell (i.e., canonical signaling networks). Moreover, these canonical signaling networks are used to interpret how observed oncogenic changes in protein activity or expression alter information flow in cancer cells. However, creating a novel branch within a signaling network (i.e., a noncanonical edge) provides a mechanism for a cell to acquire the hallmark characteristics of cancer. The objective of this study was to assess the existence of a noncanonical edge within a receptor tyrosine kinase (RTK) signaling network based upon variation in protein expression alone, using a mathematical model of the early signaling events associated with epidermal growth factor receptor 1 (ErbB1) signaling network as an illustrative example. The abundance of canonical protein-RTK complexes (e.g., growth factor receptor bound protein 2-ErbB1 and Src homology 2 domain containing transforming protein 1-ErbB1) were used to establish a threshold that was correlated with ligand-dependent changes in cell proliferation. Given the available data, the uncertainty associated with this threshold was estimated using an empirical Bayesian approach. Using the variability in protein expression observed among a collection of breast cancer cell lines, this model was used to assess whether a noncanonical edge (e.g., Irs1-ErbB1) exceeds the threshold and to identify cell lines where this noncanonical edge is likely to be observed. Taken together, the simulations suggest that the topology of signal transduction networks within cells is influenced by quantitative parameters, such as protein expression and binding affinity. Moreover, forming this noncanonical pathway was not due solely to overexpression of the cell surface receptor but was influenced by overexpression of all members of the multiprotein complex. Multivariate alterations in expression of signaling proteins in cancer cells may activate noncanonical pathways and may rewire the signaling network within a cell.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, USA.
| |
Collapse
|
71
|
Allosteric gating of Son of sevenless activity by the histone domain. Proc Natl Acad Sci U S A 2010; 107:3436-40. [PMID: 20133694 DOI: 10.1073/pnas.0914315107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulated activation of Ras by receptor tyrosine kinases (RTK) constitutes a key transduction step in signaling processes that control an array of fundamental cellular functions including proliferation, differentiation, and survival. The principle mechanism by which Ras is activated down stream of RTKs involves the stimulation of guanine nucleotide exchange by the ubiquitous guanine nucleotide exchange factor Son of sevenless (Sos). In resting conditions, Sos activity is constrained by intramolecular interactions that maintain the protein in an autoinhibited conformation. Structural, biochemical, and genetic studies have implicated the histone domain (Sos-H), which comprises the most N-terminal region of Sos, in the regulation of Sos autoinhibition. However, the molecular underpinnings of this regulatory function are not well understood. In the present study we demonstrate that Sos-H possesses in vitro and in vivo membrane binding activity that is mediated, in part, by the interactions between a cluster of basic residues and phosphatidic acid. This interaction is required for Sos-dependent activation of Ras following EGF stimulation. The inducible association of Sos-H with membranes contributes to the catalytic activity of Sos by forcing the domain to adopt a conformation that destabilizes the autoinhibitory state. Thus, Sos-H plays a critical role in governing the catalytic output of Sos through the coupling of membrane recruitment to the release of autoinhibition.
Collapse
|
72
|
Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009; 10:2763-2788. [PMID: 19582228 PMCID: PMC2705515 DOI: 10.3390/ijms10062763] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 02/06/2023] Open
Abstract
A key property of complex biological systems is the presence of interaction networks formed by its different components, primarily proteins. These are crucial for all levels of cellular function, including architecture, metabolism and signalling, as well as the availability of cellular energy. Very stable, but also rather transient and dynamic protein-protein interactions generate new system properties at the level of multiprotein complexes, cellular compartments or the entire cell. Thus, interactomics is expected to largely contribute to emerging fields like systems biology or systems bioenergetics. The more recent technological development of high-throughput methods for interactomics research will dramatically increase our knowledge of protein interaction networks. The two most frequently used methods are yeast two-hybrid (Y2H) screening, a well established genetic in vivo approach, and affinity purification of complexes followed by mass spectrometry analysis, an emerging biochemical in vitro technique. So far, a majority of published interactions have been detected using an Y2H screen. However, with the massive application of this method, also some limitations have become apparent. This review provides an overview on available yeast two-hybrid methods, in particular focusing on more recent approaches. These allow detection of protein interactions in their native environment, as e.g. in the cytosol or bound to a membrane, by using cytosolic signalling cascades or split protein constructs. Strengths and weaknesses of these genetic methods are discussed and some guidelines for verification of detected protein-protein interactions are provided.
Collapse
Affiliation(s)
- Anna Brückner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| | - Cécile Polge
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
| | - Nicolas Lentze
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Daniel Auerbach
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Uwe Schlattner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| |
Collapse
|
73
|
Nguyen N, Lee SB, Lee YS, Lee YS, Lee KH, Ahn JY. Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 2009; 34:942-51. [PMID: 18846424 DOI: 10.1007/s11064-008-9848-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/03/2008] [Indexed: 01/19/2023]
Abstract
Neural stem cells (NSC) undergo apoptotic cell death during development of nervous system and in adult. However, little is known about the biochemical regulation of neuroprotection by neurotrophin in these cells. In this report, we demonstrate that Staurosporine (STS) and Etoposide (ETS) induced apoptotic cell death of NSC by a mechanism requiring Caspase 3 activation, poly (ADP-ribose) polymerase and Lamin A/C cleavage. Although C17.2 cells revealed higher mRNA level of p75 neurotrophin receptor (p75(NTR)) compared with TrkA or TrkB receptor, neuroprotective effect of both nerve growth factor (NGF) and brain-derived growth factor (BDNF) mediated through the activation of tropomyosin receptor kinase (Trk) receptors. Moreover, both NGF and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathway. Inhibition of Trk receptor by K252a reduced PARP cleavage as well as cell viability, whereas inhibition of p75(NTR) did not affect the effect of neurotrophin on neurotoxic insults. Thus our studies indicate that the protective effect of NGF and BDNF in NSC against apoptotic stimuli is mediated by the PI3K/Akt and MAPK signaling pathway via Trk receptors.
Collapse
Affiliation(s)
- Nga Nguyen
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
74
|
Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 2009; 5:256. [PMID: 19357636 PMCID: PMC2683723 DOI: 10.1038/msb.2009.19] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 02/23/2009] [Indexed: 01/01/2023] Open
Abstract
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin-induced increase in the phosphatidylinositol-3,4,5-triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin-induced amplification of mitogenic signaling is abolished by disrupting PIP3-mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non-linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.
Collapse
|
75
|
Bao L, Redondo C, Findlay JBC, Walker JH, Ponnambalam S. Deciphering soluble and membrane protein function using yeast systems (Review). Mol Membr Biol 2009; 26:127-35. [PMID: 19115141 DOI: 10.1080/09687680802637652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane protein-protein interactions are important for regulation, targeting, and activity of proteins in membranes but are difficult to detect and analyse. This review covers current approaches to studying membrane protein interactions. In addition to standard biochemical and genetic techniques, the classic yeast nuclear two-hybrid system has been highly successful in identification and characterization of soluble protein-protein interactions. However, classic yeast two-hybrid assays do not work for membrane proteins because such yeast-based interactions must occur in the nucleus. Here, we highlight recent advances in yeast systems for the detection and characterization of eukaryote membrane protein-protein interactions. We discuss these implications for drug screening and discovery.
Collapse
Affiliation(s)
- Leyuan Bao
- Endothelial Cell Biology Unit and Institute of Molecular and Cellular Biology, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
76
|
Fukuda N, Ishii J, Tanaka T, Fukuda H, Kondo A. Construction of a novel detection system for protein-protein interactions using yeast G-protein signaling. FEBS J 2009; 276:2636-44. [PMID: 19476500 DOI: 10.1111/j.1742-4658.2009.06991.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the current study, we report the construction of a novel system for the detection of protein-protein interactions using yeast G-protein signaling. It is well established that the G-protein gamma subunit (Ggamma) is anchored to the inner leaflet of the plasma membrane via lipid modification in the C-terminus, and that this localization of Ggamma is required for signal transduction. In our system, mutated Ggamma (Ggamma(cyto)) lacking membrane localization ability was genetically prepared by deletion of the lipid modification site. Complete disappearance of G-protein signal was observed when Ggamma(cyto) was expressed in the cytoplasm of yeast cells from which the endogenous Ggamma gene had been deleted. In order to demonstrate the potential use of our system, we utilized the Staphylococcus aureus ZZ domain and the Fc portion of human immunoglobulin G (IgG) as a model interaction pair. To design our detection system for protein-protein interaction, the ZZ domain was altered so that it associates with the inner leaflet of the plasma membrane, and the Fc part was then fused to Ggamma(cyto). The Fc-Ggamma(cyto) fusion protein migrated towards the membrane via the ZZ-Fc interaction, and signal transduction was therefore restored. This signal was successfully detected by assessing growth inhibition and transcription in response to G-protein signaling. Finally, several Z variants displaying affinity constants ranging from 8.0 x 10(3) to 6.8 x 10(8) m(-1) were prepared, and it was demonstrated that our system was able to discriminate subtle differences in affinity. In conclusion, our system appears to be a reliable and versatile technique for detection of protein-protein interactions, and may prove useful in future protein interaction studies.
Collapse
Affiliation(s)
- Nobuo Fukuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Japan
| | | | | | | | | |
Collapse
|
77
|
Guan H, Kiss-Toth E. Advanced technologies for studies on protein interactomes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 110:1-24. [PMID: 18219467 DOI: 10.1007/10_2007_092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the key challenges of biology in the post-genomic era is to assign function to the many genes revealed by large-scale sequencing programmes, since only a small fraction of gene function can be directly inferred from the coding sequence. Identifying interactions between proteins is a substantial part in understanding their function. The main technologies for investigating protein-protein interactions and assigning functions to proteins include direct detection intermolecular interactions through protein microarray, yeast two-hybrid system, mass spectrometry fluorescent techniques to visualize protein complexes or pull-down assays, as well as technologies detecting functional interactions between genes, such as RNAi knock down or functional screening of cDNA libraries. Over recent years, considerable advances have been made in the above techniques. In this review, we discuss some recent developments and their impact on the gene function annotation.
Collapse
Affiliation(s)
- Hongtao Guan
- Cardiovascular Research Unit, University of Sheffield, Royal Hallamshire Hospital, Glossop road, S10 2JF, Sheffield, UK
| | | |
Collapse
|
78
|
Evrard A, Lagarde V, Joudrier P, Gautier MF. Puroindoline-a and puroindoline-b interact with the Saccharomyces cerevisiae plasma membrane through different amino acids present in their tryptophan-rich domain. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
|
80
|
Many faces of Ras activation. Biochim Biophys Acta Rev Cancer 2008; 1786:178-87. [PMID: 18541156 DOI: 10.1016/j.bbcan.2008.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.
Collapse
|
81
|
Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 2008; 15:452-61. [PMID: 18454158 PMCID: PMC2440660 DOI: 10.1038/nsmb.1418] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/20/2008] [Indexed: 11/08/2022]
Abstract
The kinetics of Ras activation by Son of sevenless (SOS) changes profoundly when Ras is tethered to membranes, instead of being in solution. SOS has two binding sites for Ras, one of which is an allosteric site that is distal to the active site. The activity of the SOS catalytic unit (SOS(cat)) is up to 500-fold higher when Ras is on membranes compared to rates in solution, because the allosteric Ras site anchors SOS(cat) to the membrane. This effect is blocked by the N-terminal segment of SOS, which occludes the allosteric site. We show that SOS responds to the membrane density of Ras molecules, to their state of GTP loading and to the membrane concentration of phosphatidylinositol-4,5-bisphosphate (PIP2), and that the integration of these signals potentiates the release of autoinhibition.
Collapse
Affiliation(s)
- Jodi Gureasko
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - William J. Galush
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sean Boykevisch
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Holger Sondermann
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
82
|
DiFranco M, Capote J, Quiñonez M, Vergara JL. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers. ACTA ACUST UNITED AC 2008; 130:581-600. [PMID: 18040060 PMCID: PMC2151662 DOI: 10.1085/jgp.200709831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
83
|
Busti S, Sacco E, Martegani E, Vanoni M. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 2008; 53:153-62. [PMID: 18183397 DOI: 10.1007/s00294-007-0173-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 01/15/2023]
Abstract
Autophosphorylation of tyrosine residues on the cytoplasmic tail of the epidermal growth factor receptor (EGFR) upon ligand binding leads to recruitment of the Grb2/Sos complex to the activated receptor and to activation of the Ras pathway. The major aim of this study was to ascertain to which extent the EGFR module (receptor, Grb2, hSos1) could work in a lower eukaryote, completely devoid of tyrosine kinase receptors but possessing hortologues to mammalian Ras proteins. We show that the EGFR module can be functionally linked to the Ras/cAMP pathway in a Saccharomyces cerevisiae cdc25 ( ts ) strain, as monitored by several independent biological readouts, including drop of budding index, decrease of cAMP level and acquisition of thermotolerance. Autophosphorylation of the receptor is a necessary step for RTK-dependent activation of the yeast Ras pathway, since genetic and pharmacological downregulation of the EGFR catalytic activity abolish coupling with the Ras/cAMP pathway. Thus, our results newly indicate that a RTK-based signal transduction module can be functionally coupled to the yeast Ras/cAMP pathway and that our system can be a valuable tool for the screen of drugs inhibiting the kinase activity of the receptor.
Collapse
Affiliation(s)
- Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
84
|
WANG C, FU G, WANG J, WANG G, CHENG Y, XU ZZ. Direct visualization of the dynamics of membrane-anchor proteins in living cells. J Microsc 2008; 229:67-77. [DOI: 10.1111/j.1365-2818.2007.01865.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
85
|
Quilliam LA. New insights into the mechanisms of SOS activation. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2007; 2007:pe67. [PMID: 18042941 DOI: 10.1126/stke.4142007pe67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The activation of the small guanosine triphosphatase Ras is critical for many biological events. It is therefore not surprising that the ubiquitously expressed Ras guanine nucleotide exchange factor (GEF) SOS (Son of Sevenless), which couples protein tyrosine kinases to Ras activation, is under tight autoinhibitory control. Several studies have revealed how multiple regulatory domains might affect SOS activity. Most notably, a second Ras-binding site on SOS allosterically regulates the duration and amplitude of Ras activation. This allosteric Ras-GTP is produced by another GEF, Ras guanine nucleotide-releasing protein 1 (RasGRP1). SOS and RasGRP1 are both activated downstream of phospholipase D(2), and gain-of-function mutants of SOS contribute to inherited diseases. These studies not only enable us to better appreciate the complexity of the regulation of GEFs but also prompt us to reevaluate our current understanding of pathways that lead to Ras activation.
Collapse
Affiliation(s)
- Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, and Walther Cancer Institute, 635 Barnhill Drive, MS-4053, Indianapolis, IN 46202, USA.
| |
Collapse
|
86
|
Abstract
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- J. Omerovic
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - A. J. Laude
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - I. A. Prior
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| |
Collapse
|
87
|
Abstract
Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the activity of small guanine nucleotide-binding (G) proteins to control cellular functions. In general, GEFs turn on signaling by catalyzing the exchange from G-protein-bound GDP to GTP, whereas GAPs terminate signaling by inducing GTP hydrolysis. GEFs and GAPs are multidomain proteins that are regulated by extracellular signals and localized cues that control cellular events in time and space. Recent evidence suggests that these proteins may be potential therapeutic targets for developing drugs to treat various diseases, including cancer.
Collapse
Affiliation(s)
- Johannes L Bos
- Department of Physiological Chemistry and Centre of Biomedical Genetics, UMC Utrecht Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
88
|
Luo L, Uerlings Y, Happel N, Asli NS, Knoetgen H, Kessel M. Regulation of geminin functions by cell cycle-dependent nuclear-cytoplasmic shuttling. Mol Cell Biol 2007; 27:4737-44. [PMID: 17470552 PMCID: PMC1951490 DOI: 10.1128/mcb.00123-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/27/2007] [Accepted: 04/18/2007] [Indexed: 12/24/2022] Open
Abstract
The geminin protein functions both as a DNA rereplication inhibitor through association with Cdt1 and as a repressor of Hox gene transcription through the polycomb pathway. Here, we report that the functions of avian geminin are coordinated with and regulated by cell cycle-dependent nuclear-cytoplasmic shuttling. In S phase, geminin enters nuclei and inhibits both loading of the minichromosome maintenance (MCM) complex onto chromatin and Hox gene transcription. At the end of mitosis, geminin is exported from nuclei by the exportin protein Crm1 and is unavailable in the nucleus during the next G(1) phase, thus ensuring proper chromatin loading of the MCM complex and Hox gene transcription. This mechanism for regulating the functions of geminin adds to distinct mechanisms, such as protein degradation and ubiquitination, applied in other vertebrates.
Collapse
Affiliation(s)
- Lingfei Luo
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
89
|
Jang SI, Lee EJ, Hart PS, Ramaswami M, Pallos D, Hart TC. Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis. J Biol Chem 2007; 282:20245-55. [PMID: 17510059 DOI: 10.1074/jbc.m701609200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of human SOS1 is responsible for hereditary gingival fibromatosis type 1, a benign overgrowth condition of the gingiva. Here, we investigated molecular mechanisms responsible for the increased rate of cell proliferation in gingival fibroblasts caused by mutant SOS1 in vitro. Using ectopic expression of wild-type and mutant SOS1 constructs, we found that truncated SOS1 could localize to the plasma membrane, without growth factor stimuli, leading to sustained activation of Ras/MAPK signaling. Additionally, we observed an increase in the magnitude and duration of ERK signaling in hereditary gingival fibromatosis gingival fibroblasts that was associated with phosphorylation of retinoblastoma tumor suppressor protein and the up-regulation of cell cycle regulators, including cyclins C, D, and E and the E2F/DP transcription factors. These factors promote cell cycle progression from G(1) to S phase, and their up-regulation may underlie the increased gingival fibroblast proliferation observed. Selective depletion of wild-type and mutant SOS1 through small interfering RNA demonstrates the link between mutation of SOS1, ERK signaling, cell proliferation rate, and the expression levels of Egr-1 and proliferating cell nuclear antigen. These findings elucidate the mechanisms for gingival overgrowth mediated by SOS1 gene mutation in humans.
Collapse
Affiliation(s)
- Shyh-Ing Jang
- Section of Human and Craniofacial Genetics, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
90
|
Kreimer-Erlacher H, Seidl H, Bäck B, Kerl H, Wolf P. High Mutation Frequency at Ha-ras Exons 1-4 in Squamous Cell Carcinomas from PUVA-treated Psoriasis Patients¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740323hmfahr2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Yamasaki S, Ishikawa E, Sakuma M, Kanagawa O, Cheng AM, Malissen B, Saito T. LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol Cell Biol 2007; 27:4406-15. [PMID: 17420272 PMCID: PMC1900065 DOI: 10.1128/mcb.02109-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
Modzelewska K, Elgort MG, Huang J, Jongeward G, Lauritzen A, Yoon CH, Sternberg PW, Moghal N. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. Mol Cell Biol 2007; 27:3695-707. [PMID: 17339331 PMCID: PMC1899997 DOI: 10.1128/mcb.01630-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 3242, Salt Lake City, UT 84112-5550, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27:2732-45. [PMID: 17283063 PMCID: PMC1899892 DOI: 10.1128/mcb.01882-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras activation is crucial for lymphocyte development and effector function. Both T and B lymphocytes contain two types of Ras activators: ubiquitously expressed SOS and specifically expressed Ras guanyl nucleotide-releasing protein (RasGRP). The need for two activators is enigmatic since both are activated following antigen receptor stimulation. In addition, RasGRP1 appears to be dominant over SOS in an unknown manner. The crystal structure of SOS provides a clue: an unusual allosteric Ras-GTP binding pocket. Here, we demonstrate that RasGRP orchestrates Ras signaling in two ways: (i) by activating Ras directly and (ii) by facilitating priming of SOS with RasGTP that binds the allosteric pocket. Priming enhances SOS' in vivo activity and creates a positive RasGTP-SOS feedback loop that functions as a rheostat for Ras activity. Without RasGRP1, initiation of this loop is impaired because SOS' catalyst is its own product (RasGTP)-hence the dominance of RasGRP1. Introduction of an active Ras-like molecule (RasV12C40) in T- and B-cell lines can substitute for RasGRP function and enhance SOS' activity via its allosteric pocket. The unusual RasGRP-SOS interplay results in sensitive and robust Ras activation that cannot be achieved with either activator alone. We hypothesize that this mechanism enables lymphocytes to maximally respond to physiologically low levels of stimulation.
Collapse
Affiliation(s)
- Jeroen P Roose
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0795, USA
| | | | | | | | | |
Collapse
|
94
|
García-Rodríguez LJ, Gay AC, Pon LA. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. ACTA ACUST UNITED AC 2007; 176:197-207. [PMID: 17210948 PMCID: PMC2063939 DOI: 10.1083/jcb.200606054] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial-cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle.
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
95
|
Baumeister M, Rossman K, Sondek J, Lemmon M. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 2006; 400:563-72. [PMID: 17007612 PMCID: PMC1698603 DOI: 10.1042/bj20061020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 01/17/2023]
Abstract
Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain-phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-delta1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.
Collapse
Key Words
- dbl's big sister (dbs)
- guanine nucleotide exchange factor (gef)
- membrane targeting
- pleckstrin homology (ph) domain
- phosphoinositide
- rho
- bs3, bis(sulfosuccinimidyl) suberate
- dbs, dbl's big sister
- dh, dbl homology
- dmem, dulbecco's modified eagle's medium
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- fkbp, fk506-binding protein
- gef, guanine nucleotide-exchange factor
- gst, glutathione s-transferase
- h-ras, harvey-ras
- pak1, p21-activated protein kinase
- pbd, p21-binding domain
- ph, pleckstrin homology
- plc, phospholipase-c
- ptdins3p, phosphatidylinositol-3-phosphate
- ptdins(4,5)p2, phosphatidylinositol-4,5-bisphosphate
- ras-grf, ras guanine-nucleotide releasing factor
- rbd, rho-binding domain
- sh3, src homology 3
- spr, surface plasmon resonance
- ttbs, tris-buffered saline containing 0.1% triton x-100
Collapse
Affiliation(s)
- Mark A. Baumeister
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- †Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Kent L. Rossman
- ‡Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - John Sondek
- §Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Mark A. Lemmon
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
96
|
Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K, Friesel R. A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 2006; 18:1958-66. [PMID: 16603339 DOI: 10.1016/j.cellsig.2006.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
Sef (similar expression to fgf genes) is a member of the fibroblast growth factor (FGF) synexpression group that negatively regulates FGF receptor (FGFR) signaling in zebrafish during early embryonic development and in mammalian cell culture systems. The mechanism by which Sef exerts its inhibitory effect remains controversial. It has been reported that Sef functions either through binding to and inhibiting FGFR1 activation or by acting downstream of FGF receptors at the level of MEK/ERK kinases. In both cases, the intracellular domain of Sef was found to play a role in the inhibitory function of Sef. Here we demonstrated that both extracellular and transmembrane domains of Sef contributed to Sef-mediated negative regulation of FGF signaling. In fact, over-expression studies in NIH3T3 cells showed that a truncated mutant of Sef, which lacks the intracellular domain (SefECTM), exerted the inhibitory activity on FGF signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent activation of the Raf/MEK/ERK signaling cascade. We also showed that SefECTM associated with FGFR1, and inhibited FGF-induced ERK activation in HEK293T cells. Furthermore, we demonstrated that the over-expression of SefECTM was able to inhibit the function of a constitutively activated form of FGFR1, FGFR1-C289R, but not FGFR1-K562E. Finally, we found that SefECTM reduced cell viability when over-expressed in human umbilical vein endothelial cells (HUVEC). These data provide additional insight into the structure-activity relationship in the mechanism of inhibitory action of Sef on FGFR1-mediated signaling.
Collapse
Affiliation(s)
- Dmitry Kovalenko
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074-7205, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T, Dym N, Ron D. The human sef-a isoform utilizes different mechanisms to regulate receptor tyrosine kinase signaling pathways and subsequent cell fate. J Biol Chem 2006; 281:39225-35. [PMID: 17035228 DOI: 10.1074/jbc.m607327200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.
Collapse
Affiliation(s)
- Inbal Ziv
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006; 40:625-44. [PMID: 16708762 DOI: 10.2144/000112151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.
Collapse
|
99
|
Zarich N, Oliva JL, Martínez N, Jorge R, Ballester A, Gutiérrez-Eisman S, García-Vargas S, Rojas JM. Grb2 is a negative modulator of the intrinsic Ras-GEF activity of hSos1. Mol Biol Cell 2006; 17:3591-7. [PMID: 16760435 PMCID: PMC1525251 DOI: 10.1091/mbc.e05-12-1104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
hSos1 is a Ras guanine-nucleotide exchange factor. It was suggested that the carboxyl-terminal region of hSos1 down-regulates hSos1 functionality and that the intrinsic guanine-nucleotide exchange activity of this protein may be different before and after stimulation of tyrosine kinase receptors. Using different myristoylated hSos1 full-length and carboxyl-terminal truncated mutants, we show that Grb2 function accounts not only for recruitment of hSos1 to the plasma membrane but also for modulation of hSos1 activity. Our results demonstrate that the first two canonical Grb2 binding sites, inside the carboxyl-terminal region of hSos1, are responsible for this regulation. Following different approaches, such as displacement of Grb2 from the hSos1-Grb2 complex or depletion of Grb2 levels by small interfering RNA, we found that the full-length Grb2 proteins mediate negative regulation of the intrinsic Ras guanine-nucleotide exchange activity of hSos1.
Collapse
Affiliation(s)
- Natasha Zarich
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - José Luis Oliva
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Natalia Martínez
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Rocío Jorge
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Ballester
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Silvia Gutiérrez-Eisman
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Susana García-Vargas
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
100
|
Abstract
Cadherins are expressed on the cell surface as a dimer in the membrane of one cell (cis dimer) that interacts with a cis dimer on an adjacent cell to form an adhesive trans dimer. It is well established that both cis and trans dimers must form for the cadherin to be an effective adhesion protein. In addition to their adhesive activity cadherins also play an important role in modulating cell behavior by regulating cell motility and signal transduction. Whether or not cis or trans dimers are necessary for the nonadhesive functions of cadherins has not been addressed. Here we show that N-cadherin cis dimers are necessary to induce cell motility in epithelial cells and that N-cadherin's ability to modulate the steady state levels of activated small GTPases requires both cis and trans dimers.
Collapse
Affiliation(s)
- Young J Kim
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|