51
|
Miao Y, Qiu Y, Yang W, Guo Y, Hou H, Liu Z, Zhao X. Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery. Colloids Surf B Biointerfaces 2018; 169:313-320. [DOI: 10.1016/j.colsurfb.2018.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
52
|
Léost L, Roques J, Van Der Meeren A, Vincent L, Sbirrazzuoli N, Hennig C, Rossberg A, Aupiais J, Pagnotta S, Den Auwer C, Di Giorgio C. Towards the development of chitosan nanoparticles for plutonium pulmonary decorporation. Dalton Trans 2018; 47:11605-11618. [PMID: 30090882 DOI: 10.1039/c8dt02419g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1940s, great amounts of Plutonium (Pu) have been produced for both military and civil purposes. Until now, the standard therapy for decorporation following inhalation has been the intravenous injection of diethylenetriaminepentaacetic acid ligand (Ca-DTPA form). This method offers a strong complexing constant for Pu(iv) but has poor chemical specificity, therefore its efficacy is limited to actinides present in the blood. Consequently, there is no decorporation treatment currently available which efficiently removes the intracellular Pu(iv) trapped in the pulmonary macrophages. Our research shows that a nanoparticle approach could be of particular interest due to large contact area and ability to target the retention compartments of the lungs. In this study, we have focused on the inhalation process involving forms of Pu(iv) with poor solubility. We explored the design of biocompatible nanoparticles able to target the macrophages in the lung alveoli and to chelate the forms of Pu(iv) with poor solubility. Nanoparticle formation was achieved through an ionic cross-linking concept using a polycationic polymer and an anionic chelate linker. We chose N-trimethyl chitosan, for its biocompatibility, as the polycationic polymer base of the nanoparticle and the phosphonic analogue of DTPA, diethylenetriamine-pentamethylenephosphonic acid (DTPMP) as the anionic chelating linker in forming NPs TMC-DTPMP. The synthesis and physico-chemical characterization of these NPs are presented. Secondly, the complexation mechanisms of TMC-DTPMP NPs with Thorium (Th(iv)) are discussed in terms of efficiency and structure. The Extended X-Ray Absorption Fine Structure (EXAFS) of the TMC-DTPMP complex with Th(iv) as well as Pu(iv) are defined and completed with DFT calculations to further delineate the plutonium coordination sphere after complexation. Finally, preliminary cytotoxicity tests onto macrophages were assayed.
Collapse
Affiliation(s)
- Laurane Léost
- Université Côte d'Azur, Institut de Chimie de Nice, UMR7272, 06108 Nice, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tiew SX, Misran M. Physicochemical properties of acylated low molecular weight chitosans. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1362637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shu Xian Tiew
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Zelenková T, Onnainty R, Granero GE, Barresi AA, Fissore D. Use of microreactors and freeze-drying in the manufacturing process of chitosan coated PCL nanoparticles. Eur J Pharm Sci 2018; 119:135-146. [DOI: 10.1016/j.ejps.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
|
55
|
Medeiros Borsagli FG, Carvalho IC, Mansur HS. Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications. Int J Biol Macromol 2018; 114:270-282. [DOI: 10.1016/j.ijbiomac.2018.03.133] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/09/2023]
|
56
|
Xu W, Xiao M, Yuan L, Zhang J, Hou Z. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane. Polymers (Basel) 2018; 10:E580. [PMID: 30966614 PMCID: PMC6404008 DOI: 10.3390/polym10060580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to develop a process to achieve biodegradable chitooligosaccharide-based polyurethane (CPU) with improved hemocompatibility and mechanical properties. A series of CPUs with varying chitooligosaccharide (COS) content were prepared according to the conventional two-step method. First, the prepolymer was synthesized from poly(ε-caprolactone) (PCL) and uniform-size diurethane diisocyanates (HBH). Then, the prepolymer was chain-extended by COS in N,N-dimethylformamide (DMF) to obtain the weak-crosslinked CPU, and the corresponding films were obtained from the DMF solution by the solvent evaporation method. The uniform-size hard segments and slight crosslinking of CPU were beneficial for enhancing the mechanical properties, which were one of the essential requirements for long-term implant biomaterials. The chemical structure was characterized by FT-IR, and the influence of COS content in CPU on the physicochemical properties and hemocompatibility was extensively researched. The thermal stability studies indicated that the CPU films had lower initial decomposition temperature and higher maximum decomposition temperature than pure polyurethane (CPU-1.0) film. The ultimate stress, initial modulus, and surface hydrophilicity increased with the increment of COS content, while the strain at break and water absorption decreased, which was due to the increment of crosslinking density. The results of in vitro degradation signified that the degradation rate increased with the increasing content of COS in CPU, demonstrating that the degradation rate could be controlled by adjusting COS content. The surface hemocompatibility was examined by protein adsorption and platelet adhesion tests. It was found that the CPU films had improved resistance to protein adsorption and possessed good resistance to platelet adhesion. The slow degradation rate and good hemocompatibility of the CPUs showed great potential in blood-contacting devices. In addition, many active amino and hydroxyl groups contained in the structure of CPU could carry out further modification, which made it an excellent candidate for wide application in biomedical field.
Collapse
Affiliation(s)
- Weiwei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Minghui Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Litong Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
57
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
58
|
Yadav P, Singh SP, Rengan AK, Shanavas A, Srivastava R. Gold laced bio-macromolecules for theranostic application. Int J Biol Macromol 2018; 110:39-53. [DOI: 10.1016/j.ijbiomac.2017.10.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
59
|
Zelenková T, Mora MJ, Barresi AA, Granero GE, Fissore D. On the Production of Chitosan-Coated Polycaprolactone Nanoparticles in a Confined Impinging Jet Reactor. J Pharm Sci 2018; 107:1157-1166. [DOI: 10.1016/j.xphs.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
|
60
|
Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Nguyen TP, Kim H, Phan TTV, Lee KD, Oh J. Biocompatible Chitosan Oligosaccharide Modified Gold Nanorods as Highly Effective Photothermal Agents for Ablation of Breast Cancer Cells. Polymers (Basel) 2018; 10:E232. [PMID: 30966267 PMCID: PMC6415155 DOI: 10.3390/polym10030232] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 12/13/2022] Open
Abstract
Photothermal therapy (PTT) using biocompatible nanomaterials have recently attracted much attention as a novel candidate technique for cancer therapy. In this work we report the performance of newly synthesized multidentate chitosan oligosaccharide modified gold nanorods (AuNRs-LA-COS) as novel agents for PTT of cancer cells due to their excellent biocompatibility, photothermal stability, and high absorption in the near-infrared (NIR) region. The AuNRs-LA-COS exhibit a strong NIR absorption peak at 838 nm with a mean length of 26 ± 3.1 nm and diameter of 6.8 ± 1.7 nm, respectively. The temperature of AuNRs-LA-COS rapidly reached 52.6 °C for 5 min of NIR laser irradiation at 2 W/cm². The AuNRs-LA-COS had very low cytotoxicity and exhibited high efficiency for the ablation of breast cancer cells in vitro. The tumor-bearing mice were completely ablated without tumor recurrence after photothermal treatment with AuNRs-LA-COS (25 µg/mL) under laser irradiation. In summary, this study demonstrated that AuNRs-LA-COS with laser irradiation as novel agents pave an alternative way for breast cancer therapy and hold great promise for clinical trials in the near future.
Collapse
Affiliation(s)
| | | | | | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Thanh Phuoc Nguyen
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Korea.
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Thi Tuong Vy Phan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-Gu, Busan 602-702, Korea.
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
61
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
62
|
Cho IS, Ooya T. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:145-159. [DOI: 10.1080/09205063.2017.1405573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ik Sung Cho
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tooru Ooya
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
63
|
Xie F, Ding RL, He WF, Liu ZJL, Fu SZ, Wu JB, Yang LL, Lin S, Wen QL. In vivo antitumor effect of endostatin-loaded chitosan nanoparticles combined with paclitaxel on Lewis lung carcinoma. Drug Deliv 2017; 24:1410-1418. [PMID: 28933203 PMCID: PMC8241112 DOI: 10.1080/10717544.2017.1378938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/11/2022] Open
Abstract
The purpose of this study was to prepare endostatin-loaded chitosan nanoparticles (ES-NPs) and evaluate their antitumor effect when combined with paclitaxel (PTX) on Lewis lung carcinoma (LLC) mouse xenografts. ES-NPs were prepared by ionic cross-linking. Characterization of the ES-NPs included size distribution, drug-loading efficiency (DL), and encapsulation efficiency (EE). An in vitro release test was also used to determine the release behavior of the ES-NPs. A subcutaneous LC xenograft model of C57BL/6J mice was established. The mice were randomly divided into six groups: control (0.9% NaCl), ES, PTX, ES-NPs, ES + PTX, and ES-NPs + PTX. The tumor volume was dynamically measured for the duration of the experiment. Immunohistochemistry was performed to determine the Ki-67 and microvascular density (MVD) in each group. Serum vascular endothelial growth factor (VEGF) and ES levels were determined by enzyme-linked immunosorbent assay (ELISA). ES-NPs were successfully synthesized and had suitable size distribution and high EE. The NPs were homogenously spherical and exhibited an ideal release profile in vitro. In vivo, tumor growth was significantly inhibited in the ES-NPs + PTX group. The tumor inhibitory rate was significantly higher in the ES-NPs + PTX group than in the other groups (p < .05). The results of the immunohistochemical assay and ELISA confirmed that ES-NPs combined with PTX had a strong antiangiogenic effect. ES-NPs can overcome the shortcomings of free ES, such as short retention time in circulation, which enhances the antitumor effect of ES. The antitumor effect was more pronounced when treatment included PTX and ES-loaded NPs.
Collapse
Affiliation(s)
- Fang Xie
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui-Lin Ding
- Experiment and Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Wen-Feng He
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zong-Jun-Lin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shao-Zhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Bo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ling-Lin Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing-Lian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
64
|
Javia A, Thakkar H. Intranasal delivery of tapentadol hydrochloride-loaded chitosan nanoparticles: formulation, characterisation and its in vivo evaluation. J Microencapsul 2017; 34:644-658. [PMID: 28862072 DOI: 10.1080/02652048.2017.1375038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present investigation was to formulate tapentadol hydrochloride-loaded chitosan nanoparticles (CS-NPs) for nose to brain delivery. Chitosan nanoparticles were prepared using ionotropic gelation technique. Optimisation of the formulation and process parameters was done using Box-Behnken Design. The entrapment efficiency, drug loading, Z-average size and zeta potential of the optimised batch were 63.49 ± 1.61%, 17.25 ± 1.38%w/w, 201.2 ± 1.5 nm and +49.3 mV, respectively. In-vitro release study showed 84.04 ± 1.53% drug release after 28 h, while ex vivo studies indicated higher permeation of CS-NPs through nasal mucosa. The nanoparticles exhibited good mucoadhesiveness, haemocompatibility and safety as evidenced by histopathology. The results of the pharmacodynamic study revealed prolongation of the analgesic activity. The intranasal instillation of CS-NPs resulted in the higher concentrations in brain compared to the drug solution and intravenous administration of CS-NPs. In a nutshell, intranasal administration of tapentadol hydrochloride-loaded CS-NPs is a promising approach for effective pain management.
Collapse
Affiliation(s)
- Ankit Javia
- a Faculty of Pharmacy , The Maharaja Sayajirao University of Baroda , Vadodara , India
| | - Hetal Thakkar
- a Faculty of Pharmacy , The Maharaja Sayajirao University of Baroda , Vadodara , India
| |
Collapse
|
65
|
Self-assembled scorpion venom proteins cross-linked chitosan nanoparticles for use in the immunotherapy. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
66
|
Elizalde-Peña E, Quintero-Ortega I, Zárate-Triviño D, Nuño-Licona A, Gough J, Sanchez I, Medina D, Luna-Barcenas G. (Chitosan- g -glycidyl methacrylate)-xanthan hydrogel implant in Wistar rats for spinal cord regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:892-900. [DOI: 10.1016/j.msec.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 12/01/2022]
|
67
|
Moreno M, Pow PY, Tabitha TST, Nirmal S, Larsson A, Radhakrishnan K, Nirmal J, Quah ST, Geifman Shochat S, Agrawal R, Venkatraman S. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization. Expert Opin Drug Deliv 2017. [PMID: 28643528 DOI: 10.1080/17425247.2017.1343297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. METHODS Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. RESULTS The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. CONCLUSIONS The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.
Collapse
Affiliation(s)
- Miguel Moreno
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Poh Yih Pow
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Tan Su Teng Tabitha
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Sonali Nirmal
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Andreas Larsson
- b School of Biological Sciences , Nanyang Technological University , Singapore
| | - Krishna Radhakrishnan
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Jayabalan Nirmal
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| | - Soo Tng Quah
- b School of Biological Sciences , Nanyang Technological University , Singapore
| | | | | | - Subbu Venkatraman
- a NTU-Northwestern Institute for Nanomedicine (NNIN), School of Material Science & Engineering (MSE) , Nanyang Technological University (NTU) , Singapore
| |
Collapse
|
68
|
El-Marakby EM, Hathout RM, Taha I, Mansour S, Mortada ND. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int J Pharm 2017; 525:123-138. [DOI: 10.1016/j.ijpharm.2017.03.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/28/2022]
|
69
|
Manivasagan P, Bharathiraja S, Moorthy MS, Oh YO, Seo H, Oh J. Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1311914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | | | - Madhappan Santha Moorthy
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yun-Ok Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Hansu Seo
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
70
|
Blagodatskikh IV, Kulikov SN, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE. N-Reacetylated Oligochitosan: pH Dependence of Self-Assembly Properties and Antibacterial Activity. Biomacromolecules 2017; 18:1491-1498. [DOI: 10.1021/acs.biomac.7b00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Inesa V. Blagodatskikh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Sergey N. Kulikov
- Kazan Federal University, Kremlyovskaya
street 18, Kazan, 420008 Russia
- Kazan Scientific
Research Institute of Epidemiology and Microbiology, Bolshaya Krasnaya street 67, Kazan, 420015 Russia
| | - Oxana V. Vyshivannaya
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Evgeniya A. Bezrodnykh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Vladimir E. Tikhonov
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| |
Collapse
|
71
|
Harris M, Ahmed H, Barr B, LeVine D, Pace L, Mohapatra A, Morshed B, Bumgardner JD, Jennings JA. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release. Int J Biol Macromol 2017; 104:1407-1414. [PMID: 28365285 DOI: 10.1016/j.ijbiomac.2017.03.141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
Stimuli-responsive biomaterials offer a unique advantage over traditional local drug delivery systems in that the drug elution rate can be controllably increased to combat developing symptomology or maintain high local elution levels for disease treatment. In this study, superparamagnetic Fe3O4 nanoparticles and the antibiotic vancomycin were loaded into chitosan microbeads cross-linked with varying lengths of polyethylene glycol dimethacrylate. Beads were characterized using degradation, biocompatibility, and elution studies with successive magnetic stimulations at multiple field strengths and frequencies. Thirty-minute magnetic stimulation induced a temporary increase in daily elution rate of up to 45% that was dependent on field strength, field frequency and cross-linker length. Beads degraded by up to 70% after 3 days in accelerated lysozyme degradation tests, but continued to elute antibiotic for up to 8 days. No cytotoxic effects were observed in vitro compared to controls. These promising preliminary results indicate clinical potential for use in stimuli-controlled drug delivery.
Collapse
Affiliation(s)
- Michael Harris
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA.
| | - Hamza Ahmed
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Brandico Barr
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - David LeVine
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Leslie Pace
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Ankita Mohapatra
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Bashir Morshed
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Joel D Bumgardner
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Jessica Amber Jennings
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| |
Collapse
|
72
|
|
73
|
Copper incorporated microporous chitosan-polyethylene glycol hydrogels loaded with naproxen for effective drug release and anti-infection wound dressing. Int J Biol Macromol 2017; 95:928-937. [DOI: 10.1016/j.ijbiomac.2016.10.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
|
74
|
Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:231-240. [DOI: 10.1016/j.msec.2016.08.085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
|
75
|
Li WW, Wang HY, Zhang YQ. A novel chitosan hydrogel membrane by an improved electrophoretic deposition and its characteristics in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:287-297. [PMID: 28254297 DOI: 10.1016/j.msec.2016.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 10/27/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Here, we report a novel chitosan hydrogel membrane (CHM) created by an improved electrophoretic deposition. Unlike a traditional CHM by electrophoretic deposition, the CHM was formed on a nanoporous film as a barrier using a homemade device at a high DC voltage (60 VDC). The CHM maximum recovery of 81.7% could be achieved after 1h of electrophoretic deposition. The transparent CHM with an elongation of 42.46% and swelling index of 538.86% was a mixture of type I and type II crystal structures. SEM revealed that the CHM had an irregular net structure. The CHM was sufficient for L-929 mouse fibroblast cell adhesion and growth. To demonstrate immunocompatibility with host tissues, H&E and TGF-β1 were observed and the expressions of TNF-α and NF-κB were measured up to 3weeks post-implantation. Although these scaffolds demonstrated an initial pro-inflammatory response, the amount of inflammatory cells and the expressions of TGF-β1 returned to baseline control values at 3weeks. The expressions of TNF-α and NF-κB had no significant difference between the experimental and control groups. Animal experiments showed that the CHM did not incite serious inflammatory reactions. Thus, the CHM is a promising medical biomaterial candidate for loading appropriate cells for use as artificial skin or in transplantation.
Collapse
Affiliation(s)
- Wen-Wen Li
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, National Engineering Laboratory for Modern Silk, Soochow University, RM702-2303, No. 199, Renai Road, Dushuhu Higher Edu. Town, Suzhou 215123, PR China
| | - Hai-Yan Wang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, National Engineering Laboratory for Modern Silk, Soochow University, RM702-2303, No. 199, Renai Road, Dushuhu Higher Edu. Town, Suzhou 215123, PR China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, National Engineering Laboratory for Modern Silk, Soochow University, RM702-2303, No. 199, Renai Road, Dushuhu Higher Edu. Town, Suzhou 215123, PR China.
| |
Collapse
|
76
|
Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater 2016; 33:71-83. [PMID: 27842886 DOI: 10.1016/j.dental.2016.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/02/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The regeneration of periodontal tissues lost as a consequence of destructive periodontal disease remains a challenge for clinicians. Guided tissue regeneration (GTR) has emerged as the most widely practiced regenerative procedure. Aim of this study was to electrospin chitosan (CH) membranes with a low or high degree of fiber orientation and examines their suitability for use as a surface layer in GTR membranes, which can ease integration with the periodontal tissue by controlling the direction of cell growth. METHODS A solution of CH-doped with polyethylene oxide (PEO) (ratio 95:5) was prepared for electrospinning. Characterization was performed for biophysiochemical and mechanical properties by means of scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, swelling ratio, tensile testing and monitoring degradation using pH analysis, weight profile, ultraviolet-visible (UV-vis) spectroscopy and FTIR analysis. Obtained fibers were also assessed for viability and matrix deposition using human osteosarcoma (MG63) and human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells. RESULTS Random and aligned CH fibers were obtained. FTIR analysis showed neat CH spectral profile before and after electrospinning. Electropsun mats were conducive to cellular attachment and viability increased with time. The fibers supported matrix deposition by hES-MPs. Histological sections showed cellular infiltration as well. SIGNIFICANCE The surface layer would act as seal to prevent junctional epithelium from falling into the defect site and hence maintain space for bone regeneration.
Collapse
Affiliation(s)
- Saad B Qasim
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Shariq Najeeb
- School of Clinical Dentistry, University of Sheffield, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Robin M Delaine-Smith
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom
| | - Andrew Rawlinson
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Ihtesham Ur Rehman
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom.
| |
Collapse
|
77
|
Mishra SK, Raveendran S, Ferreira JMF, Kannan S. In Situ Impregnation of Silver Nanoclusters in Microporous Chitosan-PEG Membranes as an Antibacterial and Drug Delivery Percutaneous Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10305-10316. [PMID: 27685160 DOI: 10.1021/acs.langmuir.6b02844] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An in situ synthesis method for preparing silver nanoclusters (AgNCs) embedded in chitosan-polyethylene glycol (CS-PEG) membranes is disclosed. The aim is to develop implantable multifunctional devices for biofilm inhibition and drug release to reduce percutaneous device related complications (PDRCs). A multiple array of characterization techniques confirmed the formation of fluorescent AgNCs with sizes of ∼3 nm uniformly distributed in CS-PEG matrix and their active role in determining the fraction and interconnectivity of the microporous membranes. The presence and increasing contents of AgNCs enhanced the mechanical stability of membranes and decreased their susceptibility to degradation in the presence of lysozyme and H2O2. Moreover, the presence and increasing concentrations of AgNCs hindered biofilm formation against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) and enabled a sustainable release of an anti-inflammatory drug naproxen in vitro until 24 h. The overall results gathered and reported in this work make the AgNCs impregnated CS-PEG membranes highly promising multifunctional devices combining efficient antibacterial activity and biocompatibility with active local drug delivery.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - Subina Raveendran
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - J M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO , Aveiro 3810 193, Portugal
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| |
Collapse
|
78
|
Merli D, Pivi F, Profumo A, Quadrelli P, Milanese C, Risi G, Visai L. Carboxymethylinulin-Chitosan Nanoparticles for the Delivery of Antineoplastic Mitoxantrone. ChemMedChem 2016; 11:2436-2444. [PMID: 27704697 DOI: 10.1002/cmdc.201600385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/05/2016] [Indexed: 11/09/2022]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent whose use is limited by serious side effects on non-neoplastic cells. The aim of this study was the development of a new drug release system using an ionotropic gelation technique for microencapsulation of MTX in chitosan-carboxymethylinulin nanoparticles (CCInp), followed by evaluation of their cytotoxic effects on neoplastic MDA-MB-231 and non-neoplastic NIH3T3 cell lines. The CCInp were prepared through a new reliable method for easy functionalization of both inulin and chitosan. Both unloaded and drug-loaded nanoparticles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and showed a spherical morphology with an average hydrodynamic diameter between 40 and 80 nm. Both nanoparticles were stable and easily degraded by lysozyme. MTX-loaded nanoparticles led to a greater mortality of MDA-MB-231 relative to free drug due to the ability of the nanoparticles to accumulate preferentially in neoplastic cells. The developed drug release system retains the ability to kill MDA-MB-231 cells in vitro, improving the survival of NIH3T3 cells.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Fabrizio Pivi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Paolo Quadrelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giulia Risi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Laboratory of Nanotechnology, S. Maugeri Foundation, Via S. Boezio, 28, 27100, Pavia, Italy
| |
Collapse
|
79
|
Cho IS, Park CG, Huh BK, Cho MO, Khatun Z, Li Z, Kang SW, Choy YB, Huh KM. Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomater 2016; 39:124-132. [PMID: 27163401 DOI: 10.1016/j.actbio.2016.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/02/2023]
Abstract
UNLABELLED Conventional eye drops quickly move away from the surface of the eye; as a result, ocular bioavailability is very limited. To overcome this issue, we developed a thermosensitive hexanoyl glycol chitosan (HGC) as a carrier for topical drug delivery to the eye. Here, we modulated the degree of N-hexanoylation to control the thermogelling behavior and prepared a new ocular formulation of HGC for glaucoma therapy. The viscosity of the aqueous formulation sharply and significantly increases at body temperature. The results from cytotoxicity evaluation showed that HGC is non-toxic at up to 1.25wt.%. In vivo experiments demonstrated that HGC is maintained on the preocular surface for a comparatively longer period of time due to its enhanced viscosity at body temperature. As a result, when brimonidine was loaded, the formulation exhibited attractive bioavailability properties as well as more prolonged period of lowered intra-ocular pressure (14h) compared with Alphagan P, the marketed medication for brimonidine treatment. STATEMENT OF SIGNIFICANCE In this manuscript, hexanoyl glycol chitosan (HGC) was synthesized by the N-hexanoylation of glycol chitosan. We have observed that an aqueous solution of HGC exhibited a dramatic increase in viscosity as the temperature increased. The HGC-based formulation showed prolonged retention on the preocular surface and enhanced drug availability and efficacy.
Collapse
|
80
|
Li M, Tan L, Tang L, Li A, Hu J. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:972-85. [DOI: 10.1080/09205063.2016.1175405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
81
|
Varoni EM, Altomare L, Cochis A, GhalayaniEsfahani A, Cigada A, Rimondini L, De Nardo L. Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomed Mater 2016; 11:025018. [DOI: 10.1088/1748-6041/11/2/025018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
82
|
Swierczewska M, Han HS, Kim K, Park JH, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 2016; 99:70-84. [PMID: 26639578 PMCID: PMC4798864 DOI: 10.1016/j.addr.2015.11.015] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022]
Abstract
Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharide-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs.
Collapse
Affiliation(s)
- M Swierczewska
- Russell H. Morgan Department of Radiology and Radiological Science, Center for Cancer Nanotechnology Excellence, Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21231, United States
| | - H S Han
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - K Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - J H Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - S Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Center for Cancer Nanotechnology Excellence, Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21231, United States
| |
Collapse
|
83
|
Chen JP, Liu CH, Hsu HL, Wu T, Lu YJ, Ma YH. Magnetically controlled release of recombinant tissue plasminogen activator from chitosan nanocomposites for targeted thrombolysis. J Mater Chem B 2016; 4:2578-2590. [PMID: 32263281 DOI: 10.1039/c5tb02579f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic cross-linking of water-soluble chitosan with sodium tripolyphosphate in the presence of recombinant tissue plasminogen activator (rtPA) and magnetite (Fe3O4) nanoparticles could produce rtPA-encapsulated magnetic chitosan nanoparticles (MCNPs-rtPA). MCNPs do not elicit cytotoxicity and hemolysis in vitro. MCNPs-rtPA showed a negligible release of the rtPA protein when stored in phosphate buffer for 28 days. In contrast, the burst release of rtPA from MCNPs-rtPA was found in the serum with 60% of the original activity released in 30 min. The drug release into the serum is also magnet-sensitive; the release could be turned down with a magnetic field when MCNPs-rtPA was pelleted and reversibly turned on after removing the magnetic field when MCNPs-rtPA was dispersed. An in vitro thrombolytic study by thromboelastometry indicated a controlled release of rtPA from MCNPs-rtPA. In a rat embolic model where a preformed blood clot lodged in the left iliac artery upstream of the pudic epigastric branch, MCNPs-rtPA (0.2 mg kg-1 rtPA) was administered and guided magnetically to the clot, followed by mobile magnetic guidance for 60 min. Iliac blood flow increased immediately in response to the treatment, and reached a stable level ∼50 min after drug administration and the hind limb perfusion rate was restored from 53% to 75% of the basal level. Effective thrombolysis was therefore successfully demonstrated at an rtPA dose equivalent to 20% of the regular dose when the MCNPs-rtPA pellet was magnet-guided to the blood clot, followed by a triggered release of rtPA when switched to mobile magnetic guidance.
Collapse
Affiliation(s)
- Jyh-Ping Chen
- Department of Chemical and Materials Engineering and Biomedical Engineering Research Center, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
84
|
Penicillin impregnation on oxygen plasma surface functionalized chitosan/ Antheraea assama silk fibroin: Studies of antibacterial activity and antithrombogenic property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:475-484. [DOI: 10.1016/j.msec.2015.11.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
|
85
|
Lin FX, Rong JL, Wang MZ, Bao DD, Wang Y, Gong ZX, Gu YF, Zhao Y, Ge XW. Chitosan-based core-shell structured particles for in vivo sustainable gene transfection. J Mater Chem B 2016; 4:893-901. [PMID: 32263162 DOI: 10.1039/c5tb02074c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A core-shell structured chitosan (CS)-based gene vector with a sustainable gene transfection effect was designed and successfully prepared in this study. The pEGFP was first combined with the thiolated and N-alkylated chitosan (TACS). Then, hydroxybutyl chitosan grafted with poly(ethylene glycol) (EG-HBC) was coated on the pEGFP-loaded TACS particles. The prepared pEGFP-loaded TACS@EG-HBC particles have a size of about 200 nm and little cytotoxicity. The in vitro and in vivo gene transfection experiments indicate that the pEGFP-loaded TACS@EG-HBC particles possess a better sustainable gene transfection capacity and a high transfection efficiency, which should be attributed to the biodegradation of the CS-based shell, the thiolation and N-alkylation modification on CS cores, and the grafted PEG chains with better biocompatibility. The in vivo gene expression of the loaded pEGFP can persist up to 60 days. This novel gene vector has a theoretical and practical significance for gene therapy with sustained transfection effect.
Collapse
Affiliation(s)
- Fu-Xing Lin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chatterjee S, Judeh ZM. Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Lv L, Tang F, Lan G. Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material. RSC Adv 2016. [DOI: 10.1039/c6ra20782k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of life-saving hemostatic materials for emergencies can reduce death caused by uncontrolled hemorrhaging.
Collapse
Affiliation(s)
- Lingmei Lv
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Fengling Tang
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
88
|
Jung SM, Yoon GH, Lee HC, Jung MH, Yu SI, Yeon SJ, Min SK, Kwon YS, Hwang JH, Shin HS. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis. Sci Rep 2015; 5:18089. [PMID: 26666701 PMCID: PMC4678456 DOI: 10.1038/srep18089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD. However, ceramide has limitation on direct use for skin because of its low dispersion properties in hydrophilic phase and side effects at excessive treatment. In this study, ceramide imbedded PLGA nanoparticles were developed with chitosan coating (Chi-PLGA/Cer) to overcome this problem. The chitosan coating enhanced initial adherence to the skin and prevented the initial burst of ceramide, but was degraded by the weakly acidic nature of skin, resulting in controlled release of ceramide with additional driving force of the squeezed PLGA nanoparticles. Additionally, the coating kinetics of chitosan were controlled by manipulating the reaction conditions and then mathematically modeled. The Chi-PLGA/Cer was not found to be cytotoxic and ceramide release was controlled by pH, temperature, and chitosan coating. Finally, Chi-PLGA/Cer was demonstrated to be effective at stratum corneum regeneration in a rat AD model. Overall, the results presented herein indicated that Chi-PLGA/Cer is a novel nanodrug for treatment of AD.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Gwang Heum Yoon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hoo Chul Lee
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Moon Hee Jung
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Sun Il Yu
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Seung Ju Yeon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Seul Ki Min
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Yeo Seon Kwon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Jin Ha Hwang
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| |
Collapse
|
89
|
Abbasi S, Yousefi G, Firuzi O, Mohammadi-Samani S. Design and cell cytotoxicity assessment of palmitoylated polyethylene glycol-grafted chitosan as nanomicelle carrier for paclitaxel. J Appl Polym Sci 2015. [DOI: 10.1002/app.43233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sahar Abbasi
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
- Center for Nanotechnology in Drug Delivery; School of Pharmacy, Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
- Center for Nanotechnology in Drug Delivery; School of Pharmacy, Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences; Shiraz PO Box 3288, 71345 Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
- Center for Nanotechnology in Drug Delivery; School of Pharmacy, Shiraz University of Medical Sciences; Shiraz PO Box 71345-1583 Iran
| |
Collapse
|
90
|
Al-Remawi M. Application of N-hexoyl chitosan derivatives with high degree of substitution in the preparation of super-disintegrating pharmaceutical matrices. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
91
|
Meneses-Juárez E, Márquez-Beltrán C, Rivas-Silva JF, Pal U, González-Melchor M. The structure and interaction mechanism of a polyelectrolyte complex: a dissipative particle dynamics study. SOFT MATTER 2015; 11:5889-5897. [PMID: 26112168 DOI: 10.1039/c5sm00911a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The mechanism of complex formation of two oppositely charged linear polyelectrolytes dispersed in a solvent is investigated by using dissipative particle dynamics (DPD) simulation. In the polyelectrolyte solution, the size of the cationic polyelectrolyte remains constant while the size of the anionic chain increases. We analyze the influence of the anionic polyelectrolyte size and salt effect (ionic strength) on the conformational changes of the chains during complex formation. The behavior of the radial distribution function, the end-to-end distance and the radius of gyration of each polyelectrolyte is examined. These results showed that the effectiveness of complex formation is strongly influenced by the process of counterion release from the polyelectrolyte chains. The radius of gyration of the complex is estimated using the Fox-Flory equation for a wormlike polymer in a theta solvent. The addition of salts in the medium accelerates the complex formation process, affecting its radius of gyration. Depending on the ratio of chain lengths a compact complex or a loosely bound elongated structure can be formed.
Collapse
Affiliation(s)
- Efrain Meneses-Juárez
- Instituto de Física "Luis Rivera Terrazas", Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico.
| | | | | | | | | |
Collapse
|
92
|
Chitosan-isoniazid conjugates: Synthesis, evaluation of tuberculostatic activity, biodegradability and toxicity. Carbohydr Polym 2015; 127:309-15. [DOI: 10.1016/j.carbpol.2015.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/05/2023]
|
93
|
Sánchez R, Alonso G, Valencia C, Franco J. Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: Influence of acyl substituent and acylation protocol. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
94
|
Kaderli S, Boulocher C, Pillet E, Watrelot-Virieux D, Rougemont A, Roger T, Viguier E, Gurny R, Scapozza L, Jordan O. A novel biocompatible hyaluronic acid–chitosan hybrid hydrogel for osteoarthrosis therapy. Int J Pharm 2015; 483:158-68. [DOI: 10.1016/j.ijpharm.2015.01.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
|
95
|
Liu Y, Piao H, Gao Y, Xu C, Tian Y, Wang L, Liu J, Tang B, Zou M, Cheng G. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity. Int J Nanomedicine 2015; 10:2295-311. [PMID: 25848251 PMCID: PMC4376263 DOI: 10.2147/ijn.s77957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), an active metabolite of irinotecan (CPT-11), is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OH)SN38 and chitosan-(C20-OH)SN38) to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OH)SN38 (CS-(10s)SN38) and chitosan-(C20-OH) SN38 (CS-(20s)SN38) were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC)0–24 of SN38 after intravenously administering CS-(10s)SN38 and CS-(20s)SN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01). A larger AUC0–24 of CS-(20s)SN38 was observed when compared to CS-(10s)SN38 (P<0.05). Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20s)SN38 exhibited better in vivo antitumor activity than CS-(10s)SN38 at a dose of 2.5 mg/kg (P<0.05). In conclusion, both macromolecular prodrug micelles improved the in vivo conversion rate and antitumor activity of SN38, but the prodrug in which C20-OH was conjugated to macromolecular materials could be a more promising platform for SN38 delivery.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Hongyu Piao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ying Gao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Caihong Xu
- Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People's Republic of China
| | - Ye Tian
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Lihong Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jinwen Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Bo Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Meijuan Zou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Gang Cheng
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
96
|
Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 2015; 5:3-19. [PMID: 25581889 PMCID: PMC4384108 DOI: 10.3390/biom5010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022] Open
Abstract
A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.
Collapse
|
97
|
Kazemzadeh-Narbat M, Annabi N, Tamayol A, Oklu R, Ghanem A, Khademhosseini A. Adenosine-associated delivery systems. J Drug Target 2015; 23:580-96. [PMID: 26453156 PMCID: PMC4863639 DOI: 10.3109/1061186x.2015.1058803] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine's extremely short half-life in human blood (<10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this article, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston 02115, MA, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Rahmi Oklu
- Massachusetts General Hospital, Harvard Medical School, Division of Interventional Radiology, Boston 02114, MA, USA
| | - Amyl Ghanem
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
98
|
Wang Z, Zhao Y, Luo Y, Wang S, Shen M, Tomás H, Zhu M, Shi X. Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Adv 2015; 5:2383-2391. [DOI: 10.1039/c4ra09839k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Zhe Wang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yili Zhao
- College of Textiles
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yu Luo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Shige Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering, Donghua University
- Shanghai 201620
- People's Republic of China
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira
- Universidade da Madeira
- 9000-390 Funchal
- Portugal
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering, Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
99
|
Physicochemical properties and cell permeation efficiency of l-ascorbic acid loaded nanoparticles prepared with N-trimethyl chitosan and N-triethyl chitosan. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
100
|
Dai S. Natural Cationic Polymers for Advanced Gene and Drug Delivery. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gene and drug delivery is becoming more and more important in the treatment of complicated human diseases. Proper gene/drug delivery systems can effectively enhance therapeutic efficiency and minimize various side-effects. To date, a variety of delivery systems have been developed. Different from synthetic materials, natural polymers are abundant in nature, renewable, non-toxic, biocompatible and biodegradable. Owing to the presence of positive charges, natural cationic polymers have found important applications in many biological fields, such as drug/gene delivery and tissue engineering. In gene delivery, natural cationic polymers can condense nucleic acids, protect them from degradation, lower the immunogenicity and improve overall transfection efficiency. In drug delivery, cationic functional groups can alter the amphiphilic properties of the polymers to ensure their suitable applications for delivering hydrophobic or protein drugs. After simple chemical modification, the derivatives of natural cationic polymers show improved performance as functional delivery carriers. In this chapter, details on the chemical modification of natural cationic polymers and their applications in gene/drug delivery is discussed.
Collapse
Affiliation(s)
- Sheng Dai
- School of Chemical Engineering, University of Adelaide Australia
| |
Collapse
|