51
|
Sloniger JA, Saengsirisuwan V, Diehl CJ, Kim JS, Henriksen EJ. Selective angiotensin II receptor antagonism enhances whole-body insulin sensitivity and muscle glucose transport in hypertensive TG(mREN2)27 rats. Metabolism 2005; 54:1659-68. [PMID: 16311101 DOI: 10.1016/j.metabol.2005.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/13/2005] [Indexed: 01/12/2023]
Abstract
Essential hypertension is frequently associated with insulin resistance of skeletal muscle glucose transport, and angiotensin II (ANGII) can contribute to the pathogenesis of both conditions. The male heterozygous TG(mREN2)27 rat (TGR) harbors the mouse transgene for renin, exhibits local tissue elevations in ANGII and is an excellent model of both hypertension and insulin resistance associated with defective insulin signaling. The present study was designed to assess the specific role of ANGII in the insulin resistance of the male heterozygous TGR. TGRs were treated with either vehicle or the ANGII (AT(1)-specific) receptor antagonist, irbesartan (50 mg/kg body weight), for 21 consecutive days. Compared with vehicle-treated TGRs, whole-body insulin sensitivity was increased 35% (P < .05) in the irbesartan-treated group, and insulin-mediated glucose transport was increased (P < .05) in both type IIb epitrochlearis (80%) and type I soleus (59%) muscles after irbesartan treatment. Moreover, glycogen synthase activation due to insulin was increased 58% (P < .05) in the soleus of the irbesartan-treated TGRs. However, no significant improvements were observed for functionality of insulin-signaling elements (tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 [IRS1], IRS1 associated with the p85 regulatory subunit of phosphatidylinositol 3'-kinase, and Ser473 of Akt) in muscle of irbesartan-treated animals, except for a 25% increase (P < .05) in IRS1 tyrosine phosphorylation in soleus. Collectively, these data indicate that the improvements in whole-body and skeletal muscle insulin action after long-term antagonism of ANGII action in TGRs occur independently of modulation of the functionality of these insulin-signaling elements.
Collapse
Affiliation(s)
- Julie A Sloniger
- Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721-0093, USA
| | | | | | | | | |
Collapse
|
52
|
Sheriff MJ, Fontes MAP, Killinger S, Horiuchi J, Dampney RAL. Blockade of AT1 receptors in the rostral ventrolateral medulla increases sympathetic activity under hypoxic conditions. Am J Physiol Regul Integr Comp Physiol 2005; 290:R733-40. [PMID: 16210417 DOI: 10.1152/ajpregu.00410.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of ANG type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM) in the maintenance of sympathetic vasomotor tone in normotensive animals is unclear. In this study, we tested the hypothesis that AT1 receptors make a significant contribution to the tonic activity of presympathetic neurons in the RVLM of normotensive rats under conditions where the excitatory input to these neurons is enhanced, such as during systemic hypoxia. In urethane-anesthetized rats, microinjections of the AT1 receptor antagonist candesartan in the RVLM during moderate hypoxia unexpectedly resulted in substantial increases in arterial pressure and renal sympathetic nerve activity (RSNA), whereas under normoxic conditions the same dose resulted in no significant change in arterial pressure and RSNA. Under hypoxic conditions, and after microinjection of the GABA(A) receptor antagonist bicuculline in the RVLM, subsequent microinjection of candesartan in the RVLM resulted in a significant decrease in RSNA. In control experiments, bilateral microinjections in the RVLM of the compound [Sar1,Thr8]ANG II (sarthran), which decreases sympathetic vasomotor activity via a mechanism that is independent of AT1 receptors, significantly reduced arterial pressure and RSNA under both normoxic and hypoxic conditions. The results indicate that, at least under some conditions, endogenous ANG II has a tonic sympathoinhibitory effect in the RVLM, which is dependent on GABA receptors. We suggest that the net effect of endogenous ANG II in this region depends on the balance of both tonic excitatory and inhibitory actions on presympathetic neurons and that this balance is altered in different physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammed J Sheriff
- Department of Physiology and Institute for Biomedical Research, F13, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
53
|
Kasper SO, Carter CS, Ferrario CM, Ganten D, Ferder LF, Sonntag WE, Gallagher PE, Diz DI. Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiol Genomics 2005; 23:311-7. [PMID: 16131528 DOI: 10.1152/physiolgenomics.00163.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic rats with targeted decreased glial expression of angiotensinogen (ASrAogen rats) did not show an increase in systolic pressure compared with Sprague-Dawley (SD) rats during aging (15-69 wk of age). ASrAogen animals had lower body weights throughout the study, similar to reports for animals with systemic knockout of angiotensinogen or treated long term with renin-angiotensin system (RAS) blockers. Further characterization of indexes of growth and metabolism in ASrAogen rats compared with (mRen2)27 and SD rats, which express elevated versus normal brain and tissue angiotensin II levels, respectively, revealed that serum leptin was 100-200% higher in SD and (mRen2)27 rats at 46 wk and 69 wk of age. Consistent with low serum leptin, ASrAogen rats had higher food intake (73%) compared with SD or (mRen2)27 rats. (mRen2)27 rats had higher resting insulin levels than ASrAogen rats at all ages. Insulin levels were constant during aging in ASrAogen rats, whereas an increase occurred in SD rats, leading to higher insulin levels at 46 and 69 wk of age compared with ASrAogen rats. IGF-1 was comparable among strains at all ages, but (mRen2)27 rats had longer and ASrAogen rats had shorter tail lengths versus SD rats at 15 wk of age. In conclusion, reduced expression of glial angiotensinogen blunts the age-dependent rise in insulin levels and weight gain, findings that mimic the effects of long-term systemic blockade of the RAS or systemic knockout of angiotensinogen. These data implicate glial angiotensinogen in the regulation of body metabolism as well as hormonal mechanisms regulating blood pressure.
Collapse
Affiliation(s)
- Sherry O Kasper
- Hypertension and Vascular Disease Center, Physiology and Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Sherrod M, Davis DR, Zhou X, Cassell MD, Sigmund CD. Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1763-9. [PMID: 16109805 DOI: 10.1152/ajpregu.00435.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.
Collapse
Affiliation(s)
- Mikhiela Sherrod
- Genetics Graduate Program, Roy J. and Lucille A. Carver College of Medicine, Univ. of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
55
|
Voigt JP, Hörtnagl H, Rex A, van Hove L, Bader M, Fink H. Brain angiotensin and anxiety-related behavior: The transgenic rat TGR(ASrAOGEN)680. Brain Res 2005; 1046:145-56. [PMID: 15869747 DOI: 10.1016/j.brainres.2005.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 11/21/2022]
Abstract
The transgenic rat TGR(ASrAOGEN)680, characterized by a transgene-producing antisense RNA against angiotensinogen in the brain, provides an opportunity to study the behavioral effects of angiotensin. While exposed to the elevated plus-maze (EPM) and the light/dark box, TGR(ASrAOGEN)680 rats showed more signs of anxiety compared to parental Sprague-Dawley (SD) rats. In the EPM, they made fewer entries into the open arms, spent less time there and more time on the closed arms. Head dips were reduced and U-turns were increased. In the light/dark box, the latency to the first re-entry into the light compartment was higher in TGR(ASrAOGEN)680. They displayed more SAP out from the dark and a reduced number of transitions between the two compartments. In the social interaction test, active social contacts were reduced, further suggesting an anxious phenotype. Although there was no transgenic effect on distance traveled in the open field, the more anxious TGR(ASrAOGEN)680 spent less time in the inner zone. Self-grooming was increased in TGR(ASrAOGEN)680 during exposure to the EPM and the open field, but was decreased in the social interaction test. In TGR(ASrAOGEN)680, tissue content of 5-HT and its metabolite 5-HIAA was lower in the hippocampus, frontal, and parietal cortex. HIAA and 5-HIAA/5-HT ratios were reduced in the hypothalamus, striatum, and septum. In the open field, the anxiogenic effect of the 5-HT2C/1B receptor agonist mCPP (0.5-1 mg/kg IP) was more pronounced in TGR(ASrAOGEN)680. The data suggest an anxious phenotype in rats with low brain angiotensinogen, possibly related to secondary dysfunctions of the brain serotonergic system.
Collapse
Affiliation(s)
- Jörg-Peter Voigt
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
56
|
Reaux-Le Goazigo A, Iturrioz X, Fassot C, Claperon C, Roques BP, Llorens-Cortes C. Role of angiotensin III in hypertension. Curr Hypertens Rep 2005; 7:128-34. [PMID: 15748538 DOI: 10.1007/s11906-005-0087-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hyperactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III display the same affinity for type 1 and type 2 Ang II receptors. Both peptides, injected intracerebroventricularly, similarly increase blood pressure (BP); however, because Ang II is converted in vivo to Ang III, the identity of the true effector is unknown. In this article, we review new insights into the predominant role of brain Ang III in the control of BP, underlining the fact that brain aminopeptidase A (APA), the enzyme-forming central Ang III, could constitute a putative central therapeutic target for the treatment of hypertension. This justifies the development of potent systemically active APA inhibitors, such as RB150, as prototypes of a new class of antihypertensive agents for the treatment of certain forms of hypertension.
Collapse
|
57
|
Gard PR. The brain renin-angiotensin system: a target for novel antidepressants and anxiolytics. Drug Dev Res 2005. [DOI: 10.1002/ddr.20028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
58
|
Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, Roques BP, Llorens-Cortes C. Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci U S A 2004; 101:7775-80. [PMID: 15136730 PMCID: PMC419682 DOI: 10.1073/pnas.0402312101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several types of experimental and genetic hypertension animal models. We previously reported that in the murine brain, aminopeptidase A (APA) is involved in the conversion of angiotensin II (AngII) to AngIII and that AngIII is one of the main effector peptides of the brain RAS in the control of vasopressin release. Here we report that brain AngIII exerts a tonic stimulatory effect on blood pressure in a model of salt-dependent hypertension, the DOCA-salt rat, characterized by a depressed systemic but a hyperactive brain RAS. Similar high blood pressure accompanied by a low systemic renin state was described in some patients, especially in hypertensive African Americans who are resistant to treatment by blockers of the systemic RAS. We developed RB150, a prodrug of the specific and selective APA inhibitor, EC33. RB150 given i.v. is able to cross the blood-brain barrier, to inhibit brain APA, and to block the formation of central AngIII. A single dose of systemic RB150 (15 mg/kg, i.v.) in conscious DOCA-salt rats inhibited brain APA activity and markedly reduced blood pressure for up to 24 h. These results demonstrate the crucial role of brain APA as a candidate target for the treatment of hypertension and suggest that RB150, a potent systemically active APA inhibitor, could be the prototype of a new class of antihypertensive agents for the treatment of certain forms of hypertension.
Collapse
Affiliation(s)
- Marie-Claude Fournie-Zaluski
- Institut National de la Santé et de la Recherche Médicale U266, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8600, Département de Pharmacochimie Moléculaire et Structurale, 4 Avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Bäcker A, Bader M, Ganten D, Cervenka L. Plasma and kidney angiotensin II levels and renal functional responses to AT1 receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens 2004; 22:819-25. [PMID: 15126925 DOI: 10.1097/00004872-200404000-00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The first aim of the present study was to assess plasma and kidney angiotensin II (ANG II) levels and renal cortical ANG II receptor subtype 1A (AT1A) mRNA expression in hypertensive Ren-2 transgenic rats (TGR) and in normotensive Hannover Sprague-Dawley (HanSD) rats. The second aim was to investigate potential differences between TGR and HanSD in blood pressure (BP) and renal functional responses to either intravenous (i.v.), i.e. systemic, or intrarenal (i.r.) AT1 receptor blockade with candesartan. METHODS Rats were anesthetized and prepared for clearance experiments. In series 1, ANG II concentrations were assayed by radioimmunoassay and renal cortical AT1A mRNA expression by semiquantitative reverse transcriptase-polyacrylamide gel electrophoresis. In series 2, BP and renal functional responses were evaluated after either i.v. or i.r. bolus administration of candesartan. RESULTS Plasma and kidney ANG II levels were significantly lower in TGR than in HanSD (39 +/- 5 versus 107 +/- 19 fmol/ml and 251 +/- 41 versus 571 +/- 95 fmol/g, respectively, P < 0.05). Renal AT1A mRNA expression was not different between TGR and HanSD. Intravenous candesartan caused comparable decreases in BP in TGR and HanSD and did not change renal plasma flow (RPF) or absolute and fractional sodium excretion in HanSD. In contrast, i.v. candesartan significantly increased RPF (+27 +/- 6%, P < 0.05) and absolute and fractional sodium excretion (+49 +/- 10 and + 42 +/- 9%, respectively P < 0.05) in TGR without changing glomerular filtration rate (GFR). Acute i.r. candesartan increased RPF by +36 +/- 6% (P < 0.05) in TGR but not in HanSD with a greater rise in absolute and fractional sodium excretion in TGR (+124 +/-8 and 97 +/- 9%, respectively) than in HanSD (+81 +/- 9 and +69 +/- 8%, respectively) (P < 0.05). CONCLUSIONS The enhanced responses of RPF and sodium excretion to AT1 receptor blockade in TGR suggest that renal hemodynamics and sodium excretion in TGR are under strong ANG II influence. The compromised ability of the kidney to respond to BP elevations by appropriate increases in sodium excretion may contribute to the maintenance of high BP in TGR. Thus, the present findings provide new insights into the pathophysiology of hypertension in this model.
Collapse
Affiliation(s)
- Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídenská, CZ-140 21 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P, Bernstein KE. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 2004; 43:854-9. [PMID: 14769811 DOI: 10.1161/01.hyp.0000119190.06968.f1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is uncertainty about the contribution of angiotensin-converting enzyme (ACE) to angiotensin II formation, with recent studies suggesting that non-ACE enzymes may be the predominant pathway of angiotensin II formation in kidney, heart, and lung. To investigate the role of ACE in angiotensin II formation, we measured angiotensin I and II levels in blood, kidney, and heart of 2 mouse genetic models (ACE.1 and ACE.4) of reduced somatic ACE gene expression and in blood, kidney, heart, lung, adrenal, and brain of mice administered the ACE inhibitor lisinopril. We also measured the levels of bradykinin (1-9) and its ACE metabolite bradykinin (1-7). Reduced ACE gene expression and ACE inhibition had similar effects on angiotensin and bradykinin peptide levels. Angiotensin II levels were reduced by 70% to 97% in blood, 92% to 99% in kidney, 93% to 99% in heart, 97% in lung, and 85% in adrenal and brain. The marked reductions in angiotensin II/angiotensin I ratio indicated that ACE was responsible for at least 90% of angiotensin I conversion to angiotensin II in blood, kidney, heart, lung, and brain, and at least 77% in adrenal. Blood bradykinin (1-9) levels were increased 6.4-fold to 8.4-fold. Heart bradykinin (1-9) levels were increased in ACE.4 mice and the bradykinin (1-7)/bradykinin (1-9) ratio was reduced in kidney and heart of ACE.4 mice and heart of lisinopril-treated mice. These studies demonstrate that ACE is the predominant pathway of angiotensin II formation in blood and tissues of mice and plays a major role in bradykinin (1-9) metabolism in blood and, to a lesser extent, in kidney and heart.
Collapse
Affiliation(s)
- Duncan J Campbell
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
61
|
Aileru AA, Logan E, Callahan M, Ferrario CM, Ganten D, Diz DI. Alterations in Sympathetic Ganglionic Transmission in Response to Angiotensin II in (mRen2)27 Transgenic Rats. Hypertension 2004; 43:270-5. [PMID: 14732737 DOI: 10.1161/01.hyp.0000112422.81661.f3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertension in (mRen2)27 transgenic rats is partly dependent on activation of the sympathetic nervous system, but the role of ganglionic transmission is unknown. We assessed indices of synaptic plasticity (post-tetanic short-term potentiation [PTP] and long-term potentiation [LTP]) and sympathetic ganglionic transmission without tetany in superior cervical ganglia (SCG) of Hannover Sprague-Dawley rats (HnSD) versus (mRen2)27 rats. There were no differences in decay time constants [PTP=9 minutes; LTP=120 to 150 minutes in both (mRen2)27 and HnSD]. However, angiotensin (Ang) II increased PTP and LTP in SCG isolated from (mRen2)27 rats to a greater extent than HnSD. Candesartan (an AT
1
antagonist) blocked the potentiation in both groups. Without a preceding tetanic pulse, 16-nM Ang II induced similar significant increases in ganglionic transmission of ≈14% in both strains. Assessment of Ang II receptors by
125
I-[Sar
1
Thr
8
]-Ang II binding showed that the AT
1
-receptor subtype predominates in the ganglia. The density of receptors in the SCG was comparable in (mRen2)27 and HnSD rats, whether measured in tissue from ganglia removed and frozen versus ganglia used in the transmission testing, suggesting that upregulation of receptors in vitro after removal of SCG did not occur. The divergence of effects of Ang II on LTP and PTP [greater in (mRen2)27 than HnSD] and nontetany ganglionic transmission (similar in both strains) may reflect different locations of receptors (pre- versus postsynaptic) or different signaling mechanisms involved in the two responses. We suggest that functional Ang II receptors in SCG mediate physiological actions of Ang II on ganglionic transmission and may play a pivotal role in hypertension.
Collapse
Affiliation(s)
- Azeez A Aileru
- Biomedical Research Infrastructure Center, Winston-Salem State University, 115 S Chestnut St, Winston-Salem, NC 27101, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Kasper SO, Ferrario CM, Ganten D, Diz DI. Central depletion of angiotensinogen is associated with elevated AT1 receptors in the SFO and PVN. Neurotox Res 2004; 6:259-65. [PMID: 15545009 DOI: 10.1007/bf03033436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The brain renin-angiotensin system (RAS) is important in fluid balance and blood pressure regulation. In this study, we compared angiotensin (Ang) receptor density in the subfornical organ (SFO) and paraventricular nucleus (PVN) of a) brain angiotensinogen deficient rats (ASrAogen); b) those with high levels of brain Ang II [(mRen2)27]; c) Hannover Sprague Dawley (SD) rats at 48 and 68 wks of age. Since there was no difference between the two ages in any of the three strains, the data from the 48 and 68 wk time points were combined. There was a significantly higher level of AT1 receptors in the SFO and PVN of ASrAogen animals compared to both the SD and (mRen2)27 rats. This suggests that the brain RAS is important in regulating receptor density and that the differences may be explained by lower levels of the peptide locally. These higher levels of receptors suggest that the ASrAogen animals in adulthood and early aging would be more sensitive to either circulating or endogenous brain Ang II than the SD animals of similar age. In contrast, the similar receptor density in the (mRen2)27 and SD rats suggest that previous reports of reduced responses in the (mRen2)27 rats may result from differences in post receptor mechanisms such as intracellular signaling. Moreover, our data reveal that functional assessments are necessary in addition to receptor density levels to understand the consequences of long-term alterations in brain tissue peptides.
Collapse
Affiliation(s)
- Sherry O Kasper
- The Hypertension and Vascular Disease Center and Physiology/Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | |
Collapse
|
63
|
Lakkis J, Lu WX, Weir MR. RAAS escape: a real clinical entity that may be important in the progression of cardiovascular and renal disease. Curr Hypertens Rep 2003; 5:408-17. [PMID: 12948434 DOI: 10.1007/s11906-003-0087-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interruption of the renin-angiotensin-aldosterone system (RAAS) at different levels is target-organ protective in several disease states; however, complete blockade is unlikely to be achieved due to escape mechanisms whenever blockade is attempted, incomplete knowledge of the role of all elements of the RAAS, and lack of pharmacotherapy against some elements that have been shown to contribute to disease states. Aldosterone has been overlooked as a mediator of RAAS escape and a key factor in target-organ injury despite the use of available RAAS blockers. Aldosterone is thought to play a role in the development of hypertension, alteration in vascular structure, vascular smooth muscle hypertrophy, endothelial dysfunction, structural renal injury, proteinuria, left ventricular remodeling, collagen synthesis, and myocardial fibrosis. Aldosterone receptor antagonists have been shown to antagonize all these effects in experimental models. Clinical trials with aldosterone antagonists showed an improvement in survival and left ventricular mass index in patients with congestive heart failure, and a reduction in urinary protein excretion and left ventricular mass index in patients with type 2 diabetes and early nephropathy who developed aldosterone synthesis escape. Consequently, aldosterone receptor antagonists may have specific benefits for reducing target-organ injury, particularly if there is evidence of RAAS escape.
Collapse
Affiliation(s)
- Jay Lakkis
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
64
|
Ahmad Z, Milligan CJ, Paton JFR, Deuchars J. Angiotensin type 1 receptor immunoreactivity in the thoracic spinal cord. Brain Res 2003; 985:21-31. [PMID: 12957365 DOI: 10.1016/s0006-8993(03)03112-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) in the central nervous system (CNS) plays a pivotal role in determining blood pressure. However, the relationship of the receptor to neurones in the spinal cord which are the final CNS contribution to sympathetic outflow is unknown. Here we first use RT-PCR to show that AT1A, AT1B and AT2 receptors are expressed in thoracic spinal cord of the rat. Using light microscopic immunohistochemistry we find that the AT1 receptor in the thoracic spinal cord is located on neurones and ependymal cells. Neurones with extensive immunostaining of somata and dendrites were located in the intermediolateral cell column (IML) and lamina X (the central autonomic area), regions associated with autonomic outflow, as well as in lamina V. Retrograde labelling and dual immunolabelling with nNOS revealed that those AT1R-immunopositive cells in the IML were sympathetic preganglionic neurones, while those in lamina X were unlikely to be. Punctate labelling resembling that of axonal fibres and terminals was evident in lamina II of the dorsal horn and throughout the cord. Electron microscopy in the IML and lamina X revealed that these puncta were presynaptic terminals, but also astrocyte processes. Immunolabelling was also evident beneath the plasma membrane in neuronal somata. These data show that the AT1R in the spinal cord is ideally located to influence autonomic outflow and hence participate in the CNS determination of blood pressure.
Collapse
Affiliation(s)
- Zai Ahmad
- School of Biomedical Sciences, The Worsley Building, University of Leeds, Leeds LS2 9NQ, UK
| | | | | | | |
Collapse
|
65
|
Davisson RL. Physiological genomic analysis of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2003; 285:R498-511. [PMID: 12909574 DOI: 10.1152/ajpregu.00190.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been considered pivotal in cardiovascular regulation and important in the pathogenesis of hypertension and heart failure. However, despite more than 30 years of study, the brain RAS continues to defy explanation. Our lack of understanding of how the brain RAS is organized at the cellular and regional levels has made it difficult to resolve long-sought questions of how ANG II is produced in the brain and the precise mechanisms by which it exerts its actions. A major reason for this is the difficulty in experimentally dissecting the brain RAS at the regional, cellular, and whole organism levels. Recently, we and others developed a series of molecular tools for selective manipulation of the murine brain RAS, in parallel with technologies for integrative analysis of cardiovascular and volume homeostasis in the conscious mouse. This review, based in part on a lecture given in conjunction with the American Physiological Society Young Investigator Award in Regulatory and Integrative Physiology (Water and Electrolyte Homeostasis Section), outlines the physiological genomics strategy that we have taken in an effort to unravel some of the complexities of this system. It also summarizes the principles, progress, and prospects for a better understanding of the brain RAS in health and disease.
Collapse
Affiliation(s)
- Robin L Davisson
- Dept. of Anatomy and Cell Biology, 1-251 Bowen Science Bldg., The Univ. of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
66
|
Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 2003; 139:191-202. [PMID: 12770924 PMCID: PMC1573858 DOI: 10.1038/sj.bjp.0705262] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 02/27/2003] [Indexed: 11/08/2022] Open
Abstract
This review focuses on the dysfunction of the intrinsic brain renin-angiotensin system (RAS) in the pathogenesis of hypertension. Hyperactivity of the brain RAS plays a critical role in mediating hypertension in both humans and animal models of hypertension, including the spontaneously hypertensive rat (SHR). The specific mechanisms by which increased brain RAS activity results in hypertension are not well understood but include increases in sympathetic vasomotor tone and impaired arterial baroreflex function. We discuss the contribution of endogenous angiotensin (Ang) II actions on presympathetic vasomotor rostral ventrolateral medulla neurons to enhance sympathetic activity and maintain hypertension. In addition, we discuss Ang II-induced attenuation of afferent baroreceptor feedback within the nucleus tractus solitarius and its relevance to the development of hypertension. We also outline the cellular and molecular mechanisms of Ang II signal transduction that may be critical for the initiation and establishment of hypertension. In particular, we present evidence for a phosphoinositide-3-kinase-dependent signaling pathway that appears to contribute to hypertension in the SHR, possibly via augmented Ang II-induced increases in neuronal firing rate and enhanced transcriptional noradrenaline neuromodulation. Finally, we outline future directions in utilizing our understanding of the brain RAS dysfunction in hypertension for the development of improved therapeutic intervention in hypertension.
Collapse
Affiliation(s)
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, U.S.A
| |
Collapse
|
67
|
Clark MA, Tallant EA, Tommasi E, Bosch S, Diz DI. Angiotensin-(1-7) reduces renal angiotensin II receptors through a cyclooxygenase-dependent mechanism. J Cardiovasc Pharmacol 2003; 41:276-83. [PMID: 12548089 DOI: 10.1097/00005344-200302000-00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the kidney, angiotensin-(1-7) [Ang-(1-7)] exhibits diuretic and natriuretic properties associated with an increase in prostaglandin production. The prohypertensive effects of Ang II are attenuated in rats infused with Ang-(1-7), consistent with recent work showing that Ang-(1-7) downregulates AT1 receptors in Chinese hamster ovary-AT1A or vascular smooth muscle cells. To determine whether exposure to Ang-(1-7) reduces AT1 receptors in the kidney through an increase in prostaglandin production, kidney slices from Sprague-Dawley rats were incubated with 10 n -1 microM Ang-(1-7) in the presence or absence of 5 microM meclofenamate, a cyclooxygenase inhibitor. Following these treatments, the kidney slices were retrieved, frozen, and sectioned for determination of [125I]-Ang II binding using in vitro receptor autoradiography. Greater than 90% of the specific binding was competed for by losartan, indicating that the majority of binding was to the AT1 receptor. Incubation of kidney slices with 1 microM Ang-(1-7) caused a 20% reduction in [125I]-Ang II binding (n = 8) in the cortical tubulointerstitium, which was prevented when Ang-(1-7)-treated slices were incubated in the presence of 5 microM meclofenamate (1 +/- 2% increase, n = 8; p < 0.05). Incubation with 5 microM meclofenamate alone had no effect on [125I]-Ang II binding (-3 +/- 3%). The decrease in [125I]-Ang II binding with Ang-(1-7) was also blocked by the Ang-(1-7) antagonist [d-Ala7]-Ang-(1-7). Treatment with 1 microM [d-Ala7]-Ang-(1-7) alone had no effect on [125I]-Ang II binding (-3 +/- 6% of control). Pretreatment with 1 microM Ang II caused a similar reduction in [125I]-Ang II binding in the cortical tubulointerstitium. Neither Ang-(1-7) nor Ang II had any effect on [125I]-Ang II binding in the glomeruli and the area of the vasa recta of the kidney. These original findings suggest that prior exposure to Ang-(1-7) or Ang II causes a modest decrease in the number of AT1 receptors in the cortical tubulointerstitial area of the kidney. The reduction in Ang II binding by Ang-(1-7) was blocked by meclofenamate and [d-Ala7]-Ang-(1-7), suggesting that cyclooxygenase products released through activation of a novel receptor participate in this effect.
Collapse
Affiliation(s)
- Michelle A Clark
- The Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, U.S.A
| | | | | | | | | |
Collapse
|
68
|
Góźdź A, Szczepańska-Sadowska E, Maśliński W, Kumosa M, Szczepańska K, Dobruch J. Differential expression of vasopressin V1a and V1b receptors mRNA in the brain of renin transgenic TGR(mRen2)27 and Sprague-Dawley rats. Brain Res Bull 2003; 59:399-403. [PMID: 12507692 DOI: 10.1016/s0361-9230(02)00943-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent evidence indicates that renin transgenic rats TGR(mRen2)27 (TGR) manifest increased activity of the central vasopressinergic system. Because one of the reasons for this finding could be an increased synthesis of vasopressin receptors, we determined in the present study expression of V1a and V1b vasopressin receptors (R) mRNA in the brain of TGR rats and of their parent Sprague-Dawley (SD) strain. Competitive PCR method was applied for quantitative analysis of V1a and V1b receptors mRNA in the preoptic, diencephalic, mesencephalopontine and medullary regions. V1aR mRNA expression was similar in SD and TGR rats in the preoptic, diencephalic and mesencephalopontine regions. In the medullary region expression of V1aR mRNA was significantly lower in TGR than in SD rats. V1bR mRNA did not differ in TGR and SD rats in the preoptic, diencephalic and medullary region whereas it was significantly elevated in the mesencephalopontine region. The results provide evidence for differential regulation of V1a and V1b receptors genes in the brain stem of TGR rats that is manifested by downregulation of V1aR mRNA in the medulla and upregulation of V1bR mRNA in the mesencephalopontine region.
Collapse
Affiliation(s)
- A Góźdź
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
69
|
Nakamura S, Averill DB, Chappell MC, Diz DI, Brosnihan KB, Ferrario CM. Angiotensin receptors contribute to blood pressure homeostasis in salt-depleted SHR. Am J Physiol Regul Integr Comp Physiol 2003; 284:R164-73. [PMID: 12482748 DOI: 10.1152/ajpregu.00210.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the contribution of angiotensin peptides acting at various receptor subtypes to the arterial pressure and heart rate of adult 9-wk-old male conscious salt-depleted spontaneously hypertensive rats (SHR). Plasma ANG II and ANG I in salt-depleted SHR were elevated sevenfold compared with peptide levels measured in sodium-replete SHR, whereas plasma ANG-(1-7) was twofold greater in salt-depleted SHR compared with salt-replete SHR. Losartan (32.5 micromol/kg), PD-123319 (0.12 micromol. kg(-1). min(-1)), [d-Ala(7)]ANG-(1-7) (10 and 100 pmol/min), and a polyclonal ANG II antibody (0.08 mg/min) were infused intravenously alone or in combination. Combined blockade of AT(2) and AT((1-7)) receptors significantly increased the blood pressure of losartan-treated SHR (+15 +/- 1 mmHg; P < 0.01); this change did not differ from the blood pressure elevation produced by the sole blockade of AT((1-7)) receptors (15 +/- 4 mmHg). On the other hand, sole blockade of AT(2) receptors in losartan-treated SHR increased mean arterial pressure by 8 +/- 1 mmHg (P < 0.05 vs. 5% dextrose in water as vehicle), and this increase was less than the pressor response produced by blockade of AT((1-7)) receptors alone or combined blockade of AT((1-7)) and AT(2) receptors. The ANG II antibody increased blood pressure to the greatest extent in salt-depleted SHR pretreated with only losartan (+11 +/- 2 mmHg) and to the least extent in salt-depleted SHR previously treated with the combination of losartan, PD-123319, and [d-Ala(7)]ANG-(1-7) (+7 +/- 1 mmHg; P < 0.01). Losartan significantly increased heart rate, whereas other combinations of receptor antagonists or the ANG II antibody did not alter heart rate. Our results demonstrate that ANG II and ANG-(1-7) act through non-AT(1) receptors to oppose the vasoconstrictor actions of ANG II in salt-depleted SHR. Combined blockade of AT(2) and AT((1-7)) receptors and ANG II neutralization by the ANG II antibody reversed as much as 67% of the blood pressure-lowering effect of losartan.
Collapse
Affiliation(s)
- Shigefumi Nakamura
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
70
|
Wong LF, Polson JW, Murphy D, Paton JFR, Kasparov S. Genetic and pharmacological dissection of pathways involved in the angiotensin II-mediated depression of baroreflex function. FASEB J 2002; 16:1595-601. [PMID: 12374782 DOI: 10.1096/fj.02-0099com] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure and hypertension are associated with increases in angiotensin II (ANG II) activity. One brain area where ANG II effects may be particularly important in these situations is the nucleus of the solitary tract (NTS). Located in the dorsomedial medulla, the NTS is the termination site of baroreceptor afferents and is essential for mediating the baroreflex. In hypertensive animals the baroreflex is impaired; this may be reversed by antagonizing ANG II AT1 receptors in the NTS. Recently, we showed that the baroreflex depressant action of ANG II in the NTS is mediated by activation of endothelial nitric oxide synthase (eNOS) and enhanced release of GABA. Using conventional pharmacological tools and a range of adenoviral-mediated expression of dominant negative proteins, we have determined the intracellular pathway(s) in the NTS by which ANG II activates eNOS. Our data indicate that ANG II acting in the NTS depresses the baroreflex via a Gq protein-mediated activation of phospholipase C, which through 1,4,5-inositol triphosphate causes release of calcium from the IP3-sensitive intracellular stores and calcium-calmodulin formation. In contrast, multiple site disruption of a pathway leading to eNOS activation via the serine/threonine kinase Akt was ineffective
Collapse
Affiliation(s)
- Liang-Fong Wong
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | | | | | | | |
Collapse
|
71
|
Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid angiotensin I and angiotensin II concentrations during local angiotensin-converting enzyme inhibition. J Am Soc Nephrol 2002; 13:2207-12. [PMID: 12191964 DOI: 10.1097/01.asn.0000026610.48842.cb] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It was recently demonstrated that angiotensin II (AngII) concentrations in the renal interstitial fluid (RIF) of anesthetized rats were in the nanomolar range and were not reduced by intra-arterial infusion of an angiotensin-converting enzyme (ACE) inhibitor (enalaprilat). This study was performed to determine changes in RIF AngI and AngII concentrations during interstitial administration of ACE inhibitors (enalaprilat and perindoprilat). Studies were also performed to determine the effects of enalaprilat on the de novo formation of RIF AngII elicited by interstitial infusion of AngI. Microdialysis probes (cut-off point, 30,000 D) were implanted in the renal cortex of anesthetized rats and were perfused at 2 micro l/min. The effluent dialysate concentrations of AngI and AngII were measured by RIA, and reported values were corrected for the equilibrium rates at this perfusion rate. Basal RIF AngI (0.74 +/- 0.05 nM) and AngII (3.30 +/- 0.17 nM) concentrations were much higher than plasma AngI and AngII concentrations (0.15 +/- 0.01 and 0.14 +/- 0.01 nM, respectively; n = 27). Interstitial infusion of enalaprilat through the microdialysis probe (1 or 10 mM in the perfusate; n = 5 and 8, respectively) significantly increased RIF AngI concentrations but did not significantly alter AngII concentrations. However, perindoprilat (10 mM in the perfusate, n = 7) significantly decreased RIF AngII concentrations by 22 +/- 4% and increased RIF AngI concentrations. Interstitial infusion of AngI (100 nM in the perfusate, n = 7) significantly increased the RIF AngII concentration to 8.26 +/- 0.75 nM, whereas plasma AngI and AngII levels were not affected (0.15 +/- 0.02 and 0.14 +/- 0.02 nM, respectively). Addition of enalaprilat to the perfusate (10 mM) prevented the conversion of exogenously added AngI. These results indicate that addition of AngI in the interstitial compartment leads to low but significant conversion to AngII via ACE activity (blocked by enalaprilat). However, the addition of ACE inhibitors directly into the renal interstitium, via the microdialysis probe, either did not reduce RIF AngII levels or reduced levels by a small fraction of the total basal level, suggesting that much of the RIF AngII is formed at sites not readily accessible to ACE inhibition or is formed via non-ACE-dependent pathways.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | | | | |
Collapse
|
72
|
Diz DI, Jessup JA, Westwood BM, Bosch SM, Vinsant S, Gallagher PE, Averill DB. Angiotensin peptides as neurotransmitters/neuromodulators in the dorsomedial medulla. Clin Exp Pharmacol Physiol 2002; 29:473-82. [PMID: 12010195 DOI: 10.1046/j.1440-1681.2002.03659.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present review provides an update on evidence of the neurotransmitter pathways and location of receptors within the nucleus tractus solitarii (NTS) mediating the baroreflex and other haemodynamic actions of angiotensin (Ang) II. 2. A series of studies suggests a significant role for substance P in the acute cardiovascular and carotid sinus chemoreceptor facilitatory actions of AngII in the NTS. The use of antisense oligonucleotides to AT1 receptors indicates both pre- and post-synaptic AngII receptors are likely to be involved in these actions. 3. With respect to baroreceptor reflex actions, it is clear that endogenous AngII impairs the gain for operation of the baroreceptor reflex, because AT1 receptor antagonists facilitate reflex function. This effect is either independent of substance P or involves inhibition of release. Moreover, initial data obtained using antisense oligonucleotides to AT1 receptors suggest that, in the NTS, the effect of endogenous AngII on the baroreceptor reflex is mainly due to presynaptic actions on vagal or carotid sinus afferent fibres. In contrast, the level of endogenous AngII within the NTS appears to have variable effects on activation of cardiopulmonary vagal afferent fibres by phenylbiguanide. These results indicate a divergence of effects of AngII on reflexes evoked by these two different types of sensory input. 4. Use of transgenic rats with alterations in brain angiotensin peptides allowed us to assess the effect of long-term alterations in brain Ang peptides on reflex function. We studied (mRen2)27 transgenic rats (TGR(mRen2)) with high brain medulla AngII levels and transgenic rats with angiotensinogen (Aogen) antisense linked to glial fibrillary acidic protein promoter (TGR(ASrAogen)) with greatly reduced brain Aogen. The reflex evoked by activation of cardiac vagal chemosensitive afferent fibres was enhanced in TGR(ASrAogen), whereas the baroreceptor reflex control of heart rate was attenuated in TGR(mRen2), further confirming a divergence of effects of AngII on these two sensory modalities. 5. The overall results are consistent with a sustained inhibitory effect of AngII on the baroreceptor reflexes, with dose-dependent or activation-dependent effects on cardiac vagal afferent fibre activation. Moreover, alterations in substance P pathways may contribute to the actions of AngII on reflex function.
Collapse
Affiliation(s)
- Debra I Diz
- The Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Sawathiparnich P, Kumar S, Vaughan DE, Brown NJ. Spironolactone abolishes the relationship between aldosterone and plasminogen activator inhibitor-1 in humans. J Clin Endocrinol Metab 2002; 87:448-52. [PMID: 11836266 DOI: 10.1210/jcem.87.2.7980] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recent studies have defined a link between the renin-angiotensin-aldosterone system and fibrinolysis. The present study tests the hypothesis that endogenous aldosterone regulates plasminogen activator inhibitor-1 (PAI-1) production in humans. Hemodynamic parameters, PAI-1 and tissue-type plasminogen activator (t-PA) antigen, potassium, PRA, angiotensin II, and aldosterone were measured in nine male hypertensive subjects after a 3-wk washout, after 2 wk of hydrochlorothiazide (HCTZ; 25 mg plus 20 mmol KCl/d), and after 2 wk of spironolactone (100 mg/d plus KCl placebo). Spironolactone (P = 0.04), but not HCTZ (P = 0.57 vs. baseline; P = 0.1 vs. spironolactone), significantly lowered systolic blood pressure. Angiotensin II increased from baseline during both HCTZ (P = 0.02) and spironolactone (P = 0.02 vs. baseline; P = 0.19 vs. HCTZ) treatments. Although both HCTZ (P = 0.004) and spironolactone (P < 0.001 vs. baseline) increased aldosterone, the effect was greater with spironolactone (P < 0.001 vs. HCTZ). HCTZ increased PAI-1 antigen (P = 0.02), but did not alter t-PA antigen. In contrast, there was no effect of spironolactone on PAI-1 antigen (P = 0.28), whereas t-PA antigen was increased (P = 0.01). There was a significant correlation between PAI-1 antigen and serum aldosterone during both baseline and HCTZ study days (r(2) = 0.57; P = 0.0003); however, treatment with spironolactone abolished this correlation (r(2) = 0.13; P = 0.33). This study provides evidence that endogenous aldosterone influences PAI-1 production in humans.
Collapse
Affiliation(s)
- Pairunyar Sawathiparnich
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
74
|
Brown NJ, Abbas A, Byrne D, Schoenhard JA, Vaughan DE. Comparative effects of estrogen and angiotensin-converting enzyme inhibition on plasminogen activator inhibitor-1 in healthy postmenopausal women. Circulation 2002; 105:304-9. [PMID: 11804984 DOI: 10.1161/hc0302.102570] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study compares the effect of estrogens and ACE inhibition on plasminogen activator inhibitor-1 (PAI-1) concentrations in healthy postmenopausal women, genotyped for a 4G/5G polymorphism in the PAI-1 promoter, a polymorphism shown to influence PAI-1 concentrations. Methods and Results- Morning estradiol, PAI-1, tissue plasminogen activator, plasma renin activity, angiotensin II, and aldosterone were measured in 19 postmenopausal women (5G/5G:4G/5G:4G4G=5:10:4, respectively) at baseline and during randomized, single-blind, crossover treatment with conjugated equine estrogens 0.625 mg per os per day, ramipril 10 mg per os per day, and combination estrogens and ramipril. Estradiol (P<0.005) and angiotensin II (P<0.01) were significantly higher during estrogens. Plasma renin activity was significantly increased during ACE inhibition (P<0.05). Both conjugated estrogens [PAI-1 antigen from 12.5 (7.6, 17.4) [mean (95% CI)] baseline to 6.6 (2.6, 10.7) ng/mL, P<0.01] and ACE inhibition [8.3 (4.9, 11.7) ng/mL, P<0.005] decreased PAI-1 without decreasing tissue plasminogen activator. The effect of combined therapy on PAI-1 [5.6 (2.3, 8.8) ng/mL] was significantly greater than that of ramipril alone (P<0.05). There was a significant effect of PAI-1 4G/5G genotype on baseline PAI-1 concentrations (P=0.001) and a significant interactive effect of 4G/5G genotype and treatment, such that genotype influenced the change in PAI-1 during ramipril (P=0.011) or combined therapy (P=0.006) but not during estrogens (P=0.715). CONCLUSIONS ACE inhibition with ramipril and conjugated estrogens similarly decrease PAI-1 antigen concentrations in postmenopausal women. Larger studies that use clinical outcomes are needed to determine whether PAI-1 4G/5G genotype should influence the choice of conjugated estrogens or ACE inhibition for the treatment of healthy postmenopausal women.
Collapse
Affiliation(s)
- Nancy J Brown
- Division of Clinical Pharmacology, Department of Medicine, Vanerbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
75
|
Affiliation(s)
- Michael Bader
- From the Max-Delbrück-Center for Molecular Medicine (M.B., D.G.), Berlin-Buch, Germany; and the Department of Clinical Pharmacology (D.G.), University Hospital Benjamin Franklin, Free University, Berlin, Germany
| | - Detlev Ganten
- From the Max-Delbrück-Center for Molecular Medicine (M.B., D.G.), Berlin-Buch, Germany; and the Department of Clinical Pharmacology (D.G.), University Hospital Benjamin Franklin, Free University, Berlin, Germany
| |
Collapse
|
76
|
Wei CC, Ferrario CM, Brosnihan KB, Farrell DM, Bradley WE, Jaffa AA, Dell'Italia LJ. Angiotensin peptides modulate bradykinin levels in the interstitium of the dog heart in vivo. J Pharmacol Exp Ther 2002; 300:324-9. [PMID: 11752132 DOI: 10.1124/jpet.300.1.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated the substantial capacity for angiotensin (ANG) II formation in the interstitium of the dog heart in vivo. The current study tested the hypothesis that interstitial fluid (ISF) bradykinin (BK) is influenced by ANG II formation. Four microdialysis probes were inserted into the left ventricular myocardium of eight open-chest anesthetized dogs. The probe effluent was collected during four stages in each dog. Probes 1 and 3 sequentially delivered: 1) buffer; 2) ANG I (15 microM); 3) ANG II type 1 receptor antagonist (AT(1)-ant; irbesartan, 50 microM) or AT(2)-ant (PD123319, 50 microM); and 4) ANG I + AT(1)-ant or ANG I + AT(2)-ant. Probes 2 and 4 used the same protocol, substituting ANG II for ANG I in a concentration (0.5 microM) equivalent to that achieved during ANG I infusion. ISF BK levels increased 15-fold during ANG I (p < 0.001) but not during ANG II infusion. Co-infusion of selective AT(1)- and AT(2)-ants or nonselective AT-ant did not block the increase in ISF BK. ISF infusions of ANG I also produced a greater than 400-fold rise in ISF ANG-(1-7) over baseline. ISF infusion of ANG-(1-7) (10 microM) produced a 15-fold increase in ISF BK (p < 0.001). The metabolic machinery exists for the formation of BK and ANG-(1-7) in the cardiac ISF space that is not blocked by an AT receptor antagonist. The differential increase in ISF BK during ANG I and ANG-(1-7) but not during ANG II infusions suggests the possibility of decreased catabolism of ISF BK by an angiotensin-converting enzyme due to active site occupation by ANG I and ANG-(1-7).
Collapse
Affiliation(s)
- Chih-Chang Wei
- Birmingham Veteran Affairs Medical Center, Department of Medicine, Hypertension and Vascular Biology Program, University of Alabama, Birmingham 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Paton JF, Boscan P, Murphy D, Kasparov S. Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:127-37. [PMID: 11678735 DOI: 10.1046/j.1365-201x.2001.00898.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We review recent and ongoing work from our laboratory that has shed novel insights into the effects of angiotensin II (ANGII) on the baroreflex at the level of the nucleus of the solitary tract (NTS). The NTS is the site of termination for baroreceptor afferents and is a potentially powerful region for neuronal modulation. ANGII applied to this nucleus attenuated the cardiac vagal and cardiac sympathetic components of the baroreceptor reflex. This effect was antagonized by blockade of either gamma-amino butyric acid receptors or nitric oxide synthase within the NTS. Interestingly, nitric oxide donors microinjected into the NTS mimicked the effect of ANGII. Using an adenovirus we showed that ANGII activated the endothelial isoform of nitric oxide synthase. The NTS was transfected to express a dominant negative truncated mutant form of endothelial nitric oxide synthase that prevented the depressant effect of ANGII on the baroreflex. Endothelial nitric oxide synthase was present in both neurones and endothelium in the NTS. A possibility is that ANGII activation of endothelial nitric oxide synthase is calcium dependent. However, in most NTS neurones tested, ANGII failed to elevate intracellular calcium concentration. We conclude that ANGII activates endothelial nitric oxide synthase to release nitric oxide which enhances gamma-amino butyric acid transmission destined for circuitry mediating the baroreflex. We discuss the contribution of endothelial cells within the nucleus of the solitary tract as a potential target for both circulating and/or centrally produced ANGII. These data have relevance to patients with essential hypertension and left heart failure, conditions in which ANGII activity is elevated and the baroreceptor reflex is depressed.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
78
|
Boscan P, Allen AM, Paton JF. Baroreflex inhibition of cardiac sympathetic outflow is attenuated by angiotensin II in the nucleus of the solitary tract. Neuroscience 2001; 103:153-60. [PMID: 11311796 DOI: 10.1016/s0306-4522(00)00559-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Homeostatic regulation of arterial pressure is maintained by arterial baroreceptors. Activation of these receptors results in an inhibition of sympathetic activity to the heart. It is known that angiotensin II in the nucleus tractus solitarii attenuates the baroreceptor reflex-evoked vagal bradycardia. Here, we determined whether the cardiac sympathetic component of the baroreceptor reflex could be modulated by angiotensin II in the nucleus of the solitary tract. An in situ, arterially perfused working heart--brainstem preparation of rat was employed and the sympathetic inferior cardiac nerve recorded. Increases in perfusion pressure caused a reflex bradycardia and inhibition of inferior cardiac nerve activity. Microinjection of angiotensin II (500 fmol) in the nucleus of the solitary tract attenuated significantly both the reflex bradycardia and inhibition of inferior cardiac nerve activity (P<0.01). The latter was reversible and sensitive to losartan, an angiotensin II type 1 receptor antagonist. In contrast, the peripheral chemoreceptor reflex evoked an increase in inferior cardiac nerve activity that was not affected by angiotensin II applied exogenously in the nucleus of the solitary tract. We conclude that within the nucleus of the solitary tract angiotensin II exerts a powerful and specific inhibitory modulation of the baroreceptor reflex control of sympathetic nerve activity destined for the heart. We suggest that our data may have clinical implications relating to hypertension, a condition when angiotensin II activity is heightened in the brain and the efficacy of the baroreflex is reduced.
Collapse
Affiliation(s)
- P Boscan
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
79
|
Clark MA, Diz DI, Tallant EA. Angiotensin-(1-7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells. Hypertension 2001; 37:1141-6. [PMID: 11304516 DOI: 10.1161/01.hyp.37.4.1141] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is a biologically active peptide of the renin-angiotensin system that has both vasodilatory and antiproliferative activities that are opposite the constrictive and proliferative effects of angiotensin II (Ang II). We studied the actions of Ang-(1-7) on the Ang II type 1 (AT(1)) receptor in cultured rat aortic vascular smooth muscle cells to determine whether the effects of Ang-(1-7) are due to its regulation of the AT(1) receptor. Ang-(1-7) competed poorly for [(125)I]Ang II binding to the AT(1) receptor on vascular smooth muscle cells, with an IC(50) of 2.0 micromol/L compared with 1.9 nmol/L for Ang II. The pretreatment of vascular smooth muscle cells with Ang-(1-7) followed by treatment with acidic glycine to remove surface-bound peptide resulted in a significant decrease in [(125)I]Ang II binding; however, reduced Ang II binding was observed only at micromolar concentrations of Ang-(1-7). Scatchard analysis of vascular smooth muscle cells pretreated with 1 micromol/L Ang-(1-7) showed that the reduction in Ang II binding resulted from a loss of the total number of binding sites [B(max) 437.7+/-261.5 fmol/mg protein in Ang-(1-7)-pretreated cells compared with 607.5+/-301.2 fmol/mg protein in untreated cells, n=5, P<0.05] with no significant effect on the affinity of Ang II for the AT(1) receptor. Pretreatment with the AT(1) receptor antagonist L-158,809 blocked the reduction in [(125)I]Ang II binding by Ang-(1-7) or Ang II. Pretreatment of vascular smooth muscle cells with increasing concentrations of Ang-(1-7) reduced Ang II-stimulated phospholipase C activity; however, the decrease was significant (81.2+/-6.4%, P<0.01, n=5) only at 1 micromol/L Ang-(1-7). These results demonstrate that pharmacological concentrations of Ang-(1-7) in the micromolar range cause a modest downregulation of the AT(1) receptor on vascular cells and a reduction in Ang II-stimulated phospholipase C activity. Because the antiproliferative and vasodilatory effects of Ang-(1-7) are observed at nanomolar concentrations of the heptapeptide, these responses to Ang-(1-7) cannot be explained by competition of Ang-(1-7) at the AT(1) receptor or Ang-(1-7)-mediated downregulation of the vascular AT(1) receptor.
Collapse
Affiliation(s)
- M A Clark
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | |
Collapse
|
80
|
Clark MA, Tallant EA, Diz DI. Downregulation of the AT1A receptor by pharmacologic concentrations of Angiotensin-(1-7). J Cardiovasc Pharmacol 2001; 37:437-48. [PMID: 11300657 DOI: 10.1097/00005344-200104000-00011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin (Ang)-(1-7), the amino terminal heptapeptide fragment of Ang II, is an endogenous Ang peptide with vasodilatory and antiproliferative actions. Because Ang II causes vasoconstriction and promotes growth through activation of Ang type 1 (AT1) receptors, we investigated whether the actions of Ang-(1-7) are due to its regulation of these receptors. Studies were performed in CHO cells stably transfected with the AT1A receptor. Ang-(1-7) competed poorly with [125I]-Ang II for the AT1A binding site and was ineffective at shifting the IC50 for Ang II competition with [125I]-Ang II for binding to the AT1A receptor. However, if CHO-AT1A cells were pretreated with Ang-(1-7) and then treated with acidic glycine to remove surface-bound ligand, the heptapeptide caused a concentration-dependent reduction in Ang II binding, with a maximal inhibition to 67.8 +/- 4.6% of total (p < 0.05) at 1 microM Ang-(1-7) compared with a reduction to 24% of total by 10 nM Ang II. Ang-(1-7) pretreatment caused a small but significant decrease in the affinity of [125I]-Ang II for the AT1A receptor and a significant reduction in the total number of binding sites. The Ang-(1-7)-induced reduction in binding was rapid (occurring as early as 5 min after exposure to the peptide), was maintained for 30 min during continued exposure of the cells to Ang-(1-7), and rapidly recovered after removal of the heptapeptide. The AT1 receptor antagonist L-158,809 reduced the Ang-(1-7)-induced downregulation of the AT1A receptor, suggesting that interactions with AT1A receptors mediate the regulatory events. Pretreatment with 1 microM or 10 microM Ang-(1-7) significantly reduced inositol phosphate production in response to 10 nM Ang II. The decrease in binding and responsiveness of the AT1A receptor after exposure to micromolar concentrations of Ang-(1-7) suggests that the heptapeptide downregulates the AT1A receptor to reduce responses to Ang II. Because downregulation of the receptor only occurred at micromolar concentrations of the heptapeptide, our findings suggest that Ang-(1-7) is not a potent antagonist at the AT1A receptor. However, when the balance between Ang II and Ang-(1-7) is shifted in favor of Ang-(1-7), such as during inhibition of Ang-converting enzyme, some contribution of this mechanism may come into play.
Collapse
Affiliation(s)
- M A Clark
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA.
| | | | | |
Collapse
|
81
|
Morris BJ. Renin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension 2000; 36:417-22. [PMID: 10988275 DOI: 10.1161/01.hyp.36.3.417] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We exposed 63 adult spontaneously hypertensive rats (SHR) and 10 (mRen-2)27 transgenic hypertensive rats to a 12-day regimen of either a normal diet (0.5%) or a low-salt diet (0.05%) to evaluate the hypothesis that the vasodepressor heptapeptide, angiotensin-(1-7) [Ang-(1-7)], buffers the pressor effects of angiotensin II during endogenous stimulation of the renin-angiotensin system. Catheters were inserted into a carotid artery and jugular vein under light anesthesia the day before the experiment. Separate groups of conscious instrumented SHR were given short-term infusions of an affinity-purified monoclonal Ang-(1-7) antibody or the neprilysin inhibitor SCH 39370. In addition, SHR and (mRen-2)27 rats were given the Ang-(1-7) receptor antagonist [D-Ala(7)]Ang-(1-7). Exposure to the low-salt diet increased plasma renin activity and elevated plasma levels of angiotensin I and angiotensin II in SHR by 81% and 68%, respectively, above values determined in SHR fed a normal salt diet. Concentrations of angiotensin I and angiotensin II were also higher in the kidney of salt-depleted SHR, whereas plasma and renal tissue levels of Ang-(1-7) were unchanged. Infusion of the Ang-(1-7) antibody produced dose-dependent pressor and tachycardic responses in salt-depleted SHR but no effect in SHR maintained on a normal-salt diet. A comparable cardiovascular response was produced in salt-depleted SHR given either SCH 39370 or [D-Ala(7)]Ang-(1-7). These agents had negligible effects on SHR fed a normal-salt diet. Blockade of Ang-(1-7) receptors produced a similar cardiovascular response in (mRen-2)27 transgenic hypertensive rats fed a low-salt diet. Injections of the heat-inactivated antibody or the subsequent infusion of the antibody to rats given [D-Ala(7)]Ang-(1-7) produced no additional effects. The data support the hypothesis that the hemodynamic effects of neurohormonal activation after salt restriction stimulate a tonic depressor action of Ang-(1-7).
Collapse
Affiliation(s)
- S N Iyer
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
The renin-angiotensin system is a major physiological regulator of arterial pressure and hydro-electrolyte balance. Evidence has now been accumulated that in addition to angiotensin (Ang) II other Ang peptides [Ang III, Ang IV and Ang-(1-7)], formed in the limited proteolysis processing of angiotensinogen, are importantly involved in mediating several actions of the RAS. In this article we will review our knowledge of the biological actions of Ang-(1-7) with focus on the puzzling aspects of the mediation of its effects and the interaction Ang-(1-7)-kinins. In addition, we will attempt to summarize the evidence that Ang-(1-7) takes an important part of the mechanisms aimed to counteract the vasoconstrictor and proliferative effects of Ang II.
Collapse
Affiliation(s)
- R A Santos
- Departamento de Fisiologia e Biofísica, Av. Antonio Carlos, 6627 - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG Brazil.
| | | | | |
Collapse
|
84
|
Kershenovich A, Terrell ML, Summy-Long JY, Kadekaro M. Angiotensin II does not mediate the pressor response to PGD2 (icv). J Renin Angiotensin Aldosterone Syst 2000; 1:196-201. [PMID: 11967813 DOI: 10.3317/jraas.2000.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the present studies was to examine the interaction between brain-derived angiotensin II (Ang II) and prostaglandins in order to identify the mechanisms mediating the pressor response produced by these neuroregulators. Inhibiting synthesis of prostaglandins with indomethacin [indocin, 200 microg/ 5 microl artificial cerebrospinal fluid (aCSF)], administered intracerebroventricularly (icv) to conscious adult male Sprague-Dawley rats, reduced blood pressure to values below basal levels. When injected prior to Ang II (50 ng/5 microl aCSF; icv), indomethacin completely abolished the pressor response induced by the octapeptide. The increase in blood pressure produced by prostaglandin D(2) (PGD(2), 20 microg/5 microl; icv), the most prominent prostaglandin in the rat brain, however, was not prevented by losartan (25 microg/5 microl; icv), an Ang II AT(1)-receptor antagonist. Collectively, these results indicate that prostaglandins produced tonically in the brain maintain resting arterial blood pressure and that the pressor action of Ang II is dependent on de novo synthesis of a prostaglandin.
Collapse
Affiliation(s)
- A Kershenovich
- The University of Texas Medical Branch, Galveston, TX 77555-0517, USA
| | | | | | | |
Collapse
|
85
|
Paton JF, Kasparov S. Sensory channel specific modulation in the nucleus of the solitary tract. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 80:117-29. [PMID: 10785277 DOI: 10.1016/s0165-1838(00)00077-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Science, University of Bristol, Bristol, UK.
| | | |
Collapse
|
86
|
Albrecht D, Nitschke T, Von Bohlen Und Halbach O. Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J 2000; 14:925-31. [PMID: 10783146 DOI: 10.1096/fasebj.14.7.925] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of iontophoretically ejected angiotensin II (Ang II) on the firing rate of neurons in the basolateral complex and the central and cortical amygdala were investigated in two strains of urethane anesthetized rats. In normotensive Sprague-Dawley rats, Ang II induced a significant increase in the discharge rate of responsive amygdaloid neurons. In contrast, in the hypertensive transgenic [TGR(mREN-2)27] rats with higher brain Ang II level, Ang II more often caused inhibitory effects on the amygdaloid firing rate in comparison with controls. The distribution of nonresponsive, excited, and inhibited neurons differed significantly in the two rat strains. Moreover, the responsiveness of amygdaloid neurons was significantly higher in transgenic rats in comparison with controls. Both the increase and the decrease in the firing rate caused by Ang II could be blocked either by angiotensin AT(1) or by AT(2) receptor-specific antagonists. In many cases, the Ang II-induced decrease in the firing rate was antagonized by bicuculline, a gamma-aminobutyric acid (GABA(A)) antagonist. The higher responsiveness of amygdaloid neurons in transgenic rats as well as the predominance of inhibitory effects, presumedly mediated by GABAergic interneurons, could change the output of the amygdala and its influence on thirst, kidney, and cardiovascular function or on processes of learning and anxiety.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
87
|
Fontes MA, Baltatu O, Caligiorne SM, Campagnole-Santos MJ, Ganten D, Bader M, Santos RA. Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats. Physiol Genomics 2000; 2:137-42. [PMID: 11015592 DOI: 10.1152/physiolgenomics.2000.2.3.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that microinjections of the selective angiotensin-(1-7) [ANG-(1-7)] antagonist, A-779, into the rostral ventrolateral medulla (RVLM) produces a significant fall in mean arterial pressure (MAP) and heart rate (HR) in both anesthetized and conscious rats. In contrast, microinjection of angiotensin II (ANG II) AT(1) receptor antagonists did not change MAP in anesthetized rats and produced dose-dependent increases in MAP when microinjected into the RVLM of conscious rats. In the present study, we evaluated whether endogenous ANG-(1-7) and ANG II acting at the RVLM contribute to the hypertension of transgenic rats harboring the mouse renin Ren-2 gene, TGR(mREN2)27. Unilateral microinjection of A-779 (0.1 nmol) produced a significant fall in MAP (-25 +/- 5 mmHg) and HR (-57 +/- 20 beats/min) of awake TGR rats. The hypotensive effect was greater than that observed in Sprague-Dawley (SD) rats (-9 +/- 2 mmHg). Microinjection of the AT(1) antagonist CV-11974 (0.2 nmol) produced a fall in MAP in TGR rats (-14 +/- 4 mmHg), contrasting with the pressor effect observed in SD rats (33 +/- 9 mmHg). These results indicate that endogenous ANG-(1-7) exerts a significant pressor action in the RVLM, contributing to the hypertension of TGR(mREN2)27 transgenic rats. The role of ANG II at the RVLM seems to be dependent on its endogenous level in this area.
Collapse
Affiliation(s)
- M A Fontes
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
88
|
Voigt JP, Rex A, Bader M, Fink H. From genotype to phenotype--behavior of the transgenic rat TGR(mRen2)27 as an example. Rev Neurosci 2000; 11:37-45. [PMID: 10716653 DOI: 10.1515/revneuro.2000.11.1.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transgenic techniques provide a tool to generate animals that differ from the wild-type by one or more genes, either by introducing foreign genes (transgenic animals) or by specific mutations of genes (knock-out animals). Most transgenic and knock-out animals are mice and not rats. The frequent use of rat models in the behavioral laboratory, however, will require the increasing application of transgenic techniques in this species. This paper reviews behavioral data from our laboratory as an example of characterizing the behavioral phenotype of a particular transgenic rat, the TGR(mRen2)27 rat. By describing the anxiogenic profile of this rat we also consider some problems associated with such an analysis, with the intention to raise issues that may also apply to studies of behavior in transgenic animals in general.
Collapse
Affiliation(s)
- J P Voigt
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité) of the Humboldt University at Berlin, Germany
| | | | | | | |
Collapse
|
89
|
Naik GO, Moe GW. Simultaneous separation of angiotensin and endothelin peptide families by high-performance liquid chromatography: application to the specific radioimmunoassay measurement of angiotensin II or endothelin-1 from tissue. J Chromatogr A 2000; 870:349-61. [PMID: 10722090 DOI: 10.1016/s0021-9673(99)00906-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Currently available measurements of endogenous angiotensin II (ANG II) and endothelin-1 (ET-1) concentrations by radioimmunoassay (RIA) lack specificity to ANG II or ET-1. ANG II and ET-1 antibodies cross-react with immuno-reactive angiotensin and endothelin family members, respectively. We have therefore developed an ion-pair reversed-phase high-performance liquid chromatography (HPLC) for simultaneously separating angiotensin and endothelin peptides and enhancing RIA specificity in the measurement of ANG II and ET-1. The developed HPLC separation was applied to canine myocardium extracts; ANG II or ET-1 fractions were collected and quantified by RIA. Elution times for both peptide families, ANG I, ANG II, ANG III, ANG IV, ANG II(4-8), bET-1, ET-1, ET-2 and ET-3 were within 25 min. In normal canine myocardium from the right atrium, right ventricle, left atrium and left ventricle, ANG II concentrations were 39+/-11, 28+/-21, 31+/-11 and 21+/-8 fmol/g and ET-1 concentrations were 43+/-16, 42+/-19, 55+/-21 and 57+/-34 fmol/g (mean+/-SD, N=7), respectively. The combination of HPLC with RIA renders the measurement of ANG II or ET-1 specific and convenient, and saves time. This HPLC separation may be applied to the specific measurement of other immuno-reactive angiotensin and endothelin peptides.
Collapse
Affiliation(s)
- G O Naik
- St. Michael's Hospital and the Department of Medicine, University of Toronto, ON, Canada.
| | | |
Collapse
|
90
|
Abstract
Male mice lacking the Mas protooncogene have been shown to exhibit an increased anxiety in the Elevated Plus Maze Task and sustained long-term potentiation in the hippocampus without effect on spatial learning in the Morris Water Maze Task. Here, we report behavioural studies in female mice lacking the Mas protooncogene. As for the males, we analysed the learning and anxiety behaviour using both behavioural tasks. With the exception of a trend to a better performance in the Morris Water Maze no differences were found in both tests between control and Mas-deficient females. This implicates that the lack of Mas protein influences spatial learning and anxiety in a sex-specific manner.
Collapse
Affiliation(s)
- T Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany.
| | | | | | | |
Collapse
|
91
|
Paton JF, Kasparov S. Differential effects of angiotensin II on cardiorespiratory reflexes mediated by nucleus tractus solitarii - a microinjection study in the rat. J Physiol 1999; 521 Pt 1:213-25. [PMID: 10562346 PMCID: PMC2269655 DOI: 10.1111/j.1469-7793.1999.00213.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The effect of microinjecting angiotensin II (ANGII) into the nucleus of the solitary tract (NTS) on both baroreceptor and peripheral chemoreceptor reflexes was compared. 2. Experiments were performed in a working heart-brainstem preparation of rat. Baroreceptors were stimulated by raising perfusion pressure and chemoreceptors were activated with aortic injections of sodium cyanide (0.025 %, 25-75 microl). Reflex changes in phrenic nerve activity and heart rate were measured after bilateral NTS microinjection (50 nl) of ANGII (0.5-5000 fmol). 3. NTS microinjection of 5 fmol ANGII elicited a transient (28.2 +/- 6 s; mean +/- s.e.m.) bradycardia (-18 +/- 3 beats min-1), and decreased phrenic nerve activity cycle length and amplitude (P < 0.05). At higher doses of ANGII a similar respiratory response was seen but heart rate changes were inconsistent. 4. The baroreceptor reflex bradycardia was depressed significantly by NTS microinjections of ANGII (5-5000 fmol) in a dose-dependent manner with the reflex gain decreasing from 1.7 +/- 0.16 to 0.66 +/- 0.1 beats min-1 mmHg-1 (P < 0.01) at 5000 fmol. Although the chemoreceptor reflex bradycardia was depressed at a low dose of ANGII (5 fmol), all higher doses (50-5000 fmol) produced a dose-dependent potentiation of the reflex bradycardia (maximally +64 +/- 8 %). The respiratory component was unaffected. The effects of ANGII on both reflexes were blocked by an ANGII type 1 (AT1) receptor antagonist, losartan (20 microM). 5. The potentiating action of ANGII on the chemoreceptor reflex cardiac response was abolished by a neurokinin type 1 (NK1) receptor blocker (CP-99,994, 5 microM) but this had no effect on the baroreceptor reflex. 6. AT1 receptors in the NTS can depress the baroreceptor reflex bradycardia which is independent of NK1 receptors. The ANGII effect on the cardiac component of the chemoreceptor reflex is bi-directional being inhibited at low concentrations and potentiated at higher concentrations; the latter involves NK1 receptors and presumably results from release of substance P.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
92
|
Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, Llorens-Cortes C. Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci U S A 1999; 96:13415-20. [PMID: 10557335 PMCID: PMC23962 DOI: 10.1073/pnas.96.23.13415] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several experimental models, such as spontaneously hypertensive rats and transgenic mice expressing both human renin and human angiotensinogen transgenes. We recently reported that, in the murine brain, angiotensin II (AngII) is converted to angiotensin III (AngIII) by aminopeptidase A (APA), whereas AngIII is inactivated by aminopeptidase N (APN). If injected into cerebral ventricles (ICV), AngII and AngIII cause similar pressor responses. Because AngII is metabolized in vivo into AngIII, the exact nature of the active peptide is not precisely determined. Here we report that, in rats, ICV injection of the selective APA inhibitor EC33 [(S)-3-amino-4-mercaptobutyl sulfonic acid] blocked the pressor response of exogenous AngII, suggesting that the conversion of AngII to AngIII is required to increase blood pressure (BP). Furthermore, ICV injection, but not i.v. injection, of EC33 alone caused a dose-dependent decrease in BP by blocking the formation of brain but not systemic AngIII. This is corroborated by the fact that the selective APN inhibitor, PC18 (2-amino-4-methylsulfonyl butane thiol), administered alone via the ICV route, increases BP. This pressor response was blocked by prior treatment with the angiotensin type 1 (AT(1)) receptor antagonist, losartan, showing that blocking the action of APN on AngIII metabolism leads to an increase in endogenous AngIII levels, resulting in BP increase, through interaction with AT(1) receptors. These data demonstrate that AngIII is a major effector peptide of the brain RAS, exerting tonic stimulatory control over BP. Thus, APA, the enzyme responsible for the formation of brain AngIII, represents a potential central therapeutic target that justifies the development of APA inhibitors as central antihypertensive agents.
Collapse
Affiliation(s)
- A Reaux
- Institut National de la Santé et de la Recherche Médicale, Unité 36, Collège de France, Chaire de Médecine Expérimentale, 3 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
93
|
Tallant EA, Diz DI, Ferrario CM. State-of-the-Art lecture. Antiproliferative actions of angiotensin-(1-7) in vascular smooth muscle. Hypertension 1999; 34:950-7. [PMID: 10523390 DOI: 10.1161/01.hyp.34.4.950] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemodynamic factors, circulating hormones, paracrine factors, and intracrine factors influence vascular smooth muscle growth and plasticity. The well-characterized role of angiotensin II in the modulation of vascular tone and cell function may be critically involved in the mechanisms by which vascular smooth muscle responds to signals associated with vascular endothelial dysfunction and increases in oxidative stress. Studies from this laboratory suggest that the trophic actions of angiotensin II may be intrinsically regulated by angiotensin-(1-7), a separate product of the angiotensin system derived from the common substrate, angiotensin I. Exposure of cultured vascular smooth muscle cells to angiotensin-(1-7) inhibited the trophic actions of angiotensin II and reduced the expression of the mitogenic effects of both normal serum and platelet-derived growth factor. The growth-inhibitory actions of angiotensin-(1-7) were blocked by the selective D-alanine(7)-angiotensin-(1-7) antagonist and the nonselective angiotensin receptor blocker sarcosine(1)-threonine(8)-angiotensin II. In contrast, subtype-selective antagonists for the AT(1) and AT(2) receptors had no effect on the inhibitory actions of angiotensin-(1-7), a finding that is consistent with the pharmacological characterization of a high-affinity (125)I-labeled angiotensin-(1-7) binding site in the vasculature by use of selective and nonselective angiotensin II receptor antagonists. The relevance of these findings to the proliferative response of vascular smooth muscle cells after endothelial injury was confirmed by assessment of the effect of a 12-day infusion of angiotensin-(1-7) on neointimal formation. In these experiments, the proliferative response produced by injuring the carotid artery was inhibited by angiotensin-(1-7) through a mechanism that could not be explained by changes in arterial pressure. Because plasma angiotensin-(1-7) increased to levels comparable to those found in animals and human subjects given therapeutic doses of angiotensin-converting enzyme inhibitors, angiotensin-(1-7) may be one factor participating in the reversal of vascular proliferation during inhibition of angiotensin II formation or activity.
Collapse
Affiliation(s)
- E A Tallant
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA.
| | | | | |
Collapse
|
94
|
Loń S, Szczepańska-Sadowska E, Paczwa P, Ganten D. Enhanced blood pressure buffering role of the brain nitrergic system in renin transgenic rats. Brain Res 1999; 842:384-91. [PMID: 10526134 DOI: 10.1016/s0006-8993(99)01857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies provided evidence for an interaction between the brain nitrergic and vasopressinergic systems in normotensive and spontaneously hypertensive rats in regulation of the cardiovascular functions. The present study was designed to determine the role of the brain nitric oxide (NO) in regulation of basal blood pressure and its interaction with vasopressin (AVP) in rats with renin dependent transgenic hypertension TGRmRen2(27) (TGR). The experiments were performed on conscious hypertensive TGR and normotensive Sprague-Dawley (SD) rats. Both groups were chronically instrumented with the left cerebral ventricle cannula (LCV) and femoral arterial catheter. LCV application of 2.3 nmol (0.5 microg) of N(G)-nitro-L-arginine (L-NNA) an inhibitor of NO synthesis significantly elevated blood pressure (MAP) in TGR but not in SD rats. In contrast administration of NO donor S-acetyl-N-penicillamine (SNAP) produced significant decrease of MAP only in SD rats. LCV application of AVP (10 ng) elicited comparable increases of MAP in TGR and SD rats. Pretreatment with L-NNA significantly potentiated pressor response to AVP in TGR rats but not in SD rats. The results provide evidence that increased production of intrabrain NO may play a significant blood pressure buffering role in TGR rats both under baseline conditions and during activation of the vasopressinergic system.
Collapse
Affiliation(s)
- S Loń
- Department of Experimental and Clinical Physiology, The Medical University of Warsaw, Krakowskie Przedmieście 26/28 str., 00-927, Warsaw, Poland
| | | | | | | |
Collapse
|
95
|
Voigt JP, Rex A, Sohr R, Fink H. Hippocampal 5-HT and NE release in the transgenic rat TGR(mREN2)27 related to behavior on the elevated plus maze. Eur Neuropsychopharmacol 1999; 9:279-85. [PMID: 10422887 DOI: 10.1016/s0924-977x(98)00031-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transgenic rat TGR(mREN2)27 was generated to study mechanisms involved in the hypertensive process. A characteristic of this rat is a high expression of the murine renin-2 gene in several peripheral tissues and in the brain. The high expression of the transgene is associated with increased local formation of angiotensin II. In a previous study, we studied for the first time the behavior of male TGR(mREN2)27 rat in the open field and on the elevated plus maze. There were no differences between TGR(mREN2)27 and SPRD-controls in locomotor activity measured in the open field. While placed on the elevated plus maze, however, the TGR(mREN2)27 rats showed a greater "anxiogenic" profile than the SPRD-rats. The present study was aimed to characterize neurotransmitter release involved in anxiety in hippocampus of TGR(mREN2)27 rats during exposure to the elevated plus maze. Exposure to the maze resulted in an increased intrahippocampal serotonin release with the same maximum both in the transgenic rats and in the control rats. However, the subsequent decrease was significantly faster in the TGR(mREN2)27 compared to the SPRD-controls. The latter suggests that the serotonergic system is functionally changed in the TGR(mREN2) rat, too. In contrast, norepinephrine release did not change during exposure to the maze and there were no significant differences in norepinephrine release between transgenics and controls.
Collapse
Affiliation(s)
- J P Voigt
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité) of the Humboldt University at Berlin, Germany.
| | | | | | | |
Collapse
|
96
|
Paczwa P, Szczepańska-Sadowska E, Loń S, Ganten SL, Ganten D. Role of central AT1 and V1 receptors in cardiovascular adaptation to hemorrhage in SD and renin TGR rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1918-26. [PMID: 10362671 DOI: 10.1152/ajpheart.1999.276.6.h1918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In acute experiments, intracranially applied angiotensin II and vasopressin elicit significant cardiovascular effects. The purpose of the present study was to find out whether chronic intrabrain elevation of these peptides, occurring in the renin transgenic TGR(mRen2)27 (TGR) rats, results in an alteration of the cardiovascular control. Mean arterial blood pressure (MAP) and heart rate responses to hypovolemia were examined in hypertensive TGR and normotensive Sprague-Dawley (SD) rats under control conditions and during blockade of central AT1 or V1 receptors. Both groups received cerebroventricular infusions of either 1) cerebrospinal fluid (series 1), 2) AT1 receptors antagonist (AT1ANT, series 2), or 3) V1 receptors antagonist (V1ANT, series 3). Blockade of AT1 and V1 receptors decreased MAP in TGR but not in SD rats. In SD rats, bleeding elicited a similar decrease of MAP in each series and a transient increase of heart rate in series 3. In TGR, hemorrhage caused bradycardia and decrease of MAP, which was greater than in SD rats. Hemorrhagic hypotension in TGR was abolished by V1ANT and bradycardia by V1ANT or AT1ANT. The results demonstrate remarkable differences in cardiovascular adjustment to hemorrhage in SD and TGR rats and provide evidence for enhanced involvement of central V1 and AT1 receptors in the regulation of blood pressure during hypovolemia in TGR. Central V1 vasopressin receptors play a crucial role in eliciting posthemorrhagic hypotension and bradycardia in this strain.
Collapse
Affiliation(s)
- P Paczwa
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 00-927 Warsaw, Poland
| | | | | | | | | |
Collapse
|
97
|
Witte K, Lemmer B. Development of inverse circadian blood pressure pattern in transgenic hypertensive TGR(mREN2)27 rats. Chronobiol Int 1999; 16:293-303. [PMID: 10373099 DOI: 10.3109/07420529909116859] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
TGR(mREN2)27 (TGR) rats are transgenic animals with an additional mouse renin gene, which leads to overactivity of the renin-angiotensin system. Adult TGR rats are characterized by fulminant hypertension, hypertensive end-organ damage, and an inverse circadian blood pressure pattern. To study the ontogenetic development of cardiovascular circadian rhythms, telemetric blood pressure transmitters were implanted in male Sprague-Dawley (SPRD, n = 5) and heterozygous, transgenic TGR rats before 5 weeks of age. The TGR received either drinking water or enalapril 10 mg/L in drinking water (n = 5 per group). Drug intake was measured throughout the study by computerized monitoring of drinking volume. Circadian patterns in blood pressure and heart rate were analyzed from 5 to 11 weeks of age. In the first week after transmitter implantation, blood pressure did not differ among SPRD, untreated, and enalapril-treated TGR rats. In parallel with the rise in blood pressure of untreated TGR rats, a continuous delay of the circadian acrophase (time of fitted blood pressure maximum) was observed, leading to a complete reversal of the rhythm in blood pressure at an age of 8 weeks. Enalapril reduced blood pressure at night, but was less effective during the day, presumably due to the drinking pattern of the animals, which ingested about 90% of their daily water intake during the nocturnal activity period. After discontinuation of treatment, blood pressure returned almost immediately to values found in untreated TGR rats. In conclusion, the inverse circadian blood pressure profile in TGR rats develops in parallel with the increase in blood pressure. Direct effects of the brain renin-angiotensin system may be involved in the disturbed circadian rhythmicity in TGR(mREN2)27 rats.
Collapse
Affiliation(s)
- K Witte
- Institute of Pharmacology and Toxicology, Faculty of Clinical Medicine Mannheim, Ruprecht-Karls-University Heidelberg, Germany.
| | | |
Collapse
|
98
|
Brosnihan KB, Senanayake PS, Li P, Ferrario CM. Bi-directional actions of estrogen on the renin-angiotensin system. Braz J Med Biol Res 1999; 32:373-81. [PMID: 10347798 DOI: 10.1590/s0100-879x1999000400001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen stimulates the renin-angiotensin system by augmenting both tissue and circulating levels of angiotensinogen and renin. We show, however, that angiotensin converting enzyme (ACE) activity in the circulation and in tissues is reduced in two animal models of postmenopausal chronic hormone replacement. We observed a reduction of ACE activity in association with a significant increase in plasma angiotensin I (Ang I) and hyperreninemia in ovariectomized monkeys treated with Premarin (conjugated equine estrogen) replacement for 30 months. Plasma angiotensin II (Ang II) levels were not increased in monkeys treated with estrogen, suggesting that the decrease in ACE curtailed the formation of the peptide. The Ang II/Ang I ratio, an in vivo index of ACE activity, was significantly reduced by estrogen treatment, further supporting the biochemical significance of estrogen's inhibition of ACE. In ovariectomized transgenic hypertensive (mRen2)27 rats submitted to estrogen replacement treatment for 3 weeks, ACE activity in plasma and tissue (aorta and kidney) and circulating Ang II levels were reduced, whereas circulating levels of angiotensin-(1-7) (Ang-(1-7)) were increased. Ang-(1-7), the N-terminal fragment of Ang II, is a novel vasodilator and antihypertensive peptide. Thus, the net balance of these effects of estrogen on the reninangiotensin vasoconstrictor/vasodilator system is to promote the anti-hypertensive effect.
Collapse
Affiliation(s)
- K B Brosnihan
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | |
Collapse
|
99
|
Walther T, Voigt JP, Fukamizu A, Fink H, Bader M. Learning and anxiety in angiotensin-deficient mice. Behav Brain Res 1999; 100:1-4. [PMID: 10212048 DOI: 10.1016/s0166-4328(98)00078-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Angiotensin II in the brain was shown to be involved in mechanisms influencing cardiovascular and electrolyte homeostasis, anxiety and learning. Here, we report behavioural studies in mice lacking angiotensinogen. We analysed learning and anxiety related behaviour using the Morris water maze task and the elevated plus maze task, respectively. In both tests no differences were found between control mice and angiotensin-deficient mice. This implicates that angiotensin does not influence learning and anxiety-related behaviour in mice under normal conditions.
Collapse
Affiliation(s)
- T Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany.
| | | | | | | | | |
Collapse
|
100
|
Schinke M, Baltatu O, Böhm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A 1999; 96:3975-80. [PMID: 10097148 PMCID: PMC22405 DOI: 10.1073/pnas.96.7.3975] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.
Collapse
Affiliation(s)
- M Schinke
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, D-13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|