51
|
McHugh D. GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. Br J Pharmacol 2013; 167:1575-82. [PMID: 22563843 DOI: 10.1111/j.1476-5381.2012.02019.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A review of what is presently known about the G protein coupled receptor GPR18 in terms of its expression and distribution, pharmacology and potential implications for central nervous system and endocannabinoid system signalling. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
Affiliation(s)
- D McHugh
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
52
|
Pressler R, Auvin S. Comparison of Brain Maturation among Species: An Example in Translational Research Suggesting the Possible Use of Bumetanide in Newborn. Front Neurol 2013; 4:36. [PMID: 23596438 PMCID: PMC3625921 DOI: 10.3389/fneur.2013.00036] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 12/30/2022] Open
Affiliation(s)
- Ronit Pressler
- Institute of Child Health, University College London , London, UK ; Department of Clinical Neurophysiology, Great Ormond Street Hospital , London, UK
| | | |
Collapse
|
53
|
Bogaert-Buchmann A, Poittevin M, Po C, Dupont D, Sebrié C, Tomita Y, Trandinh A, Seylaz J, Pinard E, Méric P, Kubis N, Gillet B. Spatial and temporal MRI profile of ischemic tissue after the acute stages of a permanent mouse model of stroke. Open Neuroimag J 2013; 7:4-14. [PMID: 23459141 PMCID: PMC3580904 DOI: 10.2174/1874440001307010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/29/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECT To characterize the progression of injured tissue resulting from a permanent focal cerebral ischemia after the acute phase, Magnetic Resonance Imaging (MRI) monitoring was performed on adult male C57BL/6J mice in the subacute stages, and correlated to histological analyses. MATERIAL AND METHODS Lesions were induced by electrocoagulation of the middle cerebral artery. Serial MRI measurements and weighted-images (T2, T1, T2* and Diffusion Tensor Imaging) were performed on a 9.4T scanner. Histological data (Cresyl-Violet staining and laminin-, Iba1- and GFAP-immunostainings) were obtained 1 and 2 weeks after the stroke. RESULTS Two days after stroke, tissues assumed to correspond to the infarct core, were detected as a hyperintensity signal area in T2-weighted images. One week later, low-intensity signal areas appeared. Longitudinal MRI study showed that these areas remained present over the following week, and was mainly linked to a drop of the T2 relaxation time value in the corresponding tissues. Correlation with histological data and immuno-histochemistry showed that these areas corresponded to microglial cells. CONCLUSION The present data provide, for the first time detailed MRI parameters of microglial cells dynamics, allowing its non-invasive monitoring during the chronic stages of a stroke. This could be particularly interesting in regards to emerging anti-inflammatory stroke therapies.
Collapse
Affiliation(s)
- A Bogaert-Buchmann
- University Orsay Paris-sud, IR4M, UMR 8081, Bat 220, Orsay, F-91405, France ; CNRS, Orsay, F-91405, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Eyo UB, Dailey ME. Microglia: key elements in neural development, plasticity, and pathology. J Neuroimmune Pharmacol 2013; 8:494-509. [PMID: 23354784 DOI: 10.1007/s11481-013-9434-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 12/31/2022]
Abstract
A century after Cajal identified a "third element" of the nervous system, many issues have been clarified about the identity and function of one of its major components, the microglia. Here, we review recent findings by microgliologists, highlighting results from imaging studies that are helping provide new views of microglial behavior and function. In vivo imaging in the intact adult rodent CNS has revolutionized our understanding of microglial behaviors in situ and has raised speculation about their function in the uninjured adult brain. Imaging studies in ex vivo mammalian tissue preparations and in intact model organisms including zebrafish are providing insights into microglial behaviors during brain development. These data suggest that microglia play important developmental roles in synapse remodeling, developmental apoptosis, phagocytic clearance, and angiogenesis. Because microglia also contribute to pathology, including neurodevelopmental and neurobehavioral disorders, ischemic injury, and neuropathic pain, promising new results raise the possibility of leveraging microglia for therapeutic roles. Finally, exciting recent work is addressing unanswered questions regarding the nature of microglial-neuronal communication. While it is now apparent that microglia play diverse roles in neural development, behavior, and pathology, future research using neuroimaging techniques will be essential to more fully exploit these intriguing cellular targets for effective therapeutic intervention applied to a variety of conditions.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
55
|
Melo CV, Mele M, Curcio M, Comprido D, Silva CG, Duarte CB. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. PLoS One 2013; 8:e53793. [PMID: 23326507 PMCID: PMC3543267 DOI: 10.1371/journal.pone.0053793] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.
Collapse
Affiliation(s)
- Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
| | - Diogo Comprido
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla G. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
56
|
Mewes A, Franke H, Singer D. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies. PLoS One 2012; 7:e45017. [PMID: 22984603 PMCID: PMC3439393 DOI: 10.1371/journal.pone.0045017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2) concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.
Collapse
Affiliation(s)
- Agneta Mewes
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - David Singer
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
57
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
58
|
Cheng Y, Thomas A, Mardini F, Bianchi SL, Tang JX, Peng J, Wei H, Eckenhoff MF, Eckenhoff RG, Levy RJ. Neurodevelopmental consequences of sub-clinical carbon monoxide exposure in newborn mice. PLoS One 2012; 7:e32029. [PMID: 22348142 PMCID: PMC3277503 DOI: 10.1371/journal.pone.0032029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/18/2012] [Indexed: 12/13/2022] Open
Abstract
Carbon monoxide (CO) exposure at high concentrations results in overt neurotoxicity. Exposure to low CO concentrations occurs commonly yet is usually sub-clinical. Infants are uniquely vulnerable to a variety of toxins, however, the effects of postnatal sub-clinical CO exposure on the developing brain are unknown. Apoptosis occurs normally within the brain during development and is critical for synaptogenesis. Here we demonstrate that brief, postnatal sub-clinical CO exposure inhibits developmental neuroapoptosis resulting in impaired learning, memory, and social behavior. Three hour exposure to 5 ppm or 100 ppm CO impaired cytochrome c release, caspase-3 activation, and apoptosis in neocortex and hippocampus of 10 day old CD-1 mice. CO increased NeuN protein, neuronal numbers, and resulted in megalencephaly. CO-exposed mice demonstrated impaired memory and learning and reduced socialization following exposure. Thus, CO-mediated inhibition of neuroapoptosis might represent an important etiology of acquired neurocognitive impairment and behavioral disorders in children.
Collapse
Affiliation(s)
- Ying Cheng
- Division of Anesthesiology and Pain Medicine, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Adia Thomas
- Division of Anesthesiology and Pain Medicine, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Feras Mardini
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shannon L. Bianchi
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Junxia X. Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jun Peng
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maryellen F. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard J. Levy
- Division of Anesthesiology and Pain Medicine, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
59
|
Schock SC, Jolin-Dahel KS, Schock PC, Theiss S, Arbuthnott GW, Garcia-Munoz M, Staines WA. Development of dissociated cryopreserved rat cortical neurons in vitro. J Neurosci Methods 2012; 205:324-33. [PMID: 22326618 DOI: 10.1016/j.jneumeth.2012.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/30/2022]
Abstract
Dissociated neuronal cultures of various brain regions are commonly used to study physiological and pathophysiological processes in vitro. The data derived from these studies are often viewed to have relevance to processes taking place in the mature brain. However, due to the practical challenges associated with lengthy neuronal culture, neurons are often kept for 14 days in vitro (DIV), or less, before being subject to experimentation. Non-proliferative cultures such as primary neuronal cultures can be maintained for more than 42 DIV if water evaporation from culture media is monitored and corrected. To determine appropriate time points corresponding to the stages of cortical development, we compared characteristics of cryopreserved cortical neurons in cultures at various DIV using immunofluorescence, biochemical measurements and multielectrode array recordings. Compared to 21 and 35 DIV, at 14 DIV, cultures are still undergoing developmental changes and are not representative of adult in vivo brain tissue. Specifically, we noted significant lack in immunoreactivity for synaptic markers such as synapsin, vesicular GABA transporter and vesicular glutamate transporter at 14 DIV, relative to 21 and 35 DIV. Moreover, multielectrode array analysis indicated an increase in network firing up to 46 DIV with patterned firing peaking at 35 DIV. Our results provide specific evidence of the maturational stages of neurons in culture that can be used to more successfully plan various types of in vitro experimentation.
Collapse
Affiliation(s)
- Sarah C Schock
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
60
|
Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012; 33:191-206. [PMID: 22322212 DOI: 10.1016/j.neuro.2012.01.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
Microglia are a heterogenous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
61
|
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011; 33:199-209. [PMID: 21757877 DOI: 10.1159/000328989] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/01/2011] [Indexed: 12/21/2022] Open
Abstract
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
Collapse
Affiliation(s)
- Melinda Czeh
- Department of Pediatric Neurology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
62
|
Schwarz JM, Bilbo SD. LPS elicits a much larger and broader inflammatory response than Escherichia coli infection within the hippocampus of neonatal rats. Neurosci Lett 2011; 497:110-5. [PMID: 21536105 PMCID: PMC3103622 DOI: 10.1016/j.neulet.2011.04.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/08/2023]
Abstract
An immune challenge during the neonatal period can significantly affect the development of the nervous and immune systems, such that long-term abnormalities in immune function and behavior persist into adulthood. Given that immune activation and individual cytokines have been linked to the etiology of many developmental neuropsychiatric disorders, a complete characterization of the neonatal immune response within the brain is warranted. In this study, rats were treated peripherally on postnatal day (P) 4 with either a live Escherichia coli (E. coli) infection or lipopolysaccharide (LPS), two common models of neonatal immune activation. Inflammatory gene expression was measured within the hippocampus 2 and 24h later. We determined that E. coli and LPS produce very distinct inflammatory profiles within the brain. Infection with E. coli produced a robust, yet relatively IL-1 pathway focused activation of the neonatal immune system within the brain, while LPS produced a very broad and robust immune response within the brain. This analysis also identified common inflammatory genes up-regulated by both E. coli and LPS treatment.
Collapse
|
63
|
Verney C, Monier A, Fallet-Bianco C, Gressens P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2011; 217:436-48. [PMID: 20557401 DOI: 10.1111/j.1469-7580.2010.01245.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amoeboid microglial subpopulations visualized by antibodies against ionized calcium-binding adapter molecule 1, CD68, and CD45 enter the forebrain starting at 4.5 postovulatory or gestational weeks (gw). They penetrate the telencephalon and diencephalon via the meninges, choroid plexus, and ventricular zone. Early colonization by amoeboid microglia-macrophages is first restricted to the white matter, where these cells migrate and accumulate in patches at the junctions of white-matter pathways, such as the three junctions that the internal capsule makes with the thalamocortical projection, external capsule and cerebral peduncle, respectively. In the cerebral cortex anlage, migration is mainly radial and tangential towards the immature white matter, subplate layer, and cortical plate, whereas pial cells populate the prospective layer I. A second wave of microglial cells penetrates the brain via the vascular route at about 12-13 gw and remains confined to the white matter. Two main findings deserve emphasis. First, microglia accumulate at 10-12 gw at the cortical plate-subplate junction, where the first synapses are detected. Second, microglia accumulate in restricted laminar bands, most notably around 19-30 gw, at the axonal crossroads in the white matter (semiovale centre) rostrally, extending caudally in the immature white matter to the visual radiations. This accumulation of proliferating microglia is located at the site of white-matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes such as axonal guidance, synaptogenesis, and neurodevelopmental apoptosis as well as in injuries to the developing brain, in particular in the periventricular white-matter injury of preterm infants.
Collapse
Affiliation(s)
- Catherine Verney
- INSERM U676, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris, France
| | | | | | | |
Collapse
|
64
|
Moroni R, Cipelletti B, Inverardi F, Regondi M, Spreafico R, Frassoni C. Development of cortical malformations in BCNU-treated rat, model of cortical dysplasia. Neuroscience 2011; 175:380-93. [DOI: 10.1016/j.neuroscience.2010.11.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 01/30/2023]
|
65
|
Takemoto M, Hattori Y, Zhao H, Sato H, Tamada A, Sasaki S, Nakajima K, Yamamoto N. Laminar and areal expression of unc5d and its role in cortical cell survival. ACTA ACUST UNITED AC 2011; 21:1925-34. [PMID: 21216843 DOI: 10.1093/cercor/bhq265] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The UNC-5 family of netrin receptors is known to regulate axon guidance, cell migration, and cell survival. We have previously demonstrated that unc5d, one of the UNC-5 family member genes, is specifically expressed in layer 4 of the developing rat neocortex (Zhong Y, Takemoto M, Fukuda T, Hattori Y, Murakami F, Nakajima D, Nakayama M, Yamamoto N. 2004. Identification of the genes that are expressed in the upper layers of the neocortex. Cereb Cortex. 14:1144-1152). However, the role of UNC5D in cortical development is still unknown. In this study, we revealed that unc5d was highly expressed in the primary sensory areas of the mouse neocortex at around postnatal day 7. Netrin-4 was also found to be predominantly expressed in layer 4 of the sensory cortex and sensory thalamic nuclei. Cell surface binding assay showed that netrin-4 protein bound to UNC5D-expressing cells. An in vitro study further demonstrated that cell death of unc5d-expressing layer 4 cells was reduced by exogenous application of netrin-4 protein, whereas UNC5D is not sufficient to mediate the effect of netrin-4 in deep layer cells. Taken together, these results suggest that UNC5D is primarily expressed by layer 4 cells in the primary sensory areas of the developing neocortex and may mediate the effect of netrin-4 on cortical cell survival in a lamina-specific manner.
Collapse
Affiliation(s)
- Makoto Takemoto
- Division of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Prostaglandin E2-induced synaptic plasticity in neocortical networks of organotypic slice cultures. J Neurosci 2010; 30:11678-87. [PMID: 20810888 DOI: 10.1523/jneurosci.4665-09.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of epilepsy, yet the mechanisms underlying the progression from TBI to epilepsy are unknown. TBI induces the expression of COX-2 (cyclooxygenase-2) and increases levels of prostaglandin E2 (PGE2). Here, we demonstrate that acutely applied PGE2 (2 mum) decreases neocortical network activity by postsynaptically reducing excitatory synaptic transmission in acute and organotypic neocortical slices of mice. In contrast, long-term exposure to PGE2 (2 mum; 48 h) presynaptically increases excitatory synaptic transmission, leading to a hyperexcitable network state that is characterized by the generation of paroxysmal depolarization shifts (PDSs). PDSs were also evoked as a result of depriving organotypic slices of activity by treating them with tetrodotoxin (TTX, 1 mum; 48 h). This treatment predominantly increased postsynaptically excitatory synaptic transmission. The network and cellular effects of PGE2 and TTX treatments reversed within 1 week. Differences in the underlying mechanisms (presynaptic vs postsynaptic) as well as occlusion experiments in which slices were exposed to TTX plus PGE2 suggest that the two substances evoke distinct forms of homeostatic plasticity, both of which result in a hyperexcitable network state. PGE2 and TTX (alone or together with PGE2) also increased levels of apoptotic cell death in organotypic slices. Thus, we hypothesize that the increase in excitability and apoptosis may constitute the first steps in a cascade of events that eventually lead to epileptogenesis triggered by TBI.
Collapse
|
67
|
A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J Neurosci 2010; 30:10563-74. [PMID: 20685999 DOI: 10.1523/jneurosci.0776-10.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of a precise number of neural cells and the determination of their laminar fate are tightly controlled processes during development of the cerebral cortex. Using genetic tracing in mice, we have identified a population of glutamatergic neurons generated by Dbx1-expressing progenitors at the pallial-subpallial boundary predominantly at embryonic day 12.5 (E12.5) and subsequent to Cajal-Retzius cells. We show that these neurons migrate tangentially to populate the cortical plate (CP) at all rostrocaudal and mediolateral levels by E14.5. At birth, they homogeneously populate cortical areas and represent <5% of cortical cells. However, they are distributed into neocortical layers according to their birthdates and express the corresponding markers of glutamatergic differentiation (Tbr1, ER81, Cux2, Ctip2). Notably, this population dies massively by apoptosis at the completion of corticogenesis and represents 50% of dying neurons in the postnatal day 0 cortex. Specific genetic ablation of these transient Dbx1-derived CP neurons leads to a 20% decrease in neocortical cell numbers in perinatal animals. Our results show that a previously unidentified transient population of glutamatergic neurons migrates from extraneocortical regions over long distance from their generation site and participates in neocortical radial growth in a non-cell-autonomous manner.
Collapse
|
68
|
Honoré JC, Kooli A, Hou X, Hamel D, Rivera JC, Picard E, Hardy P, Tremblay S, Varma DR, Jankov RP, Mancini JA, Balazy M, Chemtob S. Sustained hypercapnia induces cerebral microvascular degeneration in the immature brain through induction of nitrative stress. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1522-30. [PMID: 20357019 DOI: 10.1152/ajpregu.00807.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress. We investigated whether exposure to clinically relevant sustained high CO(2) causes microvascular degeneration in the newborn brain by inducing nitrative stress, and whether this microvascular degeneration has an impact on brain growth. Newborn rat pups were exposed to 10% CO(2) as inspired gas (Pa(CO(2)) = 60-70 mmHg) starting within 24 h of birth until postnatal day 7 (P7). Brains were notably collected at different time points to measure vascular density, determine brain cortical nitrite/nitrate, and trans-arachidonic acids (TAAs; products of nitration) levels as effectors of vessel damage. Chronic exposure of rat pups to high CO(2) (Pa(CO(2)) approximately 65 mmHg) induced a 20% loss in cerebrovascular density at P3 and a 15% decrease in brain mass at P7; at P30, brain mass remained lower in CO(2)-exposed animals. Within 24 h of exposure to CO(2), brain eNOS expression and production of nitrite/nitrate doubled, lipid nitration products (TAAs) increased, and protein nitration (3-nitrotyrosine immunoreactivity) was also coincidently augmented on brain microvessels (lectin positive). Intracerebroventricular injection of TAAs (10 microM) replicated cerebrovascular degeneration. Treatment of rat pups with NOS inhibitor (L-N(omega)-nitroarginine methyl ester) or a peroxynitrite decomposition catalyst (FeTPPS) prevented hypercapnia-induced microvascular degeneration and preserved brain mass. Cytotoxic effects of high CO(2) were reproduced in vitro/ex vivo on cultured endothelial cells and sprouting microvessels. In summary, hypercapnia at values frequently observed in preterm infants with chronic lung disease results in increased nitrative stress, which leads to cerebral cortical microvascular degeneration and curtails brain growth.
Collapse
Affiliation(s)
- Jean-Claude Honoré
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sanno H, Shen X, Kuru N, Bormuth I, Bobsin K, Gardner HAR, Komljenovic D, Tarabykin V, Erzurumlu RS, Tucker KL. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density. J Neurosci 2010; 30:4221-31. [PMID: 20335457 PMCID: PMC2852171 DOI: 10.1523/jneurosci.3318-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 01/25/2010] [Accepted: 01/30/2010] [Indexed: 12/26/2022] Open
Abstract
Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12-26% compared with wild-type littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers but rather by a large decrease in the amount of neuronal apoptosis at postnatal day 5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse but that decreased apoptosis does not alter cortical cytoarchitecture and patterning.
Collapse
Affiliation(s)
- Hitomi Sanno
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Xiao Shen
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Nilgün Kuru
- Department of Biology, Faculty of Education, Cumhuriyet University, TR-58140 Sivas, Turkey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ingo Bormuth
- Max Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany, and
| | - Kristin Bobsin
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Dorde Komljenovic
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Victor Tarabykin
- Max Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany, and
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kerry L. Tucker
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
70
|
Lee HJ, Ahn BJ, Shin MW, Choi JH, Kim KW. Ninjurin1: a potential adhesion molecule and its role in inflammation and tissue remodeling. Mol Cells 2010; 29:223-7. [PMID: 20119872 DOI: 10.1007/s10059-010-0043-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 02/07/2023] Open
Abstract
Nerve injury induced protein 1, Ninj1 (Ninjurin1) is a cell surface protein that is induced by nerve injury and promotes axonal growth in the peripheral nervous system. However, the function of Ninj1 in the vascular system and central nervous system (CNS) is incompletely understood. Here we review recent studies that have shed further light on the role and regulation of Ninj1 in vascular remodeling and inflammation. Increasing evidence suggests that Ninj1 mediates cell communication and enhances the entry, migration, and activity of leukocytes such as monocytes and macrophages in developmental processes and inflammatory responses. Moreover, our recent studies show that Ninj1 regulates close interaction between leukocytes and vascular endothelial cells in vascular remodeling and inflamed CNS. Additionally, Ninj1 enhances the apoptosis-inducing activity of leukocytes and is cleaved by MMPs, resulting in loss of adhesion during tissue remodeling. The collective data described here show that Ninj1 is required for the entry, adhesion, activation, and movement of leukocytes during tissue remodeling and might be a potential therapeutic target to regulate the adhesion and trafficking of leukocytes in inflammation and leukocyte-mediated diseases such as multiple sclerosis, diabetic retinopathy, and neuropathy.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- NeuroVascular Coordination Research Center, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
71
|
|
72
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
73
|
The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 2009; 17:6-10. [PMID: 19926287 DOI: 10.1016/j.jocn.2009.05.006] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/11/2009] [Accepted: 05/17/2009] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) historically has been considered an immune-privileged organ, lacking a lymphatic system and shielded from the circulatory system by the blood-brain barrier. Microglia are an abundant portion of the CNS cell population, comprising 5% to 20% of the total glial cell population, and are as numerous as neurons. A crucial function of microglia is the ability to generate significant innate and adaptive immune responses. Microglia are involved in first line innate immunity of the CNS. Proper antigen presentation is critical in the generation of specific, durable responses by the adaptive immune system, and requires interaction between the T cell receptor and processed antigen peptide presented on major histocompatibility complex (MHC) molecules by the antigen presenting cells (APC). Microglia also have a large regulatory role in CNS immunity. Histopathologic studies of glioma tissue have consistently shown high levels of infiltrating microglia. Microglia are also localized diffusely throughout the tumor, rather than to the areas of necrosis, and phagocytosis of glioma cells or debris by microglia is not observed. Recent evidence indicates that glioma-infiltrating microglia/macrophages might be promoting tumor growth by facilitating immunosuppression of the tumor microenvironment. When activated, microglia can be potent immune effector cells, able to perform a broad range of functions, and they mediate both innate and adaptive responses during CNS injury and disease while remaining quiescent in the steady state. Their versatility in bridging the gap between the immune-privileged CNS and the peripheral immune system, in addition to their significant numbers in gliomas, makes them an attractive candidate in immunotherapy for gliomas. An enhanced understanding of microglia-glioma interaction may provide better methods to manipulate the glioma microenvironment to allow the generation of a specific and durable anti-glioma immunity. The role of microglia in CNS immunity is reviewed, with a focus on key advances made in glioma immunology.
Collapse
|
74
|
Luhmann HJ, Kilb W, Hanganu-Opatz IL. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex. Front Neuroanat 2009; 3:19. [PMID: 19862346 PMCID: PMC2766272 DOI: 10.3389/neuro.05.019.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/04/2009] [Indexed: 02/04/2023] Open
Abstract
Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic non-synaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10–20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz Mainz, Germany
| | | | | |
Collapse
|
75
|
Calderó J, Brunet N, Ciutat D, Hereu M, Esquerda JE. Development of microglia in the chick embryo spinal cord: Implications in the regulation of motoneuronal survival and death. J Neurosci Res 2009; 87:2447-66. [DOI: 10.1002/jnr.22084] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
76
|
Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 2009; 106:14108-13. [PMID: 19666520 DOI: 10.1073/pnas.0804650106] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rat brain increases >6x in mass from birth to adulthood, presumably through the addition of glial cells and increasing neuronal size, without the addition of neurons. To test this hypothesis, here we investigate quantitatively the postnatal changes in the total number of neuronal and non-neuronal cells in the developing rat brain, and examine how these changes correlate with brain growth. Total numbers of cells were determined with the isotropic fractionator in the brains of 53 Wistar rats, from birth to young adulthood. We find that at birth, >90% of the cells in the rat brain are neurons. Following a dormant period of approximately 3 days after birth, the net number of neurons in the cerebral cortex, hippocampus, and remaining tissue (excluding cerebellum and olfactory bulb) doubles during the first week, then is reduced by 70% during the second postnatal week, concurrently with net gliogenesis. A second round of net addition of 6 million neurons is observed in the cerebral cortex over the following 2 weeks. During the first postnatal week, brain growth relates mainly to increased numbers of neurons of larger average size. In the second and third weeks, it correlates with increased numbers of non-neuronal cells that are smaller in size than the preexisting neurons. Postnatal rat brain development is thus characterized by dramatic changes in the cellular composition of the brain, whose growth is governed by different combinations of cell addition and loss, and changes in average cell size during the first months after birth.
Collapse
|
77
|
Vrdoljak E, Bill CA, Stephens LC, van der Kogel AJ, Ang KK, Tofilon PJ. Radiation-induced Apoptosis of Oligodendrocytesin Vitro. Int J Radiat Biol 2009; 62:475-80. [PMID: 1357061 DOI: 10.1080/09553009214552361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has been suggested that glial cells and/or their progenitors are the primary target cells for radiation-induced demyelination. Cultures of terminally differentiated oligodendrocytes, immature oligodendrocytes, and O-2A progenitor cells were generated from the cerebral cortex and spinal cord of perinatal rat pups. Irradiation of cultures of terminally differentiated oligodendrocytes resulted in a significant increase in the percentage of apoptotic cells from 15% in control to 30% in irradiated samples, with the maximum increase induced by 10 Gy. This increase in apoptosis could be observed by 1 h after irradiation with the maximum level reached at 3-6 h. Apoptotic cells were not detected before or after irradiation of cultures of O-2A progenitor cells or immature oligodendrocytes. These data suggest that radiation-induced apoptosis of terminally differentiated oligodendrocytes may be involved in early demyelination.
Collapse
Affiliation(s)
- E Vrdoljak
- University of Texas M. D. Anderson Cancer Center, Houston
| | | | | | | | | | | |
Collapse
|
78
|
Piñon MC, Jethwa A, Jacobs E, Campagnoni A, Molnár Z. Dynamic integration of subplate neurons into the cortical barrel field circuitry during postnatal development in the Golli-tau-eGFP (GTE) mouse. J Physiol 2009; 587:1903-15. [PMID: 19289548 DOI: 10.1113/jphysiol.2008.167767] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the Golli-tau-eGFP (GTE) transgenic mouse the reporter gene expression is largely confined to the layer of subplate neurons (SPn), providing an opportunity to study their intracortical and extracortical projections. In this study, we examined the thalamic afferents and layer IV neuron patterning in relation to the SPn neurites in the developing barrel cortex in GTE mouse at ages embryonic day 17 (E17) to postnatal day 14 (P14). Serotonin transporter immunohistochemistry or cytochrome oxydase histochemistry was used to reveal thalamic afferent patterning. Bizbenzimide staining identified the developing cytoarchitecture in coronal and tangential sections of GTE brains. Enhanced green fluorescent protein (GFP)-labelled neurites and thalamic afferents were both initially diffusely present in layer IV but by P4-P6 both assumed the characteristic periphery-related pattern and became restricted to the barrel hollows. This pattern gradually changed and by P10 the GFP-labelled neurites largely accumulated at the layer IV-V boundary within the barrel septa whereas thalamic afferents remained in the hollows. To investigate whether this reorganisation is dependent on sensory input, the whiskers of row 'a' or 'c' were removed at P0 or P5 and the organisation of GFP-labelled neurites in the barrel cortex was examined at P6 or P10. In the contralateral region corresponding to row 'a' or 'c' the lack of hollow to septa rearrangement of the GFP-labelled neurites was observed after P0 row removal at P10 but not at P6. Our findings suggest a dynamic, sensory periphery-dependent integration of SPn neurites into the primary somatosensory cortex during the period of barrel formation.
Collapse
Affiliation(s)
- Maria Carmen Piñon
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
79
|
Lambert C, Desbarats J, Arbour N, Hall JA, Olivier A, Bar-Or A, Antel JP. Dendritic cell differentiation signals induce anti-inflammatory properties in human adult microglia. THE JOURNAL OF IMMUNOLOGY 2009; 181:8288-97. [PMID: 19050245 DOI: 10.4049/jimmunol.181.12.8288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglia are resident cells of the CNS that belong to the myeloid cell lineage. In experimental models of neuroinflammation, they have limited capacity to function as APCs when compared with dendritic cells (DCs). Human peripheral blood monocytes have the plasticity to differentiate into mature DCs when exposed to GM-CSF and IL-4 followed by LPS. In this study we addressed the potential of human microglia to acquire phenotypic and functional properties of mature DCs under similar inducing conditions. Treated adult and fetal microglia became CD14(low) and acquired limited expression of CD209 (DC-SIGN); they remained CD1a(-) and CD83(-), and decreased MHCII expression, suggesting that they had not achieved a complete DC phenotype. The monocyte-derived DCs efficiently promoted CD4 T cell proliferation in an allogeneic MLR, whereas differentiated adult microglia had a decreased ability to stimulate CD4 T cell proliferation compared with their untreated counterparts. Differentiated fetal microglia did support CD4 T cell proliferation, whereas untreated cells could not. Fetal and adult microglia produced significant amounts of IL-10 following differentiation but no detectable IL-12 p70, in contrast to differentiated monocytes that produced IL-12 p70. Our data indicate that neither adult nor fetal microglia acquired the full characteristic phenotype of mature stimulatory DCs when treated with DC-inducing cytokines in vitro. Moreover, such treatment, especially of adult microglia, induces functional responses that could promote an antiinflammatory environment in the CNS.
Collapse
Affiliation(s)
- Caroline Lambert
- Physiology Department, Montreal Neurology Institute, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Cheung G, Kann O, Kohsaka S, Făerber K, Kettenmann H. GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain. J Physiol 2008; 587:753-68. [PMID: 19047202 DOI: 10.1113/jphysiol.2008.163923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microglial cells (brain macrophages) invade the brain during embryonic and early postnatal development, migrate preferentially along fibre tracts to their final position and transform from an amoeboid to a ramified morphology. Signals by which the invading microglia communicate with other brain cells are largely unknown. Here, we studied amoeboid microglia in postnatal corpus callosum obtained from 6- to 8-day-old mice. These cells accumulated on the surface of acute brain slices. Whole-cell patch-clamp recordings revealed that the specific GABA(A) receptor agonist muscimol triggered a transient increase in conductance typical for inward rectifying potassium channels in microglia. This current increase was not mediated by microglial GABA(A) receptors since microglial cells removed from the slice surface no longer reacted and cultured microglia only responded when a brain slice was placed in their close vicinity. Muscimol triggered a transient increase in extracellular potassium concentration ([K(+)](o)) in brain slices and an experimental elevation of [K(+)](o) mimicked the muscimol response in microglial cells. Moreover, in adult brain slices, muscimol led only to a minute increase in [K(+)](o) and microglial cells failed to respond to muscimol. In turn, an increase in [K(+)](o) stimulated the release of chemokine macrophage inflammatory protein-1alpha (MIP1-alpha) from brain slices and from cultures of microglia but not astrocytes. Our observations indicate that invading microglia in early postnatal development sense GABAergic activities indirectly via sensing changes in [K(+)](o) which results in an increase in MIP1-alpha release.
Collapse
Affiliation(s)
- Giselle Cheung
- Cellular Neurosciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
81
|
Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2008; 85:352-70. [DOI: 10.1189/jlb.0608385] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
82
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
83
|
Wakselman S, Béchade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008; 28:8138-43. [PMID: 18685038 PMCID: PMC6670768 DOI: 10.1523/jneurosci.1006-08.2008] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/29/2008] [Accepted: 06/28/2008] [Indexed: 12/28/2022] Open
Abstract
In several brain regions, microglia actively promote neuronal apoptosis during development. However, molecular actors leading microglia to trigger death remain mostly unknown. Here, we show that, in the developing hippocampus, apoptotic neurons are contacted by microglia expressing both the integrin CD11b and the immunoreceptor DAP12. We demonstrate that developmental apoptosis decreases in mice deficient for CD11b or DAP12. In addition, function-blocking antibodies directed against CD11b decrease neuronal death when injected into wild-type neonates, but have no effect when injected into DAP12-deficient littermates. This demonstrates that DAP12 and CD11b act in converging pathways to induce neuronal death. Finally, we show that DAP12 and CD11b control the production of microglial superoxide ions, which kill the neurons. Thus, our data show that the process of developmental neuronal death triggered by microglia is similar to the elimination of pathogenic cells by the innate immune cells.
Collapse
Affiliation(s)
- Shirley Wakselman
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| | - Catherine Béchade
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| | - Anne Roumier
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| | - Delphine Bernard
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| | - Antoine Triller
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| | - Alain Bessis
- Laboratoire de Biologie Cellulaire de la Synapse, Institut National de la Santé et de la Recherche Médicale, Unité 789, 75230 Paris Cedex 05, France
| |
Collapse
|
84
|
Madden SD, Cotter TG. Cell Death in Brain Development and Degeneration: Control of Caspase Expression May Be Key! Mol Neurobiol 2008; 37:1-6. [DOI: 10.1007/s12035-008-8021-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
85
|
Beauvillain C, Donnou S, Jarry U, Scotet M, Gascan H, Delneste Y, Guermonprez P, Jeannin P, Couez D. Neonatal and adult microglia cross-present exogenous antigens. Glia 2008; 56:69-77. [DOI: 10.1002/glia.20565] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
86
|
Mooney SM, Miller MW. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience 2007; 149:372-81. [PMID: 17869443 PMCID: PMC2128252 DOI: 10.1016/j.neuroscience.2007.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/30/2007] [Accepted: 08/08/2007] [Indexed: 01/07/2023]
Abstract
Organotypic cultures of rat cortex were used to test the hypotheses that nerve growth factor (NGF) is neuroprotective for immature cortical neurons and that ethanol abolishes this neuroprotection in a developmental stage-dependent manner. Samples were obtained on gestational day (G) 16 or postnatal day (P) 3 and cultured with ethanol (0 or 400 mg/dl) and NGF (0 or 30 ng/ml) for 72 h. Dying neurons were identified as exhibiting terminal nick-end labeling, immunoreactivity for activated caspase 3, or condensed nuclear chromatin. Two cortical compartments were examined in fetal tissue: a superficial, cell-sparse marginal zone (MZ) and a cell-dense cortical plate (CP). At P3, the CP was subdivided into a cell-dense upper cortical plate (UCP) and a less densely packed lower cortical plate (LCP). Neuronal death in the MZ was affected by neither NGF nor ethanol at both ages. In the fetal CP, NGF did not affect the incidence of cell death, but ethanol increased it. Treatment with NGF caused an upregulation of the expression of Neg, a gene known to be affected by NGF and ethanol. NGF did not ameliorate the ethanol-induced death. In pups, ethanol increased the amount of death in the LCP. NGF did protect against this death. Neither ethanol nor NGF altered the incidence of cell death in the UCP. The laminar-dependent neuroprotection did not correlate with expression of NGF receptors or Neg. Thus, NGF can be protective against the neurotoxic effect of ethanol in the neonatal brain. This effect is site selective and time dependent and it targets postmigratory, differentiating neurons.
Collapse
Affiliation(s)
- S M Mooney
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
87
|
Jonakait GM. The effects of maternal inflammation on neuronal development: possible mechanisms. Int J Dev Neurosci 2007; 25:415-25. [DOI: 10.1016/j.ijdevneu.2007.08.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022] Open
Affiliation(s)
- G. Miller Jonakait
- Department of Biological SciencesNew Jersey Institute of Technology195 University AvenueNewarkNJ07102United States
| |
Collapse
|
88
|
Ingrand S, Barrier L, Lafay-Chebassier C, Fauconneau B, Page G, Hugon J. The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation. FEBS Lett 2007; 581:4473-8. [PMID: 17761171 DOI: 10.1016/j.febslet.2007.08.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/20/2007] [Accepted: 08/10/2007] [Indexed: 11/23/2022]
Abstract
Inhibition of double-stranded RNA-dependent protein kinase (PKR) represents an interesting strategy for neuroprotection. However, inhibiting this kinase which triggers the apoptotic process could favour in counterpart cell proliferation and tumorigenesis. Here, we use an in vivo model of 7-day-old rat displaying a high activation of brain PKR to investigate the effects of a new PKR inhibitor identified as an oxindole/imidazole derivative (C16). We show for the first time that acute systemic injection of C16 specifically inhibits the apoptotic PKR/eIF2alpha signaling pathway without stimulating the proliferative mTOR/p70S6K signaling mechanism.
Collapse
Affiliation(s)
- Sabrina Ingrand
- Research Group on Brain Aging (EA 3808), University of Poitiers, UFR Médecine-Pharmacie, 6 Rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France.
| | | | | | | | | | | |
Collapse
|
89
|
Mooney SM, Miller MW. Postnatal generation of neurons in the ventrobasal nucleus of the rat thalamus. J Neurosci 2007; 27:5023-32. [PMID: 17494688 PMCID: PMC6672360 DOI: 10.1523/jneurosci.1194-07.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 03/22/2007] [Indexed: 01/18/2023] Open
Abstract
Most CNS systems, including the trigeminal-somatosensory system, develop via a hierarchical order (from the periphery and up the neuraxis). We tested the hypothesis that development of the trigeminal system can proceed via a nonhierarchical mechanism (i.e., that neuronogenesis can occur postnatally). Preweanling rats were perfused, and brain sections were stained with cresyl violet or immunolabeled with NeuN (for neuronal counts), or processed for acetylcholinesterase (AChE) activity or p75 immunoreactivity [to identify boundaries of the ventrobasal nucleus (VB)]. Neuronal number decreased during the first postnatal week but increased 2.5-fold over the next 3 weeks. To determine whether this remarkable rise resulted from the generation of new neurons, preweanlings were given injections of bromodeoxyuridine (BrdU) on postnatal day 6 (P6) or P21. BrdU-positive VB cells were apparent on both days. Cumulative BrdU labeling showed that the cell cycle was 17.3 h on P6. Moreover, Ki-67, a protein elaborated throughout the cell cycle, was expressed by 25.8-29.3% of all VB cells on P6-P15, falling to 7.7% by P21. BrdU-positive VB cells coexpressed neuronal markers: NeuN, HuC/D, microtubule-associated protein 2, and a dextran placed in the somatosensory cortex. Note that postnatal neuronal generation was also evident in other thalamic nuclei (e.g., the lateral geniculate nucleus). Thus, the developing VB experiences two periods of neuronal generation. Prenatal neuronogenesis is part of hierarchical trigeminal-somatosensory development. Postnatal nonhierarchical neuronogenesis is intrathalamic and matches changes in neuromodulatory systems (exemplified by AChE activity and p75) and the arrival of corticothalamic afferents.
Collapse
Affiliation(s)
- Sandra M Mooney
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, New York 13210, USA.
| | | |
Collapse
|
90
|
Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C. Entry and Distribution of Microglial Cells in Human Embryonic and Fetal Cerebral Cortex. J Neuropathol Exp Neurol 2007; 66:372-82. [PMID: 17483694 DOI: 10.1097/nen.0b013e3180517b46] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain.
Collapse
Affiliation(s)
- Anne Monier
- Institut National de la Santé et de la Recherche Médicale U676, Paris, France
| | | | | | | | | | | |
Collapse
|
91
|
Stankovski L, Alvarez C, Ouimet T, Vitalis T, El-Hachimi KH, Price D, Deneris E, Gaspar P, Cases O. Developmental cell death is enhanced in the cerebral cortex of mice lacking the brain vesicular monoamine transporter. J Neurosci 2007; 27:1315-24. [PMID: 17287506 PMCID: PMC6673577 DOI: 10.1523/jneurosci.4395-06.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotransmitters have emerged as important players in the control of programmed cell death in the cerebral cortex. We report that genetic depletion of serotonin, dopamine, and norepinephrine in mice lacking the vesicular monoamine transporter (VMAT2 KO mice) causes an increase in cell death in the superficial layers of the cingulate and retrosplenial cortices during early postnatal life (postnatal days 0-4). Electron microscopy and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling indicated that this represents a form of apoptosis. Caspase-3 and -9 are over activated in the VMAT2 KO cortex and Bcl-X(L) is downregulated, whereas the apoptosis-inducing factor caspase-8 and FasL/FasR pathway are not involved. Partial inhibition of serotonin or/and catecholamine synthesis by pharmacological treatments or genetic reduction of serotonin neuron number in mice lacking the transcription factor Pet-1 (pheochromocytoma 12 E26 transformation-specific) did not modify the cell death ratios in the cerebral cortex. However, when monoamine oxidase type A was invalidated in the VMAT2 KO background (VMAT2-MAOA DKO mice), increases in 5-HT levels coincided with a reduction of cell death and a normalization of Bcl-X(L) expression. trkB signaling is not implicated in the anti-apoptotic effects of MAOA inhibition because BDNF mRNA levels were unchanged in VMAT2-MAOA DKO mice and because the massive cell death in the cerebral cortex of trkB KO mice is also reverted by genetic invalidation of the MAOA gene. Finally the broad 5-HT2 receptor agonist (-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride prevented the increase in cell death of VMAT2 KO mice. Altogether, these results suggest that high levels of serotonin, acting through 5-HT2 receptors, have neuroprotective action on cortical neurons by controlling Bcl-X(L) mRNA levels and that this action is independent of trkB signaling.
Collapse
Affiliation(s)
- Léa Stankovski
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Chantal Alvarez
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Tanja Ouimet
- INSERM, Unité 676, Hôpital Robert Debré, 75019 Paris, France
- Université Diderot, 75252 Paris Cedex 07, France
| | - Tania Vitalis
- Developmental Biology Laboratory, Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, Georges Square, Edinburgh EH8 9XD, United Kingdom
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Neurobiologie et Diversité Cellulaire, 75005 Paris, France
| | - Khalid H. El-Hachimi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - David Price
- Developmental Biology Laboratory, Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, Georges Square, Edinburgh EH8 9XD, United Kingdom
| | - Evan Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Olivier Cases
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| |
Collapse
|
92
|
Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ. PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 2007; 134:1181-90. [PMID: 17301083 DOI: 10.1242/dev.02808] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian brain, ongoing neurogenesis via the rostral migratory stream (RMS) maintains neuronal replacement in the olfactory bulb throughout life. Mechanisms that regulate the final number of new neurons in this system include proliferation, migration and apoptosis. Here we show that the polysialylated isoforms of the neural cell adhesion molecule (PSA-NCAM) act as a pro-survival molecule in immature newborn neurons. Confocal microscopic analysis revealed a threefold increase in TUNEL-positive cells in the subventricular zone (SVZ) and the RMS of transgenic animals lacking the gene encoding NCAM (NCAM(-/-)), as compared with wild types. The enhanced apoptotic cell death occurred specifically in the population of mCD24-positive newborn neurons, but not in GFAP-positive astrocytes. Using in vitro cultures of purified SVZ-derived neurons, we demonstrate that the loss or inactivation of PSA on NCAM, as well as the deletion of NCAM, lead to reduced survival in response to neurotrophins including BDNF and NGF. These changes in cell survival are accompanied by an upregulation of p75 neurotrophin receptor expression in vitro as well as in vivo. Furthermore, the negative effects of PSA-NCAM inactivation on cell survival could be prevented by the pharmacological blockade of the p75 receptor-signaling pathway. We propose that PSA-NCAM may promote survival by controlling the expression of the p75 receptor in developing neurons.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neuroscience, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
93
|
Hutton LC, Castillo-Melendez M, Walker DW. Uteroplacental Inflammation Results in Blood Brain Barrier Breakdown, Increased Activated Caspase 3 and Lipid Peroxidation in the Late Gestation Ovine Fetal Cerebellum. Dev Neurosci 2007; 29:341-54. [PMID: 17762202 DOI: 10.1159/000105475] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 12/08/2006] [Indexed: 01/26/2023] Open
Abstract
Maternal infection is associated with perinatal brain damage, but effects on the cerebellum are not known in detail. In this study, we examined the effects of placental inflammation induced by administering lipopolysaccharide into the uterine artery of pregnant sheep at 134-136 days gestation. The fetal brain was collected 72 h later and compared to brains collected from age-matched untreated fetuses. Placental lipopolysaccharide treatment had substantial effects on the fetal cerebellum, including increasing the number of cells undergoing apoptosis, widespread lipid peroxidation, and extravasation of plasma albumin, suggesting compromise of the cerebellar blood-brain barrier. These effects may account for some of the learning and motor deficits that emerge in neonates from pregnancies compromised by infection.
Collapse
Affiliation(s)
- Lisa C Hutton
- Fetal and Neonatal Research Group, Department of Physiology, Monash University-Clayton Campus, Melbourne, Australia.
| | | | | |
Collapse
|
94
|
Sophou S, Dori I, Antonopoulos J, Parnavelas JG, Dinopoulos A. Apoptosis in the rat basal forebrain during development and following lesions of connections. Eur J Neurosci 2006; 24:573-85. [PMID: 16903859 DOI: 10.1111/j.1460-9568.2006.04929.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that neurotrophins are essential for the survival and phenotypic maintenance of cholinergic basal forebrain (BF) neurons. We evaluated the pattern of programmed cell death in the BF of the rat during development and after ablations of the cerebral cortex, a major target area and source of neurotrophins for BF neurons. We identified dying cells using the TUNEL (terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labelling) method and confirmed their apoptotic morphology with electron microscopy. Moreover, we demonstrated the expression of the apoptotic marker active caspase-3 in cells with features of apoptosis. TUNEL(+) cells were present in the developing BF during the first two postnatal weeks. Their frequency peaked at postnatal day (P)1 and at P5. TUNEL used in conjunction with immunofluorescence for neuronal nuclear protein (NeuN) showed that, at both peak stages, the majority of apoptotic cells were neurons. Extensive lesions of the cerebral cortex at different ages (P0, P7 and P14) did not induce significant changes in the frequency of apoptotic BF neurons. However, they resulted in alterations in the morphological phenotype of choline acetyltransferase (ChAT)-immunoreactive neurons in the BF, and a reduction in their number which was inversely proportional to the age at which the lesions were performed. We suggest that: (i) apoptosis is temporally coordinated with the morphological and neurochemical differentiation of BF neurons and the establishment of connections with their target areas; and (ii) cortical ablations do not affect the survival of BF neurons, but they influence the phenotype of cholinergic BF neurons.
Collapse
Affiliation(s)
- Stavroula Sophou
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
95
|
Lee EJ, Gibo TL, Grzywacz NM. Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina. Eur J Neurosci 2006; 24:2118-34. [PMID: 17074038 DOI: 10.1111/j.1460-9568.2006.05078.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important retinal neurotransmitter. We studied the expression of GABA, glutamate decarboxylase 65 (GAD65) and GAD67 by immunocytochemistry and Western blot, in the retinas of control and dark-reared C57BL/6J black mice. This study asked three questions. First, is visual input necessary for the normal expression of GABA, GAD65 and GAD67? Second, can the retina recover from the effects of dark-rearing if returned to a normal light-dark cycle? Third, does BDNF prevent the influence of dark-rearing on the expression of GABA and GAD? At postnatal day 10 (P10), before eye opening, GABA immunoreactivity was present in the ganglion cell layer (GCL), in the innermost rows of the inner nuclear layer (INL) and throughout the inner plexiform layer (IPL) of control and dark-reared retinas. In P30 control retinas, GABA immunoreactivity showed similar patterns to those at P10. However, in P30 dark-reared retinas, the density of GABA-immunoreactive cells was lower in both the INL and GCL than in control retinas. In addition, visual deprivation retarded GABA immunoreactivity in the IPL. Western blot analysis showed corresponding differences in the levels of GAD65 but not of GAD67 expression between control and dark-rearing conditions. In our study, dark-rearing effects were reversed when the mice were put in normal cyclic light-dark conditions for 2 weeks. Moreover, dark-reared retinas treated with BDNF showed normal expression of both GABA and GAD65. Our data indicate that normal expression of GABA and GAD65 is dependent on visual input. Furthermore, the data suggest that BDNF controls this dependence.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Denney Research Building 140, Los Angeles, CA 90089-1111, USA
| | | | | |
Collapse
|
96
|
Zhao T, Kraemer N, Oldekamp J, Cankaya M, Szabó N, Conrad S, Skutella T, Alvarez-Bolado G. Emx2 in the developing hippocampal fissure region. Eur J Neurosci 2006; 23:2895-907. [PMID: 16819978 DOI: 10.1111/j.1460-9568.2006.04819.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice deficient in transcription factor gene Emx2 show developmental alterations in the hippocampal dentate gyrus. Emx2, however, is also expressed in the region around the developing hippocampal fissure. The developing fissure contains a radial glial scaffolding, and is surrounded by the outer marginal zone and the dentate marginal zone, which become specifically colonized by neurons and differentiate into stratum lacunosum-moleculare and molecular layer of the dentate, respectively. In this study we show that the Emx2 mutant lacks the glial scaffolding of the fissure and has an outer marginal zone (precursor of the stratum lacunosum-moleculare), as well as a dentate marginal zone severely reduced in size while most of the reelin (Reln)-expressing cells that should occupy it fail to be generated. We have also identified a subpopulation of hippocampal Reln-expressing cells of the marginal zone, probably born in the hem, expressing a specific combination of markers, and for which Emx2 is not essentially required. Additionally, we show differential mutant phenotypes of both Emx2 and Pax6 in neocortical vs. hippocampal Reln-expressing cells, indicating differential development of both subpopulations.
Collapse
Affiliation(s)
- Tianyu Zhao
- Max Planck Institute of Experimental Endocrinology, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 2006; 497:199-208. [PMID: 16705680 DOI: 10.1002/cne.20991] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although microglial activation may be an initial beneficial response to a variety of insults, prolonged activation can release toxic substances and lead to cell death. Microglial activation secondary to hypoxia-ischemia and/or infection in immature cerebral white matter is important in the pathogenesis of periventricular leukomalacia (PVL), the major pathological substrate of cerebral palsy in the premature infant. We hypothesize that a transient overexpression in activated microglial density occurs normally in the cerebral white matter of the human fetus during the peak window of vulnerability for PVL. Such an increase could render this region susceptible to insults that cause prolonged microglial activation, as conceptualized in PVL. To examine the developmental profile of microglia in the human fetus and infant brain, immunocytochemistry with microglial specific markers were used in 23 control (non-PVL) cases ranging from 20 to 183 postconceptional (PC) weeks. Tomato lectin, used to identify microglial morphology, revealed that the cerebral white matter of the human fetus and infant is densely populated with intermediate and amoeboid microglia; the latter is indicative of an activated state. Quantitative analysis with CD68 showed increased density of activated microglia in the cerebral white matter of the fetus (<37 PC weeks) relative to the neonate/infant (> or =37 PC weeks) and to the overlying cortex of either age group (P = 0.01). The primary finding of a transient, developmental-dependent overabundance of CD68-activated microglia in the cerebral white matter of the fetus suggests a potential "priming" of this area for diverse brain insults characterized by activation of microglia, particularly PVL. J.
Collapse
Affiliation(s)
- Saraid S Billiards
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006; 499:565-82. [PMID: 17029271 DOI: 10.1002/cne.21123] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the topographical distribution of microglial subpopulations during development of the human diencephalon and telencephalon. Brains from embryos and fetuses age 5-23.5 gestational weeks (gw) were subjected to single- and double-immunolabeling for lectin RCA-1 (Ricinus Communis Agglutinin 1), Iba1 (a microglial marker), CD68 (specific of macrophages), CD45 (marker for mononucleate cells of hematopoietic lineage), CD34 (expressed on endothelial cells), and MIB1 and Ki67 (markers for cell proliferation). At 5.5 gw the first intracerebral microglial cells were seen close to the meninges and choroid plexus near the di-telencephalic fissure. They were amoeboid and positive for Iba1, CD45, and RCA-1, whereas cells in the deep parenchyma expressed Iba1/CD68/RCA-1 and constituted clusters. In the developing diencephalon, microglial clusters were located in junctional regions of the white matter anlagen, most notably at the junctions of the internal capsule with the thalamic projections, the external capsule, and the cerebral peduncle. In the cortical anlagen, Iba1+/RCA-1/CD68+/CD45+ cells accumulated at 10-12 gw, constituting a tangential band at the junction between the cortical plate and the subplate. Between 10 and 16 gw microglial clusters increased markedly in size and cellular density. Contact between Iba1+ microglia and CD34+ blood vessels was clearly visible from 10-12 gw onward, first in microglial clusters of the white matter anlagen and subsequently throughout the parenchyma. From the middle of the second trimester onward microglial cells colonized the entire cerebral parenchyma, developed a ramified morphology, and downregulated their surface antigens, but remained more numerous in the white matter.
Collapse
|
99
|
Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2006; 55:233-8. [PMID: 17106878 DOI: 10.1002/glia.20459] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microglia have long been characterized by their immune function in the nervous system and are still mainly considered in a beneficial versus detrimental dialectic. However a review of literature enables to shed novel lights on microglial function under physiological conditions. It is now relevant to position these cells as full time partners of neuronal function and more specifically of synaptogenesis and developmental apoptosis. Indeed, microglia can actively control neuronal death. It has actually been shown in retina that microglial nerve growth factor (NGF) is necessary for the developmental apoptosis to occur. Similarly, in cerebellum, microglia induces developmental Purkinje cells death through respiratory burst. Furthermore, in spinal cord, microglial TNFalpha commits motoneurons to a neurotrophic dependent developmental apoptosis. Microglia can also control synaptogenesis. This is suggested by the fact that a mutation in KARAP/DAP12, a key protein of microglial activation impacts synaptic functions in hippocampus, and synapses protein content. In addition it has been now demonstrated that microglial brain-derived neurotrophin factor (BDNF) directly regulates synaptic properties in spinal cord. In conclusion, microglia can control neuronal function under physiological conditions and it is known that neuronal activity reciprocally controls microglial activation. We will discuss the importance of this cross-talk which allows microglia to orchestrate the balance between synaptogenesis and neuronal death occurring during development or injuries.
Collapse
Affiliation(s)
- Alain Bessis
- Biologie Cellulaire de la Synapse, Inserm U789, Ecole Normale Supérieure, 46 rue d'Ulm 75005 Paris, France.
| | | | | | | |
Collapse
|
100
|
Miller MW. Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: Critical timing of exposure. Neuroscience 2006; 138:97-107. [PMID: 16427209 DOI: 10.1016/j.neuroscience.2005.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/24/2005] [Accepted: 10/26/2005] [Indexed: 11/25/2022]
Abstract
The present study explored the effects of gestational ethanol exposure on enduring changes in the distribution of projection neurons and local circuit neurons in somatosensory/motor cortex. Critical events in corticogenesis occur during macaque gestation: the first six weeks of gestation include the period of primary stem cell production and the next 18 weeks are marked by the birth, migration, early differentiation, and death of cortical neurons. Monkeys were exposed to ethanol (or saline) one day per week during the first six or during the entire 24 weeks of gestation. Offspring were killed as adolescents. Projection neurons and local circuit neurons were identified immunohistochemically with antibodies directed against glutamate and anti-GABA, respectively. In all animals, both projection neurons and local circuit neurons were distributed in all laminae of both somatosensory and motor cortices. Ethanol did not affect the size of Cresyl Violet-stained, glutamate-positive, or GABA-immunolabeled somata, however, it did decrease neuronal density. The total density of Cresyl Violet-stained neurons was reduced in monkeys treated with ethanol (or saline) one day per week during the first six weeks of gestation and during the entire 24 weeks of gestation. Similar reductions were detected for glutamate- and GABA-positive neurons. The densities of Cresyl Violet-stained and of glutamate- and GABA-expressing neurons were reduced in all cortical layers. The only exception was layer V which was unaffected in monkeys treated with ethanol (or saline) one day per week during the first six weeks of gestation and during the entire 24 weeks of gestation. Thus, the parallel effects on both neuronal subpopulations suggest that ethanol targets a population of undetermined neuronal precursors.
Collapse
Affiliation(s)
- M W Miller
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|