51
|
Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, Shan S, Delahunty M, Dewhirst MW, Telen MJ. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood 2007; 110:2708-17. [PMID: 17609430 PMCID: PMC1988948 DOI: 10.1182/blood-2006-11-056101] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sickle red cell (SS RBC) adhesion is believed to contribute to the process of vaso-occlusion in sickle cell disease (SCD). We previously found that the LW RBC adhesion receptor can be activated by epinephrine to mediate SS RBC adhesion to endothelial alphavbeta3 integrin. To determine the contribution of LW activation to vaso-occlusive events in vivo, we investigated whether in vitro treatment of SS RBCs by epinephrine resulted in vaso-occlusion in intact microvasculature after RBC infusion into nude mice. Epinephrine enhanced human SS but not normal RBC adhesion to murine endothelial cells in vitro and to endothelium in vivo, promoting vaso-occlusion and RBC organ sequestration. Murine sickle RBCs also responded to epinephrine with increased adhesion to postcapillary endothelium in nude mice. Epinephrine-induced SS RBC adhesion, vaso-occlusion, and RBC organ trapping could be prevented by the beta-adrenergic receptor (beta-AR) antagonist, propranolol. Infusion of soluble recombinant LW also significantly reduced adhesion and vaso-occlusion. In addition, epinephrine-treated SS RBCs induced activation of murine leukocyte adhesion to endothelium as well. We conclude that LW activation by epinephrine via beta-AR stimulation can promote both SS RBC and leukocyte adhesion as well as vaso-occlusion, suggesting that both epinephrine and LW play potentially pathophysiological roles in SCD.
Collapse
Affiliation(s)
- Rahima Zennadi
- Division of Hematology and Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang KKH, Mitra S, Foster TH. A comprehensive mathematical model of microscopic dose deposition in photodynamic therapy. Med Phys 2007; 34:282-93. [PMID: 17278514 DOI: 10.1118/1.2401041] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have developed a comprehensive theoretical model for rigorously describing the spatial and temporal dynamics of oxygen (3O2) consumption and transport and microscopic photodynamic dose deposition during photodynamic therapy (PDT) in vivo. Previously published models have been improved by considering perfused vessels as a time-dependent 3O2 source and linking the 3O2 concentration in the vessel to that within the tissue through the Hill equation. The time-dependent photochemical 3O2 consumption rate incorporates sensitizer photobleaching effects and an experimentally determined initially nonuniform photosensitizer distribution. The axial transport of 3O2 is provided for in the capillaries and in the surrounding tissue. A self-sensitized singlet oxygen (1O2)-mediated bleaching mechanism and the measured, initially nonuniform distribution of mesotetrahydroxyphenyl chlorin at 3 h after intravascular administration were used to demonstrate the capabilities of the model. Time-evolved distributions of 3O2 concentration were obtained by numerically solving two-dimensional diffusion-with-reaction equations both in the capillary and the adjacent tissue. Using experimentally established physiological and photophysical parameters, the mathematical model allows computation of the dynamic variation of hemoglobin-3O2 saturation (SO2) within the vessels, irreversible sensitizer degradation due to photobleaching, and the microscopic distributions of 3O2, sensitizer concentration, and 1O2 dose deposition under various irradiation conditions. The simulations reveal severe axial gradients in 3O2 and in photodynamic dose deposition in response to a wide range of clinically relevant treatment parameters. Thus, unlike former Krogh cylinder-based models, which assume a constant 3O2 concentration at the vessel, this new model identifies conditions in which 3O2 depletion and minimal deposition of reacting 1O2 exist near the end of axial segments of vessels and shows that treatment-limiting 3O2 depletion is induced at fluence rates as low as 10 mW cm(-2). These calculations also demonstrate that intercapillary heterogeneity of photosensitizer contributes significantly to the distribution of photodynamic dose. This more rigorous mathematical model enables comparison with experimentally observable, volume-averaged quantities such as SO2 and the loss of sensitizer fluorescence through bleaching that have not been included in previous analyses. Further, it establishes some of the intrinsic limitations of such measurements. Specifically, our simulations demonstrate that tissue measurements of SO2 and of photobleaching are necessarily insensitive to microscopic heterogeneity of photodynamic dose deposition and are sensitive to intercapillary spacing. Because prior knowledge of intercapillary distances in tumors is generally unavailable, these measurements must be interpreted with caution. We anticipate that this model will make useful dosimetry predictions that should inform optimal treatment conditions and improve current clinical protocols.
Collapse
Affiliation(s)
- Ken Kang-Hsin Wang
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
53
|
Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KSC, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, Hill RP, Koch CJ, Krishna MC, Krohn KA, Lewis JS, Mason RP, Melillo G, Padhani AR, Powis G, Rajendran JG, Reba R, Robinson SP, Semenza GL, Swartz HM, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 2007; 82:699-757. [PMID: 17118889 DOI: 10.1080/09553000601002324] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE The Cancer Imaging Program of the National Cancer Institute convened a workshop to assess the current status of hypoxia imaging, to assess what is known about the biology of hypoxia as it relates to cancer and cancer therapy, and to define clinical scenarios in which in vivo hypoxia imaging could prove valuable. RESULTS Hypoxia, or low oxygenation, has emerged as an important factor in tumor biology and response to cancer treatment. It has been correlated with angiogenesis, tumor aggressiveness, local recurrence, and metastasis, and it appears to be a prognostic factor for several cancers, including those of the cervix, head and neck, prostate, pancreas, and brain. The relationship between tumor oxygenation and response to radiation therapy has been well established, but hypoxia also affects and is affected by some chemotherapeutic agents. Although hypoxia is an important aspect of tumor physiology and response to treatment, the lack of simple and efficient methods to measure and image oxygenation hampers further understanding and limits their prognostic usefulness. There is no gold standard for measuring hypoxia; Eppendorf measurement of pO(2) has been used, but this method is invasive. Recent studies have focused on molecular markers of hypoxia, such as hypoxia inducible factor 1 (HIF-1) and carbonic anhydrase isozyme IX (CA-IX), and on developing noninvasive imaging techniques. CONCLUSIONS This workshop yielded recommendations on using hypoxia measurement to identify patients who would respond best to radiation therapy, which would improve treatment planning. This represents a narrow focus, as hypoxia measurement might also prove useful in drug development and in increasing our understanding of tumor biology.
Collapse
Affiliation(s)
- James L Tatum
- National Cancer Institute, Executive Plaza North, Room 6000, 6130 Executive Boulevard, Rockville, MD 20852-7440, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR, Oberley LW. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 2005; 24:8154-66. [PMID: 16170370 DOI: 10.1038/sj.onc.1208986] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that governs cellular responses to reduced O2 availability by mediating crucial homeostatic processes. HIF-1 is composed of an HIF-1alpha subunit and an HIF-1beta subunit. HIF-1alpha is degraded following enzyme-dependent hydroxylation of prolines of HIF-1alpha in the presence of molecular oxygen, Fe2+, alpha-ketoglutarate, and ascorbate. These cofactors contribute to the redox environment of cells. The antioxidant enzyme manganese superoxide dismutase (MnSOD) also modulates the cellular redox environment. Here we show that MnSOD suppressed hypoxic accumulation of HIF-1alpha protein in human breast carcinoma MCF-7 cells. This suppression was biphasic depending on MnSOD activity. At low levels of MnSOD activity, HIF-1alpha protein accumulated under hypoxic conditions. At moderate levels of MnSOD activity (two- to six-fold increase compared to parent cells), these accumulations were blocked. However, at higher levels of MnSOD activity (>6-fold increase), accumulation of HIF-1alpha protein was again observed. This biphasic modulation was observed under both 1 and 4% O2. Coexpression of mitochondrial hydrogen peroxide-removing proteins prevented the accumulation of HIF-1alpha protein in cells with high levels of MnSOD; this effect demonstrates that the restabilization of HIF-1alpha observed in high MnSOD overexpressors is probably due to hydrogen peroxide, most likely produced from MnSOD. Hypoxic induction of vascular endothelial growth factor (VEGF) protein was also suppressed by elevated MnSOD activity and its levels reflected HIF-1alpha protein levels. These observations demonstrated that HIF-1alpha accumulation and VEGF expression could be modulated by the antioxidant enzyme MnSOD.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242-1181, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Menrad A, Menssen HD. ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 2005; 9:491-500. [PMID: 15948669 DOI: 10.1517/14728222.9.3.491] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapeutic agents for the treatment of solid cancers do not discriminate between malignant and normal tissue, but rather depend on the increased proliferation of tumour cells versus benign cells. To reach therapeutically active concentrations in the tumour, large doses of these rather unspecific compounds have to be given to the patient, often resulting in severe side effects. Therefore, the goal of modern cancer research is the development of highly selective compounds which are able to discriminate between tumour tissue and normal tissue. One promising approach in this direction is antibody-mediated targeted cancer therapy which may either block an important receptor-ligand interaction or deliver a therapeutically active molecule to an otherwise nonfunctional target. A prerequisite for such an approach is the tumour-selective expression of the respective target structure. This review discusses extra domain-B fibronectin as a promising target which is associated with tumour angiogenesis and tumour growth for the development of novel antibody-mediated therapies.
Collapse
Affiliation(s)
- Andreas Menrad
- Department of AntiAngiogenesis Research, Schering AG, Corporate Business Area Oncology, Germany.
| | | |
Collapse
|
56
|
Abstract
Despite of the demonstrated activity of cytokines in vitro, their use in the clinical setting is often disappointing. Cytokine-related toxicity seriously limits optimal use in vivo. In addition, rapid degradation and excretion, neutralization and binding to receptors, or metabolization of the molecule results in a short half-life in serum when injected intravenously. As the dose-response curve of cytokines is relatively steep, outcome greatly benefits from improved delivery and bioavailability. One way to improve the pharmacokinetics of cytokines after systemic application is encapsulation in liposomes. An advantage of liposomes is that the encapsulated drug is protected from (rapid) degradation and excretion, and it eliminates the binding to neutralizing antibodies or (soluble) receptors. Moreover, liposomes can be tailored in such a way that they exhibit favorable pharmacokinetics, i.e., increased serum half-life and improved targeting to tissues or cells of interest. In this chapter, the use of liposomal cytokines in the treatment of cancer and infectious disease is discussed.
Collapse
Affiliation(s)
- Timo L M ten Hagen
- Department of Surgical Oncology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
57
|
Ryschich E, Schmidt E, Maksan SM, Klar E, Schmidt J. Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer. World J Gastroenterol 2004; 10:3171-4. [PMID: 15457566 PMCID: PMC4611264 DOI: 10.3748/wjg.v10.i21.3171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: A low vessel density is a common feature of malignant tumors. We suggested that the expansion of vessel diameter might reconstitute the oxygen and nutritient’s supply in this situation. The aim of the present study was to compare the number and diameter of blood vessels in pancreatic and liver carcinoma with normal tissue.
METHODS: Tumor induction of pancreatic (DSL6A) or hepatocellular (Morris-hepatoma) carcinoma was performed in male Lewis (pancreatic cancer) and ACI (hepatoma) rats by an orthotopic inoculation of solid tumor fragments (pancreatic cancer) or tumor cells (hepatoma). Six weeks (pancreatic cancer) or 12 d (hepatoma) after tumor implantation, the tumor microvasculature as well as normal pancreatic or liver blood vessels were investigated by intravital microscopy. The number of perfused blood vessels in tumor and healthy tissue was assessed by computer-assisted image analysis.
RESULTS: The vessel density in healthy pancreas (565 ± 89 n/mm2) was significantly higher compared to pancreatic cancer (116 ± 36 n/mm2) (P < 0.001). Healthy liver showed also a significantly higher vessel density (689 ± 36 n/mm2) compared to liver carcinoma (286 ± 32 n/mm2) (P < 0.01). The comparison of diameter frequency showed a significant increase of vessel diameter in both malignant tumors compared to normal tissue (P < 0.05).
CONCLUSION: The expansion of endothelial cells during tumor angiogenesis is accompanied to a large extent by an increase of vessel diameter rather than by formation of new blood vessels. This may be a possible adaptive mechanism by which experimental pancreatic and hepatocellular cancers expand their endothelial diffusion surface of endothelium to compensate for inadequate neoangiogenesis.
Collapse
Affiliation(s)
- Eduard Ryschich
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
58
|
Julien C, Payen JF, Troprès I, Farion R, Grillon E, Montigon O, Rémy C. Assessment of vascular reactivity in rat brain glioma by measuring regional blood volume during graded hypoxic hypoxia. Br J Cancer 2004; 91:374-80. [PMID: 15188003 PMCID: PMC2409813 DOI: 10.1038/sj.bjc.6601908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While morphological and molecular events during angiogenesis in brain glioma have been extensively studied, the functional properties of tumour vessels have yet received little attention. We have determined changes in regional blood volume (BV) during graded hypoxic hypoxia using susceptibility contrast magnetic resonance imaging in a model of rat brain glioma. Nine anaesthetised and ventilated rats with C6 glioma were subjected to incremental reduction in the fraction of inspired oxygen (FiO2): 0.35, 0.25, 0.15, 0.12, 0.10 and reoxygenation to 0.35. At each episode, BV was determined in peritumoral, intratumoral and contralateral regions. Baseline BV values (FiO2 of 0.35) were higher in peritumoral than in the contralateral and intratumoral regions. Progressive hypoxia resulted in a graded increase in BV in contralateral and peritumoral regions. At FiO2 of 0.10, BV increases were comparable between these two regions: 49±22% (s.d.) and 28±17% with respect of control values, respectively. These BV changes reversed during the reoxygenation episode. By contrast, the intratumoral region had a significant increase in BV at FiO2 of 0.10 only, with no evidence of return to the basal value during reoxygenation. Immunohistochemical staining of α-smooth muscle actin confirmed reactivity of vessels in the peritumoral region. Our findings indicate that peritumoral vessels present a vascular reactivity to hypoxia, which is comparable to that of nontumoral vessels. A method is thus available for noninvasively demonstrating whether any particular vascular modifying strategy results in the desired outcome in terms of tumour blood volume changes.
Collapse
Affiliation(s)
- C Julien
- Unité Mixte INSERM/UJF 594, LRC CEA 30 V, Pavillon B, BP 217, Hôpital Albert Michallon, F-38043 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
59
|
Troprès I, Lamalle L, Péoc'h M, Farion R, Usson Y, Décorps M, Rémy C. In vivo assessment of tumoral angiogenesis. Magn Reson Med 2004; 51:533-41. [PMID: 15004795 DOI: 10.1002/mrm.20017] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vessel size imaging (VSI) for brain tumor characterization was evaluated and the vessel size index measured by MRI (VSIMRI) was correlated with VSI obtained by histology (VSIhisto). Blood volume (BV) and VSI maps were obtained on 12 rats by simultaneous measurements of R2* and R2, before and after the injection of a macromolecular contrast agent, AMI-227. Immunostaining of collagen IV in vessels was performed. An expression was derived for evaluating VSI from stereologic measurements on histology data (VSIhisto). On BV and VSI images obtained from large-size tumors (n = 9), three regions could be distinguished and correlated well with histological sections: a high BV region surrounding the tumor, a necrotic area where BV is very low, and a viable tumor tissue region showing lower BV but higher VSI than the normal rat cortex, with the presence of larger vessels. The quantitative analysis showed a good correlation (Spearman rank's rho = 0.74) between VSIhisto and VSIMRI with a linear regression coefficient of 1.17. The good correlation coefficient supports VSI imaging as a quantitative method for tumor vasculature characterization.
Collapse
Affiliation(s)
- I Troprès
- Unité mixte INSERM 594/Université Joseph Fourier, Laboratoire de Recherche Conventionné du CEA No. 30V, Hôpital Albert Michallon, and European Synchrotron Radiation Facility, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
60
|
Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 2002; 54:613-30. [PMID: 12204595 DOI: 10.1016/s0169-409x(02)00041-8] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review article summarizes recent results on the development of macromolecular carriers for thermal targeting of therapeutics to solid tumors. This approach employs thermally responsive polymers in conjunction with targeted heating of the tumor. The two thermally responsive polymers that are discussed in this article, poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAAm)) and an artificial elastin-like polypeptide (ELP), were designed to exhibit a soluble-insoluble lower critical solution transition in response to increased temperature slightly above 37 degrees C. In vivo fluorescent videomicroscopy and radiolabel distribution studies of ELP delivery to human tumors implanted in nude mice demonstrated that hyperthermic targeting of the thermally responsive ELP for 1 h provides a approximately two-fold increase in tumor localization compared to the same polypeptide without hyperthermia. Similar results were also obtained for poly(NIPAAm) though the extent of accumulation was somewhat lesser than observed for the ELP. The endocytotic uptake of a thermally responsive ELP was also observed to be significantly enhanced by the thermally triggered phase transition of the polypeptide in cell culture for three different tumor cell lines. Preliminary cytotoxicity studies of an ELP-doxorubicin conjugate indicate that the ELP-doxorubicin conjugate has near equivalent cytotoxicity as free doxorubicin in a cell culture assay.
Collapse
Affiliation(s)
- Ashutosh Chilkoti
- Department of Biomedical Engineering, Box 90281, Duke University, Durham, NC 27708-0281, USA.
| | | | | | | |
Collapse
|
61
|
Costouros NG, Lorang D, Zhang Y, Miller MS, Diehn FE, Hewitt SM, Knopp MV, Li KCP, Choyke PL, Alexander HR, Libutti SK. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI. Mol Imaging 2002; 1:301-8. [PMID: 12920855 DOI: 10.1162/15353500200202124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.
Collapse
|
62
|
Cristofanilli M, Charnsangavej C, Hortobagyi GN. Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 2002; 1:415-26. [PMID: 12119743 DOI: 10.1038/nrd819] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis--the formation of new blood vessels--is essential for tumour progression and metastasis. Consequently, the modulation of tumour angiogenesis using novel agents has become a highly active area of investigation in cancer research, from the bench to the clinic. However, the great therapeutic potential of these agents has yet to be realized, which could, in part, be because the traditional strategies that are used in clinical trials for anticancer therapies are not appropriate for assessing the efficacy of agents that modulate angiogenesis. Here, we discuss methods for monitoring the biological activity of angiogenic modulators, and innovative approaches to trial design that might facilitate the integration of these agents into anticancer therapy.
Collapse
Affiliation(s)
- Massimo Cristofanilli
- Department of Breast Medical Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
63
|
Abstract
In this article we consider the factors responsible for the unique nature of the pericellular matrix of solid tumors and we discuss the role of alterations of tumor blood vessel structure. We examine the role of VEGF (vascular endothelial growth factor), a factor controlling permeability of capillaries, plasma protein extravasation, and the formation of a fibrin barrier. We discuss how this barrier could be destroyed by metalloproteinases bound on the surface of endothelial cells migrating through the matrix and how these enzymes are responsible for the activation of gelatinases that destroy basement membranes. The process called tubulogenesis, which gives rise to hyperpermeable tumor capillaries, will also be described. Alterations of the blood vessel structure leading to hypoxia of the matrix, and accumulation of plasma proteins and of blood cells will be treated. Finally, we review some of the strategies that might exploit this knowledge about the nature of the tumoral matrix for designing novel anticancer treatments.
Collapse
Affiliation(s)
- Vincenzo Chiarug
- Department of Experimental Pathology and Oncology, University of Firenze, Italy
| | | | | |
Collapse
|
64
|
Abstract
For a systemically administered therapeutic agent to reach neoplastic cells, it must enter the blood circulation, cross the vessel wall, move through the extracellular matrix and avoid getting cleared by the lymphatics. In tumours, each of these barriers is abnormal, changes with space and time, and depends on host-tumour interactions. Intravital microscopy has provided unprecedented molecular, cellular, anatomical and functional insights into these barriers and has revealed new approaches to improved detection and treatment.
Collapse
Affiliation(s)
- Rakesh K Jain
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA.
| | | | | |
Collapse
|
65
|
Wen WN. Methemoglobin is a supplement for in vitro culture of human nasopharyngeal epithelial cells transformed by human papillomavirus type 16 DNA. In Vitro Cell Dev Biol Anim 2001; 37:668-75. [PMID: 11776972 DOI: 10.1290/1071-2690(2001)037<0668:miasfi>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NPC-N cells were normal human nasopharvngeal epithelial cells transformed by transfection with human papillomavirus type 16 deoxyribonucleic acid. Bovine pituitary extract (BPE) was one of the indispensable ingredients for in vitro culture of NPC-N cells in a serum-free medium. Chromatographic fractionation of BPE and subsequent immunoblotting analyses identified the hemoglobin growth-stimulating factor. Methemoglobin (metHb) was then synthesized, and also found to be growth stimulating. The growth-stimulating effect of metHb was abolished when NPC-N cells were cultured in a medium that also contained haptoglobin, a molecule that binds to hemoglobin. A defined medium consisting of insulin and metHb was then developed for optimal growth of NPC-N cells. MetHb kept under the conditions identical to those of cell culture released hemin which also enhanced the cell growth. Though all the degradation products of hemin are currently known to be physiologically significant. only ferric iron derived from metHb or hemin could stimulate the growth of NPC-N cells. Abnormal vasculature showing leaky walls and hemorrhage is a common feature of malignant tumors. Hemoglobin originating from extravasated red blood cells and subsequently oxidized to metHb because of the presence of activated inflammatory cells might contribute to the increased proliferation of cancerous cells.
Collapse
Affiliation(s)
- W N Wen
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei.
| |
Collapse
|
66
|
Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 2001; 74:213-24. [PMID: 11489497 DOI: 10.1016/s0168-3659(01)00319-4] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a new thermal targeting method in which a thermally responsive drug carrier selectively accumulates in a solid tumor that is maintained above physiological temperature by externally applied, focused hyperthermia. We synthesized two thermally responsive polymers that were designed to exhibit a lower critical solution temperature (LCST) transition slightly above physiological temperature: (1) a genetically engineered elastin-like polypeptide (ELP) and (2) a copolymer of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm). The delivery of systemically injected polymer-rhodamine conjugates to solid tumors was investigated by in vivo fluorescence video microscopy of ovarian tumors implanted in dorsal skin fold window chambers in nude mice, with and without local hyperthermia. When tumors were heated to 42 degrees C, the accumulation of a thermally responsive ELP with a LCST of 40 degrees C was approximately twofold greater than the concentration of the same polymer in tumors that were not heated. Similar results were also obtained for a thermally responsive poly(NIPAAM-co-AAm), though the enhanced accumulation of this carrier in heated tumors was lower than that observed for the thermally responsive ELP. These results suggest that enhanced delivery of drugs to solid tumors can be achieved by conjugation to thermally responsive polymers combined with local heating of tumors.
Collapse
Affiliation(s)
- D E Meyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
67
|
Neeman M, Dafni H, Bukhari O, Braun RD, Dewhirst MW. In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn Reson Med 2001; 45:887-98. [PMID: 11323816 DOI: 10.1002/mrm.1118] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bold contrast MRI was applied for mapping vascular maturation in tumor- and wound-induced skin angiogenesis using the response of mature vessels to hypercapnia (inhalation of air vs. air 5% CO(2)) and the response of all vessels to hyperoxia (air 5% CO(2) vs. oxygen 5% CO(2) (carbogen)). MRI signal enhancement with hypercapnia was reduced in centered vs. linear phase encoding, suggesting increased blood flow. However, intravital microscopy demonstrated constriction of arterioles and reduced flux and density of red blood cells in mature capillaries with hypercapnia, with no change in the diameter of wound-induced neovasculature. The discrepancy in flow between MRI and intravital microscopy is consistent with increased plasma flow and reduced hematocrit. Hyperoxia resulted in increased blood oxygenation and constriction of all vessels. These results provide a hemodynamic explanation for the selective registration of MRI response to hypercapnia with mature vessels and the response to hyperoxia with total vascular function.
Collapse
Affiliation(s)
- M Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
68
|
Vodovozova EL, Moiseeva EV, Grechko GK, Gayenko GP, Nifant'ev NE, Bovin NV, Molotkovsky JG. Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model. Eur J Cancer 2000; 36:942-9. [PMID: 10785601 DOI: 10.1016/s0959-8049(00)00029-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The overexpression of lectins by malignant cells compared with normal ones can be used for the targeting of drug-loaded liposomes to tumours with the help of specific carbohydrate ligands (vectors). Recently we have shown that liposomes bearing specific lipid-anchored glycoconjugates on a polymeric matrix bind in vitro to human malignant cells more effectively and, being loaded with a lipophilic prodrug of merphalan, reveal higher cytotoxic activity compared with unvectored liposomes. In this study, carbohydrate-equipped cytotoxic liposomes were tested in vivo in a mouse breast cancer model, BLRB-Rb (8.17)1Iem strain with a high incidence of spontaneous mammary adenocarcinoma (SMA). Firstly, a cell line of the SMA was established which was then used to determine the specificity of the tumour cell lectins. After screening of the lectin specificity of a number of fluorescent carbohydrate probes, SiaLe(X) was shown to be the ligand with the most affinity, and a lipophilic vector bearing this saccharide was synthesised. Then different liposomal formulations of the synthetic merphalan lipid derivative and SiaLe(X) vector were prepared and applied in the treatment of mice with grafted adenocarcinomas. The results of the tumorigenesis data show that the therapeutic efficacy of merphalan increases sharply after its insertion as a lipophilic prodrug into the membrane of SiaLe(X)-vectored liposomes.
Collapse
Affiliation(s)
- E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
69
|
Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 2000; 92:143-7. [PMID: 10639516 DOI: 10.1093/jnci/92.2.143] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is a paucity of information about events that follow immediately after tumor cells are triggered to initiate the process of angiogenesis (the formation of new blood vessels). Such information is relevant to the issue of when micrometastases vascularize and has implications for the accessibility of micrometastases to various treatments. In this study, we attempted to monitor events at the initiation of angiogenesis at the earliest possible stage of tumor growth in vivo. METHODS Two different rodent mammary tumor cell lines, R3230Ac from the Fischer 344 rat and 4T1 from the BALB/c mouse, were stably transfected with a gene that encodes an enhanced version of green fluorescence protein (GFP). GFP-labeled R3230Ac or 4T1 cells (about 20-50 cells) were implanted into dorsal skinfold window chambers of Fischer 344 rats or BALB/c mice, respectively. Tumor angiogenesis was then monitored serially and noninvasively for up to 4 weeks. RESULTS Clear evidence of modification of the host vasculature was observed when tumor mass reached approximately 60-80 cells, and functional new blood vessels were seen when tumor mass reached roughly 100-300 cells. Individual tumor cells exhibited a chemotaxis-like growth pattern toward the pre-existing host vasculature. When ex-flk1 (a soluble, truncated vascular endothelial cell growth factor receptor protein known to be antiangiogenic) was injected with the tumor cells, the initial angiogenic and tumor growth activities were inhibited considerably, indicating that angiogenesis inhibitors may halt tumor growth even before the onset of angiogenesis. CONCLUSION Angiogenesis induced by tumor cells after implantation in the host begins at a very early stage, i.e., when the tumor mass contains roughly 100-300 cells. Identification of chemotactic signals that initiate tumor cell migration toward the existing vasculature may provide valuable targets for preventing tumor progression and/or metastases.
Collapse
MESH Headings
- Animals
- Cell Division
- Disease Models, Animal
- Female
- Green Fluorescent Proteins
- Indicators and Reagents
- Luminescent Proteins
- Mammary Neoplasms, Experimental
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Rats
- Rats, Inbred F344
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Skin Neoplasms/blood supply
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Window Technique
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Y Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Vajkoczy P, Ullrich A, Menger MD. Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2000; 2:53-61. [PMID: 10933068 PMCID: PMC1531866 DOI: 10.1038/sj.neo.7900062] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis and microcirculation play a central role in growth and metastasis of human neoplasms, and, thus, represent a major target for novel treatment strategies. Mechanistic analysis of processes involved in tumor vascularization, however, requires sophisticated in vivo experimental models and techniques. Intravital microscopy allows direct assessment of tumor angiogenesis, microcirculation and overall perfusion. Its application to the study of tumor-induced neovascularization further provides information on molecular transport and delivery, intra- and extravascular cell-to-cell and cell-to-matrix interaction, as well as tumor oxygenation and metabolism. With the recent advances in the field of bioluminescence and fluorescent reporter genes, appropriate for in vivo imaging, the intravital fluorescent microscopic approach has to be considered a powerful tool to study microvascular, cellular and molecular mechanisms of tumor growth.
Collapse
Affiliation(s)
- P Vajkoczy
- Department of Neurosurgery, Klinikum Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
71
|
Taylor JS, Tofts PS, Port R, Evelhoch JL, Knopp M, Reddick WE, Runge VM, Mayr N. MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 1999; 10:903-7. [PMID: 10581502 DOI: 10.1002/(sici)1522-2586(199912)10:6<903::aid-jmri1>3.0.co;2-a] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) is a method of imaging the physiology of the microcirculation. A series of recent clinical studies have shown that DCE MRI can measure and predict tumor response to therapy. Recent advances in MR technology provide the enhanced spatial and temporal resolution that allow the application of this methodology in the management of cancer patients. The September issue of this journal provided a microcirculation section to update readers on this exciting and challenging topic. Evidence is mounting that DCE MRI-based measures correlate well with tumor angiogenesis. DCE MRI has already been shown in several types of tumors to correlate well with traditional outcome measures, such as histopathologic studies, and with survival. These new measures are sensitive to tumor physiology and to the pharmacokinetics of the contrast agent in individual tumors. Moreover, they can present anatomical images of tumor microcirculation at excellent spatial resolution. Several issues have emerged from recent international workshops that must be addressed to move this methodology into routine clinical practice. First, is complex modeling of DCE MRI really necessary to answer clinical questions reliably? Clinical research has shown that, for tumors such as bone sarcomas, reliable outcome measures of tumor response to chemotherapy can be extracted from DCE MRI by methods ranging from simple measures of enhancement to pharmacokinetic models. However, the use of similar methods to answer a different question-the differentiation of malignant from benign breast tumors-has yielded contradictory results. Thus, no simple, one-size-fits-all-tumors solution has yet been identified. Second, what is the most rational and reliable data collection procedure for the DCE MRI evaluation? Several groups have addressed population variations in some key variables, such as tumor T(1)0 (T(1) prior to contrast administration) and the arterial input function C(a)(t) for contrast agent, and how they influence the precision and accuracy of DCE MRI outcomes. However, despite these potential complications, clinical studies in this section show that some tumor types can be assessed by relatively simple dynamic measures and analyses. The clinical scenario and tumor type may well determine the required complexity of the DCE MRI exam procedure and its analysis. Finally, we suggest that a consensus on naming conventions (nomenclature) is needed to facilitate comparison and analysis of the results of studies conducted at different centers. J. Magn. Reson. Imaging 10:903-907, 1999.
Collapse
Affiliation(s)
- J S Taylor
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Gillies RJ, Schornack PA, Secomb TW, Raghunand N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1999; 1:197-207. [PMID: 10935474 PMCID: PMC1508079 DOI: 10.1038/sj.neo.7900037] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Accepted: 05/27/1999] [Indexed: 12/11/2022]
Abstract
A characteristic of solid tumors is their heterogeneous distribution of blood flow, with significant hypoxia and acidity in low-flow regions. We review effects of heterogeneous tumor perfusion are reviewed and propose a conceptual model for its cause. Hypoxic-acidic regions are resistant to chemo- and radiotherapy and may stimulate progression to a more metastatic phenotype. In normal tissues, hypoxia and acidity induce angiogenesis, which is expected to improve perfusion. However, aggressive tumors can have high local microvessel density simultaneously with significant regions of hypoxia and acidosis. A possible explanation for this apparent contradiction is that the mechanisms regulating growth and adaptation of vascular networks are impaired. According to a recent theory for structural adaptation of vascular networks, four interrelated adaptive responses can work as a self-regulating system to produce a mature and efficient blood distribution system in normal tissues. It is proposed that heterogeneous perfusion in tumors may result from perturbation of this system. Angiogenesis may increase perfusion heterogeneity in tumors by increasing the disparity between parallel low- and high-resistance flow pathways. This conceptual model provides a basis for future rational therapies. For example, it indicates that selective destruction of tumor vasculature may increase perfusion efficiency and improve therapeutic efficacy.
Collapse
Affiliation(s)
- R J Gillies
- Arizona Cancer Center, University of Arizona, Tucson 85724-5024, USA.
| | | | | | | |
Collapse
|
73
|
Dunn TJ, Braun RD, Rhemus WE, Rosner GL, Secomb TW, Tozer GM, Chaplin DJ, Dewhirst MW. The effects of hyperoxic and hypercarbic gases on tumour blood flow. Br J Cancer 1999; 80:117-26. [PMID: 10389987 PMCID: PMC2363007 DOI: 10.1038/sj.bjc.6690330] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Carbogen (95% O2 and 5% CO2) has been used in preference to 100% oxygen (O2) as a radiosensitizer, because it is believed that CO2 blocks O2-induced vasoconstriction. However, recent work suggests that both normal and tumour arterioles of dorsal flap window chambers exhibit the opposite: no vasoconstriction vs constriction for O2 vs carbogen breathing respectively. We hypothesized that CO2 content might cause vasoconstriction and investigated the effects of three O2-CO2 breathing mixtures on tumour arteriolar diameter (TAD) and blood flow (TBF). Fischer 344 rats with R3230Ac tumours transplanted into window chambers breathed either 1%, 5%, or 10% CO2 + O2. Intravital microscopy and laser Doppler flowmetry were used to measure TAD and TBF respectively. Animals breathing 1% CO2 had increased mean arterial pressure (MAP), no change in heart rate (HR), transient reduction in TAD and no change in TBF. Rats breathing 5% CO2 (carbogen) had transiently increased MAP, decreased HR, reduced TAD and a sustained 25% TBF decrease. Animals exposed to 10% CO2 experienced a transient decrease in MAP, no HR change, reduced TAD and a 30-40% transient TBF decrease. The effects on MAP, HR, TAD and TBF were not CO2 dose-dependent, suggesting that complex physiologic mechanisms are involved. Nevertheless, when > or = 5% CO2 was breathed, there was clear vasoconstriction and TBF reduction in this model. This suggests that the effects of hypercarbic gases on TBF are site-dependent and that use of carbogen as a radiosensitizer may be counterproductive in certain situations.
Collapse
Affiliation(s)
- T J Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998; 40:793-9. [PMID: 9840821 DOI: 10.1002/mrm.1910400602] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumor-sprouted vessels are greater in both number and diameter in comparison to their healthy counterparts. A novel technique based on magnetic susceptibility contrast mechanisms that are sensitive to varying sizes of blood vessels is presented to measure differences between the relaxation rates (1/T2 and 1/T2*) in a rat glioma model and normal cerebral cortex. deltaR2 and deltaR2*, the differences between relaxation rates precontrast and postcontrast agent injection, were measured for an intravascular equilibrium contrast agent (MION) at various echo times. Since deltaR2*/deltaR2 increases as vessel size increases, this ratio can be used as a measure of the average vessel size within an ROI or a voxel. The stability and longevity of the contrast agent within the vasculature were verified (n = 2 trials), and the ratio of deltaR2*/deltaR2 between the tumor and normal cortex was measured to be 1.9+/-0.2 (n = 4, echo time = 20 ms, and susceptibility difference (deltachi) approximately 10(-6)). This ratio compared favorably to a predicted ratio determined using histologically determined vessel sizes and theoretical Monte Carlo modeling results (1.9+/-0.1). Maps of the ratio of deltaR2*/deltaR2 were also made on a pixel-by-pixel basis. These techniques support the hypothesis that susceptibility contrast MRI can provide useful quantitative metrics of in vivo tumor vascular morphology.
Collapse
Affiliation(s)
- J Dennie
- MGH-NMR Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | |
Collapse
|
75
|
Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, Shigematsu Y, Liang L, Ge Y, Ushio Y, Takahashi M. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171:1479-86. [PMID: 9843274 DOI: 10.2214/ajr.171.6.9843274] [Citation(s) in RCA: 319] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Our purpose was to evaluate the relationships between the ratio of maximum relative cerebral blood volume (rCBV) (rCBV ratio = rCBV[tumor]/rCBV[contralateral white matter]) and histologic and angiographic vascularities of gliomas using the gradient-echo echoplanar MR imaging technique. We also evaluated the usefulness of rCBV maps for grading gliomas. SUBJECTS AND METHODS We examined 30 patients with histologically verified gliomas. Gliomas were classified as glioblastoma, anaplastic glioma with enhancement, anaplastic glioma without enhancement, and low-grade glioma. The maximum rCBV ratio of each glioma was compared with both histologic and angiographic vascularities, and the relationship between the maximum rCBV ratios and each type of glioma was established. RESULTS The maximum rCBV ratios of the gliomas significantly correlated with both histologic and angiographic vascularities (p < .001). Mean values and SDs of maximum rCBV ratios of each type of tumor were 7.32+/-4.39 for glioblastomas, 5.84+/-1.82 for anaplastic gliomas with enhancement, 1.53+/-0.75 for anaplastic gliomas without enhancement, and 1.26+/-0.55 for low-grade gliomas. The maximum rCBV ratios of the glioblastomas were significantly higher than those of the anaplastic gliomas without enhancement (p = .002) and the low-grade gliomas (p < .001). The maximum rCBV ratios of the anaplastic gliomas with enhancement were higher than those of the anaplastic gliomas without enhancement and the low-grade gliomas, but the differences were not statistically significant (p = .08 and p = .03, respectively). CONCLUSION The results of perfusion-sensitive MR imaging with gradient-echo echoplanar technique correlated with both histologic and angiographic vascularities.
Collapse
Affiliation(s)
- T Sugahara
- Department of Radiology, Kumamoto University School of Medicine, Honjo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
This article compares and contrasts the classic paradigms underlying the development of chronic and acute hypoxia in tumors. The classic theory of Thomlinson and Gray suggested that chronic hypoxia is the result of large intravascular distances. Newer evidence suggests that a multiplicity of effects contribute to this process, including steep longitudinal gradients of partial pressure of oxygen (Po2) along the vascular tree before arteriolar entry into tumor, rheologic effects on red cell deformability brought on by intravascular hypoxia, uneven distribution of red cell fluxes in microvessels leading to plasma channels, irregular vascular geometry, and oxygen demand that is out of balance with the supply. The most common theories have suggested that vascular stasis is the most common source of acute hypoxia. If this were true, the incidence of this form of hypoxia would be relatively rare because most studies indicate that total stasis probably occurs less than 5% of the time. Studies have suggested, however, that spontaneous fluctuation in tumor blood flow, on the microregional level, can lead to tissue hypoxia, and total vascular stasis is not required. Spontaneous fluctuations in flow and Po2 appear to occur commonly. Thus, the most current evidence suggests that tumor oxygenation is in a continuous state of flux. Collectively, this new information has important implications for therapy resistance and gene expression.
Collapse
Affiliation(s)
- M W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
77
|
Molema G, Meijer DK, de Leij LF. Tumor vasculature targeted therapies: getting the players organized. Biochem Pharmacol 1998; 55:1939-45. [PMID: 9714313 DOI: 10.1016/s0006-2952(98)00011-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on their location and central role in solid tumor growth, tumor vascular endothelial cells may present an attractive target for the delivery of therapeutic drugs or cells. The potency of blocking the tumor blood supply in eradicating solid tumors was demonstrated recently in a mouse model of tumor vasculature targeting (Huang et al., Science 275: 547-550, 1997). For clinical application of such strategies, tumor endothelium specific target epitopes need to be identified. Recent studies on angiogenesis have identified angiogenesis-related molecules as potential target epitopes. Among these are vascular endothelial growth factor (VEGF)/VEGF-receptor complex, alpha(v) integrins, and Tie receptor tyrosine kinases. Besides blockade of their signalling cascades leading to inhibition of angiogenesis, these epitopes may also be instrumental in tumor vessel specific delivery of therapeutics. Data on the efficacy of therapeutic modalities aimed at these, mostly heterogeneously distributed tumor endothelial epitopes are scarce, and sophisticated experimentation is required to rationalize the development of new therapeutic strategies. Importantly, only detailed evaluations in cancer patients will provide the blueprint for the development of clinically effective tumor vascular targeted therapies.
Collapse
Affiliation(s)
- G Molema
- Department of Clinical Immunology, Groningen Utrecht Institute for Drug Exploration, The Netherlands.
| | | | | |
Collapse
|
78
|
Baronzio GF, Galante F, Gramaglia A, Barlocco A, de Grandi S, Freitas I. Tumor microcirculation and its significance in therapy: possible role of omega-3 fatty acids as rheological modifiers. Med Hypotheses 1998; 50:175-82. [PMID: 9572573 DOI: 10.1016/s0306-9877(98)90204-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the great efforts to find new drugs or devices to suppress cancer cells, attempts to modify microcirculation and therefore the state of tumor cells and their surrounding normal tissues have not been given the attention they deserve. Solid tumors are composed of highly heterogeneous populations of malignant, stromal and inflammatory cells in a continuously adapting extracellular matrix. All of the above components interact and regulate each other to produce distinct microenvironments within the tumor mass. Abnormal microcirculation plays a particular role in the maintenance of this anomalous condition and favors the formation of metastasis, but on the other hand provides the therapist with an important site for intervention. In this brief overview we attempt to outline three aspects: (a) how the anomalous tumor blood flow provokes the nonuniform distribution of oxygen and nutrients within the tumor mass, thus determining different responses to the various cancer therapies; (b) how hemorheology is the clinical parameter most easily modified and (c) how omega-3 essential fatty acids are natural drugs that could be used in this sense beyond their antitumoral properties.
Collapse
Affiliation(s)
- G F Baronzio
- Oncology Section, Medical Center ISENI, Lonate Pozzolo (Va), Italy
| | | | | | | | | | | |
Collapse
|
79
|
Jain RK, Schlenger K, Höckel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med 1997; 3:1203-8. [PMID: 9359693 DOI: 10.1038/nm1197-1203] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R K Jain
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| | | | | | | |
Collapse
|
80
|
Shan SQ, Rosner GL, Braun RD, Hahn J, Pearce C, Dewhirst MW. Effects of diethylamine/nitric oxide on blood perfusion and oxygenation in the R3230Ac mammary carcinoma. Br J Cancer 1997; 76:429-37. [PMID: 9275018 PMCID: PMC2227992 DOI: 10.1038/bjc.1997.406] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effects of intravenous diethylamine/nitric oxide (DEA/NO), a short-acting nitric oxide (NO) donor, on systemic haemodynamics, muscle and tumour blood flow (MBF and TBF) and tumour oxygenation were examined in rats bearing subcutaneous R3230Ac carcinoma in the leg. The effects of DEA/NO on the diameters of tumour-feeding and normal arterioles were evaluated in window chambers with and without implanted tumours. DEA/NO reduced mean arterial pressure (MAP) when given at doses > or = 100 nmol kg(-1), with maximal suppression at 0.5-1 min followed by return to baseline within 20 min. DEA/NO did not affect MBF except at the highest doses (500 and 1000 nmol kg(-1)). In contrast, DEA/NO reduced TBF and constricted tumour arterioles at doses > or = 100 nmol kg(-1). Tumour arteriolar vasomotion occurred in more than half the animals during hypotension and with a significantly higher frequency than in normal granulating tissue at a dose of 500 nmol kg(-1). Normal arterioles rapidly and significantly vasodilated for about 3 min and then returned to baseline. The reductions in TBF and MAP were accompanied by synchronous reduction in tumour pO2. Our findings suggest that DEA/NO decreases TBF in two ways. In the window chamber model, vascular steal occurs as normal arterioles adjacent to tumour dilate more than tumour arterioles during the initial period of hypotension. In leg tumours, the predominant mechanism is attributable to reduced perfusion pressure induced by lowered MAP, which decreases flow to the tumour, probably because of relatively higher flow resistance. The vasoconstriction and vasomotion in tumour arterioles during DEA/NO-induced hypotension may reflect differences in regulatory metabolism of NO between neoplastic and normal arterioles. Thus, intravenous injection of a short-acting NO donor, DEA/NO, decreases MAP and heart rate, leading to subsequent decreases in tumour blood flow and oxygenation.
Collapse
Affiliation(s)
- S Q Shan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
81
|
Molema G, de Leij LF, Meijer DK. Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm Res 1997; 14:2-10. [PMID: 9034214 DOI: 10.1023/a:1012038930172] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The therapy of solid tumors with conventional chemotherapeutics, drug delivery preparations and immunomodulatory agents directed against the tumor cells is corrupted by a major barrier presented by the tumor vasculature. Permeability of the tumor blood vessels for transport of small molecules and macromolecular drug-carrier conjugates is only sufficient in the blood vessels at the tumor-host interface. Downregulation of the expression of adhesion molecules, required for the facilitation of immune cell recruitment, by the tumor vascular endothelium results in an escape of the tumor from host defence. New therapeutic approaches for the treatment of solid tumors are aimed at the tumor vasculature, either at the endothelial cells themselves or at basement membrane or tumor stroma components. Angiogenesis can be directly blocked with angiogenesis inhibitors, while angiogenesis related factors can serve as tumor vasculature specific epitopes for drug delivery strategies. Some glycoproteins expressed by tumor endothelial cells or present in the basement membrane and tumor stroma are also potential tumor selective targets. Therapeutic modalities that are suitable for site specific delivery are agents that increase tumor accumulation of (targeted) chemo/radiotherapeutics through increasing tumor vascular permeability. The observation that for tumor growth the blood supply is a limiting factor, led to the development of strategies to inhibit angiogenesis or block the tumor blood flow. Manipulation of the expression of endothelial cell adhesion molecules by selectively delivering modulatory agents at or in the tumor vascular endothelial cells may induce (bispecific antibody mediated) host defense activity directed against the tumor cells.
Collapse
Affiliation(s)
- G Molema
- Dept. Pharmacokinetics and Drug Delivery, University Center for Pharmacy, Groningen, the Netherlands
| | | | | |
Collapse
|
82
|
Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 1996; 36:1177-87. [PMID: 8985041 DOI: 10.1016/s0360-3016(96)00389-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to determine whether hyperthermic exposure would accelerate drug release from thermosensitive sterically stabilized liposomes and enhance their extravasation in tumor tissues. MATERIALS AND METHODS In vivo fluorescence video microscopy was used to measure the extravasation of liposomes, as well as release of their contents, in a rat skin flap window chamber containing a vascularized mammary adenocarcinoma under defined thermal conditions (34 degrees, 42 degrees, and 45 degrees C). Images of tissue areas containing multiple blood vessels were recorded via a SIT camera immediately before, and for up to 2 h after i.v. injection of two liposome populations with identical lipid composition: one liposome preparation was surface labeled with Rhodamine-PE (Rh-PE) and the other contained either Doxorubicin (Dox) or calcein at self-quenching concentrations. The light intensity of the entire tissue area was measured at 34 degrees C (the physiological temperature of the skin) for 1 h, and at 42 degrees or 45 degrees C for a second hour. These measurements were then used to calculate the fluorescent light intensity arising from each tracer (liposome surface label and the released contents) inside the vessel and in the interstitial region. RESULTS The calculated intensity of Rh-PE for the thermosensitive liposomes in the interstitial space (which represents the amount of extravasated liposomes) was low during the first hour, while temperature was maintained at 34 degrees C and increased to 47 times its level before heating, when the tumor was heated at 42 degrees or 45 degrees C for 1 h. The calculated intensity of the liposome contents (Dox) in the interstitial space was negligible at 34 degrees C, and increased by 38- and 76-fold, when the tumor was heated at 42 degrees and 45 degrees C for 1 h, respectively. Similar values were obtained when calcein was encapsulated in liposomes instead of Dox. A similar increase in liposome extravasation was seen with nonthermosensitive liposomes, but negligible release of Dox occurred when the window chamber was heated to 45 degrees C for 1 h. Extravasation of liposomes continued after heating was stopped, but content release stopped after removal of heat. Release of Dox from extravasated liposomes was also seen if heating was applied 24 h after liposome administration, but no further enhancement of liposome extravasation occurred in this case. CONCLUSIONS Our data suggest that hyperthermia can be used to selectively enhance both the delivery and the rate of release of drugs from thermosensitive liposomes to targeted tissues.
Collapse
Affiliation(s)
- M H Gaber
- Cancer Research Institute and Department of Pharmacology, University of California SF, USA
| | | | | | | | | | | |
Collapse
|
83
|
Teicher BA. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics-->mechanism(s) of interaction). Cancer Metastasis Rev 1996; 15:247-72. [PMID: 8842498 DOI: 10.1007/bf00437479] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
84
|
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
85
|
Zywietz F, Reeker W, Kochs E. Tumor oxygenation in a transplanted rat rhabdomyosarcoma during fractionated irradiation. Int J Radiat Oncol Biol Phys 1995; 32:1391-400. [PMID: 7635779 DOI: 10.1016/0360-3016(94)00653-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To quantify the changes in tumor oxygenation in the course of a fractionated radiation treatment extending over 4 weeks. METHODS AND MATERIALS Rhabdomyosarcomas R1H of the rat were irradiated with 60Co-gamma-rays with a total dose of 60 Gy, given in 20 fractions over 4 weeks. Oxygen partial pressure (pO2) in tumors was measured at weekly intervals using polarographic needle probes in combination with a microprocessor-controlled device (pO2-Histograph/KIMOC). The pO2 measurements were carried out in anesthetized animals under mechanical ventilation and in respiratory and hemodynamic steady state. Tumor pO2 values were correlated to the arterial oxygen pressure paO2, arterial pCO2, and pH determined with a blood gas analyzer. RESULTS Tumor oxygenation did not change significantly during the 3 weeks of irradiation (up to 45 Gy), from a median pO2 of 23 +/- 2 mmHg in untreated controls to 19 +/- 4 mmHg after the third week. The decrease of the number of pO2 values between 0 and 5 mmHg indicated that an improved oxygenation in the tumors occurred. However, with increasing radiation dose (fourth week, 60 Gy) a significant decrease in tumor oxygenation to a median pO2 of 8 +/- 2 mmHg and a rapid increase in the frequency of pO2 values (35 +/- 4%) between 0 and 5 mmHg was found. CONCLUSION Improved oxygenation in rhabdomyosarcomas R1H was only present in the early phase of the fractionated irradiation. Radiation does above 45 Gy led to a considerable decrease of tumor oxygenation in the later phase of irradiation.
Collapse
Affiliation(s)
- F Zywietz
- Institute of Biophysics and Radiobiology, University Hospital Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
86
|
Foltz RM, McLendon RE, Friedman HS, Dodge RK, Bigner DD, Dewhirst MW. A pial window model for the intracranial study of human glioma microvascular function. Neurosurgery 1995; 36:976-84; discussion 984-5. [PMID: 7791991 DOI: 10.1227/00006123-199505000-00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A new model for human brain tumor uses the intracranial placement of tumor xenografts under transparent glass cranial windows in nude rats, which require no immunosuppression for tumor engraftment. Adult male nude rats underwent implantation of human anaplastic astrocytomas (D-54 MG in 10 rats, D-317 MG in 11 rats). The tumors were placed on the pial surface of the left cerebral hemisphere under a glass cranial window overlying the cranium. Six control animals underwent cranial window placement alone. Tumor volumes were estimated from direct measurements of tumor dimensions, revealing a mean doubling time of 1.58 days for the D-54 MG tumors and 2.62 days for the D-317 MG tumors. When tumor volume estimates reached 35 mm3, photomicrographs revealed tumor vasculature in each tumor cell line that was distinct from both the other xenograft and the normal brain parenchyma. Qualitative differences in vascular appearance were supported by length/density coefficient calculations in each study group, with D-317 MG demonstrating the highest vascular density. Vessel caliber tended to be smaller in D-54 MG tumors than in D-317 MG tumors. Laser-Doppler measurements of local blood flow in tumors and normal parenchyma revealed significantly lower blood flow in both tumor cell lines than in control brain. Evaluation of leukocyte/endothelial cell interactions indicated more leukocyte rolling in D-54 MG tumors than in D-317 MG tumors; no evidence of this cell interaction was found in normal pial vasculature. This model allows direct serial inspection of human brain tumor growth and vascular function in an experimental animal and could be used to study tumor vascular and inflammatory responses to a variety of therapeutic manipulations.
Collapse
Affiliation(s)
- R M Foltz
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Tozer GM, Shaffi KM, Prise VE, Cunningham VJ. Characterisation of tumour blood flow using a 'tissue-isolated' preparation. Br J Cancer 1994; 70:1040-6. [PMID: 7981052 PMCID: PMC2033701 DOI: 10.1038/bjc.1994.445] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tumour blood flow was characterised in a 'tissue-isolated' rat tumour model, in which the vascular supply is derived from a single artery and vein. Tumours were perfused in situ and blood flow was calculated from simultaneous measurement of (1) venous outflow from the tumour and (2) uptake into the tumour of radiolabelled iodo-antipyrine (IAP). Comparison of results from the two measurements enabled assessment of the amount of blood 'shunted' through the tumours with minimal exchange between blood and tissue. Kinetics of IAP uptake were also used to determine the apparent volume of distribution (VDapp) for the tracer and the equilibrium tissue-blood partition coefficient (lambda). lambda was also measured by in vitro techniques and checks were made for binding and metabolism of IAP using high-pressure liquid chromatography. VDapp and lambda were used to calculate the perfused fraction (alpha) of the tumours. Tumour blood flow, as measured by IAP (TBFIAP), was 94.8 +/- 4.4% of the blood flow as measured by venous outflow, indicating only a small amount of non-exchanging flow. This level of shunting is lower than some previous estimates in which the percentage tumour entrapment of microspheres was used. The unperfused fraction ranged from 0 to 20% of the tumour volume in the majority of tumours. This could be due to tumour necrosis and/or acutely ischaemic tumour regions. For practical purposes, measurement of the total venous outflow of tumours is a reasonable measure of exchangeable tumour blood flow in this system and allows for on-line measurements. Tracer methods can be used to obtain additional information on the distribution of blood flow within tumours.
Collapse
Affiliation(s)
- G M Tozer
- CRC Gray Laboratory, Mount Vernon Hospital, Northwood, Middlesex, UK
| | | | | | | |
Collapse
|
89
|
Wu NZ, Ross BA, Gulledge C, Klitzman B, Dodge R, Dewhirst MW. Differences in leucocyte-endothelium interactions between normal and adenocarcinoma bearing tissues in response to radiation. Br J Cancer 1994; 69:883-9. [PMID: 8180019 PMCID: PMC1968894 DOI: 10.1038/bjc.1994.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously, we demonstrated that the interaction between leucocytes and endothelial cells in tumour tissues is greatly diminished compared with normal tissues under several induced inflammatory conditions. Radiation has been reported to cause release of inflammatory mediators and to promote neutrophil adhesions to cultured endothelial monolayers. In this study, we tested the hypothesis that radiation would cause increased leucocyte rolling and adhesion in both tumour and normal tissues. We examined these two parameters in response to 6 Gy of gamma-radiation in mammary adenocarcinomas implanted into rat skinfold window chambers as well as normal (i.e. non-tumour-bearing) preparations. Leucocyte rolling and adhesion were measured in terms of flux of rolling leucocytes (F(rolling)) and density of adhering leucocytes (D(adhering)) in microvessels. F(rolling) and D(adhering) were measured in two groups of preparations: irradiated and control. In normal preparations, F(rolling) and D(adhering) were both increased significantly by radiation. In contrast, in adenocarcinoma-bearing preparations, F(rolling) and D(adhering) were either unchanged (in the tumour centre) or reduced (in tumour periphery and the normal tissue surrounding the tumour) by radiation. Radiation did not cause changes in haemodynamics in these preparations, thus the observed changes in leucocyte rolling and adhesion could not be accounted for by haemodynamic factors. These results indicate that: (1) in normal preparations, radiation could cause inflammation as manifested by increased leucocyte rolling and adhesion; and (2) in tumour-bearing preparations, radiation caused changes in the vascular surface properties such that they became less adhesive to leucocytes. Such differences in radiation response may have important implications for radiation therapy and provide new insights into the unique features of tumours.
Collapse
Affiliation(s)
- N Z Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
90
|
Cline JM, Thrall DE, Rosner GL, Raleigh JA. Distribution of the hypoxia marker CCI-103F in canine tumors. Int J Radiat Oncol Biol Phys 1994; 28:921-33. [PMID: 8138446 DOI: 10.1016/0360-3016(94)90113-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to identify the prevalence and distribution of hypoxic tumor cells in spontaneous canine tumors, and to relate these parameters to various tumor and patient characteristics, such as tumor volume, tumor type, or tumor location. METHODS AND MATERIALS Hypoxic tumor cells were labeled in vivo in 32 primary malignant canine tumors by bioreductive binding of the nitroimidazole hypoxia marker CCI-103F. CCI-103F was given at 40 mg/kg i.v. Tumors were completely excised, and CCI-103F adducts were detected in histologic sections (mean, 138 sections-per-tumor) by peroxidase-antiperoxidase immunostaining. Area fraction (area labeled/total area examined) of labeled regions was measured via computer assisted image analysis. In tumors with a volume < 100 cm3, each cubic centimeter of tumor was examined; in larger tumors 100 randomly selected 1 cm3 samples were examined. RESULTS There were 13 soft-tissue sarcomas, 11 mast-cell tumors, five carcinomas, two lymphosarcomas, and one melanoma. Tumors varied from < .001 to > 2000 cm3. Labeled cells were present in 31 of 32 canine tumors examined, and varied between 0 and 35%. Mean (+/- SD) % label was 12.2% +/- 16.7%; 13 of the 32 dogs had % labeled area < 5.0%. The area fraction was not related to tumor site, tumor type, tumor volume, presence and degree of necrosis or tumor grade. Dog characteristics such as sex, age, and body size did not affect the degree of labeling of tumors. CCI-103F adducts were randomly distributed grossly, and at the microscopic level were not found near blood vessels or regions containing mitoses. Labeling was seen in a variety of normal tissues; not all binding in normal tissues could be attributed to hypoxia. CONCLUSION CCI-103F labeling of hypoxic regions in tumors provides a nonradioactive method of detecting nitroimidazole adducts at the cellular level, and allows concurrent histologic examination. The pattern of labeling is consistent with detection of hypoxic tumor cells arising from oxygen diffusion limitations. This method may have clinical applicability in the detection of tumor hypoxia.
Collapse
Affiliation(s)
- J M Cline
- Department of Comparative Medicine, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC 27157-1040
| | | | | | | |
Collapse
|
91
|
Sagar SM, Klassen GA, Barclay KD, Aldrich JE. Tumour blood flow: measurement and manipulation for therapeutic gain. Cancer Treat Rev 1993; 19:299-349. [PMID: 7693345 DOI: 10.1016/0305-7372(93)90009-g] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S M Sagar
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
92
|
Flock ST, Jacques SL. Thermal damage of blood vessels in a rat skin-flap window chamber using indocyanine green and a pulsed alexandrite laser: A feasibility study. Lasers Med Sci 1993. [DOI: 10.1007/bf02547875] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Secomb TW, Hsu R, Dewhirst MW, Klitzman B, Gross JF. Analysis of oxygen transport to tumor tissue by microvascular networks. Int J Radiat Oncol Biol Phys 1993; 25:481-9. [PMID: 8436527 DOI: 10.1016/0360-3016(93)90070-c] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present theoretical simulations of oxygen delivery to tumor tissues by networks of microvessels, based on in vivo observations of vascular geometry and blood flow in the tumor microcirculation. The aim of these studies is to investigate the impact of vascular geometry on the occurrence of tissue hypoxia. The observations were made in the tissue (thickness 200 microns) contained between two glass plates in a dorsal skin flap preparation in the rat. Mammary adenocarcinomas (R3230 AC) were introduced and allowed to grow, and networks of microvessels in the tumors were mapped, providing data on length, geometric orientation, diameter and blood velocity in each segment. Based on these data, simulations were made of a 1 mm x 1 mm region containing five unbranched vascular segments and a 0.25 mm x 0.35 mm region containing 22 segments. Generally, vessels were assumed to lie in the plane midway between the glass plates, at 100 microns depth. Flow rates in the vessels were based on measured velocities and diameters. The assumed rate of oxygen consumption in the tissue was varied over a range of values. Using a Green's function method, partial pressure of oxygen (PO2) was computed at each point in the tissue region. As oxygen consumption is increased, tissue PO2 falls, with hypoxia first appearing at points relatively distant from the nearest blood vessel. The width of the well-oxygenated region is comparable to that predicted by simpler analyses. Cumulative frequency distributions of tissue PO2 were compared with predictions of a Krogh-type model with the same vascular densities, and it was found that the latter approach, which assumes a uniform spacing of vessels, may underestimate the extent of the hypoxic tissue. Our estimates of the maximum consumption rate that can be sustained without tissue hypoxia were substantially lower than those obtained from the Krogh-type model. We conclude that the heterogeneous structure of tumor microcirculation can have a substantial effect on the occurrence of hypoxic micro-regions.
Collapse
Affiliation(s)
- T W Secomb
- Department of Physiology, University of Arizona, Tucson 85724
| | | | | | | | | |
Collapse
|
94
|
Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 1993; 25:269-76. [PMID: 8420874 DOI: 10.1016/0360-3016(93)90348-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This laboratory has previously used a window chamber model to measure red blood cell velocity in mammary tumors and normal granulation tissues of the F-344 rat. Because red cell flux and hematocrit more accurately reflect the oxygen carrying potential of blood, we used this model to measure these parameters. Red blood cells were labelled with fluorescein isothiocyanate, and 0.2 ml. packed cells were injected intravenously into rats bearing an 8 to 10 day old R-3230 mammary carcinoma. beta-phycoerythrin (0.15 mg.) was also injected and served as a plasma dye to outline the blood vessels. A sample of peripheral blood was then taken and analyzed by flow cytometry to determine the labeled fraction of red blood cells. Flowing tumor and normal tissue vessels were recorded onto a VCR, and these video images were used to determine vascular length and diameter, RBC flux and velocity, and hematocrit. Median vessel diameter and loge (red blood cell flux) were significantly greater in tumors than in normal tissues (p = 0.007 and p < 0.025, respectively). After controlling for these variables, the median tumor hematocrit of 19% was not significantly greater than the median normal tissue hematocrit of 15%. This technique provides a nontoxic and reproducible method that is now being used to assist in the in vivo definition of tumor oxygenation.
Collapse
Affiliation(s)
- D M Brizel
- Dept. of Radiation Oncology, Duke University Comprehensive Cancer Center, Durham, NC 27710
| | | | | | | | | | | |
Collapse
|
95
|
Needham D. Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis. CELL BIOPHYSICS 1991; 18:99-121. [PMID: 1726529 DOI: 10.1007/bf02989809] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Studies that examine the shear- and abrasion-sensitivity of proliferating cells are important in order to understand the behavior of hybridoma cells in bioreactor culture and metastasizing cancer cells in the bloodstream. Little is known about the link between morphology, structure, and mechanical properties of a given cell line, especially with respect to variations throughout the cell cycle. In our experiments with GAP A3 hybridoma cells, distinct cell morphologies were identified and correlated with phases of the cell cycle by video microscopic observation of synchronized cells, and of individual cells that were followed throughout their cell cycle. Micropipet manipulation was used to measure the geometrical (cell volume) and mechanical (apparent cell viscosity) properties of single cells. As the cell cycle progressed at 37 degrees C, an increase in cell volume from 1400 microns 3 to 5700 microns 3 was accompanied by an increase in apparent cell viscosity from 430 poise to 12,000 poise, consistent with an accumulation of more cytoplasmic material in the "older" cells. Hybridomas are representative of the various leukemias derived from hemopoietic cells, and even though as a whole, they appeared to be rather shear-insensitive, the wide range of property values demonstrates that a given cell line cannot be characterized by a single value for any one property, and that properties must be related to the cell cycle when considering proliferating cells. It is interesting to see if distinct stages in the metastatic sequence of events might correlate with any of these physical features of the cell cycle, irrespective of cell type or cell line. For example, the cytokinetic doublet could represent a fragile structure that may fail and produce cell death under fluid-shear conditions that would not affect the cells at any other stage in the cell cycle. Identifying such cell cycle-dependent features in metastasizing cancer cells could lead to a better understanding of the metastatic process and to possible clinical treatments directed at making cells more shear- and abrasion-sensitive, and therefore, more likely to be killed by the natural hydrodynamic forces of the circulatory system.
Collapse
Affiliation(s)
- D Needham
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| |
Collapse
|
96
|
Dewhirst MW, Oliver R, Tso CY, Gustafson C, Secomb T, Gross JF. Heterogeneity in tumor microvascular response to radiation. Int J Radiat Oncol Biol Phys 1990; 18:559-68. [PMID: 2318688 DOI: 10.1016/0360-3016(90)90061-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viable hypoxic cells have reduced radiosensitivity and could be a potential cause for treatment failure with radiotherapy. The process of reoxygenation, which may occur after radiation exposure, could increase the probability for control. However, incomplete or insufficient reoxygenation may still be a potential cause for local treatment failure. One mechanism that has been thought to be responsible for reoxygenation is an increase in vascular prominence after radiation. However, the effect is known to be heterogeneous. In this study, tumor microvascular hemodynamics and morphologies were studied using the R3230 Ac mammary adenocarcinoma transplanted in a dorsal flap window chamber of the Fischer-344 rat. Measurements were made before and after (at 24 and 72 hr) 5-Gy radiation exposure to assess microvascular changes and to explore possible explanations for the heterogeneity of the effect. There was considerable heterogeneity between tumors prior to radiation. Vascular densities ranged from 67 to 3000 vessels/mm3 and median vessel diameters from 22 to 85 microns. Pretreatment perfusion values varied by a factor of six. In irradiated tumors, conjoint increases in both vascular density and perfusion occurred in most tumors, although the degree of change was variable from one individual to the next. The degree of change in density was inversely related to median pretreatment diameter. Relative change in flow, as predicted by morphometric measurements, overestimated observed changes in flow measured hemodynamically. These results support that heterogeneity in tumor vascular effects from radiation are somewhat dependent on pretreatment morphology as well as relative change in morphology. Since changes in flow could not be completely explained by morphometric measurements, however, it is likely that radiation induced changes in pressure and/or viscosity contribute to the overall effect. Further work in this laboratory will investigate these hypotheses.
Collapse
Affiliation(s)
- M W Dewhirst
- Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | |
Collapse
|