51
|
Kunstmann B, Osiewacz HD. Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 2008; 7:651-62. [PMID: 18616635 DOI: 10.1111/j.1474-9726.2008.00412.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PaMTH1, a putative methyltransferase previously described to increase in abundance in total protein extracts during aging of Podospora anserina is demonstrated to accumulate in the mitochondrial cell fraction of senescent cultures. The protein is localized in the mitochondrial matrix and displays a methyltransferase activity utilizing flavonoids as substrates. Constitutive over-expression of PaMth1 in P. anserina results in a reduced carbonylation of proteins and an extended lifespan without impairing vital functions suggesting a protecting role of PaMTH1 against oxidative stress.
Collapse
Affiliation(s)
- Birgit Kunstmann
- Department of Biological Sciences & Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
52
|
Quick SK, Shields PG, Nie J, Platek ME, McCann SE, Hutson AD, Trevisan M, Vito D, Modali R, Lehman TA, Seddon M, Edge SB, Marian C, Muti P, Freudenheim JL. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17:1082-7. [PMID: 18483329 DOI: 10.1158/1055-9965.epi-07-2755] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalase, a ubiquitous heme enzyme, catalyzes conversion of hydrogen peroxide to water and molecular oxygen, protecting cells from oxidative stress. A C/T polymorphism in the promoter region of the CAT gene (rs1001179) affects transcriptional activity and RBC catalase levels. Oxidative stress may explain the observed increased postmenopausal breast cancer risk associated with hormone replacement therapy (HRT). We examined CAT genotype, HRT, and postmenopausal breast cancer risk in the Western New York Exposures and Breast Cancer case-control study. Cases (n = 616) were women with primary, incident, pathologically confirmed breast cancer. Randomly selected controls (n = 1,082) were frequency matched to cases on age and race. Genotype was assayed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) adjusted for potential confounders. CAT genotype alone was not associated with breast cancer risk. Ever use of HRT was associated with increased risk (OR, 1.39; 95% CI, 1.11-1.75). The increase with ever use was more pronounced among those with variant CT or TT CAT genotype (OR, 1.88; 95% CI, 1.29-2.75) than among those with CC (OR, 1.15; 95% CI, 0.86-1.54). Similarly, risk associated with >or=5 years of HRT use was greater among those with at least one variant T allele (OR, 2.32; 95% CI, 1.50-3.59). Increased risk was limited to estrogen receptor-positive tumors. Our findings suggest that CAT genotype modifies the effect of HRT use on breast cancer risk and that HRT may affect risk by affecting oxidative stress.
Collapse
Affiliation(s)
- Sylvia K Quick
- Department of Social, State University of New York at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Salama SA, Kamel M, Awad M, Nasser AHB, Al-Hendy A, Botting S, Arrastia C. Catecholestrogens induce oxidative stress and malignant transformation in human endometrial glandular cells: protective effect of catechol-O-methyltransferase. Int J Cancer 2008; 123:1246-54. [PMID: 18566989 DOI: 10.1002/ijc.23653] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prolonged exposure to unopposed estrogens is a major risk factor for the development of endometrial cancer. Oxidative metabolism of estradiol (E(2)) into the catecholestrogens (CEs), 4-hydroxyestradiol (4-OHE(2)) and 2-hydroxyestradiol (2-OHE(2)), may play an important role in estrogen carcinogenicity. CEs can be oxidized to the corresponding ortho-quinone derivatives with concomitant formation of the reactive oxygen species (ROS). Catechol-O-methyltransferase (COMT) is the major enzyme involved in the detoxification of CEs in extrahepatic tissues. We investigated the potential of E(2), 2-OHE(2) and 4-OHE(2) to induce microsatellite instability (MSI) and neoplastic transformation of immortalized human endometrial glandular (EM) cells. We also investigated the functional significance of COMT gene expression on modulating the effects of E(2) and CEs in EM cells. Our data indicated that E(2) and 4-OHE(2) induce MSI, ROS and neoplastic transformation in EM cells. The capacity of E(2) and its catechol metabolites to induce MSI, ROS and neoplastic transformation in EM cells is ranked as follows: 4-OHE(2) > E(2) > 2-OHE(2). Knockdown of COMT expression in EM cells resulted in increased estrogenic milieu and increased estrogen-induced cell proliferation. More importantly, knockdown of COMT increased the propensity of E(2) or CEs to induce ROS, MSI and neoplastic transformation of EM cells. In contrast, overexpression of COMT in EM cells significantly reduced the cellular estrogenic milieu and protected against E(2)- or CEs-induced, ROS, MSI and neoplastic transformation. The capacity of E(2) or CEs to induce neoplastic transformation of human endometrial glandular cells in vitro may suggest that E(2)-induced endometrial cancer is mediated by its metabolism into CEs. Our study clearly indicates that COMT gene expression plays a critical role in modulating the hormonal and carcinogenic effects of E(2) and CEs and, consequently, modifies the risk for E(2)-induced endometrial cancer. To the best of our knowledge, this is the first study to (i) demonstrate the potential capacity of estrogen and its catechol metabolites to induce neoplastic transformation of immortalized human endometrial glandular cells; and (ii) illustrate the important role of COMT gene expression in protecting against E(2)-induced endometrial cancer.
Collapse
Affiliation(s)
- Salama A Salama
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-0587, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Hettema JM, An SS, Bukszar J, van den Oord EJCG, Neale MC, Kendler KS, Chen X. Catechol-O-methyltransferase contributes to genetic susceptibility shared among anxiety spectrum phenotypes. Biol Psychiatry 2008; 64:302-10. [PMID: 18436194 PMCID: PMC2597663 DOI: 10.1016/j.biopsych.2008.03.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT) has been investigated for its possible role in a wide range of psychiatric phenotypes. In particular, several studies support association of this gene with panic disorder and other anxiety-related traits. METHODS We examined the COMT gene for association with genetic risk across a range of anxiety spectrum phenotypes. We used multivariate structural equation modeling to select twin pairs scoring at the extremes of a latent genetic risk factor shared by neuroticism, several anxiety disorders, and major depression from a large population-based twin sample. With one member from each of these pairs, the resulting sample of 589 cases and 539 control subjects were entered into a two-stage association study in which genetic markers were screened in stage 1, the positive results of which were tested for replication in stage 2. RESULTS The functional val158met polymorphism (rs4680) plus nine other single nucleotide polymorphism markers selected to capture the major allelic variation across the COMT locus were analyzed for differences between cases and control subjects. Although the val (G) allele of rs4680 showed marginally significant association in our combined stage 1 plus stage 2 sample, a high-risk haplotype of this allele with the A allele of rs165599 was significantly over-represented in cases (p = 1.97e-5, odds ratio = 1.95). This haplotype also predicted individual differences in neuroticism and risk for several anxiety disorders and major depression. Consistent with prior studies, our findings are female-specific. CONCLUSIONS Variations in the COMT gene contribute to genetic risk shared across a range of anxiety-related phenotypes.
Collapse
Affiliation(s)
- John M Hettema
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, 23298-0126, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Shadnia H, Wright JS. Understanding the Toxicity of Phenols: Using Quantitative Structure−Activity Relationship and Enthalpy Changes To Discriminate between Possible Mechanisms. Chem Res Toxicol 2008; 21:1197-204. [DOI: 10.1021/tx800058r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Zhang Q, Gross ML. Efficient synthesis, liquid chromatography purification, and tandem mass spectrometric characterization of estrogen-modified DNA bases. Chem Res Toxicol 2008; 21:1244-52. [PMID: 18512969 DOI: 10.1021/tx800067s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogens are metabolized to active quinones that modify DNA and may lead to various cancers. To extend the analytical methodology for estrogen-modified purine bases, we report here a simple modification to existing synthetic procedures that use 2-iodoxybenzoic acid (IBX) as the oxidizing agent for the reference material and putative biomarker, 4-hydroxyestrone-1-N3adenine (4-OH-E1-1-N3Ade). The reaction leads to two catechol estrogen quinones, CE1-2,3-Q and CE1-3,4-Q, both of which react via Michael additions to afford 4-OH-E1-1-N3Ade and other DNA adducts. Liquid chromatography separation permits the isolation of high-purity 4-OH-E1-1-N3Ade. With this method, we also prepared single 13C and uniformly 15N (U-15N) labeled 4-OH-E1-1-N3Ade with 8-13C-labeled Ade and U-15N-labeled adenosine 5'-monophosphate (AMP). The approach is also effective for the synthesis of 4-hydroxyestradiol-1-N3adenine, 4-OH-E2-1-N3Ade, and 4-hydroxyestrone(estradiol)-1-N7guanine, 4-OH-E1(E2)-1-N7Gua. The tandem mass spectra (MS2 and MS3) of 4-OH-E1-(unlabeled, 8-13C-, and U-15N-labeled)1-N3Ade and accurate mass measurements for MS2 product ions allow us to assign unambiguously the formula of fragments and delineate the fragmentation pathways. One important reaction is dehydration, which occurs at the ketone oxygen in the C-17 position of estrone. Another is loss of NH3, an ubiquitous process for purines and modified purines, which is affected by the steroid modification. Evidence from MS/MS supports the migration of H-atom(s) from estrone in the loss of NH3. An interesting interaction occurs between the steroid and the Ade in the modified base, promoting loss of CH2NH, a loss that distinguishes modified Ade from unmodified Ade. The synthesis of a stable isotope-labeled 4-OH-E1-1-N3Ade and the understanding of the fragmentation processes will enable studies aimed at the etection of naturally occurring 4-OH-E1-1-N3Ade in biological samples.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Washington UniVersity, Box 1134, 1 Brookings DriVe, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
57
|
Moghaddam AB, Ganjali MR, Dinarvand R, Latifi M, Norouzi P. Electro-Organic Synthesis and Characterization of New Dihydroxybenzene Dinitrile Derivatives with Fluorescent Properties. Chem Pharm Bull (Tokyo) 2008; 56:749-52. [DOI: 10.1248/cpb.56.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran
| | - Rassoul Dinarvand
- Medical Nanotechnology Research Centre, Medical Sciences/University of Tehran
| | - Maryam Latifi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran
| |
Collapse
|
58
|
Bursztyka J, Perdu E, Tulliez J, Debrauwer L, Delous G, Canlet C, De Sousa G, Rahmani R, Benfenati E, Cravedi JP. Comparison of genistein metabolism in rats and humans using liver microsomes and hepatocytes. Food Chem Toxicol 2007; 46:939-48. [PMID: 18063284 DOI: 10.1016/j.fct.2007.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/10/2007] [Accepted: 10/22/2007] [Indexed: 11/29/2022]
Abstract
Species differences and metabolism are the most crucial factors in considering the effects of genistein. The aim of this study was to have a better knowledge of the metabolic fate of genistein in humans as compared with rats. For this purpose, radiolabeled genistein was incubated with human and rat liver microsomes and with cryopreserved hepatocytes from both species. Incubations were performed using a wide range of genistein concentrations to analyze the kinetics of formation of the metabolites. Metabolite profiling was obtained using an HPLC system connected to a radioactivity detector. Identification of the metabolites was based on their retention times as compared with those of authentic standards and on LC-MS (ESI-MS/MS) or NMR analyses. In both species, liver microsomes produced the same three hydroxylated metabolites (8-OH, 6-OH and 3'-OH-genistein) whereas cryopreserved hepatocytes produced the same glucurono- and sulfo-conjugates (genistein 4'-O-sulfate 7-O-glucuronide, genistein 7-O-glucuronide, genistein 4'-O-glucuronide, genistein 7-O-sulfate and genistein 4'-O-sulfate). The rate of metabolism varied with species. 3'-Hydroxygenistein was the predominant metabolite produced by rat liver microsomes, whereas in humans 3'-hydroxy and 8-hydroxygenistein were produced in the same range. In both human and rat hepatocyte incubations, genistein 7-O-glucuronide represented more than 50% of the incubated dose. Our results on hepatocytes confirmed the predominance of conjugation reaction compared to oxidative reaction observed in vivo.
Collapse
|
59
|
Lang UE, Bajbouj M, Bajbouj M, Sander T, Gallinat J. Gender-dependent association of the functional catechol-O-methyltransferase Val158Met genotype with sensation seeking personality trait. Neuropsychopharmacology 2007; 32:1950-5. [PMID: 17299513 DOI: 10.1038/sj.npp.1301335] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gene encoding cathechol-O-methyltransferase (COMT) contains a common functional missense polymorphism (Val158Met) that regulates dopamine in an allele-dependent manner. A pivotal role of dopamine neurotransmission in the prefrontal cortex has been implicated in drug-seeking behavior and related personality traits, such as sensation seeking, with some evidence for a gender-specific association. Here, we tested the hypothesis that the COMT Val158Met polymorphism modulates the personality dimension, sensation seeking, in a gender-dependent manner. Study sample included 214 male (age 38.1+/-12.6 years) and 218 female (age 36.1+/-13.6 years) healthy volunteers, who were assessed with Zuckerman's sensation-seeking scale and genotyped for the Val158Met polymorphism (dbSNP:rs4680). Univariate analysis of variance showed that the sensation seeking score was significantly affected by a COMT genotype x gender interaction (F=5.330, df=2, p=0.005). The Val158Met polymorphism was associated with the sensation seeking personality trait in women only. The highest scores in the sensation-seeking scale and in three of the four subscales were observed in female subjects with the Val/Val genotype relative to women carrying the Met allele. Our results suggest that high COMT enzyme activity associated with the Val allele predisposes to high sensation seeking scores in female subjects and add to increasing evidence for a gender specific role of COMT in normal and dysfunctional behavior.
Collapse
Affiliation(s)
- Undine E Lang
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
60
|
Lakhani NJ, Sparreboom A, Xu X, Veenstra TD, Venitz J, Dahut WL, Figg WD. Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-methoxyestradiol. J Pharm Sci 2007; 96:1821-31. [PMID: 17252610 DOI: 10.1002/jps.20837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to characterize the metabolic pathways of 2-methoxyestradiol (2ME2), an investigational anticancer drug. In vitro metabolism studies were performed by incubation of 2ME2 with human liver microsomes under various conditions and metabolite identification was performed using liquid chromatography-tandem mass spectrometry. In microsomal mixtures, four major oxidative metabolites and two glucuronic acid conjugates were observed originating from 2ME2. Human liver S9 protein fraction was used to screen for in vitro sulfation but no prominent conjugates were observed. The total hepatic clearance as estimated using the well-stirred model was approximately 712 mL/min. In vivo metabolism, assessed using 24-h collections of urine from cancer patients treated with 2ME2 revealed that <0.01% of the total administered dose of 2ME2 is excreted unchanged in urine and about 1% excreted as glucuronides. Collectively, this suggests that glucuronidation and subsequent urinary excretion are elimination pathways for 2ME2.
Collapse
Affiliation(s)
- Nehal J Lakhani
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Raoof JB, Kiani A, Ojani R, Khalilzadeh MA. Anodic Oxidation of Catechols in the Presence of 1,3-Indandione. A Green Electrosynthetic Approach to New Catechol Derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
62
|
Kulkarni SA, Moir D, Zhu J. Influence of structural and functional modifications of selected genotoxic carcinogens on metabolism and mutagenicity - a review. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2007; 18:459-514. [PMID: 17654335 DOI: 10.1080/10629360701430090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alterations in molecular structure are responsible for the differential biological response(s) of a chemical inside a biosystem. Structural and functional parameters that govern a chemical's metabolic course and determine its ultimate outcome in terms of mutagenic/carcinogenic potential are extensively reviewed here. A large number of environmentally-significant organic chemicals are addressed under one or more broadly classified groups each representing one or more characteristic structural feature. Numerous examples are cited to illustrate the influence of key structural and functional parameters on the metabolism and DNA adduction properties of different chemicals. It is hoped that, in the event of limited experimental data on a chemical's bioactivity, such knowledge of the likely roles played by key molecular features should provide preliminary information regarding its bioactivation, detoxification and/or mutagenic potential and aid the process of screening and prioritising chemicals for further testing.
Collapse
Affiliation(s)
- S A Kulkarni
- Chemistry Research Division, Safe Environments Programme, Health Canada, AL: 0800C, Ottawa, Ontario, K1A 0L2, Canada
| | | | | |
Collapse
|
63
|
Khan WA, Alam K. Catechol-estrogen modified DNA: a better antigen for cancer autoantibody. Arch Biochem Biophys 2007; 465:293-300. [PMID: 17632072 DOI: 10.1016/j.abb.2007.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/10/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
Estrogens are known mutagenic and carcinogenic risk factors. Non-enzymatic oxidation of catechol-estrogens in the presence of copper is reported to generate reactive oxygen species (ROS) that can cause DNA damage. We show that DNA modification in the presence of 4-hydroxyestradiol (4-OHE(2)) and copper (Cu-II) results in single and double strand breaks, base modification, hyperchromicity and change in ellipticity. Modified DNA (4-OHE(2)-Cu(II)-DNA) was highly immunogenic in experimental animals. Induced anti-4-OHE(2)-Cu(II)-DNA antibodies were effectively used as a probe for detecting oxidative lesions in human genomic DNA and for the estimation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the urine of cancer patients. Circulating antibodies from cancer patients showed high binding to 4-OHE(2)-Cu(II)-DNA as compared to native DNA. Our results imply that interaction of catechol-estrogen and copper leads to the production of potent ROS, capable of causing DNA damage, thus playing an important role in carcinogenesis. The modified DNA presents unique epitopes which may be one of the factors for autoantibody induction in cancer.
Collapse
Affiliation(s)
- Wahid Ali Khan
- Department of Biochemistry, J. N. Medical College, A. M. U., Aligarh 202002, India
| | | |
Collapse
|
64
|
Roy D, Cai Q, Felty Q, Narayan S. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:235-57. [PMID: 17620201 DOI: 10.1080/15287390600974924] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In addition to the direct effect of estrogen on mitochondria and the redox cycling of catechol estrogen, estrogen-induced proinflammatory cytokines, such as interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha), also generate reactive oxygen and nitrogen species (RO/NS). Different cellular signaling pathways may operate in response to varying levels of estrogen-induced RO/NS, leading to genotoxic damage, cell apoptosis, or cell growth. At high levels of RO/NS, cells receiving genotoxic insults, if not repaired, may engage the apoptotic pathways. There is increasing evidence supporting that estrogen-induced alterations in the genome of cells is produced by oxidative attack. Furthermore, ROS generated by estrogen exposure and/or active metabolites of estrogen in combination with receptor-mediated proliferation of genetically damaged cells may be involved in tumor development. This view is supported by the findings of DNA modifications produced in vitro or in vivo by natural and synthetic estrogens in the target organs of cancer both in experimental models and in humans. Interaction of estrogen-induced oxidants and estrogen metabolites with DNA was shown to generate mutations in genes. Cotreatment with an inhibitor of IL-1beta and TNF-alpha synthesis, pentoxifylline, decreased stilbene estrogen-induced levels of myeloperoxidase (MPO), 8-hydroxydeoxyguanosine formation, and gene mutations, and prevented stilbene estrogen-induced lesions. Stable MCF-7 clones overexpressing IL-1beta resulted in a high level of IL-1beta peptide secretion undergoing cell apoptosis, and an elevated level of p53 protein in response to high oxidative stress when compared to nontransfected cells, whereas MCF-7 clones overexpressing IL-1beta that resulted in a moderate level of IL-1beta secretion stimulated the clonal expansion of MCF-7 and TM3 cells. Estrogen-induced MCF-7 cell growth and cyclin D1 expression were suppressed by antioxidants and mitochondrial blockers. These studies support that in addition to ovarian estrogen-mediated ER signaling, mitogenic signals may also come from estrogen-induced RO/NS. Further validation of this concept that the concentration of the RO/NS within the cellular microenvironment determines its stimulatory or inhibitory growth signals as well as its genotoxic effects regulating the growth of estrogen-dependent tumors may result in novel preventive strategies.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami, Florida 33199, USA.
| | | | | | | |
Collapse
|
65
|
Rivera-Portalatin NM, Vera-Serrano JL, Prokai-Tatrai K, Prokai L. Comparison of estrogen-derived ortho-quinone and para-quinol concerning induction of oxidative stress. J Steroid Biochem Mol Biol 2007; 105:71-5. [PMID: 17582759 PMCID: PMC2752863 DOI: 10.1016/j.jsbmb.2006.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 11/13/2006] [Indexed: 01/13/2023]
Abstract
Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17beta-estradiol-derived para-quinol (10beta,17beta-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress.
Collapse
Affiliation(s)
- Nilka M. Rivera-Portalatin
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | - José L. Vera-Serrano
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Laszlo Prokai
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Corresponding author. Tel.: +1 817 7352206; fax: +1 817 7352651. (L. Prokai)
| |
Collapse
|
66
|
Brown JF, Mayes BA, Silkworth JB, Hamilton SB. Polychlorinated biphenyls modulated tumorigenesis in Sprague Dawley rats: correlation with mixed function oxidase activities and superoxide (O2* ) formation potentials and implied mode of action. Toxicol Sci 2007; 98:375-94. [PMID: 17510085 DOI: 10.1093/toxsci/kfm122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parallel, chronic (24 months) multidose bioassays of the PCB (polychlorinated biphenyls) Aroclors 1016, 1242, 1254, and 1260 in male and female Sprague-Dawley rats showed sex/Aroclor-dependent increases in hepatic tumors and decreases in extrahepatic tumors. To elucidate the PCB mode of action (MOA) involved, levels of a number of hypothesized mediators were measured in liver specimens collected at 3, 6, 12, 18, and 24 months and screened for correlation with late life hepatotumorigenesis (HT; mostly adenomas). Consistently correlated with HT were (1) tissue accumulations of SigmaPCBs (correlated in both sexes) and of dioxin equivalents (toxic equivalency [TEQ]; correlated in females only); (2) net activities of six groups of mixed function oxidases (MFOs), some PCB-induced, some PCB-repressed, as determined by differential metabolism of PCB congeners; (3) activities of deproteinated, reoxidized hepatic cytosols as catalysts for superoxide (O(2)(*-)) production, such activity having the chemical characteristics of redox-cycling quinones (RCQs), e.g., those derived from the glutathionylated estrogen catechols that were identified in the female rat livers; and (4) increased expression of the indicator of cell proliferation, proliferating cell nuclear antigen. The new findings, along with other recently reported relationships, were indicative of a MOA consisting of (1) SigmaPCB/TEQ accumulation in rat tissues; (2) SigmaPCB/TEQ repression of constitutive MFOs; (3) SigmaPCB/TEQ induction of other MFOs; (4) MFO-mediated formation of RCQs; (5) RCQ-mediated formation of O(2)(*-); (6) O(2)(*-) dismutation to H(2)O(2); and (7) H(2)O(2)-mediated mitotic signaling, resulting in the proliferation of spontaneously or otherwise initiated cells to form hepatic tumors, as in tumor promotion.
Collapse
Affiliation(s)
- John F Brown
- General Electric Company, Fairfield, Connecticut 06431, USA.
| | | | | | | |
Collapse
|
67
|
Abstract
The World Health Organization (WHO) classified oestrogens as carcinogenic in humans. One of the main arguments has been that oestrogens not only can promote cancers but also may initiate mutations caused by certain oestrogen metabolites. Indeed there is evidence that they can have biological properties even at very low concentrations which can exceed manifold those of their parent substance. Highly sophisticated laboratory methods will allow us to understand oestrogenic effects as a net effect of the corresponding metabolite pattern. Current research focuses on the possible carcinogenic properties of 4-hydroxyoestrogens and 16-alpha-hydroxyoestrone, but also on the anticancerogenic effects particularly of 2-methoxyoestradiol. Thus, potential toxic secondary metabolites like 4-quinones can be eliminated, e.g. by methylation. 2-methoxyoestradiol is a potent antiproliferative and antiangiogenic metabolite, and is currently tested in patients with refractory metastatic breast cancer. Observational trials have demonstrated that the ratio of 2- to 16-alpha-hydroxyoestrone is decreased in women with breast cancer. We have been able to demonstrate that oestradiol metabolism during HRT can be influenced by administration route, possibly also by certain progestogens. In in vitro and animal experiments certain oestrogen metabolites indeed can act as carcinogens. However, since for the formation of these metabolites the appearance of very special conditions is a prerequisite and also various protective mechanisms are present, this might only contribute to breast carcinogenesis in very rare cases. However, the clinical relevance remains unclear and it appears to be important to ascertain this issue.
Collapse
Affiliation(s)
- Alfred O Mueck
- University Women's Hospital of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
68
|
Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF. Cytochrome P450 1B1–Mediated Estrogen Metabolism Results in Estrogen-Deoxyribonucleoside Adduct Formation. Cancer Res 2007; 67:812-7. [PMID: 17234793 DOI: 10.1158/0008-5472.can-06-2133] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oxidative metabolism of estrogens has been implicated in the development of breast cancer; yet, relatively little is known about the mechanism by which estrogens cause DNA damage and thereby initiate mammary carcinogenesis. To determine how the metabolism of the parent hormone 17beta-estradiol (E2) leads to the formation of DNA adducts, we used the recombinant, purified phase I enzyme, cytochrome P450 1B1 (CYP1B1), which is expressed in breast tissue, to oxidize E2 in the presence of 2'-deoxyguanosine or 2'-deoxyadenosine. We used both gas and liquid chromatography with tandem mass spectrometry to measure E2, the 2- and 4-catechol estrogens (2-OHE2, 4-OHE2), and the depurinating adducts 4-OHE(2)-1(alpha,beta)-N7-guanine (4-OHE2-N7-Gua) and 4-OHE(2)-1(alpha,beta)-N3-adenine (4-OHE2-N3-Ade). CYP1B1 oxidized E2 to the catechol 4-OHE2 and the labile quinone 4-hydroxyestradiol-quinone to produce 4-OHE2-N7-Gua and 4-OHE2-N3-Ade in a time- and concentration-dependent manner. Because the reactive quinones were produced as part of the CYP1B1-mediated oxidation reaction, the adduct formation followed Michaelis-Menten kinetics. Under the conditions of the assay, the 4-OHE2-N7-Gua adduct (Km, 4.6+/-0.7 micromol/L; kcat, 45+/-1.6/h) was produced 1.5 times more efficiently than the 4-OHE2-N3-Ade adduct (Km, 4.6+/-1.0 micromol/L; kcat, 30+/-1.5/h). The production of adducts was two to three orders of magnitude lower than the 4-OHE2 production. The results present direct proof of CYP1B1-mediated, E2-induced adduct formation and provide the experimental basis for future studies of estrogen carcinogenesis.
Collapse
Affiliation(s)
- Alexandra R Belous
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
69
|
Crooke PS, Ritchie MD, Hachey DL, Dawling S, Roodi N, Parl FF. Estrogens, enzyme variants, and breast cancer: a risk model. Cancer Epidemiol Biomarkers Prev 2006; 15:1620-9. [PMID: 16985022 DOI: 10.1158/1055-9965.epi-06-0198] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative metabolites of estrogens have been implicated in the development of breast cancer, yet relatively little is known about the metabolism of estrogens in the normal breast. We developed a mathematical model of mammary estrogen metabolism based on the conversion of 17beta-estradiol (E(2)) by the enzymes cytochrome P450 (CYP) 1A1 and CYP1B1, catechol-O-methyltransferase (COMT), and glutathione S-transferase P1 into eight metabolites [i.e., two catechol estrogens, 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)); three methoxyestrogens, 2-methoxyestradiol, 2-hydroxy-3-methoxyestradiol, and 4-methoxyestradiol; and three glutathione (SG)-estrogen conjugates, 2-OHE(2)-1-SG, 2-OHE(2)-4-SG, and 4-OHE(2)-2-SG]. When used with experimentally determined rate constants with purified enzymes, the model provides for a kinetic analysis of the entire metabolic pathway. The predicted concentration of each metabolite during a 30-minute reaction agreed well with the experimentally derived results. The model also enables simulation for the transient quinones, E(2)-2,3-quinone (E(2)-2,3-Q) and E(2)-3,4-quinone (E(2)-3,4-Q), which are not amenable to direct quantitation. Using experimentally derived rate constants for genetic variants of CYP1A1, CYP1B1, and COMT, we used the model to simulate the kinetic effect of enzyme polymorphisms on the pathway and identified those haplotypes generating the largest amounts of catechols and quinones. Application of the model to a breast cancer case-control population identified a subset of women with an increased risk of breast cancer based on their enzyme haplotypes and consequent E(2)-3,4-Q production. This in silico model integrates both kinetic and genomic data to yield a comprehensive view of estrogen metabolomics in the breast. The model offers the opportunity to combine metabolic, genetic, and lifetime exposure data in assessing estrogens as a breast cancer risk factor.
Collapse
Affiliation(s)
- Philip S Crooke
- Department of Pathology, TVC 4918, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
70
|
Barron AM, Fuller SJ, Verdile G, Martins RN. Reproductive hormones modulate oxidative stress in Alzheimer's disease. Antioxid Redox Signal 2006; 8:2047-59. [PMID: 17034349 DOI: 10.1089/ars.2006.8.2047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by gradual cognitive decline, impairments in speech and language, and dysfunction in the sensorimotor systems, culminating in complete reliance on nursing care. Oxidative stress, caused by an imbalance in the pro-oxidant/antioxidant mechanisms in the body, has been implicated in AD pathogenesis, as in many other age-associated diseases such as atherosclerosis, Parkinson disease, and amyotrophic lateral sclerosis. Although the hormones estrogen, progesterone, testosterone, and luteinizing hormone are best known for their roles in reproduction, many studies show these hormones have other roles, including neuroprotection. Changes in the levels of these hormones that occur in reproductive senescence are hypothesized to increase risk of AD, as a result of reduced protection against oxidative insults. The Abeta peptide, overproduction of which is thought to be a key pathogenic event in the development of AD, is neurotoxic, most likely due to its ability to promote oxidative stress. The reproductive hormones are known to influence Abeta metabolism, and this review discusses the beneficial and detrimental effects these hormones have on Abeta production and oxidative stress, and their relevance in potential AD therapies.
Collapse
Affiliation(s)
- Anna M Barron
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, Australia
| | | | | | | |
Collapse
|
71
|
Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM. Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev 2006; 15:551-8. [PMID: 16537715 DOI: 10.1158/1055-9965.epi-05-0801] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen and its metabolites are believed to play important roles in breast cancer. The influence of genetic polymorphisms in the enzymes responsible for formation and disposition of estrogen on breast cancer risk may shed light on the importance of estrogen metabolites in this disease. However, for such studies to be valid, it is important to correctly identify the enzymes involved in estrogen bioactivation. Therefore, we assessed the human cytochrome P450-dependent oxidation of estrone using substrate concentrations that more closely approximate the maximum expected concentrations in breast tissue. The in vitro metabolism of estrone by recombinant human cytochrome P450 enzymes and human liver microsomes was studied. The formation of estrone metabolites (2-hydroxyestrone, 4-hydroxyestrone, and 16alpha-hydroxyestrone) was monitored by high-performance liquid chromatography. 2-Hydroxyestrone formation was catalyzed predominantly by CYP1A2, CYP1A1, and CYP1B1 enzymes; 4-hydroxyestrone formation was catalyzed predominantly by CYP1B1, CYP1A2, and CYP1A1 enzymes; and 16alpha-hydroxyestrone formation was catalyzed predominantly by CYP2C19, CYP1A1, and CYP3A5. This study confirms the important role of members of the CYP1 family in the 2-hydroxylation and 4-hydroxylation of estrone, but the enzymes identified as responsible for the 16alpha-hydroxylation of estrone are different from those previously identified. The relative importance of these enzymes in vivo would depend on the specific tissue expression of the enzymes. These enzymes are all known to be genetically variant in the human population, and additional studies to assess the role CYP1A2, CYP2C19, and CYP3A5 in breast cancer risk are indicated.
Collapse
Affiliation(s)
- Alastair E Cribb
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3.
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Estrogen metabolism has received attention owing to the recognition that oxidative metabolism of these hormones could play a very important role in the initiation and evolution of estrogen-related cancerous processes. This review discusses principal metabolic pathways associated with the molecular constituents found in common hormone formulations. The focus is the formation of catechol estrogens that then oxidize to redox-active and electrophilic quinones, along with potential mechanisms by which these metabolites contribute to oxidative stress and induce damage to essential biological macromolecules. Recent investigations involving specific estrogen metabolites that may offer potential increase of therapeutic safety for estrogen therapy in the future have also been highlighted.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0485, USA
| | | |
Collapse
|
73
|
Aidoo A, Bishop ME, Shelton SD, Lyn-Cook LE, Chen T, Manjanatha MG. Effects of daidzein, genistein, and 17beta-estradiol on 7,12-dimethylbenz[a]anthracene-induced mutagenicity and uterine dysplasia in ovariectomized rats. Nutr Cancer 2006; 53:82-90. [PMID: 16351510 DOI: 10.1207/s15327914nc5301_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Phytoestrogens, primarily isoflavones daidzein (DZ) and genistein (GE), are increasingly used by postmenopausal women as an alternative to hormone replacement therapy due to reports that estrogen therapy increases the risk of breast and endometrial cancers. These compounds, as estrogen receptor agonists, may influence chemical carcinogenesis in estrogen-responsive tissues such as the uterus. We utilized ovariectomized (OVX) rats to model menopause and assessed the effects of dietary DZ, GE, or 17beta-estradiol (E2) on carcinogen-induced mutagenesis and carcinogenesis in the rat uterus. Big Blue transgenic rats (derived from Fischer 344 strain) were exposed to 7,12-dimethylbenz[a]anthracene (DMBA) in the presence or absence of the supplements. At 16- or 20-wk sacrifice, the uteri were removed and processed to determine mutant frequencies (MFs) and immunohistochemical or histopathological parameters, respectively. In rats treated with DMBA alone, a significant increase in lacI MFs (P < 0.01) in both OVX and intact (INT) rats was observed. The DMBA-induced MFs were not significantly altered by dietary DZ, GE, or E2 in both OVX and INT rats. Although dysplasia was not induced in the uterus of OVX and INT rats treated with DMBA alone, it was detected in 55% of OVX rats fed E2 alone and in 100% of OVX rats fed E2 along with DMBA exposure. Cell proliferation also was significantly higher in OVX rats fed E2 and treated with DMBA. In rats fed the isoflavones and treated with DMBA, the incidence of dysplasia was either reduced or virtually absent in both OVX and INT groups. These results indicate that a high incidence of dysplasia was associated with E2 feeding with or without DMBA treatment in the OVX rats, whereas the incidence was low in rats fed DZ or GE and treated with DMBA, suggesting a weak estrogen receptor agonist of DZ or GE in the rat uterus. The absence of dysplasia in OVX rats exposed to DMBA alone also suggests, in part, a promotional mechanism via estrogen- or isoflavone-driven cell proliferation.
Collapse
Affiliation(s)
- Anane Aidoo
- FDA Jefferson Laboratories, National Center for Toxicological Research, Division of Genetic and Reproductive Toxicology, Arkansas 72079, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Chen ZH, Na HK, Hurh YJ, Surh YJ. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK. Toxicol Appl Pharmacol 2006; 208:46-56. [PMID: 15901486 DOI: 10.1016/j.taap.2005.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/12/2004] [Accepted: 01/13/2005] [Indexed: 11/19/2022]
Abstract
Catechol estrogens, the hydroxylated metabolites of 17beta-estradiol (E2), have been considered to be implicated in estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE2), an oxidized metabolite of E2 formed preferentially by cytochrome P450 1B1, reacts with DNA to form depurinating adducts thereby exerting genotoxicity and carcinogenicity. 4-OHE2 undergoes 2-electron oxidation to quinone via semiquinone, and during this process, reactive oxygen species (ROS) can be generated to cause DNA damage and cell death. In the present study, 4-OHE2 was found to elicit cytotoxicity in cultured human mammary epithelial (MCF-10A) cells, which was blocked by the antioxidant trolox. MCF-10A cells treated with 4-OHE2 exhibited increased intracellular ROS accumulation and 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, and underwent apoptosis as determined by poly(ADP-ribose)polymerase cleavage and disruption of mitochondrial transmembrane potential. The redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) was transiently activated by 4-OHE2 treatment. Cotreatment of MCF-10A cells with the NF-kappaB inhibitor, L-1-tosylamido-2-phenylethyl chloromethyl ketone, exacerbated 4-OHE2-induced cell death. 4-OHE2 also caused transient activation of extracellular signal-regulated protein kinases (ERK) involved in transmitting cell survival or death signals. A pharmacological inhibitor of ERK aggravated the 4-OHE2-induced cytotoxicity, supporting the pivotal role of ERK in protecting against catechol estrogen-induced oxidative cell death.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
75
|
Dinger Y, Akcay T, Erdem T, Ilker Saygili E, Gundogdu S. DNA damage, DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome. Scandinavian Journal of Clinical and Laboratory Investigation 2006; 65:721-8. [PMID: 16509054 DOI: 10.1080/00365510500375263] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent studies have addressed the possibility of an association between polycystic ovaries and ovarian cancer. DNA damage is the first step of the carcinogenesis, and susceptibility to cancer, in general, is characterized by high DNA damage. Free radical-mediated DNA damage and impaired antioxidant defence have been implicated as contributory factors for the development of cancer. This study evaluates DNA damage (strand breakage, base oxidation, formamidopyrimidine DNA glycosylase (Fpg) sensitive sites), H2O2-induced DNA damage, a marker of DNA susceptibility to oxidation and glutathione (GSH) level, a powerful antioxidant, in women with polycystic ovary syndrome (PCOS). Women with PCOS showed a significant decrease in GSH level, a significant increase in DNA strand breakage and H2O2-induced DNA damage. Although Fpg-sensitive sites were higher in the PCOS group compared to the control group, the difference did not reach a statistically significant level. Significant correlations were found between free testosterone and DNA strand breakage (r = 0.46, p<0.01) and free testosterone and H2O2-induced DNA damage (r = 0.41, p<0.05). The data indicate that DNA damage and susceptibility of DNA to oxidative stress are increased in women with PCOS and may explain the association between PCOS and ovarian cancer.
Collapse
Affiliation(s)
- Y Dinger
- Istanbul University, Cerrahpasa Medical Faculty, Department of Biochemistry, 34300 Turkey
| | | | | | | | | |
Collapse
|
76
|
Bodensteiner KJ, Cain P, Ray AS, Hamula LA. Effects of pregnancy on spatial cognition in female Hooded Long-Evans rats. Horm Behav 2006; 49:303-14. [PMID: 16140300 DOI: 10.1016/j.yhbeh.2005.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Studies examining the roles of estrogens and progestins on spatial cognition have been highly contradictory. To determine if the hormonal environment of pregnancy affects spatial cognition, pregnant (n = 7) and virgin (n = 7) Hooded Long-Evans rats were tested in a Morris water maze throughout the 3 weeks of pregnancy and the second week postpartum. Latency to platform, path length, swim velocity, and time in quadrant were compared over trial-days. To compare water maze performance with changes in hormone levels, serum concentrations of estradiol and progesterone were measured on the first, third, and fifth days of testing during the third week of pregnancy. Subjects learned to find the platform as indicated by decreased time and distance to platform over each trial-week and increased time spent in the quadrant where the platform had been located the previous week. However, there were no differences between treatment groups on time or distance to platform over trial-days. Swim velocity did not differ between or within groups over the 4 weeks of testing. Although primigravid and virgin females were similar in their abilities to learn the novel location of a submerged platform and return to it over time, pregnant animals demonstrated less perseveration to previously learned information and were quicker to locate the platform when it moved to a new location. Thus, reproductive status did not affect reference memory but enhanced working memory in the Morris water maze.
Collapse
|
77
|
Prokai L, Prokai-Tatrai K, Perjési P, Simpkins JW. Mechanistic insights into the direct antioxidant effects of estrogens. Drug Dev Res 2006. [DOI: 10.1002/ddr.20050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
78
|
Cell cycle kinetics and cytogenetic changes in human lymphocytes exposed to oestradiol in vitro. ACTA VET-BEOGRAD 2006. [DOI: 10.2298/avb0601037d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
79
|
Felty Q, Singh KP, Roy D. Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 2005; 24:4883-93. [PMID: 15897899 DOI: 10.1038/sj.onc.1208667] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that 17-beta-estradiol (E2)-induced mitochondrial reactive oxygen species (mtROS) act as signaling molecules. The purpose of this study was to investigate the effects of E2-induced mtROS on cell cycle progression. E2-induced cell growth was reduced by antioxidants N-acetyl-L-cysteine (NAC), catalase, and the glutathione peroxidase mimic ebselen. Flow cytometry showed that mitochondrial blockers of protein synthesis (chloramphenicol), transcription and replication (ethidium bromide), and function (rotenone, rhodamine 6G) blocked E2-induced G1 to S transition. Reduction of E2-induced DNA synthesis in the presence of mitochondrial blockers occurred without influencing the level of ATP. Additionally, the mitochondrial blockers inhibited the E2-induced expression of early cell cycle genes such as cyclins D1, D3, E1, E2, and B2. NAC or rotenone reduced E2-induced cyclin D1 expression. Furthermore, E2-induced binding of AP-1 and CREB to the TRE and CRE response sequences, respectively, in the promoter of cyclin D1 was inhibited by NAC or rotenone. In addition, E2-induced expression of PCNA, PRC1, and bcl-2 were inhibited by mitochondrial blockers. These data indicate that E2-induced mtROS are involved in the regulation of early G1-phase progression. Since neither antioxidants nor mitochondrial blockers used in this study are reported to bind the estrogen receptor (ER), our findings suggest that E2-induced mtROS modulates G1 to S transition and some of the early G1 genes through a nongenomic, ER-independent signaling pathway. Thus, our results suggest (1) a new paradigm that estrogen-induced mitochondrial oxidants control the early stage of cell cycle progression and (2) provide the basis for the discovery of novel antioxidant-based drugs or antioxidant gene therapies for the prevention and treatment of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Quentin Felty
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
80
|
Muzandu K, Shaban Z, Ishizuka M, Kazusaka A, Fujita S. Nitric oxide enhances catechol estrogen-induced oxidative stress in LNCaP cells. Free Radic Res 2005; 39:389-98. [PMID: 16028364 DOI: 10.1080/10715760400029710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Catechol estrogens (CEs), such as 4-hydroxyestradiol (4-OHE2), undergo redox cycling during which reactive oxygen species (ROS) such as superoxide (O2*-) and the chemically reactive estrogen semiquinone (CE-SQ) and quinone (CE-Q) intermediates are produced. The quinone's putative mutagenicity may be enhanced by ROS and/or reactive nitrogen species. High concentrations of nitric oxide (NO) present during inflammatory conditions may react with (O2*-) to form peroxynitrite (ONOO-), a potent oxidant implicated in many pathological conditions. In this study, the possible generation of peroxynitrite from the interaction of CEs and NO and its effect on plasmid DNA and intact cells were investigated. A combination of 4-OHE2 and NO increased the level of single strand breaks (SSB) in plasmid DNA by more than 60% compared to vehicle controls in a metal-free buffer system. 4-OHE2 alone or NO alone had no effect. Results obtained from use of different antioxidants and ROS scavengers suggested a role of peroxynitrite in oxidative stress. In cells, 4-OHE2 or NO alone induced dose-dependent DNA damage as assessed by single cell gel electrophoresis. Co-treatment with 4-OHE2 and NO had an additive effect at lower doses. Generation of intracellular ROS was measured by the oxidation of carboxy-2',7'-dichlorofluorescein diacetate to the fluorescent compound carboxy-2',7'-dichlorofluorescein. NO alone, in oxygenated media, generated little ROS whereas 4-OHE2 produced approximately 70% increase in fluorescence. When added together 4-OHE2 and NO, produced a 2-fold increase in ROS. The generation and involvement ofperoxynitrite to this increase was implied since uric acid inhibited it. Generation ofperoxynitrite was also observed by use of dihydrorhodamine 123. Therefore, we conclude that combined treatments with 4-OHE2 and NO generated peroxynitrite seen from increased fluorescence and its inhibition by uric acid or combined SOD and catalase treatments. Results reported here suggest a role of peroxynitrite in causing damage to biomolecules when CEs and NO are present simultaneously. This may have biological relevance as high concentrations of NO formed during inflammatory conditions may exacerbate cancers due to estrogens.
Collapse
Affiliation(s)
- Kaampwe Muzandu
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
81
|
Gadducci A, Biglia N, Sismondi P, Genazzani AR. Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecol Endocrinol 2005; 20:343-60. [PMID: 16019385 DOI: 10.1080/09513590500128492] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is strong epidemiological, experimental and clinical evidence that the etiology of breast cancer is closely related to long-term exposure of breast epithelium to sex steroid hormones. Estrogens can enhance the development of breast cancer by stimulating cell proliferation rate and thereby increasing the number of errors occurring during DNA replication, as well as by causing DNA damage via their genotoxic metabolites produced during oxidation reactions. Anti-estrogenic drugs, including tamoxifen, raloxifene and anastrozole, have been tested with promising results in the chemoprevention of breast cancer in high-risk women. As for the use of exogenous sex-steroids in the gynecological practice, data about breast cancer risk associated with oral contraception are reassuring, and available data on oral hormone replacement therapy (HRT) use for not more than 5 years have failed to detect a significant increase in the risk of developing a breast cancer. Long-term HRT administration increases the incidence of this tumor slightly, with a relative risk ranging from 1 to 2 depending on hormone preparation. Estrogens alone, even if taken for long periods of time, seem to be safer than estrogen/progestin combinations. New administration routes and novel hormone regimens are currently under evaluation, and these new HRT modalities could have different impact on breast cancer risk because of their metabolic and pharmacodynamic effects.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Procreative Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 56, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
82
|
Östradiolmetabolismus und gynäkologische Malignome. GYNAKOLOGISCHE ENDOKRINOLOGIE 2005. [DOI: 10.1007/s10304-005-0101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
83
|
Green M, Wilson C, Newell O, Sadrud-Din S, Thomas R. Diallyl sulfide inhibits diethylstilbesterol-induced DNA adducts in the breast of female ACI rats. Food Chem Toxicol 2005; 43:1323-31. [PMID: 15989972 DOI: 10.1016/j.fct.2005.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diethylstilbestrol (DES) is metabolized to reactive intermediates that produce DNA adducts and ultimately cancer. Diallyl sulfide (DAS) has been shown to inhibit the metabolism of several procarcinogens. The ability of DES to produce DNA adducts in microsomal, mitochondrial, and nuclear in vitro metabolic systems and in the breast of female ACI rats, as well as ability of DAS to inhibit DNA adducts were investigated. Microsomes, mitochondria, and nuclei isolated from breast tissue of female ACI rats were used to catalyze oxidation reactions. Female ACI rats were treated i.p. as follows: (1) corn oil, (2) 200mg/kg DES, (3) 200mg/kg DES/200mg/kg of DAS, (4) 200mg/kg DES/400mg/kg DAS. DES produced DNA adducts in each metabolic system. The relative adduct levels were 2.1 x 10(-4), 6.2 x 10(-6), and 2.9 x 10(-7) in microsomal, mitochondrial, and nuclear reactions, respectively. DAS inhibited DNA adducts in each metabolic system. The percent inhibition ranged from 86% in microsomes to 93% in nuclei. DES produced DNA adducts in mtDNA and nDNA. DAS completely inhibited the DES-induced mtDNA adducts and caused a dose dependent decrease in nDNA adduct formation. These findings suggest that DAS could inhibit DES-induced breast cancer by inhibiting its metabolism.
Collapse
Affiliation(s)
- M Green
- Environmental Toxicology Program, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | | | |
Collapse
|
84
|
Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 Polymorphisms with Differential Metabolic Activation of 17β-Estradiol and Estrone. Cancer Res 2005; 65:2972-8. [PMID: 15805301 DOI: 10.1158/0008-5472.can-04-3543] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several epidemiologic studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. To answer the question of whether genotype-dependent activation of estrogens by CYP1A1 could be the underlying mechanism, we studied the hydroxylation activity of the most common allelic variants of human CYP1A1 towards both endogenously occurring estrogens, 17beta-estradiol (E2) and estrone (E1). We expressed and purified CYP1A1.1 (wild-type), CYP1A1.2 (Ile(462)Val), and CYP1A1.4 (Thr(461)Asn) and did enzymatic assays of NADPH-dependent estrogen hydroxylation in reconstituted CYP1A1 systems. All CYP1A1 variants catalyzed the formation of 2-, 4-, 6alpha-, and 15alpha-hydroxylated estrogen metabolites from E2 and E1, yet with varying catalytic efficiency and distinct regiospecificity. Whereas the variant CYP1A1.2 (Ile(462)Val) had a significant higher catalytic activity for all hydroxylation sites and both substrates, it was most pronounced for 2-hydroxylation. Catalytic efficiencies for the formation of the major metabolites, 2-OH-E2 and 2-OH-E1, by CYP1A1.2 were 5.7- and 12-fold higher, respectively, compared with the wild-type enzyme. The catalytic efficiencies for hydroxylations catalyzed by CYP1A1.4 were roughly comparable with those of the wild-type enzyme. Enzyme kinetics showed that the superior activity of CYP1A1.2 (Ile(462)Val) is mainly caused by a higher V(max), whereas K(m) values of all variants were similar. The data suggest that risk of estrogen-induced cancers and cardiovascular diseases might be-at least partially-determined by the CYP1A1 genotype.
Collapse
Affiliation(s)
- Pyotr Kisselev
- Institute of Clinical Pharmacology, Charité-Campus Mitte, University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
85
|
Bhat HK, Epelboym I. Suppression of calbindin D28K in estrogen-induced hamster renal tumors. J Steroid Biochem Mol Biol 2004; 92:391-8. [PMID: 15698544 DOI: 10.1016/j.jsbmb.2004.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 07/19/2004] [Indexed: 11/29/2022]
Abstract
It has been hypothesized that generation of reactive estrogen-quinone species and oxidative stress, both of which result from the metabolic activation of estrogens, plays an important role in estrogen-induced carcinogenesis. In the present investigation, we used an estrogen-induced hamster renal tumor model to identify gene(s) associated with oxidative stress that may be differentially expressed in estrogen-induced tumors compared with untreated controls. Hamsters were implanted with 17beta-estradiol (E2) for 7 months. This treatment resulted in the development of target organ specific kidney tumors. Delta differential PCR technique on RNA isolated from estrogen-induced hamster renal tumors and untreated control kidneys identified a number of cDNA fragments that were differentially expressed in tumor RNA compared with untreated controls. We report the cloning of one of the differentially expressed cDNA fragments, the hamster calbindin-D28k (Cb28k) cDNA, and present a finding that both Cb28k mRNA and protein are suppressed in estrogen-induced hamster renal tumors compared with untreated controls. Cb28k is a Vitamin D3-dependent calcium binding protein that acts as a buffer to maintain intracellular calcium homeostasis, although its exact role is still not clear. Since Cb28k gene has been shown to be associated with providing cells resistance against oxidative stress, Cb28k may be an important biomarker in estrogen-mediated carcinogenesis and oxidative stress.
Collapse
Affiliation(s)
- Hari K Bhat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 60 Haven Avenue-B1, New York, NY 10032, USA.
| | | |
Collapse
|
86
|
Hurh YJ, Chen ZH, Na HK, Han SY, Surh YJ. 2-Hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1939-1953. [PMID: 15513894 DOI: 10.1080/15287390490514598] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Catechol estrogens, the hydroxylated metabolites of 17beta-estradiol (E2), have been considered to be implicated in estrogen-induced carcinogenesis. 2-Hydroxyestradiol (2-OHE2), a major oxidized metabolite of E2 formed preferentially by cytochrome P-450 1A1, reacts with DNA to form stable adducts and exerts genotoxicity. 2-OHE2 can be oxidized to quinone, which is accompanied by generation of reactive oxygen species (ROS). In the present study, 2-OHE2 induced strand scission in phiX174 phage DNA and oxidative base modifications in calf thymus DNA in the presence of cupric ion. In cultured human mammary epithelial (MCF-10A) cells, 2-OHE2 treatment produced ROS accumulation, 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, cytotoxicity, and disruption of mitochondrial transmembrane potential, all of which were prevented by N-acetylcysteine. These findings, taken together, suggest that 2-OHE2-induced oxidative DNA damage and apoptosis in MCF-10A cells might be mediated by ROS generated via the redox cycling of this catechol estrogen.
Collapse
Affiliation(s)
- Yeon-Jin Hurh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
87
|
Teles M, Gravato C, Pacheco M, Santos MA. Juvenile sea bass biotransformation, genotoxic and endocrine responses to beta-naphthoflavone, 4-nonylphenol and 17 beta-estradiol individual and combined exposures. CHEMOSPHERE 2004; 57:147-158. [PMID: 15294438 DOI: 10.1016/j.chemosphere.2004.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 12/31/2003] [Accepted: 02/09/2004] [Indexed: 05/24/2023]
Abstract
Juvenile sea bass, Dicentrarchus labrax L., were exposed during 2, 4, 8, and 24 h to 0.9 microM beta-naphthoflavone (BNF), 131 nM 17 beta-estradiol (E(2)), 4.05 microM 4-nonylphenol (NP), as well as to BNF combined either to E(2) or NP (maintaining the previous concentrations). Liver cytochrome P450 content (P450), ethoxyresorufin-O-deethylase (EROD), and glutathione S-transferase (GST) activities were measured in order to evaluate biotransformation responses. Genotoxicity was assessed as erythrocytic nuclear abnormalities (ENA) frequency. The effects on endocrine function were evaluated as plasma cortisol and glucose. Cortisol was not affected by xeno/estrogens tested, either in single exposure or mixed with BNF. Nevertheless, the intermediary metabolism was affected since glucose concentration increased after 4 h exposure to E(2), and after all BNF+NP exposure lengths. Moreover, a synergism between BNF and NP was thoroughly demonstrated, whereas a sporadic antagonistic interaction was found at 4 h BNF + E(2) exposure. Liver EROD and GST activities were not significantly altered by single E(2) or NP exposure. However, both compounds were able to induce EROD activity in the presence of BNF. NP single exposure was able to significantly increase liver P450 content, while its mixture with BNF displayed an antagonistic interference. Considering the xeno/estrogens single exposures, only NP induced an ENA increase; however, both mixtures (BNF + E(2) and BNF + NP) displayed genotoxic effects. Fish responses to mixtures of xenobiotics are complex and the type of interaction (synergism/potentiation or antagonism) in a particular mixture can vary with the evaluated biological response.
Collapse
Affiliation(s)
- M Teles
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
88
|
Aït-Aïssa S, Ausseil O, Palluel O, Vindimian E, Garnier-Laplace J, Porcher JM. Biomarker responses in juvenile rainbow trout (Oncorhynchus mykiss) after single and combined exposure to low doses of cadmium, zinc, PCB77 and 17beta-oestradiol. Biomarkers 2004; 8:491-508. [PMID: 15195680 DOI: 10.1080/13547500310001640037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this study was to examine (i) the biochemical responses of rainbow trout exposed to sublethal water concentrations of the metals cadmium (Cd) (1.5 microg l(-1)) and zinc (Zn) (150 microg l(-1)); and (ii) the potential combined effects when applied in mixture (Cd/Zn) with and without co-exposure to model organic chemicals 3,3',4,4'-tetrachlorobiphenyl (PCB77) (1 mg kg (-1)) and 17beta-oestradiol (E2) (0.5 mg kg(-1)). After 21 days of exposure, several biomarkers were assessed in the liver (enzymatic and nonenzymatic antioxidants, heat shock proteins [HSP70 and HSP60], ethoxyresorufin-O-deethylase [EROD]) and in the plasma (vitellogenin [Vtg], aminotransferases). Plasma aminotransferases were not affected, whereas the other biomarkers showed different patterns of response depending on the treatment. For example, Cd, and Zn to a lesser extent, induced an adaptive response in the liver shown by an increase in antioxidant defences (total glutathione [GSH], superoxide dismutase, Trolox equivalent antioxidant capacity [TEAC]), without any impairment of GSH redox status or induction of heat shock proteins. Antagonistic effects were observed in GSH-related biomarkers after Cd/Zn exposure. PCB77 strongly induced EROD activity, HSP70 and TEAC. Co-exposure with metals did not modulate significantly the effects of PCB77. E2 induced Vtg and inhibited liver antioxidants and basal EROD activity. These inhibitory effects were suppressed in fishes exposed to E2 + Cd/Zn, suggesting additive effects of E2 and metals. In addition, E2-induced Vtg was not altered by metals. Multivariate analyses confirmed some correlation between the biomarkers. The use of complementary biomarkers is necessary to discriminate different treatments and to highlight interactive effects.
Collapse
Affiliation(s)
- S Aït-Aïssa
- Ecotoxicological Risks Assessment Unit, National Institute of Industrial Environment and Risks, BP 2, f-60550 Verneuil-en-Halatte, France.
| | | | | | | | | | | |
Collapse
|
89
|
Thibodeau PA, Pasquier C, Gougerot-Pocidalo MA. Measurement of copper(I) formation as a test for the stability of catecholestrogens and methoxyestrogens in solution. Steroids 2004; 69:419-23. [PMID: 15219791 DOI: 10.1016/j.steroids.2004.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/19/2004] [Accepted: 03/25/2004] [Indexed: 11/21/2022]
Abstract
The biological effects of estrogens seem to be divided into three mechanisms of action: (1) the transcriptional action by the estrogen-estrogen receptor (ER) complex, (2) the non-genomic mechanism through ERs in cell membranes, and (3) the ER-independent mechanism. The latter mechanism has been attributed to be mediated by the basic chemical properties of estradiol (E2) metabolites, which seems to include their pro- and anti-oxidant properties. Therefore, in order to study the ER-independent actions of the E2 metabolites, their redox properties must be conserved. In this study, we have developed a test to measure the electron-donating properties of E2 and its metabolites based on the reduction of Cu(II) ion into Cu(I). Our results show that the catechol- and methoxy-metabolites of E2 lose their capability to reduce Cu(II) into Cu(I) after 3 months of storage at -20 degrees C. Thus, we propose this inexpensive and reliable test to verify the electron-donating properties of E2 metabolites in order to study their ER-independent biological effects in vitro.
Collapse
Affiliation(s)
- Paul A Thibodeau
- INSERM U479 Phagocytes et Réponses Inflammatoires, Faculté de Médecine, Université Paris VII Denis Diderot, 16, rue Henri Huchard, Paris 75018, France.
| | | | | |
Collapse
|
90
|
Rogan EG, Cavalieri EL. Estrogen Metabolites, Conjugates, and DNA Adducts: Possible Biomarkers for Risk of Breast, Prostate, and Other Human Cancers. Adv Clin Chem 2004; 38:135-49. [PMID: 15521191 DOI: 10.1016/s0065-2423(04)38005-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eleanor G Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
91
|
Qin LQ, Wang PY, Kaneko T, Hoshi K, Sato A. Estrogen: one of the risk factors in milk for prostate cancer. Med Hypotheses 2004; 62:133-42. [PMID: 14729019 DOI: 10.1016/s0306-9877(03)00295-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies to elucidate the cause of prostate cancer have met with little success to date. Epidemiological studies suggested that milk consumption is probably as one of the risk factors for prostate cancer. The studies thus focused on the fat and calcium in milk, but reached no definitive conclusion. According to the measurements of estrogen levels in milk by different studies, it was suggested that estrogen in milk was a possible risk to cause prostate cancer. One reason supporting this hypothesis is that Western diet (characterized by milk/dairy products and meat) causes a trend of increasing levels of estrogens, and Western males show a higher incidence rate of prostate cancer than Asia males. Estrogen levels in prostate fluid are also correlated very well with the prostate cancer. During several decades, estrogens, together with testosterone, was commonly used to induce the rodent model of prostate cancer. Our hypothesis also was supported by the presence of estrogen receptors in the prostate gland and the genotoxic role of estrogens on the prostate gland, as possible mechanisms. Therefore, if modern milk consumption does expose consumers to high levels of estrogen and plays an adverse role in prostate cancer, action should be taken to produce the noncontaminant milk.
Collapse
Affiliation(s)
- Li-Qiang Qin
- Department of Environmental Health, School of Medicine, University of Yamanashi, Shimokato 1110, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | |
Collapse
|
92
|
Patel MM, Bhat HK. Differential oxidant potential of carcinogenic and weakly carcinogenic estrogens: Involvement of metabolic activation and cytochrome P450. J Biochem Mol Toxicol 2004; 18:37-42. [PMID: 14994278 DOI: 10.1002/jbt.20005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Different estrogens vary in their carcinogenic potential despite having similar hormonal potencies; however, mechanisms of estrogen-induced carcinogenesis remain to be fully elucidated. It has been hypothesized that generation of reactive estrogen-quinones and oxidative stress, both of which result from metabolic activation of estrogens, play an essential role in estrogen-induced carcinogenesis. This hypothesis was tested using the estrogen-receptor (ER)-alpha-positive hamster kidney tumor (H301) and the human breast cancer (MCF-7) cell lines. Estrogens with differing carcinogenic potentials were compared in terms of their capacities to induce 8-iso-prostaglandin F(2alpha) (8- iso-PGF(2alpha)), a marker of oxidative stress. Tumor cells were treated with either 17beta-estradiol (E2), a carcinogenic estrogen or 17-alpha-ethinylestradiol (EE), a weakly-carcinogenic estrogen. Tumor cells were also treated with alpha-naphthoflavone, a cytochrome P450 inhibitor, or a combination of alpha-naphthoflavone and E2 to study the effect of metabolic activation of E2 on E2-induced oxidative stress. H301 cells treated with E2 displayed time- and dose-dependent increases in 8-iso-PGF(2alpha), compared to controls; treatment with 10 nM E2 resulted in a maximal 4-fold induction following 48 h of treatment. In contrast, H301 cells treated with EE did not display an increase in 8-iso-PGF(2alpha) compared with controls. In H301 cells cotreated with alpha-naphthoflavone and E2, alpha-naphthoflavone inhibited the E2-induced increase in 8-iso-PGF(2alpha). These data indicate that a carcinogenic estrogen shows strong oxidant potential, whereas a weakly-carcinogenic estrogen shows poor oxidant potential. Furthermore, inhibiting metabolic activation of a carcinogenic estrogen blocks its oxidant potential. Our data support the hypothesis that metabolic activation and subsequent generation of oxidative stress may play critical roles in estrogen-induced carcinogenesis.
Collapse
Affiliation(s)
- Molini M Patel
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
93
|
Abstract
We compared the neuroprotective effects of the catecholestrogen 2-hydroxy-estradiol (2-OH-E(2)) to the actions of 17-beta-estradiol (E(2)), since catecholestrogens have been clinically implicated in the pathophysiology of major depression and other psychiatric diseases. Using the hippocampal HT22 cell line as a well-established in vitro model system, we here show that the extent of the neuroprotective effects of 2-OH-E(2) was significantly increased compared to the physiological estrogen E(2) at equimolar concentrations after a toxic challenge with hydrogen peroxide. Statistically significant effects of neuroprotection as measured by survival of HT22 cells were detectable at concentrations of 1 and 10 microM of 2-OH-E(2) or E(2). Studies on the time-dependence of the evoked reactions showed that a pre-incubation and a post-incubation up to 30 min with a dose of 10 microM of 2-OH-E(2) resulted in a significant decrease in cell death after incubation with hydrogen peroxide if compared to E(2). Further characterization of the effects in rat brain homogenates with an assay for the induction of cellular lipid peroxidation (LPO) revealed, that 2-OH-E(2) was more effective in the reduction of LPO than E(2) in equimolar concentrations. This indicates a pharmacologically relevant effect of this hormone metabolite and a mechanism of action, which does not involve the classical estrogen receptor. In conclusion, the catecholestrogen 2-OH-E(2) induces increased neuroprotective actions in comparison to the major physiological estrogen E(2), suggesting a clinically relevant physiological function of catecholestrogens during health and disease.
Collapse
Affiliation(s)
- Michael Teepker
- Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Str. 8, D-35033, Marburg, Germany
| | | | | | | |
Collapse
|
94
|
Paquette B, Bisson M, Therriault H, Lemay R, Paré M, Banville P, Cantin AM. Activation of matrix metalloproteinase-2 and -9 by 2- and 4-hydroxyestradiol. J Steroid Biochem Mol Biol 2003; 87:65-73. [PMID: 14630092 DOI: 10.1016/s0960-0760(03)00386-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer patients frequently develop metastases. This process requires the degradation of extracellular matrix proteins which act as a barrier to tumour cell passage. These proteins can be degraded by proteases, mainly the matrix metalloproteinases (MMPs). MMP-2 and -9 which are frequently detected in breast cancer tissues. ProMMPs are released from cancer cells, and their activation is considered to be a crucial step in metastases development. In breast cancer, estrogen metabolism is altered favouring the accumulation of 2- and 4-hydroxyestradiol (2- and 4-OHE(2)). These estradiol metabolites can generate free radicals. Since reactive species are known activators of proMMPs, this study was designed to determine if the free radicals generated by 2- and 4-OHE(2) can activate proMMP-2 and -9. Activation of MMPs by hydroxyestradiol was determined by monitoring the cleavage of a fluorogenic peptide and by zymography analysis. Both estradiol metabolites activated the MMP-2 and -9. 4-OHE(2) was a more potent activator than 2-OHE(2), which reflects its higher capacity to generate free radicals. ProMMPs activation was mainly mediated through O(2)*-, although the free radical HO* also activated the proMMPs but to a lesser extent. ProMMPs activation was not observed with estrogens that cannot generate free radicals, i.e. estradiol, estrone, 2- and 4-methoxyestradiol, and 16alpha-hydroxyestrone. These results demonstrate that 2- and 4-OHE(2) at a concentration as low as 10(-8)M can activate the proMMP-2 and -9 and might play an important role in the invasion of breast cancer cells.
Collapse
Affiliation(s)
- Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, 12th Avenue North 3001, Sherbrooke, Que., Canada J1H 5N4.
| | | | | | | | | | | | | |
Collapse
|
95
|
Ozgönül M, Oge A, Sezer ED, Bayraktar F, Sözmen EY. The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovarectomized female rats. Endocr Res 2003; 29:183-9. [PMID: 12856805 DOI: 10.1081/erc-120022299] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies documented that estrogen have antioxidant properties in-vitro, there are conflicting results on the effect of estrogen in vivo. We aimed to investigate the effects of estradiol and Raloxifene on the antioxidant enzyme [superoxide dismutase (SOD) and catalase (CAT)] activities and MDA levels in brain and liver homogenates of ovariectomized female rats. Twelve weeks after ovariectomy, female Sprague-Dawley rats (n = 26) were divided into three groups: (1) Ovariectomized placebo group (n = 6) was given physiologic saline. (2) Estrogen group (n = 10) was given Ethynyl estradiol, 0.1 mg/kg sc. (3) Raloxifene group (n = 10) was given raloxifene, 1 mg/kg sc during 8 weeks. Ten rats were used as naive controls without any treatment (Sham operated group, n = 10). Ovariectomy lead to an increase in the CAT activities in liver tissue samples compared to the sham group (p = 0.056, Mann-Whitney test). While estrogen treatment reversed to normal levels of CAT activities, raloxifene remained as ineffective. Superoxide dismutase activities and MDA levels in liver were remained unchanged in all groups. There was no significant change in the brain tissue SOD and CAT activities between the control ovariectomy, estrogen treated, and raloxifen treated groups. We determined an increase in MDA levels in brain of ovariectmised rat (p = 0.02). While raloxifene treatment reversed to normal levels of MDA (p = estrogen treatment failed. Our data showed that estrogen may play a role in regulation of CAT and SOD activities in liver due to its antioxidative effects. We can suggest estrogen and raloxifene exert their antioxidative effects in brain rather than liver. Since Raloxifene's effect is more clear than estradiol, raloxifene may be suggested primarily for treatment and/or prevention of diseases which can be resulted from oxidative stress in postmenopausal women.
Collapse
Affiliation(s)
- Mert Ozgönül
- Department of Biochemistry, Ege University Faculty of Medicine, Bornova-Izmir, Turkey
| | | | | | | | | |
Collapse
|
96
|
Samuni AM, Chuang EY, Krishna MC, Stein W, DeGraff W, Russo A, Mitchell JB. Semiquinone radical intermediate in catecholic estrogen-mediated cytotoxicity and mutagenesis: chemoprevention strategies with antioxidants. Proc Natl Acad Sci U S A 2003; 100:5390-5. [PMID: 12702779 PMCID: PMC154355 DOI: 10.1073/pnas.0930078100] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modulation of the cytotoxicity and mutagenicity of 4-hydroxyestradiol (4-OHE(2)), an oxidative metabolite of estrogen, by antioxidants was assessed in human MCF7 cells and TK-6 lymphoblast cells. The cytotoxicity of the catecholic estrogens was potentiated by depletion of intracellular glutathione and was independent of oxygen concentration. Agents such as the nitroxide Tempol can facilitate the oxidation of the semiquinone to the Q and enhanced 4-OHE(2) cytotoxicity. Conversely, reducing agents such as ascorbate, cysteine, and 1,4-dihydroxytetramethylpiperidine (THP) protected against cytotoxicity and decreased mutation induction, presumably by reducing the semiquinone to the hydroquinone. Our results support the proposition that oxidation of the semiquinone to the corresponding Q is crucial in eliciting the deleterious effects of catecholic estrogens. Furthermore, because the deleterious effects of 4-OHE(2) were abrogated by dietary and synthetic antioxidants, our results would support the chemopreventive use of diets rich in reducing substances (vitamins and added synthetic antioxidants) as a means of decreasing the risks associated with estrogen exposure and developing of breast cancer.
Collapse
Affiliation(s)
- Ayelet M Samuni
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B3-B69, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Bhat HK, Calaf G, Hei TK, Loya T, Vadgama JV. Critical role of oxidative stress in estrogen-induced carcinogenesis. Proc Natl Acad Sci U S A 2003; 100:3913-8. [PMID: 12655060 PMCID: PMC153022 DOI: 10.1073/pnas.0437929100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of estrogen-induced tumorigenesis in the target organ are not well understood. It has been suggested that oxidative stress resulting from metabolic activation of carcinogenic estrogens plays a critical role in estrogen-induced carcinogenesis. We tested this hypothesis by using an estrogen-induced hamster renal tumor model, a well established animal model of hormonal carcinogenesis. Hamsters were implanted with 17beta-estradiol (betaE2), 17alpha-estradiol (alphaE2), 17alpha-ethinylestradiol (alphaEE), menadione, a combination of alphaE2 and alphaEE, or a combination of alphaEE and menadione for 7 months. The group treated with betaE2 developed target organ specific kidney tumors. The kidneys of hamsters treated with alphaE2, alphaEE, or menadione alone did not show any gross evidence of tumor. Kidneys of hamsters treated with a combination of alphaE2 and alphaEE showed early signs of proliferation in the interstitial cells. Kidneys of hamsters treated with a combination of menadione and alphaEE showed foci of tumor with congested tubules and atrophic glomeruli. betaE2-treated tumor-bearing kidneys showed >2-fold increase in 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) levels compared with untreated controls. Kidneys of hamsters treated with a combination of menadione and alphaEE showed increased 8-iso-PGF(2alpha) levels compared with untreated controls, whereas no increase in 8-iso-PGF(2alpha) was detected in kidneys of alphaEE-treated group. A chemical known to produce oxidative stress or a potent estrogen with poor ability to produce oxidative stress, were nontumorigenic in hamsters, when given as single agents, but induced renal tumors, when given together. Thus, these data provide evidence that oxidant stress plays a crucial role in estrogen-induced carcinogenesis.
Collapse
Affiliation(s)
- Hari K Bhat
- Department of Environmental Health Sciences, Mailman School of Public Health, 60 Haven Avenue-B1, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
98
|
Abstract
Estrogens occurring naturally in the body are metabolized to catecholestrogens (2- and 4-hydroxyestradiol) by the cytochrome P450 enzymes. 2-Hydroxy catecholestrogens are further metabolized by catechol-O-methyltransferase to 2-methoxyestradiol, which is known to be protective against tumor formation. 2-Methoxyestradiol exhibits potent apoptotic activity against rapidly growing tumor cells. It also possesses antiangiogenic activity through a direct apoptotic effect on endothelial cells. Other molecular mechanisms, including microtubule stabilization by inhibition of the colchicine-binding site, have been reported. The exact mechanism of action of 2-methoxyestradiol is still unclear, but it has been shown to be effective in preventing tumor growth in a variety of cell lines. 2-Methoxyestradiol also possesses cardioprotective activity by inhibiting vascular smooth muscle cell growth in arteries. It has a lower binding affinity for estrogen receptor alpha compared with that of estradiol, and its affinity for estrogen receptor beta is even lower than that of estrogen receptor alpha, thus it has minimal estrogenic activity. 2-Methoxyestradiol is distinct because of its inability to engage estrogen receptors as an agonist, and its unique antiproliferative and apoptotic activities are mediated independently of estrogen receptors alpha and beta. A phase I clinical trial of 2-methoxyestradiol 200, 400, 600, 800, and 1,000 mg/day in 15 patients with breast cancer showed significant reduction in bone pain and analgesic intake in some patients, with no significant adverse effects. Another phase I study of 2-methoxyestradiol 200-1,000 mg/day in combination with docetaxel 35 mg/m2/week for 4-6 weeks performed in 15 patients with advanced refractory metastatic breast cancer showed no serious drug-related adverse effects. A phase II randomized, double-blind trial of 2-methoxyestradiol 400 and 1,200 mg/day in 33 patients with hormone-refractory prostate cancer showed that it was well tolerated and showed prostate specific antigen stabilizations and declines. We have started a phase I clinical trial to explore dosages greater than 1,000 mg/day.
Collapse
Affiliation(s)
- Nehal J Lakhani
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
99
|
Evans MD, Butler JM, Nicoll K, Cooke MS, Lunec J. 17 beta-Oestradiol attenuates nucleotide excision repair. FEBS Lett 2003; 535:153-8. [PMID: 12560095 DOI: 10.1016/s0014-5793(02)03898-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemiological studies strongly suggest associations between chronic exposure to endogenous oestrogens and the development of breast and gynaecological tumours. Two mechanisms by which 17 beta-oestradiol (E2) may enhance tumorigenesis are: (i) enhancement of cell proliferation and (ii) the production of reactive, genotoxic metabolites. Here we suggest an additional mechanism, inhibition of DNA repair. The removal of UV-induced thymine dimers from human keratinocytes, reflective of nucleotide excision repair, was significantly attenuated by treatment of cells with E2. In contrast, treatment with 17 alpha-oestradiol had no effect. Mechanisms are proposed for this effect of E2, which may contribute to its carcinogenic potential.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, Department of Clinical Biochemistry, P.O. Box 65, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
100
|
Abstract
Oxidative stress is a disturbance in the balance between the production of reactive oxygen species (ROS) and antioxidant defenses. It occurs when excessive production of ROS overwhelms the antioxidant defense system or when there is a significant decrease or lack of antioxidant defenses. Oxidative stress, in turn, is known to cause DNA damage and mutations of tumor suppressor genes that are critical initial events in carcinogenesis. Interestingly, early findings of the studies suggest that environmental factors, such as high psychological stress and poor nutritional profile (eg, low antioxidant and high fat intake), increase ROS production. Given that breast cancer is a complex disorder in which gene-environment interactions play a significant role in the development of cancer, oxidative stress may be an excellent model for exploring mechanisms mediating gene-environment interactions for nurse scientists and advanced practice nurses. Such investigations may help to suggest future strategies for nonpharmacological interventions for decreasing cancer risk.
Collapse
Affiliation(s)
- Duck-Hee Kang
- School of Nursing, University of Alabama-Birmingham, Birmingham, AL 35294-1210, USA.
| |
Collapse
|