51
|
Wang X, Lin M, Kang Y. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9223-9232. [PMID: 30758175 DOI: 10.1021/acsami.8b22041] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inadequate oxygen and nutrient diffusion in a porous scaffold often resulted in insufficient formation of branched vasculatures, which hindered bone regeneration. In this study, interconnected porous β-tricalcium phosphate (β-TCP) scaffolds with different geometric designs of channels were fabricated and compared to discover the functionality of structure on facilitating nutrient diffusion for angiogenesis. In vitro fluid transportation and degradation of the scaffolds were performed. Cell infiltration, migration, and proliferation of human umbilical vein endothelial cells (HUVECs) on the scaffolds were carried out under both static and dynamic culture conditions. A computational simulation model and a series of immunofluorescent staining were implemented to understand the mechanism of cell behavior in response to different types of scaffolds. Results showed that geometry with multiple channels significantly accelerated the release of Ca2+ and increased the fluid diffusion efficiency. Moreover, multiple channels promoted HUVECs' infiltration and migration in vitro. The ex vivo implantation results showed that the channels promoted cells from the rats' calvarial bone explants to infiltrate into the implanted scaffold. Multiple channels also stimulated HUVECs' proliferation prominently at both static and dynamic culturing conditions. The expression of both cell migration-related protein α5 and angiogenesis-related protein CD31 on multiple-channeled scaffolds was upregulated compared to that on the other two types of scaffolds, implying that multiple channels reinforced cell migration and angiogenesis. All the findings suggested that the geometric design of multiple channels in the porous β-TCP scaffold has promising potential to promote cell infiltration, migration, and further vascularization when implanted in vivo.
Collapse
Affiliation(s)
| | | | - Yunqing Kang
- Integrative Biology PhD Program, Department of Biological Science, College of Science , Florida Atlantic University , Boca Raton , Florida 33431 , United States
| |
Collapse
|
52
|
Sadowska JM, Guillem-Marti J, Ginebra MP. The Influence of Physicochemical Properties of Biomimetic Hydroxyapatite on the In Vitro Behavior of Endothelial Progenitor Cells and Their Interaction with Mesenchymal Stem Cells. Adv Healthc Mater 2019; 8:e1801138. [PMID: 30516356 DOI: 10.1002/adhm.201801138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/06/2018] [Indexed: 12/18/2022]
Abstract
Calcium phosphate (CaP) substrates are successfully used as bone grafts due to their osteogenic properties. However, the influence of the physicochemical features of CaPs in angiogenesis is frequently neglected despite it being a crucial process for bone regeneration. The present work focuses on analyzing the effects of textural parameters of biomimetic calcium deficient hydroxyapatite (CDHA) and sintered beta-tricalcium phosphate (β-TCP), such as specific surface area, surface roughness, and microstructure, on the behavior of rat endothelial progenitor cells (rEPCs) and their crosstalk with rat mesenchymal stem cells (rMSCs). The higher reactivity of CDHA results in low proliferation rates in monocultured and cocultured systems. This effect is especially pronounced for rMSCs alone, and for CDHA with a fine microstructure. In terms of angiogenic and osteogenic gene expressions, the upregulation of particular genes is especially enhanced for needle-like CDHA compared to plate-like CDHA and β-TCP, suggesting the importance not only of the chemistry of the substrate, but also of its textural features. Moreover, the coculture of rEPCs and rMSCs on needle-like CDHA results in early upregulation of osteogenic modulator, i.e., protein deglycase 1 might be a possible cause of overexpression of osteogenic-related genes on the same substrate.
Collapse
Affiliation(s)
- Joanna Maria Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
53
|
Onak G, Şen M, Horzum N, Ercan UK, Yaralı ZB, Garipcan B, Karaman O. Aspartic and Glutamic Acid Templated Peptides Conjugation on Plasma Modified Nanofibers for Osteogenic Differentiation of Human Mesenchymal Stem Cells: A Comparative Study. Sci Rep 2018; 8:17620. [PMID: 30514892 PMCID: PMC6279782 DOI: 10.1038/s41598-018-36109-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Optimization of nanofiber (NF) surface properties is critical to achieve an adequate cellular response. Here, the impact of conjugation of biomimetic aspartic acid (ASP) and glutamic acid (GLU) templated peptides with poly(lactic-co-glycolic acid) (PLGA) electrospun NF on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) was evaluated. Cold atmospheric plasma (CAP) was used to functionalize the NF surface and thus to mediate the conjugation. The influence of the CAP treatment following with peptide conjugation to the NF surface was assessed using water contact angle measurements, Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The effect of CAP treatment on morphology of NF was also checked using Scanning Electron Microscopy (SEM). Both the hydrophilicity of NF and the number of the carboxyl (-COOH) groups on the surface increased with respect to CAP treatment. Results demonstrated that CAP treatment significantly enhanced peptide conjugation on the surface of NF. Osteogenic differentiation results indicated that conjugating of biomimetic ASP templated peptides sharply increased alkaline phosphatase (ALP) activity, calcium content, and expression of key osteogenic markers of collagen type I (Col-I), osteocalcin (OC), and osteopontin (OP) compared to GLU conjugated (GLU-pNF) and CAP treated NF (pNF). It was further depicted that ASP sequences are the major fragments that influence the mineralization and osteogenic differentiation in non-collagenous proteins of bone extracellular matrix.
Collapse
Affiliation(s)
- Günnur Onak
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Mustafa Şen
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ziyşan Buse Yaralı
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, 34684, İstanbul, Turkey
| | - Ozan Karaman
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
- Bonegraft Biomaterials Co., Ege University Technopolis, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
54
|
Bian Y, Ma X, Wang R, Yuan H, Chen N, Du Y. Human amnion-derived mesenchymal stem cells promote osteogenesis of human bone marrow mesenchymal stem cells against glucolipotoxicity. FEBS Open Bio 2018; 9:74-81. [PMID: 30652075 PMCID: PMC6325622 DOI: 10.1002/2211-5463.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
Epidemiological evidence suggests that diabetes mellitus (DM) is an important factor in promoting periodontitis. It not only affects the attachment of connective tissue but also causes loss of alveolar bone. Hence, there is an urgent need to find an effective treatment for DM‐induced bone deficiency. This study aimed to investigate the effects of human amniotic mesenchymal stem cells (HAMSCs) on the proliferation and osteogenic differentiation of DM‐induced human bone marrow mesenchymal stem cells (HBMSCs). High glucose and palmitic acid (GP) were used to mimic DM‐induced glucolipotoxicity. The proliferation levels were measured using flow cytometry. Alkaline phosphatase activity substrate assays, Alizarin red S staining, and western blotting were used to investigate osteogenic differentiation. Oxidative stress was measured by assaying the levels of reactive oxygen species. This study found that glucolipotoxicity caused by GP remarkably inhibited cell proliferation and osteogenesis, and upregulated the oxidative stress level in HBMSCs. However, HAMSCs attenuated HBMSC dysfunction through antioxidant activity by influencing p38 mitogen‐activated protein kinase and vascular endothelial growth factor secretion. In conclusion, our findings indicate that HAMSCs might be suitable for treating DM‐mediated bone deficiency.
Collapse
Affiliation(s)
- Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China
| | - Xiaojie Ma
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China.,Department of Dental Implant Affiliated Hospital of Stomatology Nanjing Medical University China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China.,Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China.,Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University China.,Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University China
| |
Collapse
|
55
|
Kiaie N, Aghdam RM, Tafti SHA, Gorabi AM. Stem Cell-Mediated Angiogenesis in Tissue Engineering Constructs. Curr Stem Cell Res Ther 2018; 14:249-258. [PMID: 30394215 DOI: 10.2174/1574888x13666181105145144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Angiogenesis has always been a concern in the field of tissue engineering. Poor vascularization of engineered constructs is a problem for the clinical success of these structures. Among the various methods employed to induce angiogenesis, stem cells provide a promising tool for the future. The present review aims to present the application of stem cells in the induction of angiogenesis. Additionally, it summarizes recent advancements in stem cell-mediated angiogenesis of different tissue engineering constructs.
Collapse
Affiliation(s)
- Nasim Kiaie
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Tissue Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | - Rouhollah M Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed H Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita M Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Angiogenic and Osteogenic Synergy of Human Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured on a Nanomatrix. Sci Rep 2018; 8:15749. [PMID: 30356078 PMCID: PMC6200728 DOI: 10.1038/s41598-018-34033-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
To date, bone tissue regeneration strategies lack an approach that effectively provides an osteogenic and angiogenic environment conducive to bone growth. In the current study, we evaluated the osteogenic and angiogenic response of human mesenchymal stem cells (hMSCs) and green fluorescent protein-expressing human umbilical vein endothelial cells (GFP-HUVECs) cocultured on a self-assembled, peptide amphiphile nanomatrix functionalized with the cell adhesive ligand RGDS (PA-RGDS). Analysis of alkaline phosphatase activity, von Kossa staining, Alizarin Red quantification, and osteogenic gene expression, indicates a significant synergistic effect between the PA-RGDS nanomatrix and coculture that promoted hMSC osteogenesis. In addition, coculturing on PA-RGDS resulted in enhanced HUVEC network formation and upregulated vascular endothelial growth factor gene and protein expression. Though PA-RGDS and coculturing hMSCs with HUVECs were each previously reported to individually enhance hMSC osteogenesis, this study is the first to demonstrate a synergistic promotion of HUVEC angiogenesis and hMSC osteogenesis by integrating coculturing with the PA-RGDS nanomatrix. We believe that using the combination of hMSC/HUVEC coculture and PA-RGDS substrate is an efficient method for promoting osteogenesis and angiogenesis, which has immense potential as an efficacious, engineered platform for bone tissue regeneration.
Collapse
|
57
|
Adibfar A, Amoabediny G, Baghaban Eslaminejad M, Mohamadi J, Bagheri F, Zandieh Doulabi B. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:790-799. [PMID: 30274113 DOI: 10.1016/j.msec.2018.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone tissue engineering (BTE) faces a major challenge with cell viability after implantation of a construct due to lack of functional vasculature within the implant. Human bone marrow derived mesenchymal stem cells (hBMSCs) have the potential to undergo transdifferentiation towards an endothelial cell phenotype, which may be appropriate for BTE in conjunction with the appropriate scaffolds and microenvironment. HYPOTHESIS AND METHODS We hypothesized that slow delivery of vascular endothelial growth factor (VEGF) by using nanoparticles in combination with osteogenic stimuli might enhance both osteogenic and angiogenic differentiation of angiogenic primed hBMSCs cultured in an osteogenic microenvironment. Therefore, we developed a new strategy to enhance vascularization in BTE in vitro by synthesis of smart temperature sensitive poly(N‑isopropylacrylamide) (PNIPAM) nanoparticles. We used PNIPAM nanoparticles loaded with collagen to investigate their ability to deliver VEGF for both angiogenic and osteogenic differentiation. RESULTS We used the free radical polymerization technique to synthesize PNIPAM nanoparticles, which had particle sizes of approximately 100 nm at 37 °C and LCST of 30-32 °C. The cumulative VEGF release after 72 h for VEGF loaded PNIPAM (VEGF-PNIPAM) nanoparticles was 70%; for VEGF-PNIPAM loaded collagen hydrogels, it was 23%, which indicated slower release of VEGF in the VEGF-PNIPAM loaded collagen system. Immunocytochemistry (ICC) and inverted microscope visualization confirmed endothelial differentiation and capillary-like tube formation in the osteogenic culture medium after 14 days. Quantitative real-time polymerase chain reaction (QRT-PCR) also confirmed expressions of collagen type I (Col I), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) osteogenic markers along with expressions of platelet-endothelial cell adhesion molecule-1 (CD31), von Willebrand factor (vWF), and kinase insert domain receptor (KDR) angiogenic markers. Our data clearly showed that VEGF released from PNIPAM nanoparticles and VEGF-PNIPAM loaded collagen hydrogel could significantly contribute to the quality of engineered bone tissue.
Collapse
Affiliation(s)
- Afsaneh Adibfar
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Javad Mohamadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Bagheri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
58
|
Xiao D, Yang F, Zhao Q, Chen S, Shi F, Xiang X, Deng L, Sun X, Weng J, Feng G. Fabrication of a Cu/Zn co-incorporated calcium phosphate scaffold-derived GDF-5 sustained release system with enhanced angiogenesis and osteogenesis properties. RSC Adv 2018; 8:29526-29534. [PMID: 35547329 PMCID: PMC9085280 DOI: 10.1039/c8ra05441j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/15/2018] [Indexed: 01/31/2023] Open
Abstract
Synthetic scaffolds with multifunctional properties, including angiogenesis and osteogenesis capacities, play an essential role in accelerating bone regeneration. In this study, various concentrations of Cu/Zn ions were incorporated into biphasic calcium phosphate (BCP) scaffolds, and then growth differentiation factor-5 (GDF-5)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were attached onto the ion-doped scaffold. The results demonstrated that with increasing concentration of dopants, the scaffold surface gradually changed from smooth grain crystalline to rough microparticles, and further to a nanoflake film. Additionally, the mass ratio of β-tricalcium phosphate/hydroxyapatite increased with the dopant concentration. Furthermore, GDF-5-loaded PLGA microspheres attached onto the BCP scaffold surface exhibited a sustained release. In vitro co-culture of bone mesenchymal stem cells and vascular endothelial cells showed that the addition of Cu/Zn ions and GDF-5 in the BCP scaffold not only accelerated cell proliferation, but also promoted cell differentiation by enhancing the alkaline phosphatase activity and bone-related gene expression. Moreover, the vascular endothelial growth factor secretion level increased with the dopant concentration, and attained a maximum when GDF-5 was added into the ions-doped scaffold. These findings indicated that BCP scaffold co-doped with Cu/Zn ions exhibited a combined effect of both metal ions, including angiogenic and osteogenic capacities. Moreover, GDF-5 addition further enhanced both the angiogenic and osteogenic capacities of the BCP scaffold. The Cu/Zn co-incorporated BCP scaffold-derived GDF-5 sustained release system produced multifunctional scaffolds with improved angiogenesis and osteogenesis properties.
Collapse
Affiliation(s)
- Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Fei Yang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Qiao Zhao
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| | - Shixiao Chen
- Radiology Department, Nanchong Central Hospital Nanchong Sichuan 637000 China
| | - Feng Shi
- China Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637000 China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xiao Sun
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
59
|
Wenz A, Tjoeng I, Schneider I, Kluger PJ, Borchers K. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Biotechnol Bioeng 2018; 115:2643-2653. [PMID: 29981277 DOI: 10.1002/bit.26792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
Abstract
The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.
Collapse
Affiliation(s)
- Annika Wenz
- Department of Materials Science, Institute of Interfacial Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Iva Tjoeng
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Isabelle Schneider
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Petra J Kluger
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Smart Biomaterials, Reutlingen University, Reutlingen, Germany
| | - Kirsten Borchers
- Department of Materials Science, Institute of Interfacial Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany.,Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
60
|
Abstract
Creating an optimal microenvironment that supports angiogenesis, cell-cell cross talk, cell migration, and differentiation is crucial for pulp/dentin regeneration. It was shown that dental stem cells being seeded onto a scaffold and transplanted in vivo could give rise to a new tissue similar to that of the native pulp. However, the unique structure of the tooth with a pulp space encased within hard dentin allows only a single blood supply from a small apical opening located at the apex of the root canals. Therefore, a further strategy that can address this limitation such as the incorporation of endothelial/endothelial progenitor cells or cells with high angiogenic potential into the transplant is required so that the added cells can contribute to the vascularization within the implant. However, the placement of 2 or more different cell types inside 3-dimensional porous scaffolds is technologically challenging. In contrast to the conventional scaffolding approach, self-assembly of monodispersed cells into 3-dimensional tissue mimics permits true physiological interactions between and among different types of cells without any influence from a secondary material. In this review, we discuss potential strategies that can be used in vasculature engineering in dental pulp regeneration with a specific emphasis on combining prevascularization and scaffold-based or scaffold-free approaches.
Collapse
Affiliation(s)
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
61
|
Chai YC, Mendes LF, van Gastel N, Carmeliet G, Luyten FP. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater 2018; 72:447-460. [PMID: 29626696 DOI: 10.1016/j.actbio.2018.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Rapid neovascularization of a tissue-engineered (TE) construct by the host vasculature is quintessential to warrant effective bone regeneration. This process can be promoted through active induction of angiogenic growth factor secretion or by implementation of in vitro pre-vascularization strategies. In this study, we aimed at optimizing the pro-angiogenic effect of Cobalt (Co2+) to enhance vascular endothelial growth factor (VEGF) expression by human periosteum-derived mesenchymal stem cells (hPDCs). Simultaneously we set out to promote microvascular network formation by co-culturing with human umbilical vein endothelial cells (HUVECs). The results showed that Co2+ treatments (at 50, 100 or 150 µM) significantly upregulated in vitro VEGF expression, but inhibited hPDCs growth and HUVECs network formation in co-cultures. These inhibitory effects were mitigated at lower Co2+ concentrations (at 5, 10 or 25 µM) while VEGF expression remained significantly upregulated and further augmented in the presence of Ascorbic Acid and Dexamethasone possibly through Runx2 upregulation. The supplements also facilitated HUVECs network formation, which was dependent on the quantity and spatial distribution of collagen type-1 matrix deposited by the hPDCs. When applied to hPDCs seeded onto calcium phosphate scaffolds, the supplements significantly induced VEGF secretion in vitro, and promoted higher vascularization upon ectopic implantation in nude mice shown by an increase of CD31 positive blood vessels within the scaffolds. Our findings provided novel insights into the pleotropic effects of Co2+ on angiogenesis (i.e. promoted VEGF secretion and inhibited endothelial network formation), and showed potential to pre-condition TE constructs under one culture regime for improved implant neovascularization in vivo. STATEMENT OF SIGNIFICANT Cobalt (Co2+) is known to upregulate vascular endothelial growth factor (VEGF) secretion, however it also inhibits in vitro angiogenesis through unknown Co2+-induced events. This limits the potential of Co2+ for pro-angiogenesis of tissue engineered (TE) implants. We showed that Co2+ upregulated VEGF expression by human periosteum-derived cells (hPDCs) but reduced the cell growth, and endothelial network formation due to reduction of col-1 matrix deposition. Supplementation with Ascorbic acid and Dexamethasone concurrently improved hPDCs growth, endothelial network formation, and upregulated VEGF secretion. In vitro pre-conditioning of hPDC-seeded TE constructs with this fine-tuned medium enhanced VEGF secretion and implant neovascularization. Our study provided novel insights into the pleotropic effects of Co2+ on angiogenesis and formed the basis for improving implant neovascularization.
Collapse
|
62
|
Lü L, Deegan A, Musa F, Xu T, Yang Y. The effects of biomimetically conjugated VEGF on osteogenesis and angiogenesis of MSCs (human and rat) and HUVECs co-culture models. Colloids Surf B Biointerfaces 2018; 167:550-559. [PMID: 29730577 DOI: 10.1016/j.colsurfb.2018.04.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
The purpose of this work was to investigate if the biomimetically conjugated VEGF and HUVECs co-culture could modulate the osteogenic and angiogenic differentiation of MSCs derived from rat and human bone marrow (rMSCs and hMSCs). After treated by ammonia plasma, Poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibers were immobilized with VEGF through heparin to fulfil the sustained release. The proliferation capacity of rMSCs and hMSCs on neat PLGA nanofibers (NF) and VEGF immobilized NF (NF-VEGF) surfaces were assessed by CCK-8 and compared when MSCs were mono-cultured and co-cultured with HUVECs. The effect of VEGF and HUVECs co-culturing on osteogenic and angiogenic differentiation of rMSCs and hMSCs were investigated by calcium deposits and CD31 expression on NF and NF-VEGF surfaces. The results indicated that VEGF has been biomimetically immobilized onto PLGA nanofibers surface and kept sustained release successfully. The CD31 staining results showed that both VEGF and HUVECs co-culture could enhance the angiogenesis of rMSCs and hMSCs. However, the proliferation and osteogenic differentiation of MSCs when cultured with VEGF and HUVECs showed a species dependent response. Taken together, VEGF immobilization and co-culture with HUVECs promoted angiogenesis of MSCs, indicating a good strategy for vascularization in bone tissue engineering.
Collapse
Affiliation(s)
- Lanxin Lü
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, 221002, China; Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Anthony Deegan
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Faiza Musa
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Tie Xu
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
63
|
Kook YM, Kim H, Kim S, Heo CY, Park MH, Lee K, Koh WG. Promotion of Vascular Morphogenesis of Endothelial Cells Co-Cultured with Human Adipose-Derived Mesenchymal Stem Cells Using Polycaprolactone/Gelatin Nanofibrous Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E117. [PMID: 29463042 PMCID: PMC5853748 DOI: 10.3390/nano8020117] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
New blood vessel formation is essential for tissue regeneration to deliver oxygen and nutrients and to maintain tissue metabolism. In the field of tissue engineering, in vitro fabrication of new artificial vessels has been a longstanding challenge. Here we developed a technique to reconstruct a microvascular system using a polycaprolactone (PCL)/gelatin nanofibrous structure and a co-culture system. Using a simple electrospinning process, we fabricated three-dimensional mesh scaffolds to support the sprouting of human umbilical vein endothelial cells (HUVECs) along the electrospun nanofiber. The co-culture with adipose-derived mesenchymal stem cells (ADSCs) supported greater sprouting of endothelial cells (ECs). In a two-dimensional culture system, angiogenic cell assembly produced more effective direct intercellular interactions and paracrine signaling from ADSCs to assist in the vascular formation of ECs, compared to the influence of growth factor. Although vascular endothelial growth factor and sphingosine-1-phosphate were present during the culture period, the presence of ADSCs was the most important factor for the construction of a cell-assembled structure in the two-dimensional culture system. On the contrary, HUVECs co-cultured on PCL/gelatin nanofiber scaffolds produced mature and functional microvessel and luminal structures with a greater expression of vascular markers, including platelet endothelial cell adhesion molecule-1 and podocalyxin. Furthermore, both angiogenic factors and cellular interactions with ADSCs through direct contact and paracrine molecules contributed to the formation of enhanced engineered blood vessel structures. It is expected that the co-culture system of HUVECs and ADSCs on bioengineered PCL/gelatin nanofibrous scaffolds will promote robust and functional microvessel structures and will be valuable for the regeneration of tissue with restored blood vessels.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Sujin Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongman 13620, Korea.
| | - Min Hee Park
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
- Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
64
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
65
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
66
|
Zheng GB, Lee JH, Jin YZ. In vitro and in vivo evaluation of osteoinductivity and bone fusion ability of an activin a/BMP2 chimera (AB204): a comparison study between AB204 and rhBMP-2. Growth Factors 2017; 35:249-258. [PMID: 29651874 DOI: 10.1080/08977194.2018.1459597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study compared osteoinductivity and osteogenic capacity between AB204 and rhBMP-2 using hMSCs in vitro and a beagle's posterolateral spinal fusion model. Cultured hMSCs were treated with AB204 or rhBMP-2 with low to high doses. Three male beagles were performed posterolateral spinal fusion with biphasic calcium phosphate (2 ml) + AB204 or rhBMP-2 (20, 50 or 200 µg). They were euthanized after 8 weeks. The fusion rate and bone formation of spine samples were examined. AB204 had higher alkaline phosphatase activity, mineralization and osteogenic-related gene expression than rhBMP-2. Fusion rates in all rhBMP-2 groups were 0. They were 100% for 50 μg and 200 μg AB204 groups. Therefore, AB204 showed higher osteogenicity than rhBMP-2. It could be a better bone graft substitute.
Collapse
Affiliation(s)
- Guang Bin Zheng
- a Department of Orthopaedics , Taizhou Hospial of Zhejiang Province, Wenzhou Medical University, Linhai , Zhejiang , China
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
| | - Jae Hyup Lee
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
- c Department of Orthopaedic Surgery , SMG-SNU Boramae Medical Center , Seoul , Korea
- d Institute of Medical and Biological Engineering , Seoul National University Medical Research Center , Seoul , Korea
| | - Yuan-Zhe Jin
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
| |
Collapse
|
67
|
Zhang C, Hu K, Liu X, Reynolds MA, Bao C, Wang P, Zhao L, Xu HH. Novel hiPSC-based tri-culture for pre-vascularization of calcium phosphate scaffold to enhance bone and vessel formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for Craniofacial Bone Regeneration. Dent Clin North Am 2017; 61:835-856. [PMID: 28886771 PMCID: PMC5663293 DOI: 10.1016/j.cden.2017.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functional reconstruction of craniofacial defects is a major clinical challenge in craniofacial sciences. The advent of biomaterials is a potential alternative to standard autologous/allogenic grafting procedures to achieve clinically successful bone regeneration. This article discusses various classes of biomaterials currently used in craniofacial reconstruction. Also reviewed are clinical applications of biomaterials as delivery agents for sustained release of stem cells, genes, and growth factors. Recent promising advancements in 3D printing and bioprinting techniques that seem to be promising for future clinical treatments for craniofacial reconstruction are covered. Relevant topics in the bone regeneration literature exemplifying the potential of biomaterials to repair bone defects are highlighted.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Chelsea Twohig
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Sunil Kumar Boda
- Mary and Dick Holland Regenerative Medicine Program, Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, OHSU School of Medicine, 3303 SW Bond Avenue, Portland, OR 97239, USA; OHSU Center for Regenerative Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
69
|
Fang X, Lei L, Jiang T, Chen Y, Kang Y. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. J Biomed Mater Res B Appl Biomater 2017; 106:1739-1751. [PMID: 28888067 DOI: 10.1002/jbm.b.33982] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqian Fang
- Department of Prosthodontics School and Hospital of Stomatology Peking University; Beijing 100081 China
- Fifth Clinical Division School and Hospital of Stomatology Peking University; Beijing 100020 China
| | - Lei Lei
- Department of Prosthodontics School and Hospital of Stomatology Peking University; Beijing 100081 China
| | - Ting Jiang
- Department of Prosthodontics School and Hospital of Stomatology Peking University; Beijing 100081 China
- National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; Beijing 100081 China
| | - Ying Chen
- Department of Prosthodontics School and Hospital of Stomatology Peking University; Beijing 100081 China
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering; Florida Atlantic University; Boca Raton Florida 33431
- Department of Biomedical Science; Florida Atlantic University; Boca Raton Florida 33431
| |
Collapse
|
70
|
Byambaa B, Annabi N, Yue K, de Santiago GT, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A. Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Adv Healthc Mater 2017; 6:10.1002/adhm.201700015. [PMID: 28524375 PMCID: PMC11034848 DOI: 10.1002/adhm.201700015] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Fabricating 3D large-scale bone tissue constructs with functional vasculature has been a particular challenge in engineering tissues suitable for repairing large bone defects. To address this challenge, an extrusion-based direct-writing bioprinting strategy is utilized to fabricate microstructured bone-like tissue constructs containing a perfusable vascular lumen. The bioprinted constructs are used as biomimetic in vitro matrices to co-culture human umbilical vein endothelial cells and bone marrow derived human mesenchymal stem cells in a naturally derived hydrogel. To form the perfusable blood vessel inside the bioprinted construct, a central cylinder with 5% gelatin methacryloyl (GelMA) hydrogel at low methacryloyl substitution (GelMALOW ) was printed. We also develop cell-laden cylinder elements made of GelMA hydrogel loaded with silicate nanoplatelets to induce osteogenesis, and synthesized hydrogel formulations with chemically conjugated vascular endothelial growth factor to promote vascular spreading. It was found that the engineered construct is able to support cell survival and proliferation during maturation in vitro. Additionally, the whole construct demonstrates high structural stability during the in vitro culture for 21 days. This method enables the local control of physical and chemical microniches and the establishment of gradients in the bioprinted constructs.
Collapse
Affiliation(s)
- Batzaya Byambaa
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grissel Trujillo de Santiago
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Weitao Jia
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Deng Y, Jiang C, Li C, Li T, Peng M, Wang J, Dai K. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci Rep 2017; 7:5588. [PMID: 28717129 PMCID: PMC5514115 DOI: 10.1038/s41598-017-05196-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Synthetic bone scaffolds have potential application in repairing large bone defects, however, inefficient vascularization after implantation remains the major issue of graft failure. Herein, porous β-tricalcium phosphate (β-TCP) scaffolds with calcium silicate (CS) were 3D printed, and pre-seeded with co-cultured human umbilical cord vein endothelial cells (HUVECs) and human bone marrow stromal cells (hBMSCs) to construct tissue engineering scaffolds with accelerated vascularization and better bone formation. Results showed that in vitro β-TCP scaffolds doped with 5% CS (5%CS/β-TCP) were biocompatible, and stimulated angiogenesis and osteogenesis. The results also showed that 5%CS/β-TCP scaffolds not only stimulated co-cultured cells angiogenesis on Matrigel, but also stimulated co-cultured cells to form microcapillary-like structures on scaffolds, and promoted migration of BMSCs by stimulating co-cultured cells to secrete PDGF-BB and CXCL12 into the surrounding environment. Moreover, 5%CS/β-TCP scaffolds enhanced vascularization and osteoinduction in comparison with β-TCP, and synergized with co-cultured cells to further increase early vessel formation, which was accompanied by earlier and better ectopic bone formation when implanted subcutaneously in nude mice. Thus, our findings suggest that porous 5%CS/β-TCP scaffolds seeded with co-cultured cells provide new strategy for accelerating tissue engineering scaffolds vascularization and osteogenesis, and show potential as treatment for large bone defects.
Collapse
Affiliation(s)
- Yuan Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chuan Jiang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cuidi Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tao Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mingzheng Peng
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
72
|
Zhang J, Neoh KG, Kang ET. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 2017; 12:878-889. [PMID: 28482125 DOI: 10.1002/term.2441] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022]
Abstract
Electrical stimulation (ES) has emerged as a useful tool to regulate cell behaviour, but the effect of ES on mesenchymal stem cell (MSC)/vasculogenic cell co-culture has not been investigated. Herein, human adipose-derived MSCs (AD-MSCs) and umbilical vein endothelial cells (HUVECs) were co-cultured in an electrically conductive polypyrrole/chitosan scaffold. Compared with AD-MSC monoculture, calcium deposition in the co-culture without and with ES (200 μA for 4 h/day) was 139% and 346% higher, respectively, after 7 days. As the application of ES to AD-MSC monoculture only increased calcium deposition by 56% compared with that without ES after 7 days, these results indicate that ES and co-culture with HUVECs have synergistic effects on AD-MSCs' osteogenic differentiation. ES application also significantly enhanced CD31 expression of HUVECs. In HUVEC monoculture, application of ES increased CD31 expression by 224%, whereas the corresponding increase in AD-MSC/HUVEC co-culture with ES application was 62%. The gene expression results indicate that ES enhanced the cellular functions in AD-MSC and HUVEC monoculture via autocrine bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), respectively. In co-culture, crosstalk between AD-MSCs and HUVECs due to paracrine BMP-2 and VEGF enhanced the cellular functions compared with the respective monoculture. With application of ES to the AD-MSC/HUVEC co-culture, autocrine signalling was enhanced, resulting in further promotion of cellular functions. These findings illustrate that co-culturing AD-MSC/HUVEC in a conductive scaffold with ES offers potential benefits for bone defect therapy.
Collapse
Affiliation(s)
- Jieyu Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
| | - En-Tang Kang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
73
|
Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:726-735. [DOI: 10.1016/j.msec.2016.12.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
|
74
|
Ngadiman NHA, Noordin MY, Idris A, Kurniawan D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H 2017; 231:597-616. [DOI: 10.1177/0954411917699021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.
Collapse
Affiliation(s)
| | - MY Noordin
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ani Idris
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Denni Kurniawan
- Department of Mechanical Engineering, Curtin University, Miri, Malaysia
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, Korea
| |
Collapse
|
75
|
Liu X, Chen W, Zhang C, Thein-Han W, Hu K, Reynolds MA, Bao C, Wang P, Zhao L, Xu HHK. Co-Seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats. Tissue Eng Part A 2017; 23:546-555. [PMID: 28287922 DOI: 10.1089/ten.tea.2016.0485] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A major challenge in repairing large bone defects with tissue-engineered constructs is the poor vascularization in the defect. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of seeded cells. To achieve favorable regenerative effects, prevascularization of tissue-engineered constructs by co-culturing of endothelial cells and bone cells is a promising strategy. The aim of this study was to investigate the effects of human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) co-cultured with human umbilical vein endothelial cells (HUVECs) for prevascularization of calcium phosphate cement (CPC) scaffold on bone regeneration in vivo for the first time. HUVECs co-cultured with hiPSC-MSCs formed microcapillary-like structures in vitro. HUVECs promoted mineralization of hiPSC-MSCs on CPC scaffolds. Four groups were tested in a cranial bone defect model in nude rats: (1) CPC scaffold alone (CPC control); (2) HUVEC-seeded CPC (CPC-HUVEC); (3) hiPSC-MSC-seeded CPC (CPC-hiPSC-MSC); and (4) HUVECs co-cultured with hiPSC-MSCs on CPC scaffolds (co-culture group). After 12 weeks, the co-culture group achieved the greatest new bone area percentage of 46.38% ± 3.8% among all groups (p < 0.05), which was more than four folds of the 10.61% ± 1.43% of CPC control. In conclusion, HUVECs co-cultured with hiPSC-MSCs substantially promoted bone regeneration. The novel construct of HUVECs co-cultured with hiPSC-MSCs delivered via CPC scaffolds is promising to enhance bone and vascular regeneration in orthopedic applications.
Collapse
Affiliation(s)
- Xian Liu
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Wenchuan Chen
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Chi Zhang
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China .,2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Wahwah Thein-Han
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Kevin Hu
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Mark A Reynolds
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Chongyun Bao
- 1 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Ping Wang
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Liang Zhao
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland.,3 Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong, China
| | - Hockin H K Xu
- 2 Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry , Baltimore, Maryland.,4 Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,5 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland.,6 Mechanical Engineering Department, University of Maryland , Baltimore County, Maryland
| |
Collapse
|
76
|
Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, Dolatshahi-Pirouz A. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603612. [PMID: 27966826 DOI: 10.1002/adma.201603612] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one-step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| | - Ashish Thakur
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| | - Christian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Sepehr Talebian
- Department of Mechanical Engineering and Center of Advanced Material, University of Malaya, 50603, Persiaran Universiti 2, Kuala Lumpur, Malaysia
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran - Karaj Highway, Tehran, Iran
| | - Mehdi Nikkhah
- Engineering Center G Wing 334 School of Biological Health and Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| |
Collapse
|
77
|
Wang G, Roohani-Esfahani SI, Zhang W, Lv K, Yang G, Ding X, Zou D, Cui D, Zreiqat H, Jiang X. Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Sci Rep 2017; 7:41135. [PMID: 28106165 PMCID: PMC5247715 DOI: 10.1038/srep41135] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Tissue engineering strategies to construct vascularized bone grafts are now attracting much attention. Strontium-hardystonite-Gahnite (Sr-HT-Gahnite) is a strong, highly porous, and biocompatible calcium silicate based bio-ceramic that contains strontium and zinc ions. Adipose derived stem cells (ASCs) have been demonstrated to have the ability in promoting osteogenesis and angiogenesis. In this study, the effects of Sr-HT-Gahnite on cell morphology, cell proliferation, and osteogenic differentiation of ASCs were systematically investigated. The cell proliferation, migration and angiogenic differentiation of human umbilical vein endothelial cell (HUVECs) were studied. Beta-tricalcium phosphate/hydroxyapatite (TCP/HA) bioceramic scaffolds were set as the control biomaterial. Both bio-ceramics exhibited no adverse influence on cell viability. The Sr-HT-Gahnite scaffolds promoted cell attachment and alkaline phosphatase (ALP) activity of ASCs. The Sr-HT-Gahnite dissolution products enhanced ALP activity, matrix mineralization, and angiogenic differentiation of ASCs. They could also improve cell proliferation, migration, and angiogenic differentiation of HUVECs. Levels of in vivo bone formation with Sr-HT Gahnite were significantly higher than that for TCP/HA. The combination of Sr-HT-Gahnite and ASCs promoted both osteogenesis and angiogenesis in vivo study, compared to Sr-HT-Gahnite and TCP/HA bio-ceramics when administered alone, suggesting Sr-HT-Gahnite can act as a carrier for ASCs for construction of vascularized tissue-engineered bone.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Kaige Lv
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xun Ding
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory of Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
78
|
Zhou Y, Dong L, Liu C, Lin Y, Yu M, Ma L, Zhang B, Cheng K, Weng W, Wang H. Engineering prevascularized composite cell sheet by light-induced cell sheet technology. RSC Adv 2017. [DOI: 10.1039/c7ra05333a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Light-induced cell sheet technology based on light-responsive TiO2 nanodots film realized an optimal and transferable prevascularized MSC–EC composite cell sheet.
Collapse
|
79
|
Kook YM, Jeong Y, Lee K, Koh WG. Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 2017; 8:2041731417724640. [PMID: 29081966 PMCID: PMC5564857 DOI: 10.1177/2041731417724640] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
80
|
Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int J Oral Sci 2016; 8:223-230. [PMID: 27910940 PMCID: PMC5168417 DOI: 10.1038/ijos.2016.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs.
Collapse
|
81
|
García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6:77-95. [PMID: 26014967 DOI: 10.1007/s13346-015-0236-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
82
|
Wang Y, Wu H, Shen M, Ding S, Miao J, Chen N. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells. Exp Cell Res 2016; 350:41-49. [PMID: 27832946 DOI: 10.1016/j.yexcr.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022]
Abstract
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2'-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Hongxia Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Siyang Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Jing Miao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China.
| |
Collapse
|
83
|
Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016; 106:58-68. [PMID: 27552316 PMCID: PMC5300870 DOI: 10.1016/j.biomaterials.2016.07.038] [Citation(s) in RCA: 564] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/23/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022]
Abstract
Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also have significant potentials in engineering large-scale vascularized tissue constructs towards applications in organ transplantation and repair.
Collapse
Affiliation(s)
- Weitao Jia
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, PR China
| | - P Selcan Gungor-Ozkerim
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kai Zhu
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, 200032, PR China
| | - Wanjun Liu
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qingment Pi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Batzaya Byambaa
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
84
|
Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res 2016; 108:1-9. [DOI: 10.1016/j.mvr.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022]
|
85
|
Chen J, Zhang D, Li Q, Yang D, Fan Z, Ma D, Ren L. Effect of different cell sheet ECM microenvironment on the formation of vascular network. Tissue Cell 2016; 48:442-51. [PMID: 27561623 DOI: 10.1016/j.tice.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The repair and reconstruction of large bone defects remains as a significant clinical challenge mainly due to the insufficient vascularization. The prefabrication of vascular network based on cell sheet technique brings a promising potential for sufficient vascularization due to rich extracellular matrix (ECM) of cell sheets. However, the effect of different cell sheet ECM micro-environment on the formation of a vascular network has not been well understood. Here our goal is to study the effect of different cell sheets on the formation of a vascular network. First we cultured human bone marrow mesenchymal stem cells (hBMSCs) under two culture conditions to obtain osteogenic differentiated cell sheet (ODCS) and undifferentiated cell sheet (UDCS), respectively. Then the human umbilical vein endothelial cells (HUVECs) were seeded onto the surface of the two sheets at different seeding densities to fabricate pre-vascularized cell sheets. Our results indicated that the two sheets facilitated the alignment of HUVECs and promoted the formation of vascular networks. Quantitative analysis showed that the number of networks in ODCS was higher than that in the UDCS. The ECM of the two sheets was remodeled and rearranged during the tubulogenesis process. Furthermore, results showed that the optimal seeding density of HUVECs was 5×10(4)cell/cm(2). In summary, these results suggest that the vascularized ODCS has a promising potential to construct pre-vascularized tissue for bone repair.
Collapse
Affiliation(s)
- Jia Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China; Hospital of Stomatology, General Hospital of Ningxia Medical University, Yingchuan, Ningxia, 750004, China
| | - Dan Zhang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qin Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dan Yang
- Department of Stomatology, The First people's Hospital of Jiayuguan, Jiayuguan, Gansu, 735100, China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu 730050, China
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
86
|
Panduwawala CP, Zhan X, Dissanayaka WL, Samaranayake LP, Jin L, Zhang C. In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three-dimensional cell sheet constructs. J Periodontal Res 2016; 52:408-418. [PMID: 27495271 DOI: 10.1111/jre.12405] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic periodontitis causes damage to tooth-supporting tissues, resulting in tooth loss in adults. Recently, cell-sheet-based approaches have been studied to overcome the limitations of conventional cytotherapeutic procedures for periodontal regeneration. The purpose of the present study was to investigate the regenerative potential of periodontal ligament stem cells (PDLSCs) and human umbilical vein endothelial cells (HUVECs) in three-dimensional (3D) cell sheet constructs for periodontal regeneration in vivo. MATERIAL AND METHODS PDLSCs, HUVECs or co-cultures of both cells were seeded onto temperature-responsive culture dishes, and intact cell sheets were fabricated. Cell sheets were wrapped around the prepared human roots in three different combinations and implanted subcutaneously into immunodeficient mice. RESULTS Histological evaluation revealed that after 2, 4 and 8 wk of implantation, periodontal ligament-like tissue arrangements were observed around the implanted roots in experimental groups compared with controls. Vascular lumens were also observed in periodontal compartments of HUVEC-containing groups. Periodontal ligament regeneration, cementogenesis and osteogenesis were evident in the experimental groups at both weeks 4 and 8, as shown by immunostaining for periostin and bone sialoprotein. Human cells in the transplanted cell sheets were stained by immunohistochemistry for the presence of human mitochondria. CONCLUSIONS The 3D cell sheet-based approach may be potentially beneficial and is thus encouraged for future regenerative periodontal therapy.
Collapse
Affiliation(s)
- C P Panduwawala
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - X Zhan
- Periodontology, Fujian Medical University School of Stomatology, Fujian, China
| | - W L Dissanayaka
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - L P Samaranayake
- Oral Microbiomics and Infection, School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| | - L Jin
- Periodontology and Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C Zhang
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
87
|
Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Arch Oral Biol 2016; 68:123-30. [DOI: 10.1016/j.archoralbio.2016.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
|
88
|
Xia Y, Zhou P, Wang F, Qiu C, Wang P, Zhang Y, Zhao L, Xu S. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration. Int J Nanomedicine 2016; 11:3435-49. [PMID: 27555766 PMCID: PMC4968986 DOI: 10.2147/ijn.s105645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400–600 μm) but also micropores (sized 10–20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair.
Collapse
Affiliation(s)
| | | | - Fei Wang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | - Chao Qiu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | | | | | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuogui Xu
- Department of Emergency; Department of Orthopedics, Changhai Hospital, Second Military Medical University
| |
Collapse
|
89
|
Khojasteh A, Fahimipour F, Jafarian M, Sharifi D, Jahangir S, Khayyatan F, Baghaban Eslaminejad M. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. J Biomed Mater Res B Appl Biomater 2016; 105:1767-1777. [PMID: 27186846 DOI: 10.1002/jbm.b.33707] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/28/2016] [Accepted: 04/24/2016] [Indexed: 11/05/2022]
Abstract
We sought to assess the effects of coculturing mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in the repair of dog mandible bone defects. The cells were delivered in β-tricalcium phosphate scaffolds coated with poly lactic co-glycolic acid microspheres that gradually release vascular endothelial growth factor (VEGF). The complete scaffold and five partial scaffolds were implanted in bilateral mandibular body defects in eight beagles. The scaffolds were examined histologically and morphometrically 8 weeks after implantation. Histologic staining of the decalcified scaffolds demonstrated that bone formation was greatest in the VEGF/MSC scaffold (63.42 ± 1.67), followed by the VEGF/MSC/EPC (47.8 ± 1.87) and MSC/EPC (45.21 ± 1.6) scaffolds, the MSC scaffold (34.59 ± 1.49), the VEGF scaffold (20.03 ± 1.29), and the untreated scaffold (7.24 ± 0.08). Hence, the rate of new bone regeneration was highest in scaffolds containing MSC, either mixed with EPC or incorporating VEGF. Adding both EPC and VEGF with the MSC was not necessary. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1767-1777, 2017.
Collapse
Affiliation(s)
- Arash Khojasteh
- Department of Oral and Maxillofacial Surgery, Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Craniomaxillofacial Surgery, School of Medicine, University of Antwerp, Antwerp, Belgium
| | - Farahnaz Fahimipour
- Department of Dental Biomaterial, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafarian
- Department of Oral and Maxillofacial Surgery, Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Sharifi
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahrbanoo Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Khayyatan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
90
|
Wang Y, Ma J, Du Y, Miao J, Chen N. Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling. Mol Cells 2016; 39:186-94. [PMID: 26743906 PMCID: PMC4794600 DOI: 10.14348/molcells.2016.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs signicantly promoted the proliferation and osteoblastic differentiation of H2O2-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Junchi Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Jing Miao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| |
Collapse
|
91
|
Correia CR, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Sci Rep 2016; 6:21883. [PMID: 26905619 PMCID: PMC4764811 DOI: 10.1038/srep21883] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/26/2023] Open
Abstract
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the "stem cell niche", the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
92
|
Blache U, Metzger S, Vallmajo-Martin Q, Martin I, Djonov V, Ehrbar M. Dual Role of Mesenchymal Stem Cells Allows for Microvascularized Bone Tissue-Like Environments in PEG Hydrogels. Adv Healthc Mater 2016; 5:489-98. [PMID: 26693678 DOI: 10.1002/adhm.201500795] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/19/2022]
Abstract
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Stéphanie Metzger
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| |
Collapse
|
93
|
Tan AW, Liau LL, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces. Sci Rep 2016; 6:21828. [PMID: 26883761 PMCID: PMC4756327 DOI: 10.1038/srep21828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
94
|
Tu MG, Chen YW, Shie MY. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:276. [PMID: 26543022 DOI: 10.1007/s10856-015-5607-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
The use of calcium silicate (CS) cement holds great promise for bone substitute biomaterials. However, the effects of CS on osteoblast and macrophage cells are not fully understood. This study examines cell proliferation and differentiation of mono- or co-cultured MC3T3-E1 and Raw 264.7 cells on CS cement. Very few studies to date have looked at the effects of osteoblast and macrophages on biomaterial-regulated osteogenesis. In this study the proliferation and differentiation of MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 on CS cements have been analyzed using a PrestoBlue kit and ELISA. In addition, the effect of macrophages on CS-coordinated osteogenesis of MC3T3-E1 has been investigated. Results show that MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 adhere to and proliferate well on the CS cement. In a co-culture, the CS cements inhibit receptor activator of nuclear factor kappa B ligand expression of both genes and proteins in Raw 264.7 cells when compared to those grown in mono-cultured system. Ca deposition of MC3T3-E1 in the co-culture is higher than that of cells in a mono-culture. Bone morphogenetic protein 2 (BMP2) is also significantly up-regulated by the CS cement stimulation, indicating that macrophages may participate in the CS stimulated osteogenesis. Interestingly, when macrophage are cultured with BMP2 receptor-blocking MC3T3-E1 on the CS cements, the osteogenesis differentiation of the cells is significantly inhibited, indicating the important role of macrophages in biomaterial-induced osteogenesis via BMP2 receptors. It is assumed that it is an increase in the secretion of the BMP2 from the Raw 264.7 cell that is primarily involved in the promotion of the osteogenesis of the MC3T3-E1. These results provide valuable insights into both the mechanism of CS-stimulated osteogenesis, and strategies to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute biomaterials.
Collapse
Affiliation(s)
- Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
95
|
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv Drug Deliv Rev 2015; 94:116-25. [PMID: 25817732 DOI: 10.1016/j.addr.2015.03.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 01/31/2023]
Abstract
One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.
Collapse
|
96
|
Lin Q, Wang L, Bai Y, Hu M, Mo J, He H, Lou A, Yang B, Zhao H, Guo Y, Wu Y, Wang L. RETRACTED ARTICLE: Effect of the co-culture of human bone marrow mesenchymal stromal cells with human umbilical vein endothelial cells in vitro. J Recept Signal Transduct Res 2015; 36:221-4. [DOI: 10.3109/10799893.2015.1075043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
97
|
Sweet L, Kang Y, Czisch C, Witek L, Shi Y, Smay J, Plant GW, Yang Y. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior. PLoS One 2015; 10:e0139820. [PMID: 26444999 PMCID: PMC4596809 DOI: 10.1371/journal.pone.0139820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have demonstrated that Schwann cells (SCs) play a role in nerve regeneration; however, their role in innervating a bioceramic scaffold for potential application in bone regeneration is still unknown. Here we report the cell growth and functional behavior of SCs on β-tricalcium phosphate (β-TCP) scaffolds arranged in 3D printed-lattice (P-β-TCP) and randomly-porous, template-casted (N-β-TCP) structures. Our results indicate that SCs proliferated well and expressed the phenotypic markers p75LNGFR and the S100-β subunit of SCs as well as displayed growth morphology on both scaffolds, but SCs showed spindle-shaped morphology with a significant degree of SCs alignment on the P-β-TCP scaffolds, seen to a lesser degree in the N-β-TCP scaffold. The gene expressions of nerve growth factor (β-ngf), neutrophin–3 (nt–3), platelet-derived growth factor (pdgf-bb), and vascular endothelial growth factor (vegf-a) were higher at day 7 than at day 14. While no significant differences in protein secretion were measured between these last two time points, the scaffolds promoted the protein secretion at day 3 compared to that on the cell culture plates. These results together imply that the β-TCP scaffolds can support SC cell growth and that the 3D-printed scaffold appeared to significantly promote the alignment of SCs along the struts. Further studies are needed to investigate the early and late stage relationship between gene expression and protein secretion of SCs on the scaffolds with refined characteristics, thus better exploring the potential of SCs to support vascularization and innervation in synthetic bone grafts.
Collapse
Affiliation(s)
- Lauren Sweet
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yunqing Kang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Christopher Czisch
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Lukasz Witek
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yang Shi
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jim Smay
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Giles W. Plant
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Yunzhi Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
98
|
Influence of scaffold properties on the inter-relationship between human bone marrow derived stromal cells and endothelial cells in pro-osteogenic conditions. Acta Biomater 2015; 25:16-23. [PMID: 26162586 DOI: 10.1016/j.actbio.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022]
Abstract
One of the significant challenges in bone tissue engineering is the integration of biomaterials designed to facilitate and stimulate mineralization with a simultaneously rapid rate of angiogenesis and vascularization of the tissue construct, a challenge complicated by our lack of knowledge of the interactions among key cell types and scaffold properties. This study compared functional activity of human bone marrow-derived stromal cells (hMSC) seeded onto a porous salt-leached poly(D,L-lactic acid) (PDLLA) scaffolds, with and without the incorporation of silk fibroin fibers and then further investigated their co-culture with human umbilical vein endothelial cells (HUVECs). Cell viability, proliferation, and alkaline phosphatase activity were measured for a range of time points in culture, with osteogenic and angiogenic marker immunolocalization and gene expression at selected stages. Our findings suggest that, despite similar porosity and pore size distribution exhibited by the PDLLA and PDLLA plus silk fibroin scaffolds, there were marked differences in cell distribution and function. In the absence of fibers, a highly osteogenic response was observed in hMSCs in the scaffolds co-cultured with endothelial cells, greater than that observed with hMSCs alone or in either of the scaffolds with fibers added. However, fiber presence clearly better supported endothelial cell cultures, as determined by greater levels of endothelial marker expression at both the gene and protein level after 3 weeks of culture. The design of composite scaffolds integrating beneficial components of differing structures and materials to facilitate appropriate biological responses appears a promising yet challenging avenue of research. STATEMENT OF SIGNIFICANCE A significant challenge in bone tissue engineering is to promote a rapid vascularization of the tissue construct in parallel to the extracellular matrix mineralization. The design of composite scaffolds integrating beneficial components of differing structures and materials to facilitate appropriate biological responses appears a promising yet challenging avenue of research. Here we investigated cultures of hMSCs and HUVECs on a silk fibroin enhanced PDLLA scaffold, showing that the final output of this in vitro system is not the linear sum of the effects of the single variables. These results are of interest as they demonstrate how the addition of endothelial cells can affect hMSC phenotype and that the output can be further modulated by the introduction of silk fibroin fibers.
Collapse
|
99
|
Roux BM, Cheng MH, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19:903-14. [PMID: 25877690 PMCID: PMC4420594 DOI: 10.1111/jcmm.12569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
Collapse
Affiliation(s)
- Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | | | | |
Collapse
|
100
|
In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J Endod 2015; 41:663-70. [PMID: 25687363 DOI: 10.1016/j.joen.2014.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Scaffolds often fail to mimic essential functions of the physiologic extracellular matrix (ECM) that regulates cell-cell communication in tissue microenvironments. The development of scaffold-free microtissues containing stem cell-derived ECM may serve as a successful alternative to the use of artificial scaffolds. The current study aimed to fabricate 3-dimensional microtissue spheroids of dental pulp cells (DPCs) prevascularized by human umbilical vein endothelial cells (HUVECs) and to characterize these scaffold-free spheroids for the in vitro formation of pulplike tissue constructs. METHODS Three-dimensional microtissue spheroids of DPC alone and DPC-HUVEC co-cultures were fabricated using agarose micro-molds. Cellular organization within the spheroids and cell viability (live/dead assay) were assessed at days 1, 7, and 14. Microtissue spheroids were allowed to self-assemble into macrotissues, induced for odontogenic differentiation (21 days), and examined for expression levels of osteo/odontogenic markers: alkaline phosphatase, bone sialoprotein and RUNX2 (Real-time PCR), mineralization (von-Kossa), and prevascularisation (immunohistochemistry for CD31). RESULTS The DPC microtissue microenvironment supported HUVEC survival and capillary network formation in the absence of a scaffolding material and external angiogenic stimulation. Immunohistochemical staining for CD31 showed the capillary network formed by HUVECs did sustain-for a prolonged period-even after the microtissues transformed into a macrotissue. Induced, prevascularized macrotissues showed enhanced differentiation capacity compared with DPC alone macrotissues, as shown by higher osteo/odontogenic gene expression levels and mineralization. CONCLUSIONS These findings provide insight into the complex intercellular cross talk occurring between DPCs and HUVECs in the context of angiogenesis and pulp regeneration and highlight the significance of developing a favorable 3-dimensional microenvironment that can, in turn, contribute toward successful pulp regeneration strategies.
Collapse
|