51
|
Kakkoura MG, Du H, Guo Y, Yu C, Yang L, Pei P, Chen Y, Sansome S, Chan WC, Yang X, Fan L, Lv J, Chen J, Li L, Key TJ, Chen Z. Dairy consumption and risks of total and site-specific cancers in Chinese adults: an 11-year prospective study of 0.5 million people. BMC Med 2022; 20:134. [PMID: 35513801 PMCID: PMC9074208 DOI: 10.1186/s12916-022-02330-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies of primarily Western populations have reported contrasting associations of dairy consumption with certain cancers, including a positive association with prostate cancer and inverse associations with colorectal and premenopausal breast cancers. However, there are limited data from China where cancer rates and levels of dairy consumption differ importantly from those in Western populations. METHODS The prospective China Kadoorie Biobank study recruited ~0.5 million adults from ten diverse (five urban, five rural) areas across China during 2004-2008. Consumption frequency of major food groups, including dairy products, was collected at baseline and subsequent resurveys, using a validated interviewer-administered laptop-based food frequency questionnaire. To quantify the linear association of dairy intake and cancer risk and to account for regression dilution bias, the mean usual consumption amount for each baseline group was estimated via combining the consumption level at both baseline and the second resurvey. During a mean follow-up of 10.8 (SD 2.0) years, 29,277 incident cancer cases were recorded among the 510,146 participants who were free of cancer at baseline. Cox regression analyses for incident cancers associated with usual dairy intake were stratified by age-at-risk, sex and region and adjusted for cancer family history, education, income, alcohol intake, smoking, physical activity, soy and fresh fruit intake, and body mass index. RESULTS Overall, 20.4% of participants reported consuming dairy products (mainly milk) regularly (i.e. ≥1 day/week), with the estimated mean consumption of 80.8 g/day among regular consumers and of 37.9 g/day among all participants. There were significant positive associations of dairy consumption with risks of total and certain site-specific cancers, with adjusted HRs per 50 g/day usual consumption being 1.07 (95% CI 1.04-1.10), 1.12 (1.02-1.22), 1.19 (1.01-1.41) and 1.17 (1.07-1.29) for total cancer, liver cancer (n = 3191), female breast cancer (n = 2582) and lymphoma (n=915), respectively. However, the association with lymphoma was not statistically significant after correcting for multiple testing. No significant associations were observed for colorectal cancer (n = 3350, 1.08 [1.00-1.17]) or other site-specific cancers. CONCLUSION Among Chinese adults who had relatively lower dairy consumption than Western populations, higher dairy intake was associated with higher risks of liver cancer, female breast cancer and, possibly, lymphoma.
Collapse
Affiliation(s)
- Maria G Kakkoura
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pei Pei
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sam Sansome
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Wing Ching Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoming Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lei Fan
- NCDs Prevention and Control Department, Henan CDC, Zhengzhou, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Timothy J Key
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
52
|
Keramati M, Kheirouri S, Musazadeh V, Alizadeh M. Association of High Dietary Acid Load With the Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr 2022; 9:816797. [PMID: 35419387 PMCID: PMC8997294 DOI: 10.3389/fnut.2022.816797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Objective This study aimed to determine the relationship between the high dietary acid load (DAL) and the risk of cancer. Methods Five databases of PubMed, Web of Sciences, Scopus, Cochrane Library, and Google Scholar was searched to elicit original studies on humans, up to June 2021. Quality of the articles, risk of bias, and heterogeneity were assessed. A random-effects meta-analysis model was applied to estimate pooled effect size with a 95% confidence interval. Sensitivity analysis was performed using a fixed-effects model. Subgroup analyses were carried out based on gender, age, type of cancer, and type of DAL assessment indicator. Results Seventeen effect sizes from 10 articles were included in the analysis. Overall, individuals with the highest DAL were associated with a 66% increased risk of cancer compared to those with the lowest DAL (p < 0.001]. The risk of cancer increased 41% (p < 0.001) and 53% (p = 0.03) by high PRAL and NEAP, respectively. High DAL was associated with 32% (p < 0.001) and 79% (p < 0.001) increased risk of breast and colorectal cancers, respectively. High DAL was associated with 32% (p = 0.001) and 76% (p = 0.007) increased risk of cancer incident in women and men, respectively. The risk of cancer incident increased 35% (p < 0.001) and 49% (p < 0.001) at age ≤ and > of 50, respectively. Conclusion High DAL may be associated with a higher risk of cancer incidence not only in the whole studied population but also across cancer types, both genders, both DAL assessment indicators, and also among both high- and low-risk age groups for cancer.
Collapse
Affiliation(s)
- Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
53
|
Vabistsevits M, Davey Smith G, Sanderson E, Richardson TG, Lloyd-Lewis B, Richmond RC. Deciphering how early life adiposity influences breast cancer risk using Mendelian randomization. Commun Biol 2022; 5:337. [PMID: 35396499 PMCID: PMC8993830 DOI: 10.1038/s42003-022-03272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Studies suggest that adiposity in childhood may reduce the risk of breast cancer in later life. The biological mechanism underlying this effect is unclear but is likely to be independent of body size in adulthood. Using a Mendelian randomization framework, we investigate 18 hypothesised mediators of the protective effect of childhood adiposity on later-life breast cancer, including hormonal, reproductive, physical, and glycaemic traits. Our results indicate that, while most of the hypothesised mediators are affected by childhood adiposity, only IGF-1 (OR: 1.08 [1.03: 1.15]), testosterone (total/free/bioavailable ~ OR: 1.12 [1.05: 1.20]), age at menopause (OR: 1.05 [1.03: 1.07]), and age at menarche (OR: 0.92 [0.86: 0.99], direct effect) influence breast cancer risk. However, multivariable Mendelian randomization analysis shows that the protective effect of childhood body size remains unaffected when accounting for these traits (ORs: 0.59-0.67). This suggests that none of the investigated potential mediators strongly contribute to the protective effect of childhood adiposity on breast cancer risk individually. It is plausible, however, that several related traits could collectively mediate the effect when analysed together, and this work provides a compelling foundation for investigating other mediating pathways in future studies.
Collapse
Affiliation(s)
- Marina Vabistsevits
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Eleanor Sanderson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Novo Nordisk Research Centre, Headington, Oxford, OX3 7FZ, UK
| | - Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
54
|
Vitamin D deficiency: a potential risk factor for cancer in obesity? Int J Obes (Lond) 2022; 46:707-717. [PMID: 35027681 DOI: 10.1038/s41366-021-01045-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022]
Abstract
Obesity is considered an abnormal or excessive accumulation of adipose tissue, due to a prolonged positive energy balance that arises when energy intake is greater than energy expenditure, leading to an increased risk for the individual health and for the development of metabolic chronic diseases including several different types of cancer. Vitamin D deficiency is a metabolic alteration, which is often associated with the obesity condition. Vitamin D is a liposoluble vitamin, which plays a pivotal role in calcium-phosphate metabolism but extraskeletal effects have also been described. Among these, it plays an important role also in adipocyte physiology and glucose metabolism, typically dysregulated in subjects affected by obesity. Moreover, it is now recognized that Vitamin D also influences the processes of cell proliferation, differentiation, adhesion potentially leading to carcinogenesis. Indeed, data indicate a potential link between vitamin D levels and cancer, and higher vitamin D concentrations have been associated with a lower risk of developing different kinds of tumors, including breast, colon, lymphoma, lung, and prostate cancers. Thus, this review will revise the literature regarding this issue investigating and highlighting the potential mechanism of action, which might lead to new therapeutical options.
Collapse
|
55
|
Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules 2022; 12:biom12040483. [PMID: 35454071 PMCID: PMC9032665 DOI: 10.3390/biom12040483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin, a hormone produced and secreted from the stomach, is prim arily known as an appetite stimulant. Recently, it has emerged as a potential regulator/biomarker of cancer progression. Inconsistent results on this subject make this body of literature difficult to interpret. Here, we attempt to identify commonalities in the relationships between ghrelin and various cancers, and summarize important considerations for future research. The main players in the ghrelin family axis are unacylated ghrelin (UAG), acylated ghrelin (AG), the enzyme ghrelin O-acyltransferase (GOAT), and the growth hormone secretagogue receptor (GHSR). GOAT is responsible for the acylation of ghrelin, after which ghrelin can bind to the functional ghrelin receptor GHSR-1a to initiate the activation cascade. Splice variants of ghrelin also exist, with the most prominent being In1-ghrelin. In this review, we focus primarily on the potential of In1-ghrelin as a biomarker for cancer progression, the unique characteristics of UAG and AG, the importance of the two known receptor variants GHSR-1a and 1b, as well as the possible mechanisms through which the ghrelin axis acts. Further understanding of the role of the ghrelin axis in tumor cell proliferation could lead to the development of novel therapeutic approaches for various cancers.
Collapse
|
56
|
Chen F, Fang J. Benefits of Targeted Molecular Therapy to Immune Infiltration and Immune-Related Genes Predicting Signature in Breast Cancer. Front Oncol 2022; 12:824166. [PMID: 35317079 PMCID: PMC8934425 DOI: 10.3389/fonc.2022.824166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to investigate the tumor-related infiltrating lymphocytes (TILs) affecting the response of trastuzumab and identify potential biomarkers based on immune-related genes to improve prognosis and clinical outcomes of targeted therapies in breast cancer. Methods Estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) was adopted to infer the fraction of stromal and immune cells through utilizing gene expression signatures in breast tumor samples. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) algorithm was applied to characterize cell composition of 22 lymphocytes from breast cancer tissues using their gene expression profiles. Immune-related genes were collected from the Immunology Database and Analysis (ImmPort). Univariate and multivariate Cox regression analyses were performed to identify the significant independent risk factors associated with poor overall survival (OS) and breast cancer-specific survival (BCSS) of breast cancer patients. Hub genes were identified based on the protein–protein interaction (PPI) network analysis. Results Based on the ESTIMATE algorithm, a significant reduction of stromal scores was observed in tumor tissues and pretreated tumor tissues compared with nontumor and posttreated tumor tissues, respectively, while immune scores failed to present notably statistical differences between both groups. However, from the results of the univariate Cox regression analysis, the immune score was identified to be remarkably associated with the poor OS for breast cancer patients. Subsequently, the infiltrating lymphocytes were evaluated in tumor tissues based on the CIBERSORT algorithm. Furthermore, significance analysis identified 1,244 differentially expressed genes (DEGs) from the GSE114082 dataset, and then 91 overlapping immune-related DEGs were screened between GSE114082 and ImmPort datasets. Subsequently, 10 top hub genes were identified and five (IGF1, ADIPOQ, PPARG, LEP, and NR3C1) significantly correlated with worse OS and BCSS on response to trastuzumab in breast cancer patients. Conclusions This study provided an insight into the immune score based on the tumor-related infiltrating lymphocytes in breast cancer tissues and demonstrates the benefits of immune infiltration on the treatment of trastuzumab. Meanwhile, the study established a novel five immune-related gene signature to predict the OS and BCSS of breast cancer treated by trastuzumab.
Collapse
Affiliation(s)
- Fahai Chen
- CEO Office, RemeGen Co. Ltd., Yantai, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianmin Fang,
| |
Collapse
|
57
|
Lasagna M, Ventura C, Hielpos MS, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. ENVIRONMENTAL RESEARCH 2022; 204:111989. [PMID: 34506784 DOI: 10.1016/j.envres.2021.111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus chlorpyrifos (CPF) is currently considered an endocrine disruptor (ED), as it can imitate hormone actions both in vitro and in vivo. We recently reported that CPF induces migration and invasion in 2D cultures and changes the expression of key molecular markers involved in epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cell lines. In this study, we investigated whether CPF could behave as a predisposing factor for tumors to become more metastatic and aggressive using 3D culture models. In MCF-7 cells, 0.05 μM CPF induced an increase in the number and size of mammospheres via estrogen receptor alpha (ERα) and c-SRC. Furthermore, 0.05 μM CPF increased the area of spheroids generated from MCF-7 cells, induced invasion using both Matrigel® and type 1 collagen matrices, and increased cell migration capacity via ERα in this 3D model. In turn, 50 μM CPF increased cell migration capacity and invasion using type 1 collagen matrix. In monolayers, CPF increased the phosphorylation and membrane translocation of c-SRC at both concentrations assayed. CPF at 0.05 μM boosted p-AKT, p-GSK-3β and p-P38. While p-AKT rose in a ERα-dependent way, p-GSK-3β was dependent on ERα- and c-SRC, and p-P38 was only dependent on c-SRC. On the other hand, the increase in p-AKT and p-P38 induced by 50 μM CPF was dependent on the c-SRC pathway. We also observed that 0.05 μM CPF increased IGF-1R and IRS-1 expression and that 50 μM CPF induced IGF-1Rβ phosphorylation. In the MDA-MB-231 cell line, 0.05 and 50 μM CPF increased p-c-SRC. Finally, p-AKT and p-GSK-3β were also induced by CPF at 0.05 and 50 μM, and an increase in p-P38 was observed at 50 μM. Taken together, these data provide support for the notion that CPF may represent a risk factor for breast cancer development and progression.
Collapse
Affiliation(s)
- M Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad Nacional de La Plata-CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - M S Hielpos
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - M N Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - G Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - N Miret
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - A Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - M Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
58
|
Tsai CW, Chang WS, Xu Y, Huang M, Tamboli P, Wood CG, Bau DT, Gu J. Prognostic significance of circulating insulin growth-like factor 1 and insulin growth-like factor binding protein 3 in renal cell carcinoma patients. Am J Cancer Res 2022; 12:852-860. [PMID: 35261807 PMCID: PMC8899987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023] Open
Abstract
Insulin growth-like factor-1 (IGF-1) and its main binding protein insulin growth-like factor binding protein 3 (IGFBP-3) play important roles in cancer development and progression. We hypothesize that circulating IGF-1 and IGFBP-3 may have significant prognostic values in renal cell carcinoma (RCC) patients. We used 1,010 histologically confirmed RCC patients in this case series study to test this hypothesis. We constructed a weighted genetic risk score (GRS) using a large panel of genome-wide association study (GWAS)-identified single nucleotide polymorphisms (SNPs) to predict circulating IGF-1 and IGFBP-3 level, respectively. We analyzed the associations of the GRS with the prognosis of RCC patients using multivariate Cox proportional hazards model. We found significant associations between genetically predicted circulating IGF-1 level, but not IGFBP-3, and RCC prognosis. RCC patients with better prognosis had significantly higher baseline circulating IGF-1 level than those with worse prognosis. Dichotomized at the median value of GRS, patients with high IGF-1 exhibited significantly lower risks of recurrence (HR=0.81, 95% CI, 0.65-0.99, P=0.045) and death (HR=0.74, 95% CI, 0.60-0.91, P=0.004). If patients were dichotomized at the 75% value of GRS, those with the highest quarter of GRS had 27% lower risk of recurrence (OR=0.73, 95% CI, 0.55-0.96, P=0.025) and 34% lower risk of death (OR=0.66, 95% CI, 0.50-0.87, P=0.003) than the other three quarters of patients. High IGF-1/IGFBP-3 ratio was also associated with reduced risks of recurrence and survival. In conclusion, high circulating IGF-1 level and IGF-1/IGFBP-3 ratio at diagnosis is associated with better prognosis in RCC patients.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Christopher G Wood
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
59
|
Rodríguez-Valentín R, Torres-Mejía G, Martínez-Matsushita L, Angeles-Llerenas A, Gómez-Flores-Ramos L, Wolff RK, Baumgartner KB, Hines LM, Ziv E, Flores-Luna L, Sánchez-Zamorano LM, Ortiz-Panozo E, Slattery ML. Energy homeostasis genes modify the association between serum concentrations of IGF-1 and IGFBP-3 and breast cancer risk. Sci Rep 2022; 12:1837. [PMID: 35115550 PMCID: PMC8813998 DOI: 10.1038/s41598-022-05496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is a multifactorial disease in which the interplay among multiple risk factors remains unclear. Energy homeostasis genes play an important role in carcinogenesis and their interactions with the serum concentrations of IGF-1 and IGFBP-3 on the risk of breast cancer have not yet been investigated. The aim of this study was to assess the modifying effect of the genetic variation in some energy homeostasis genes on the association of serum concentrations of IGF-1 and IGFBP-3 with breast cancer risk. We analyzed 78 SNPs from 10 energy homeostasis genes in premenopausal women from the 4-Corner’s Breast Cancer Study (61 cases and 155 controls) and the Mexico Breast Cancer Study (204 cases and 282 controls). After data harmonization, 71 SNPs in HWE were included for interaction analysis. Two SNPs in two genes (MBOAT rs13272159 and NPY rs16131) showed an effect modification on the association between IGF-1 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). In addition, five SNPs in three genes (ADIPOQ rs182052, rs822391 and rs7649121, CARTPT rs3846659, and LEPR rs12059300) had an effect modification on the association between IGFBP-3 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). Our findings showed that variants of energy homeostasis genes modified the association between the IGF-1 or IGFBP-3 serum concentration and breast cancer risk in premenopausal women. These findings contribute to a better understanding of this multifactorial pathology.
Collapse
Affiliation(s)
- Rocío Rodríguez-Valentín
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico.
| | | | - Angélica Angeles-Llerenas
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Liliana Gómez-Flores-Ramos
- Cátedras CONACYT-Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, UT, 84108, USA
| | - Kathy B Baumgartner
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Lisa M Hines
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Elad Ziv
- Department of Medicine, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lourdes Flores-Luna
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Luisa Ma Sánchez-Zamorano
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Eduardo Ortiz-Panozo
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
60
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
61
|
Kamaludin Z, Siddig A, Yaacob NM, Lam AK, Rahman WFWA. Angiopoietin-Like Protein 4 and Insulin-Like Growth Factor-1 Expression in Invasive Breast Carcinoma in Young Women. PATHOPHYSIOLOGY 2022; 29:9-23. [PMID: 35366286 PMCID: PMC8955684 DOI: 10.3390/pathophysiology29010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Biomarker identification is imperative for invasive breast carcinoma, which is more aggressive and associated with higher mortality and worse prognosis in younger patients (<45 years) than in older patients (>50 years). The current study aimed to investigate angiopoietin-like protein 4 (ANGPTL4) and insulin-like growth factor-1 (IGF-1) protein expression in breast tissue from young patients with breast carcinoma. Immunohistochemical staining was applied in formalin-fixed, paraffin-embedded samples of breast carcinoma tissue from young patients aged <45 years at the time of diagnosis. Both proteins were expressed in the majority of cases. The highest frequency of positive ANGPTL4 and IGF-1 expression was observed in the luminal A subtype, whereas the HER2-overexpression subtype exhibited the lowest expression frequency for both proteins. There was no significant association between ANGPTL4 (p = 0.897) and IGF-1 (p = 0.091) expression and molecular subtypes of breast carcinoma. The histological grade was a significant predictor of ANGPTL4 expression (grade 1 vs. grade 3, adjusted odds ratio = 12.39, p = 0.040). Therefore, ANGPTL-4 and IGF-1 expressions are common in young breast carcinoma tissue. There is a potential use of them as biomarkers in breast carcinoma.
Collapse
Affiliation(s)
- Zaleha Kamaludin
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Malaysia; (Z.K.); (A.S.)
| | - Alaa Siddig
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Malaysia; (Z.K.); (A.S.)
| | - Najib Majdi Yaacob
- Unit of Biostatistics and Research Methodology, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Malaysia; (Z.K.); (A.S.)
- Breast Cancer Awareness and Research Unit, Hospital Universiti Sains Malaysia, Kelantan 16150, Malaysia
- Correspondence:
| |
Collapse
|
62
|
Pekic S, Stojanovic M, Popovic V. Pituitary tumors and the risk of other malignancies: is the relationship coincidental or causal? ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R1-R13. [PMID: 37435457 PMCID: PMC10259320 DOI: 10.1530/eo-21-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 07/13/2023]
Abstract
Pituitary adenomas are benign neoplasms of the pituitary. The most prevalent are prolactinomas and non-functioning pituitary adenomas, followed by growth hormone- and ACTH-secreting adenomas. Most pituitary adenomas seem to be sporadic and their persistent growth is very atypical. No molecular markers predict their behavior. The occurrence of pituitary adenomas and malignancies in the same patient can be either pure coincidence or caused by shared underlying genetic susceptibility involved in tumorigenesis. Detailed family history on cancers/tumors in the first, second and third generation of family members on each side of the family has been reported in a few studies. They found an association of pituitary tumors with positive family history for breast, lung and colorectal cancer. We have reported that in about 50% of patients with pituitary adenomas, an association with positive family history for cancer has been found independent of secretory phenotype (acromegaly, prolactinoma, Cushing's disease or non-functioning pituitary adenomas). We also found earlier onset of pituitary tumors (younger age at diagnosis of pituitary tumors) in patients with a strong family history of cancer. In our recent unpublished series of 1300 patients with pituitary adenomas, 6.8% of patients were diagnosed with malignancy. The latency period between the diagnosis of pituitary adenoma and cancer was variable, and in 33% of patients, it was longer than 5 years. Besides the inherited trophic mechanisms (shared underlying genetic variants), the potential influence of shared complex epigenetic influences (environmental and behavioral factors - obesity, smoking, alcohol intake and insulin resistance) is discussed. Further studies are needed to better understand if patients with pituitary adenomas are at increased risk for cancer.
Collapse
Affiliation(s)
- Sandra Pekic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Marko Stojanovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Vera Popovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
63
|
Li T, Xie R, Zhao J, Xu H, Cui Y, Sun C, Wang C, Liu Y. Effectiveness of Recombinant Human Growth Hormone Therapy for Children With Phelan-McDermid Syndrome: An Open-Label, Cross-Over, Preliminary Study. Front Psychiatry 2022; 13:763565. [PMID: 35250656 PMCID: PMC8888442 DOI: 10.3389/fpsyt.2022.763565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS), also known as the 22q13. 3 deletion syndrome, is a rare neurodevelopmental syndrome with approximately 2,800 patients reported worldwide. Previous pilot study demonstrated that IGF-1 could significantly improve in both social impairment and restrictive behaviors of the patients. However, most of the patients in the developing countries like China cannot afford the high cost of using IGF-1. Our research team speculated that rhGH might serve as a low-cost and more accessible treatment for PMS. Therefore, the purpose of this open-label, cross-over, pilot study was to further investigate the safety and efficiency of rhGH in patients with PMS. METHODS A total of six children with PMS were enrolled in in this open-label, cross-over, pilot study. The children were randomly divided into two different groups. Group A received placebo followed by rhGH, while group B was treated with rhGH first. Neuropsychological and behavior assessments of the patients were performed before the stage I of study and 3 months after the intervention of stage I. After a 4-week period of washout, these assessments were conducted again before the stage II of study and 3 months after the intervention of stage II. Serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding-protein (IGFBP)-3 were also evaluated monthly during the intervention phases of the pilot study. RESULTS Compared with the placebo, rhGH treatment significantly decreased subscale scores of GDS (P < 0.0085) and trended to improve the total scores of GDS (P < 0.05), while the total scores and subscale scores of SC-ABC significantly decreased (P < 0.0085) following 3-months rhGH treatment. The similar results were also observed in comparison with baseline. Compared with the baseline, the level of serum IGF-1 and IGFBP-3 increased significantly (P < 0.05) following 3-months rhGH treatment, while the placebo group had no significant impact on serum IGF-1 and IGFBP-3 (P > 0.05). One child developed skin allergy the day after the first rhGH treatment, which were resolved later. CONCLUSIONS In summary, this pilot study involving six PMS children patients reveals that rhGH has a positive treatment effect on PMS. These results encourage the undertaking of a large, randomized placebo-controlled trial to conclusively prove rhGH efficacy and tolerability in PMS, thereby promoting it as a low-cost, more accessible treatment for PMS, as compared to IGF-1.
Collapse
Affiliation(s)
- TianXiao Li
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ruijin Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinling Zhao
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Hua Xu
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ying Cui
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chunhong Wang
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Yueying Liu
- Affiliated Hospital of JiangNan University, Wuxi, China
| |
Collapse
|
64
|
AKHANLI P, HEPŞEN S, UÇAN B, DÜĞER H, BOSTAN H, KIZILGÜL M, SENCAR ME, ÇAKAL E. The evaluation of breast findings detected through different visualisation techniques in acromegaly patients — a retrospective study. Turk J Med Sci 2021; 51:3073-3081. [PMID: 34530525 PMCID: PMC10734832 DOI: 10.3906/sag-2105-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 11/03/2022] Open
Abstract
Background/aim It is known that the increased growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have mitogenic and antiapoptotic properties in breast cells in acromegaly. Our study aims to evaluate breast findings in patients with acromegaly by comparing them to the control group. Materials and methods Sixty-one patients followed with acromegaly diagnosis and 180 healthy controls were included in our study. Demographic data, laboratory results, Breast Imaging-Reporting and Data System (BI-RADS) scores, and breast density evaluated via mammography, malign and benign breast lesions evaluated via mammography, breast ultrasonography (USG), and breast magnetic resonance imaging (MRI) of patients were compared to the control group. Results While BI-RADS scores were similar in patient and control groups, breast density in acromegaly patients was found out to be higher compared to the control group (p = 0.754, p = 0.001, respectively). In acromegaly patients, the breast calcification rate was higher than controls (p = 0.021). t was observed that mass frequency in USG in acromegaly patients increased when GH level increased as well (p = 0.021). No difference was detected between benign and malign breast lesions diagnosed histopathologically ( p = 0.031, p = 0.573, respectively). There was not any difference in terms of BI-RADS scores, breast types, and breast lesions in acromegaly patients that were in remission and not in remission (p > 0.05). Conclusion Benign and malign breast lesions were found out to be similar to the control group, although breast density rate was detected to be higher in acromegaly patients. A regular follow-up is required in these patients via suitable breast visualization techniques considering their age and clinical status due to mass formation risk derived from increased GH level and extreme breast density despite the absence of any detected breast lesion frequency in acromegaly patients.
Collapse
Affiliation(s)
- Pınar AKHANLI
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Sema HEPŞEN
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Bekir UÇAN
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Hakan DÜĞER
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Hayri BOSTAN
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Muhammed KIZILGÜL
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Muhammed Erkam SENCAR
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| | - Erman ÇAKAL
- Department of Endocrinology and Metabolism, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara,
Turkey
| |
Collapse
|
65
|
Akbari A, Sohouli MH, Deliu Lozovanu O, Lotfi M, Nabavizadeh R, Saeidi R. Dietary insulin index and load with risk of breast cancer in a case-control study. Int J Clin Pract 2021; 75:e14883. [PMID: 34534393 DOI: 10.1111/ijcp.14883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Circulating insulin levels have been positively associated with risk of breast cancer (BrCa); however, it remains unclear whether a diet inducing an elevated insulin response influences Breast risk. METHODS In this study, 250 newly diagnosed breast cancer patients and 250 hospitalised controls were recruited using convenience sampling. The dietary insulin index (DII) was calculated by dividing the dietary insulin load by the total energy intake. RESULTS Compared with those in the lowest tertiles of DII and dietary insulin load (DIL), subjects in the highest tertile were more likely to be overweight, have a family history of breast and other types of cancer and a history of benign breast diseases. After controlling for multiple potential confounders, a significantly increased BrCa odds was observed in the highest tertiles of DII and DIL score compared with the lowest tertiles (odds ratio (OR): 1.46; 95% CI: 0.67-3.19, P = .006) and (OR: 1.87; 95% CI: 0.92-3.80, P = .038), respectively. CONCLUSIONS Our findings suggest that a diet that induces an elevated postprandial insulin response, indicated by higher DII and DIL scores, may increase the odds of BrCa, especially among women.
Collapse
Affiliation(s)
- Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mojtaba Lotfi
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raheleh Nabavizadeh
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeidi
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mofid Children's Hospital, Neonatal Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Tan VY, Bull CJ, Biernacka KM, Teumer A, Richardson TG, Sanderson E, Corbin LJ, Dudding T, Qi Q, Kaplan RC, Rotter JI, Friedrich N, Völker U, Mayerle J, Perks CM, Holly JMP, Timpson NJ. Investigation of the Interplay between Circulating Lipids and IGF-I and Relevance to Breast Cancer Risk: An Observational and Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2021; 30:2207-2216. [PMID: 34583967 PMCID: PMC7612074 DOI: 10.1158/1055-9965.epi-21-0315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/11/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Circulating lipids and insulin-like growth factor 1 (IGF-I) have been reliably associated with breast cancer. Observational studies suggest an interplay between lipids and IGF-I, however, whether these relationships are causal and if pathways from these phenotypes to breast cancer overlap is unclear. METHODS Mendelian randomization (MR) was conducted to estimate the relationship between lipids or IGF-I and breast cancer risk using genetic summary statistics for lipids (low-density lipoprotein cholesterol, LDL-C; high-density lipoprotein cholesterol, HDL-C; triglycerides, TGs), IGF-I and breast cancer from GLGC/UKBB (N = 239,119), CHARGE/UKBB (N = 252,547), and Breast Cancer Association Consortium (N = 247,173), respectively. Cross-sectional observational and MR analyses were conducted to assess the bi-directional relationship between lipids and IGF-I in SHIP (N = 3,812) and UKBB (N = 422,389), and using genetic summary statistics from GLGC (N = 188,577) and CHARGE/UKBB (N = 469,872). RESULTS In multivariable MR (MVMR) analyses, the OR for breast cancer per 1-SD increase in HDL-C and TG was 1.08 [95% confidence interval (CI), 1.04-1.13] and 0.94 (95% CI, 0.89-0.98), respectively. The OR for breast cancer per 1-SD increase in IGF-I was 1.09 (95% CI, 1.04-1.15). MR analyses suggested a bi-directional TG-IGF-I relationship (TG-IGF-I β per 1-SD: -0.13; 95% CI, -0.23 to -0.04; and IGF-I-TG β per 1-SD: -0.11; 95% CI, -0.18 to -0.05). There was little evidence for a causal relationship between HDL-C and LDL-C with IGF-I. In MVMR analyses, associations of TG or IGF-I with breast cancer were robust to adjustment for IGF-I or TG, respectively. CONCLUSIONS Our findings suggest a causal role of HDL-C, TG, and IGF-I in breast cancer. Observational and MR analyses support an interplay between IGF-I and TG; however, MVMR estimates suggest that TG and IGF-I may act independently to influence breast cancer. IMPACT Our findings should be considered in the development of prevention strategies for breast cancer, where interventions are known to modify circulating lipids and IGF-I.
Collapse
Affiliation(s)
- Vanessa Y Tan
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline J Bull
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kalina M Biernacka
- IGFs & Metabolic Endocrinology Group, School of Translational Health Sciences, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Tom G Richardson
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Novo Nordisk Research Centre, Headington, Oxford, United Kingdom
| | - Eleanor Sanderson
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laura J Corbin
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tom Dudding
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, School of Translational Health Sciences, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom
| | - Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, School of Translational Health Sciences, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom
| | - Nicholas J Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
67
|
Identifying causality, genetic correlation, priority and pathways of large-scale complex exposures of breast and ovarian cancers. Br J Cancer 2021; 125:1570-1581. [PMID: 34671129 PMCID: PMC8608803 DOI: 10.1038/s41416-021-01576-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genetic correlations, causalities and pathways between large-scale complex exposures and ovarian and breast cancers need systematic exploration. METHODS Mendelian randomisation (MR) and genetic correlation (GC) were used to identify causal biomarkers from 95 cancer-related exposures for risk of breast cancer [BC: oestrogen receptor-positive (ER + BC) and oestrogen receptor-negative (ER - BC) subtypes] and ovarian cancer [OC: high-grade serous (HGSOC), low-grade serous, invasive mucinous (IMOC), endometrioid (EOC) and clear cell (CCOC) subtypes]. RESULTS Of 31 identified robust risk factors, 16 were new causal biomarkers for BC and OC. Body mass index (BMI), body fat mass (BFM), comparative body size at age 10 (CBS-10), waist circumference (WC) and education attainment were shared risk factors for overall BC and OC. Childhood obesity, BMI, CBS-10, WC, schizophrenia and age at menopause were significantly associated with ER + BC and ER - BC. Omega-6:omega-3 fatty acids, body fat-free mass and basal metabolic rate were positively associated with CCOC and EOC; BFM, linoleic acid, omega-6 fatty acids, CBS-10 and birth weight were significantly associated with IMOC; and body fat percentage, BFM and adiponectin were significantly associated with HGSOC. Both GC and MR identified 13 shared factors. Factors were stratified into five priority levels, and visual causal networks were constructed for future interventions. CONCLUSIONS With analysis of large-scale exposures for breast and ovarian cancers, causalities, genetic correlations, shared or specific factors, risk factor priority and causal pathways and networks were identified.
Collapse
|
68
|
Liu H, Gu H, Kutbi EH, Tan SC, Low TY, Zhang C. Association of IGF-1 and IGFBP-3 levels with gastric cancer: A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14764. [PMID: 34469629 DOI: 10.1111/ijcp.14764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Many studies have investigated the association between serum IGF-1 and IGFBP levels with gastric cancer (GC), but the results remained inconclusive. In this work, we performed a systematic review and meta-analysis to examine the precise association of serum levels of IGF-1 and IGFBP with GC. METHODS A comprehensive systematic search was carried out in PubMed/MEDLINE, SCOPUS, Web of Science, and EMBASE databases for (nested) case-control studies that reported the levels of IGF-1 and IGFBP in GC cases and healthy controls, from inception until October 2020. Weighted mean difference (WMD) was calculated for estimating combined effect size. Subgroup analysis was performed to identify the source of heterogeneity among studies. RESULTS We found eight and five eligible studies (with 1541 participants) which provided data for IGF-1 and IGFBP, respectively. All studies on IGFBP reported the IGFBP-3 isoform. The pooled results indicate that GC patients had significantly lower serum IGF-1 [WMD = -26.21 ng/mL (95% CI, -45.58 to -6.85; P = .008)] and IGFBP-3 [WMD = -0.41 ng/mL (95% CI, -0.80 to -0.01; P = .04; I2 = 89.9%; P < .001)] levels than those in healthy subjects. Significant heterogeneity was observed in the association, which could be attributed to the sample size of the studies. CONCLUSIONS In conclusion, our study reveals a significantly lower level of IGF-1 and IGFBP-3 in GC patients compared with healthy control subjects.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Pathology, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, China
| | - Huxia Gu
- Department of Network Information, Fuling Central Hospital of Chongqing city, Chongqing, China
| | - Emad H Kutbi
- Biorepository Department, Biomedical Research Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chong Zhang
- Department of Pathology, Fuling Central Hospital of Chongqing city, Chongqing, China
| |
Collapse
|
69
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
70
|
Mullee A, Dimou N, Allen N, O'Mara T, Gunter MJ, Murphy N. Testosterone, sex hormone-binding globulin, insulin-like growth factor-1 and endometrial cancer risk: observational and Mendelian randomization analyses. Br J Cancer 2021; 125:1308-1317. [PMID: 34363033 PMCID: PMC8548546 DOI: 10.1038/s41416-021-01518-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dysregulation of endocrine pathways related to steroid and growth hormones may modify endometrial cancer risk; however, prospective data on testosterone, sex hormone-binding globulin (SHBG) and insulin-like growth factor (IGF)-1 are limited. To elucidate the role of these hormones in endometrial cancer risk we conducted complementary observational and Mendelian randomization (MR) analyses. METHODS The observational analyses included 159,702 women (80% postmenopausal) enrolled in the UK Biobank. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. For MR analyses, genetic variants associated with hormone levels were identified and their association with endometrial cancer (12,906 cases/108,979 controls) was examined using two-sample MR. RESULTS In the observational analysis, higher circulating concentrations of total (HR per unit inverse normal scale = 1.38, 95% CI = 1.22-1.57) and free testosterone (HR per unit log scale = 2.07, 95% CI = 1.66-2.58) were associated with higher endometrial cancer risk. An inverse association was found for SHBG (HR per unit inverse normal scale = 0.76, 95% CI = 0.67-0.86). Results for testosterone and SHBG were supported by the MR analyses. No association was found between genetically predicted IGF-1 concentration and endometrial cancer risk. CONCLUSIONS Our results support probable causal associations between circulating concentrations of testosterone and SHBG with endometrial cancer risk.
Collapse
Affiliation(s)
- Amy Mullee
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Naomi Allen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tracy O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
71
|
Ng JCM, Schooling CM. Effect of Basal Metabolic Rate on Cancer: A Mendelian Randomization Study. Front Genet 2021; 12:735541. [PMID: 34567085 PMCID: PMC8458883 DOI: 10.3389/fgene.2021.735541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Basal metabolic rate is associated with cancer, but these observations are open to confounding. Limited evidence from Mendelian randomization studies exists, with inconclusive results. Moreover, whether basal metabolic rate has a similar role in cancer for men and women independent of insulin-like growth factor 1 increasing cancer risk has not been investigated. Methods: We conducted a two-sample Mendelian randomization study using summary data from the UK Biobank to estimate the causal effect of basal metabolic rate on cancer. Overall and sex-specific analysis and multiple sensitivity analyses were performed including multivariable Mendelian randomization to control for insulin-like growth factor 1. Results: We obtained 782 genetic variants strongly (p-value < 5 × 10–8) and independently (r2 < 0.01) predicting basal metabolic rate. Genetically predicted higher basal metabolic rate was associated with an increase in cancer risk overall (odds ratio, 1.06; 95% confidence interval, 1.02–1.10) with similar estimates by sex (odds ratio for men, 1.07; 95% confidence interval, 1.002–1.14; odds ratio for women, 1.06; 95% confidence interval, 0.995–1.12). Sensitivity analyses including adjustment for insulin-like growth factor 1 showed directionally consistent results. Conclusion: Higher basal metabolic rate might increase cancer risk. Basal metabolic rate as a potential modifiable target of cancer prevention warrants further study.
Collapse
Affiliation(s)
- Jack C M Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Environmental, Occupational, and Geospatial Health Sciences, Graduate School of Public Health and Health Policy, The City University of New York, New York, NY, United States
| |
Collapse
|
72
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
73
|
Debras C, Chazelas E, Srour B, Julia C, Kesse-Guyot E, Zelek L, Agaësse C, Druesne-Pecollo N, Andreeva VA, Galan P, Hercberg S, Latino-Martel P, Deschasaux-Tanguy M, Touvier M. Glycaemic index, glycaemic load and cancer risk: results from the prospective NutriNet-Santé cohort. Int J Epidemiol 2021; 51:250-264. [PMID: 34491326 DOI: 10.1093/ije/dyab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Evidence is accumulating that high dietary glycaemic index (GI) and glycaemic load (GL) are potential risk factors for several metabolic disorders (e.g. type-2 diabetes, cardiovascular diseases), but remains limited concerning cancer risk. Although, mechanistic data suggest that consuming high-GI foods may contribute to carcinogenesis through elevated blood glucose levels, insulin resistance or obesity-related mechanisms. Our objective was to study the associations between dietary GI/GL and cancer. METHODS In total, 103 020 French adults (median age = 40.2 years) from the NutriNet-Santé cohort (2009-2020) with no cancer or diabetes at baseline were included (705 137 person-years, median follow-up time = 7.7 years). Repeated 24-h dietary records linked with a detailed food-composition table (>3500 food/beverage items). We computed the average dietary GI and GL at the individual level. Associations between GI, GL, contribution of low- and medium/high-GI foods to energy and carbohydrate intake and cancer risk (overall, breast, prostate and colorectal) were assessed using multivariable Cox proportional-hazard models. RESULTS Higher dietary GL was associated with higher overall cancer risk [n = 3131 cases, hazard ratios (HRs) for sex-specific quintile 5 vs 1 = 1.25, 95% confidence interval (CI) = 1.03-1.52; Ptrend = 0.008] and specifically postmenopausal breast cancer (n = 924, HRQ5vs.Q1 = 1.64, 95% CI = 1.06-2.55; Ptrend = 0.03). A higher contribution of low-GI food/beverages to energy intake was associated with lower cancer risk whereas a higher contribution of medium/high-GI items to energy intake was positively associated with higher risk of overall, breast and postmenopausal breast cancers (Ptrend ≤ 0.02). CONCLUSIONS These results support a possible impact of GI/GL on cancer risk. If confirmed in other populations and settings, dietary GI/GL could be considered as modifiable risk factors for primary cancer prevention. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03335644.
Collapse
Affiliation(s)
- Charlotte Debras
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Eloi Chazelas
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Bernard Srour
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Chantal Julia
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France.,Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Laurent Zelek
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France.,Oncology Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Cédric Agaësse
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Nathalie Druesne-Pecollo
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Valentina A Andreeva
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France.,Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Paule Latino-Martel
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Mélanie Deschasaux-Tanguy
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Inserm U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| |
Collapse
|
74
|
Cowan DA, Moncrieffe DA. Procollagen type III amino-terminal propeptide and insulin-like growth factor I as biomarkers of growth hormone administration. Drug Test Anal 2021; 14:808-819. [PMID: 34418311 PMCID: PMC9545871 DOI: 10.1002/dta.3155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
The acceptance in 2012 by the World Anti‐Doping Agency (WADA) of the biomarker test for human growth hormone (hGH) based on procollagen type III amino‐terminal propeptide (P‐III‐NP) and insulin‐like growth factor I (IGF‐I) was perhaps the first time that such a method has been used for forensic purposes. Developing a biomarker test to anti‐doping standards, where the strict liability principle applies, is discussed. An alternative WADA‐accepted approach is based on the measurement of different hGH isoforms, a method that suffers from the very short half‐life of hGH limiting the detection period. Modification or withdrawal of the immunoassays, on which the biomarker measurements largely depend, has necessitated revalidation of the assays, remeasurement of samples and adjustment of the decision limits above which an athlete will be assumed to have administered hGH. When a liquid chromatography coupled mass spectrometry (LC–MS) method became a reality for the measurement of IGF‐I, more consistency of results was assured. Measurement of P‐III‐NP is still dependent on immunoassays although work is underway to develop an LC–MS method. The promised long‐term detection time for the biomarker assay does not appear to have been realised in practice, and this is perhaps partly the result of decision limits being set too high. Nevertheless, more robust assays are needed before a further adjustment of the decision limit is warranted. In the meantime, WADA is considering using P‐III‐NP and IGF‐I as components of a biomarker passport system recording data from an individual athlete, rather than the population. Using this approach, smaller perturbations in the growth hormone (GH) score would mandate an investigation and possible action for hGH administration.
Collapse
Affiliation(s)
- David A Cowan
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| | - Danielle A Moncrieffe
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK.,Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| |
Collapse
|
75
|
Xu Y, Tsai CW, Chang WS, Xiong GY, Huang M, Torres KE, Bau DT, Gu J. Genetically predicted high circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 increase the risks of soft tissue sarcoma. Am J Cancer Res 2021; 11:3980-3989. [PMID: 34522462 PMCID: PMC8414386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Insulin growth factor-1 (IGF-1) plays important roles in carcinogenesis. Previous studies have linked circulating IGF-1 and its main binding protein, insulin-like growth factor-binding protein-3 (IGFBP-3), to cancer risks. However, no study has been conducted in soft tissue sarcoma (STS). In this study, we investigated the relationship of genetically predicted circulating IGF-1 and IGFBP-3 with STS risks. Recent large genome-wide association studies (GWAS) have identified 413 single nucleotide polymorphisms (SNPs) associated with IGF-1 and 4 SNPs associated with IGFBP-3. We genotyped these SNPs in 821 patients and 851 healthy controls. We constructed weighted genetic risk scores (GRS) to predict circulating IGF-1 and IGFBP-3. We determined the associations of individual SNPs and GRS with the risks of STS using multivariate logistic regression analysis. We found high genetically predicted circulating IGF-1 and IGFBP-3 were both associated with increased STS risks. Dichotomized at the median values of IGF-1 and IGFBP-3 in controls, individuals with high level of IGF-1 exhibited a 27% increased risk of STS (odds ratio [OR]=1.27, 95% confidence interval [CI]=1.04-1.54, P=0.017), whereas the OR for high IGFBP-3 was 1.45 (95% CI=1.20-1.77, P<0.001). Interestingly, the significant association between IGFBP-3 and STS risk was only evident in women (OR=1.88, 95% CI=1.42-2.49, P<0.001), but not in men (OR=1.00, 95% CI=0.75-1.33, P=0.992). In stratified analyses by major STS subtypes, the strongest associations were observed in angiosarcoma for IGF-1, leiomyosarcoma for IGFBP-3, and gastrointestinal stromal tumors for IGFBP-3 in women. In conclusion, high circulating IGF-1 and IGFBP-3 levels were both associated with increased STS risks.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Grace Y Xiong
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
76
|
Cheng TYD, Omilian AR, Yao S, Zhang W, Datta S, Bshara W, Ondracek RP, Davis W, Liu S, Hong CC, Bandera EV, Khoury T, Ambrosone CB. Body fatness and breast cancer risk in relation to phosphorylated mTOR expression in a sample of predominately Black women. Breast Cancer Res 2021; 23:77. [PMID: 34330319 PMCID: PMC8325192 DOI: 10.1186/s13058-021-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) pathway promoted by positive energy imbalance and insulin-like growth factors can be a mechanism by which obesity influences breast cancer risk. We evaluated the associations of body fatness with the risk of breast cancer varied with phosphorylated (p)-mTOR protein expression, an indication of the pathway activation. METHODS Women with newly diagnosed breast cancer (n = 715; 574 [80%] Black and 141 [20%] White) and non-cancer controls (n = 1983; 1280 [64%] Black and 713 [36%] White) were selected from the Women's Circle of Health Study. Surgical tumor samples among the cases were immunostained for p-mTOR (Ser2448) and classified as p-mTOR-overexpressed, if the expression level ≥ 75th percentile, or p-mTOR-negative/low otherwise. Anthropometrics were measured by trained staff, and body composition was determined by bioelectrical impedance analysis. Odds ratios (ORs) of p-mTOR-overexpressed tumors and p-mTOR-negative/low tumors compared to controls were estimated using polytomous logistic regression. The differences in the associations by the p-mTOR expression status were assessed by tests for heterogeneity. RESULTS Cases with p-mTOR-overexpressed tumors, but not cases with p-mTOR-negative/low tumors, compared to controls were more likely to have higher body mass index (BMI), percent body fat, and fat mass index (P-heterogeneity < 0.05), although the OR estimates were not significant. For the measurement of central adiposity, cases with p-mTOR overexpressed tumors had a higher odds of being at the Q3 (OR = 2.52, 95% CI = 1.46 to 4.34) and Q4 (OR = 1.99, 95% CI = 1.12 to 3.50) of waist circumference (WC) compared to controls. Similarly, cases with p-mTOR overexpressed tumors had a higher odds of being at the Q3 (OR = 1.82, 95% CI = 1.11 to 2.98) and Q4 (OR = 1.81, 95% CI = 1.11 to 2.98) of WHR compared to controls. These associations of WC and waist-to-hip ratio (WHR) did not differ by tumor p-mTOR status (P-heterogeneity = 0.27 and 0.48, respectively). CONCLUSIONS Our findings suggest that in this population composed of predominately Black women, body fatness is associated with breast cancer differently for p-mTOR overexpression and p-mTOR negative/low expression. Whether mTOR plays a role in the obesity and breast cancer association warrants confirmation by prospective studies.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, 2004 Mowry Road, 4th Floor, PO Box 100231, Gainesville, FL, 32610, USA. .,Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Wiam Bshara
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rochelle Payne Ondracek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, NY, Buffalo, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
77
|
Tsai CW, Chang WS, Xu Y, Huang M, Bau DT, Gu J. Associations of genetically predicted circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 with bladder cancer risk. Mol Carcinog 2021; 60:726-733. [PMID: 34293213 DOI: 10.1002/mc.23334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factors (IGF) play important roles in carcinogenesis. The associations of circulating IGF-1 and insulin-like growth factor-binding protein-3 (IGFBP-3) with the risks of bladder cancer remain unclear. In this large case control study of 2011 bladder cancer cases and 2369 heathy controls, we assessed the associations of circulating IGF-1 and IGFBP-3 with bladder cancer risks using a Mendelian randomization approach, which uses genetic variants as instruments to study causal relationship between risk factors and diseases. We first constructed a weighted genetic risk score (GRS) predictive of circulating IGF-1 and IGFBP-3 using 413 genome-wide association study-identified single nucleotide polymorphisms (SNPs) associated with IGF-1 and four SNPs with IGFBP-3, respectively. We found that higher GRS for IGF-1 was associated with a significantly reduced bladder cancer risk (odds ratio [OR] = 0.66 per SD increase, 95% confidence interval [CI], 0.54-0.82, p < 0.001). We then used a summary statistics-based MR method, inverse-variance weighting (IVW), and found a similar risk estimate (OR = 0.67 per SD increase, 95% CI = 0.54-0.83, p < 0.001). When we categorized individuals into high and low IGF-1 groups using the median GRS value in the controls, the high GRS group had a 21% reduced bladder cancer risk (OR = 0.79, 95% CI = 0.70-0.89) compared to the low GRS group. Genetically predicted circulating IGFBP-3 was not associated with bladder cancer risk. In conclusion, our data demonstrated for the first time a strong inverse relationship between circulating IGF-1 level and bladder cancer risk.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
78
|
Tin Tin S, Reeves GK, Key TJ. Endogenous hormones and risk of invasive breast cancer in pre- and post-menopausal women: findings from the UK Biobank. Br J Cancer 2021; 125:126-134. [PMID: 33864017 PMCID: PMC8257641 DOI: 10.1038/s41416-021-01392-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Some endogenous hormones have been associated with breast cancer risk, but the nature of these relationships is not fully understood. METHODS UK Biobank was used. Hormone concentrations were measured in serum collected in 2006-2010, and in a repeat subsample (N ~ 5000) in 2012-13. Incident cancers were identified through data linkage. Cox regression models were used, and hazard ratios (HRs) corrected for regression dilution bias. RESULTS Among 30,565 pre-menopausal and 133,294 post-menopausal women, 527 and 2,997, respectively, were diagnosed with invasive breast cancer during a median follow-up of 7.1 years. Cancer risk was positively associated with testosterone in post-menopausal women (HR per 0.5 nmol/L increment: 1.18; 95% CI: 1.14, 1.23) but not in pre-menopausal women (pheterogeneity = 0.03), and with IGF-1 (insulin-like growth factor-1) (HR per 5 nmol/L increment: 1.18; 1.02, 1.35 (pre-menopausal) and 1.07; 1.01, 1.12 (post-menopausal); pheterogeneity = 0.2), and inversely associated with SHBG (sex hormone-binding globulin) (HR per 30 nmol/L increment: 0.96; 0.79, 1.15 (pre-menopausal) and 0.89; 0.84, 0.94 (post-menopausal); pheterogeneity = 0.4). Oestradiol, assessed only in pre-menopausal women, was not associated with risk, but there were study limitations for this hormone. CONCLUSIONS This study confirms associations of testosterone, IGF-1 and SHBG with breast cancer risk, with heterogeneity by menopausal status for testosterone.
Collapse
Affiliation(s)
- Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
79
|
Watling CZ, Kelly RK, Tong TYN, Piernas C, Watts EL, Tin Tin S, Knuppel A, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations of circulating insulin-like growth factor-I with intake of dietary proteins and other macronutrients. Clin Nutr 2021; 40:4685-4693. [PMID: 34237695 PMCID: PMC8345002 DOI: 10.1016/j.clnu.2021.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 04/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Circulating insulin-like growth factor-I (IGF-I) is associated with the risk of several cancers. Dietary protein intake, particularly dairy protein, may increase circulating IGF-I; however, associations with different protein sources, other macronutrients, and fibre are inconclusive. To investigate the associations between intake of protein, macronutrients and their sources, fibre, and alcohol with serum IGF-I concentrations. METHODS A total of 11,815 participants from UK Biobank who completed ≥4 24-h dietary assessments and had serum IGF-I concentrations measured at baseline were included. Multivariable linear regression was used to assess the cross-sectional associations of macronutrient and fibre intake with circulating IGF-I concentrations. RESULTS Circulating IGF-I concentrations were positively associated with intake of total protein (per 2.5% higher energy intake: 0.56 nmol/L (95% confidence interval: 0.47, 0.66)), milk protein: 1.20 nmol/L (0.90, 1.51), and yogurt protein: 1.33 nmol/L (0.79, 1.86), but not with cheese protein: -0.07 nmol/L (-0.40, 0.25). IGF-I concentrations were also positively associated with intake of fibre (per 5 g/day higher intake: 0.46 nmol/L (0.35, 0.57)) and starch from wholegrains (Q5 vs. Q1: 1.08 nmol/L (0.77, 1.39)), and inversely associated with alcohol consumption (>40 g/day vs <1 g/day: -1.36 nmol/L (-1.00, -1.71)). CONCLUSIONS These results show differing associations with IGF-I concentrations depending on the source of dairy protein, with positive associations with milk and yogurt protein intake but no association with cheese protein. The positive association of fibre and starch from wholegrains with IGF-I warrants further investigation.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
80
|
Gao Y, Zhang J, Zhao H, Guan F, Zeng P. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet 2021; 12:651332. [PMID: 34178025 PMCID: PMC8220153 DOI: 10.3389/fgene.2021.651332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background In two-sample Mendelian randomization (MR) studies, sex instrumental heterogeneity is an important problem needed to address carefully, which however is often overlooked and may lead to misleading causal inference. Methods We first employed cross-trait linkage disequilibrium score regression (LDSC), Pearson's correlation analysis, and the Cochran's Q test to examine sex genetic similarity and heterogeneity in instrumental variables (IVs) of exposures. Simulation was further performed to explore the influence of sex instrumental heterogeneity on causal effect estimation in sex-specific two-sample MR analyses. Furthermore, we chose breast/prostate cancer as outcome and four anthropometric traits as exposures as an illustrative example to illustrate the importance of taking sex heterogeneity of instruments into account in MR studies. Results The simulation definitively demonstrated that sex-combined IVs can lead to biased causal effect estimates in sex-specific two-sample MR studies. In our real applications, both LDSC and Pearson's correlation analyses showed high genetic correlation between sex-combined and sex-specific IVs of the four anthropometric traits, while nearly all the correlation coefficients were larger than zero but less than one. The Cochran's Q test also displayed sex heterogeneity for some instruments. When applying sex-specific instruments, significant discrepancies in the magnitude of estimated causal effects were detected for body mass index (BMI) on breast cancer (P = 1.63E-6), for hip circumference (HIP) on breast cancer (P = 1.25E-20), and for waist circumference (WC) on prostate cancer (P = 0.007) compared with those generated with sex-combined instruments. Conclusion Our study reveals that the sex instrumental heterogeneity has non-ignorable impact on sex-specific two-sample MR studies and the causal effects of anthropometric traits on breast/prostate cancer would be biased if sex-combined IVs are incorrectly employed.
Collapse
Affiliation(s)
- Yixin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
81
|
Seyed Khoei N, Wagner KH, Carreras-Torres R, Gunter MJ, Murphy N, Freisling H. Associations between Prediagnostic Circulating Bilirubin Levels and Risk of Gastrointestinal Cancers in the UK Biobank. Cancers (Basel) 2021; 13:2749. [PMID: 34206031 PMCID: PMC8198711 DOI: 10.3390/cancers13112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
We investigated associations between serum levels of bilirubin, an endogenous antioxidant, and gastrointestinal cancer risk. In the UK Biobank, prediagnostic serum levels of total bilirubin were measured in blood samples collected from 440,948 participants. In multivariable-adjusted Cox proportional hazard regression, we estimated hazard ratios (HR) and 95% confidence intervals (CI) for associations between bilirubin levels and gastrointestinal cancer risk (colorectum, esophagus, stomach, mouth, pancreas, and liver). After a median follow-up of 7.1 years (interquartile range: 1.4), 5033 incident gastrointestinal cancer cases were recorded. In multivariable-adjusted models, bilirubin levels were negatively associated with risk of esophageal adenocarcinoma (EAC, HR per 1-SD increment in log-total bilirubin levels 0.72, 95%CI 0.56-0.92, p = 0.01). Weak and less robust negative associations were observed for colorectal cancer (CRC, HR per 1-SD increment in log-total bilirubin levels 0.95, 95%CI 0.88-1.02, p = 0.14). Bilirubin levels were positively associated with risk of hepatocellular carcinoma (HCC, HR per 1-SD increment in log-total bilirubin levels 2.07, 95%CI 1.15-3.73, p = 0.02) and intrahepatic bile duct (IBD) cancer (HR per 1-SD increment 1.67, 95%CI 1.07-2.62, p = 0.03). We found no associations with risks of stomach, oral, and pancreatic cancers. Prediagnostic serum levels of bilirubin were negatively associated with risk of EAC and positively associated with HCC and IBD cancer. Further studies are warranted to replicate our findings for specific GI cancers.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de la Granvia de l’Hospitalet 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| |
Collapse
|
82
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
83
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
84
|
Houghton SC, Hankinson SE. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:822-844. [PMID: 33947744 PMCID: PMC8104131 DOI: 10.1158/1055-9965.epi-20-1193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Serena C Houghton
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
85
|
Watts EL, Fensom GK, Smith Byrne K, Perez‐Cornago A, Allen NE, Knuppel A, Gunter MJ, Holmes MV, Martin RM, Murphy N, Tsilidis KK, Yeap BB, Key TJ, Travis RC. Circulating insulin-like growth factor-I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank. Int J Cancer 2021; 148:2274-2288. [PMID: 33252839 PMCID: PMC8048461 DOI: 10.1002/ijc.33416] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full-cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circulating IGF-I, sex hormone-binding globulin (SHBG), and total and calculated free testosterone concentrations with prostate cancer incidence and mortality. For prospective analyses, risk was estimated using multivariable-adjusted Cox regression in 199 698 male UK Biobank participants. Hazard ratios (HRs) were corrected for regression dilution bias using repeat hormone measurements from a subsample. Two-sample Mendelian randomisation (MR) analysis of IGF-I and risk used genetic instruments identified from UK Biobank men and genetic outcome data from the PRACTICAL consortium (79 148 cases and 61 106 controls). We used cis- and all (cis and trans) SNP MR approaches. A total of 5402 men were diagnosed with and 295 died from prostate cancer (mean follow-up 6.9 years). Higher circulating IGF-I was associated with elevated prostate cancer diagnosis (HR per 5 nmol/L increment = 1.09, 95% CI 1.05-1.12) and mortality (HR per 5 nmol/L increment = 1.15, 1.02-1.29). MR analyses also supported the role of IGF-I in prostate cancer diagnosis (cis-MR odds ratio per 5 nmol/L increment = 1.34, 1.07-1.68). In observational analyses, higher free testosterone was associated with a higher risk of prostate cancer (HR per 50 pmol/L increment = 1.10, 1.05-1.15). Higher SHBG was associated with a lower risk (HR per 10 nmol/L increment = 0.95, 0.94-0.97), neither was associated with prostate cancer mortality. Total testosterone was not associated with prostate cancer. These findings implicate IGF-I and free testosterone in prostate cancer development and/or progression.
Collapse
Affiliation(s)
- Eleanor L. Watts
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Georgina K. Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Karl Smith Byrne
- Genetic Epidemiology GroupInternational Agency for Research on CancerLyonFrance
| | - Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Naomi E. Allen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- UK Biobank LtdStockportUK
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Marc J. Gunter
- Section of Nutrition and MetabolismInternational Agency for Research on CancerLyonFrance
| | - Michael V. Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Bristol Medical School, Department of Population Health SciencesUniversity of BristolBristolUK
- National Institute for Health Research (NIHR) Bristol Biomedical Research CentreUniversity Hospitals Bristol NHS Foundation Trust and the University of BristolBristolUK
| | - Neil Murphy
- Section of Nutrition and MetabolismInternational Agency for Research on CancerLyonFrance
| | - Konstantinos K. Tsilidis
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUK
| | - Bu B. Yeap
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Endocrinology and DiabetesFiona Stanley HospitalPerthAustralia
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
86
|
Chen M, Tsai CW, Chang WS, Xiong GY, Xu Y, Bau DT, Gu J. High circulating insulin-like growth factor-1 reduces the risk of renal cell carcinoma: a Mendelian randomization study. Carcinogenesis 2021; 42:826-830. [PMID: 33852723 DOI: 10.1093/carcin/bgab031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Insulin and insulin-like growth factors play important roles in carcinogenesis. Circulating insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) have been linked to cancer susceptibility. The associations of circulating IGF-1 and IGFBP-3 with the risk of renal cell carcinoma (RCC) are inconsistent. Recent large genome-wide association studies have identified 413 single nucleotide polymorphisms (SNPs) associated with IGF-1 and 4 SNPs associated with IGFBP-3. In this large case-control study consisting of 2069 RCC patients and 2052 healthy controls of European ancestry, we used a two-sample Mendelian randomization (MR) approach to investigate the associations of genetically predicted circulating IGF-1 and IGFBP-3 with RCC risk. We used an individual level data-based genetic risk score (GRS) and a summary statistics-based inverse-variance weighting (IVW) method in MR analyses. We found that genetically predicted IGF-1 was significantly associated with RCC risk in both the GRS analysis [odds ratio (OR) = 0.43 per SD increase, 95% confidence interval (CI), 0.34-0.53] and the IVW analysis (OR = 0.46 per SD increase, 95% CI, 0.37-0.57). Dichotomized at the median GRS value of IGF-1 in controls, individuals with high GRS had a 45% reduced RCC risk (OR = 0.55, 95% CI, 0.48-0.62) compared with those with low GRS. Genetically predicted circulating IGFBP-3 was not associated with RCC risk. This is the largest RCC study of circulating IGF-1 and IGFBP-3 to date and our data suggest a strong inverse relationship between circulating IGF-1 level and RCC risk.
Collapse
Affiliation(s)
- Meng Chen
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Grace Y Xiong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
87
|
Perez-Cornago A. Commentary: Dairy milk intake and breast cancer risk: does an association exist, and what might be the culprit? Int J Epidemiol 2021; 49:1537-1539. [PMID: 33336257 PMCID: PMC7746400 DOI: 10.1093/ije/dyaa199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Richard Doll Building, Old Road Campus, Headington, Oxford OX3 7LF, UK. E-mail:
| |
Collapse
|
88
|
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol 2021; 9:641449. [PMID: 33829018 PMCID: PMC8019779 DOI: 10.3389/fcell.2021.641449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, many studies have demonstrated that the insulin-like growth factor-1 (IGF-1) is involved in a number of patho-physiological processes, as well as in the development of different types of solid tumors, including breast cancer (BC). Preclinical and clinical data showed that IGF-1 receptor (R) is overexpressed and hyper-phosphorylated in several subtypes of BCs. The central implications of this pathway in tumor cell proliferation and metastasis make it an important therapeutic target. Moreover, the IGF-1 axis has shown strong interconnection with estrogen regulation and endocrine therapy, suggesting a possible solution to anti-estrogen resistance. IGF-1R might also interfere with other pivotal therapeutic strategies, such as anti HER2 treatments and mTOR inhibitors; several clinical trials are ongoing evaluating the role of IGF-1R inhibition in modulating resistance mechanisms to target therapies. Our aim is to offer an overview of the most recent and significant field of application of IGF-1 inhibitors and relevant therapeutic strategies, weighing their possible future impact on clinical practice.
Collapse
Affiliation(s)
- Anna Ianza
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marianna Sirico
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
89
|
Bleach R, Sherlock M, O'Reilly MW, McIlroy M. Growth Hormone/Insulin Growth Factor Axis in Sex Steroid Associated Disorders and Related Cancers. Front Cell Dev Biol 2021; 9:630503. [PMID: 33816477 PMCID: PMC8012538 DOI: 10.3389/fcell.2021.630503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity. Interestingly, IGF-1 has been found to play a compensatory role for both estrogen receptor (ER) and androgen receptor (AR) by augmenting hormonal responses in the absence of, or where low levels of ligand are present. Furthermore, experimental, and epidemiological evidence supports a role for dysregulated IGF signalling in breast and prostate cancers. Insulin-like growth factor binding protein (IGFBP) molecules can regulate the bioavailability of IGF-1 and are frequently expressed in these hormonally regulated tissues. The link between age-related disease and the role of IGF-1 in the process of ageing and longevity has gained much attention over the last few decades, spurring the development of numerous IGF targeted therapies that have, to date, failed to deliver on their therapeutic potential. This review will provide an overview of the sexually dimorphic nature of IGF signalling in humans and how this is impacted by the reduction in sex steroids in mid-life. It will also explore the latest links with metabolic syndromes, hormonal imbalances associated with ageing and targeting of IGF signalling in endocrine-related tumour growth with an emphasis on post-menopausal breast cancer and the impact of the steroidal milieu.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
90
|
Zhao L, He K, Xiao Q, Liu Q, Luo W, Luo J, Fu H, Li J, Wu X, Du J, Gong Q, Wang X, Yang S. Comparative transcriptome profiles of large and small bodied large-scale loaches cultivated in paddy fields. Sci Rep 2021; 11:4936. [PMID: 33654201 PMCID: PMC7925675 DOI: 10.1038/s41598-021-84519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Fish culture in paddy fields is a traditional aquaculture mode, which has a long history in East Asia. Large-scale loach (Paramisgurnus dabryanus) fast growth is suitable for paddy fields aquaculture in China. The objective of this study was to identify differential expression genes (DEGs) in the brain, liver and muscle tissues between large (LG, top 5% of maximum total length) and small (SG, top 5% of minimum total length) groups using RNA-seq. In total, 150 fish were collected each week and 450 fish were collected at twelfth week from three paddy fields for all the experimental. Histological observation found that the muscle fibre diameter of LG loaches was greater than that of SG loaches. Transcriptome results revealed that the high expression genes (HEGs) in LG loaches (fold change ≥ 2, p < 0.05) were mainly concentrated in metabolic pathways, such as "Thyroid hormone signalling pathway", "Citrate cycle (TCA cycle)", "Carbon metabolism", "Fatty acid metabolism", and "Cholesterol metabolism", and the HEGs in SG loaches were enriched in the pathways related to environmental information processing such as "Cell adhesion molecules (CAMs)", "ECM- receptor interaction" and "Rap1 signalling pathway"; cellular processes such as "Tight junction", "Focal adhesion", "Phagosome" and "Adherens junction". Furthermore, IGFs gene family may play an important role in loach growth for their different expression pattern between the two groups. These findings can enhance our understanding about the molecular mechanism of different growth and development levels of loaches in paddy fields.
Collapse
Affiliation(s)
- Liulan Zhao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kuo He
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qing Xiao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiao Liu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongmei Fu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiayao Li
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Xugan Wu
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Xun Wang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Song Yang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
91
|
Aguilera-Buenosvinos I, Fernandez-Lazaro CI, Romanos-Nanclares A, Gea A, Sánchez-Bayona R, Martín-Moreno JM, Martínez-González MÁ, Toledo E. Dairy Consumption and Incidence of Breast Cancer in the 'Seguimiento Universidad de Navarra' (SUN) Project. Nutrients 2021; 13:nu13020687. [PMID: 33669972 PMCID: PMC7924827 DOI: 10.3390/nu13020687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Dairy products might influence breast cancer (BC) risk. However, evidence is inconsistent. We sought to examine the association between dairy product consumption-and their subtypes-and incident BC in a Mediterranean cohort. The SUN ("Seguimiento Universidad de Navarra") Project is a Spanish dynamic ongoing cohort of university graduates. Dairy product consumption was estimated through a previously validated 136-item food frequency questionnaire (FFQ). Incident BC was reported in biennial follow-up questionnaires and confirmed with revision of medical records and consultation of the National Death Index. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated with Cox regression models. Among 123,297 women-years of follow-up (10,930 women, median follow-up 12.1 years), we confirmed 119 incident BC cases. We found a nonlinear association between total dairy product consumption and BC incidence (pnonlinear = 0.048) and a significant inverse association for women with moderate total dairy product consumption (HRQ2vs.Q1 = 0.49 (95% CI 0.28-0.84); HRQ3vs.Q1 = 0.49 (95% CI 0.29-0.84) ptrend = 0.623) and with moderate low-fat dairy product consumption (HRQ2vs.Q1 = 0.58 (95% CI 0.35-0.97); HRQ3vs.Q1 = 0.55 (95% CI 0.32-0.92), ptrend = 0.136). In stratified analyses, we found a significant inverse association between intermediate low-fat dairy product consumption and premenopausal BC and between medium total dairy product consumption and postmenopausal BC. Thus, dairy products, especially low-fat dairy products, may be considered within overall prudent dietary patterns.
Collapse
Affiliation(s)
- Inmaculada Aguilera-Buenosvinos
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
| | - Cesar Ignacio Fernandez-Lazaro
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Andrea Romanos-Nanclares
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alfredo Gea
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Rodrigo Sánchez-Bayona
- Department of Clinical Oncology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Jose M. Martín-Moreno
- Department of Preventive Medicine and Public Health, Medical School & INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Miguel Ángel Martínez-González
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Estefanía Toledo
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948425600 (ext. 806224)
| |
Collapse
|
92
|
Bailes J, Soloviev M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021; 11:biom11020217. [PMID: 33557137 PMCID: PMC7913862 DOI: 10.3390/biom11020217] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is the principal mediator of growth hormone (GH), plays a crucial role in promoting cell growth and differentiation in childhood and continues to have an anabolic effect in adults. IGF-1 is part of a wide network of growth factors, receptors and binding proteins involved in mediating cellular proliferation, differentiation and apoptosis. Bioavailability of IGF-1 is affected by insulin-like growth factor binding proteins (IGFBPs) which bind IGF-1 in circulation with an affinity equal to or greater than that of the IGF-1 receptor (IGF-1R). The six IGFBPs serve as carrier proteins and bind approximately 98% of all circulating IGF-1. Other proteins known to bind IGF-1 include ten IGFBP-related proteins (IGFBP-rPs), albeit with lower affinities than the IGFBPs. IGF-1 expression levels vary in a number of clinical conditions suggesting it has the potential to provide crucial information as to the state of an individual’s health. IGF-1 is also a popular doping agent in sport and has featured in many high-profile doping cases in recent years. However, the existence of IGFBPs significantly reduces the levels of immunoreactive IGF-1 in samples, requiring multiple pre-treatment steps that reduce reproducibility and complicates interpretation of IGF-1 assay results. Here we provide an overview of the IGF network of growth factors, their receptors and the entirety of the extended family of IGFBPs, IGFBP-rPs, E peptides as well as recombinant IGF-1 and their derivatives. We also discuss issues related to the detection and quantification of bioavailable IGF-1.
Collapse
|
93
|
Stankovic S, R. Day F, Zhao Y, Langenberg C, J. Wareham N, R. B. Perry J, K. Ong K. Elucidating the genetic architecture underlying IGF1 levels and its impact on genomic instability and cancer risk. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16417.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Insulin-like growth factor-1 (IGF1) has been implicated in mitogenic and anti-apoptotic mechanisms that promote susceptibility to cancer development and growth. Previous epidemiological studies have described phenotypic associations between higher circulating levels of IGF1 in adults with higher risks for breast, prostate, ovarian, colorectal, melanoma and lung cancers. However, such evidence is prone to confounding and reverse causality. Furthermore, it is unclear whether IGF1 promotes only the survival and proliferation of cancerous cells, or also the malignant transformation of healthy cells. Methods: We perform a genome-wide association study in 428,525 white European ancestry individuals in the UK Biobank study (UKBB) and identify 831 independent genetic determinants of circulating IGF1 levels, double the number previously reported. Results: Collectively these signals explain ~7.5% of the variance in circulating IGF1 levels in EPIC-Norfolk, with individuals in the highest 10% of genetic risk exhibiting ~1 SD higher levels than those in the lowest 10%. Using a Mendelian randomization approach, we demonstrate that genetically higher circulating IGF1 levels are associated with greater likelihood of mosaic loss of chromosome Y in leukocytes in men in UKBB (OR per +1 SD = 1.038 (95% CI: 1.010-1.067), P=0.008) and 23andMe, Inc. (P=6.8×10-05), a biomarker of genomic instability involved in early tumorigenesis. Genetically higher IGF1 is also associated with higher risks for colorectal (OR = 1.126 (1.048-1.210), P=1.3×10-03) and breast cancer (OR= 1.075 (1.048-1.103), P=3.9×10-08), with similar effects on estrogen positive (ER+) (OR = 1.069 (1.037-1.102), P=2.3×10-05) and estrogen negative (ER-) (OR = 1.074 (1.025-1.125), P=3.9×10-08) subtypes. Conclusions: These findings give an insight into the genetic regulation of circulating IGF1 levels and support a causal role for IGF1 in early tumorigenesis and risks for breast and colorectal cancers.
Collapse
|
94
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
95
|
van den Brandt PA, Ziegler RG, Wang M, Hou T, Li R, Adami HO, Agnoli C, Bernstein L, Buring JE, Chen Y, Connor AE, Eliassen AH, Genkinger JM, Gierach G, Giles GG, Goodman GG, Håkansson N, Krogh V, Le Marchand L, Lee IM, Liao LM, Martinez ME, Miller AB, Milne RL, Neuhouser ML, Patel AV, Prizment A, Robien K, Rohan TE, Sawada N, Schouten LJ, Sinha R, Stolzenberg-Solomon RZ, Teras LR, Tsugane S, Visvanathan K, Weiderpass E, White KK, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Smith-Warner SA. Body size and weight change over adulthood and risk of breast cancer by menopausal and hormone receptor status: a pooled analysis of 20 prospective cohort studies. Eur J Epidemiol 2021; 36:37-55. [PMID: 33128203 PMCID: PMC7847460 DOI: 10.1007/s10654-020-00688-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022]
Abstract
Associations between anthropometric factors and breast cancer (BC) risk have varied inconsistently by estrogen and/or progesterone receptor (ER/PR) status. Associations between prediagnostic anthropometric factors and risk of premenopausal and postmenopausal BC overall and ER/PR status subtypes were investigated in a pooled analysis of 20 prospective cohorts, including 36,297 BC cases among 1,061,915 women, using multivariable Cox regression analyses, controlling for reproductive factors, diet and other risk factors. We estimated dose-response relationships and tested for nonlinear associations using restricted cubic splines. Height showed positive, linear associations for premenopausal and postmenopausal BC risk (6-7% RR increase per 5 cm increment), with stronger associations for receptor-positive subtypes. Body mass index (BMI) at cohort baseline was strongly inversely associated with premenopausal BC risk, and strongly positively-and nonlinearly-associated with postmenopausal BC (especially among women who never used hormone replacement therapy). This was primarily observed for receptor-positive subtypes. Early adult BMI (at 18-20 years) showed inverse, linear associations for premenopausal and postmenopausal BC risk (21% and 11% RR decrease per 5 kg/m2, respectively) with stronger associations for receptor-negative subtypes. Adult weight gain since 18-20 years was positively associated with postmenopausal BC risk, stronger for receptor-positive subtypes, and among women who were leaner in early adulthood. Women heavier in early adulthood generally had reduced premenopausal BC risk, independent of later weight gain. Positive associations between height, baseline (adult) BMI, adult weight gain and postmenopausal BC risk were substantially stronger for hormone receptor-positive versus negative subtypes. Premenopausal BC risk was positively associated with height, but inversely with baseline BMI and weight gain (mostly in receptor-positive subtypes). Inverse associations with early adult BMI seemed stronger in receptor-negative subtypes of premenopausal and postmenopausal BC.
Collapse
Affiliation(s)
- Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Epidemiology, Care and Public Health Institute (CAPHRI), Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Hou
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Ruifeng Li
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Clinical Effectiveness Group, Institute of Health, University of Oslo, Oslo, Norway
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Department of Research, Fondazione Istituto Nazionale Tumori, 20133, Milan, Italy
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Julie E Buring
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Chen
- Division of Epidemiology, Department of Population Health and Department of Environmental Medicine, New York University School of Medicine, New York, USA
| | - Avonne E Connor
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jeanine M Genkinger
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gretchen Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Gary G Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Niclas Håkansson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Department of Research, Fondazione Istituto Nazionale Tumori, 20133, Milan, Italy
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - I-Min Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Elena Martinez
- Department of Family Medicine and Public Health School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Anthony B Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kim Robien
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - Norie Sawada
- Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren R Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Kami K White
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health and Department of Environmental Medicine, New York University School of Medicine, New York, USA
| | - Stephanie A Smith-Warner
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
96
|
Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol 2020; 518:111003. [PMID: 32919021 DOI: 10.1016/j.mce.2020.111003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidence links the growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis to cancer development. While this putative correlation is of major translational relevance, most clinical and epidemiological reports to date found no causal linkage between GH therapy and enhanced cancer risk. Thus, it is generally agreed that GH therapy constitutes a safe pharmacological intervention. The present review focuses on a number of issues in the area of GH-IGF1 action in cancer development. Emphasis is given to the idea that GH and IGF1 do not conform to the definition of oncogenic factors. Specifically, these hormones, even at high pharmacological doses, are unable to induce malignant transformation. However, the GH-IGF1 axis is capable of 'pushing' already transformed cells through the various phases of the cell cycle. Viral and cellular oncogenes require an intact IGF1 signaling pathway in order to elicit transformation; in other words, oncogenic agents adopt the IGF1 pathway. This universal mechanism of action of oncogenes has broad implications in oncology. Our review provides an in-depth analysis of the interplay between the GH-IGF1 axis and cancer genes, including tumor suppressors p53 and BRCA1. Finally, the safety of GH therapy in both children and adults needs further long-term follow-up studies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel.
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| |
Collapse
|
97
|
Knuppel A, Fensom GK, Watts EL, Gunter MJ, Murphy N, Papier K, Perez-Cornago A, Schmidt JA, Smith Byrne K, Travis RC, Key TJ. Circulating Insulin-like Growth Factor-I Concentrations and Risk of 30 Cancers: Prospective Analyses in UK Biobank. Cancer Res 2020; 80:4014-4021. [PMID: 32709735 DOI: 10.1158/0008-5472.can-20-1281] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Circulating insulin-like growth factor I (IGF-I) is positively associated with the risks of colorectal, breast, and prostate cancer, but evidence for other less common cancers is limited. In this study, we investigated associations between serum IGF-I concentrations and incidence of less common cancers in the UK Biobank study. To enable comparison of effect estimates, and as positive controls, both common and less common cancer sites (total 30) were included in an outcome-wide analysis. Data from 394,388 cancer-free participants in the UK Biobank study were analyzed. Multivariable adjusted Cox proportional hazards models were used to determine associations between baseline serum IGF-I concentrations and cancer incidence, using repeated IGF-I measurements from up to 14,149 participants to correct for regression dilution bias. Higher IGF-I concentration was associated with increased risks of thyroid cancer [HR per 5 nmol/L higher concentration 1.18; 95% confidence interval (CI), 1.01-1.37] in addition to colorectal (HR, 1.08; 95% CI, 1.03-1.13), breast (HR, 1.11; 95% CI, 1.07-1.15), and prostate cancer (HR, 1.08; 95% CI, 1.05-1.12), and reduced risks of ovarian and liver cancer. Mean follow-up was 6.9 years and the possibility that the observed associations may be influenced by reverse causality bias cannot be excluded. Additional nominally significant associations with malignant melanoma, multiple myeloma, oral cancer, and esophageal squamous cell carcinoma did not survive correction for multiple testing. Studies with longer follow-up and pooled analyses are needed to further assess how broad the role of IGF-I is in cancer development. SIGNIFICANCE: The results from this outcome-wide analysis are consistent with a positive association of IGF-I with cancers at several sites.
Collapse
Affiliation(s)
- Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Georgina K Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith Byrne
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
98
|
Parra-Soto S, Ho FK, Pell JP, Celis-Morales C. Does insulin-like growth factor moderate the association between height and risk of cancer at 24 sites? Br J Cancer 2020; 123:1697-1704. [PMID: 32921791 PMCID: PMC7686481 DOI: 10.1038/s41416-020-01059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Whether the association of height with cancers differs by insulin-like growth factors has not been fully elucidated. Therefore, this study aimed to investigate the sex-specific associations between height and 24 site-specific cancers and to assess whether the association differed by IGF-1. Methods In total, 414,923 participants from the UK Biobank prospective cohort study were included. The association of height (per 5-cm increment) with incidence and mortality from 24 cancer sites was investigated by using Cox proportional hazard models. Results The median follow-up was 6.0 years. In men, height was positively associated with incidence risk of all-cause cancer and at five sites (lung, lymphatic, leukaemia, non-Hodgkin lymphoma and melanoma). In women, it was associated with breast, melanoma, lymphatic, non-Hodgkin lymphoma and all-cause cancer. The association was stronger in women than men for all-cause cancer incidence. The strength of the association did not differ by IGF-1 concentration. Conclusions Adult height was associated with risk of several cancer sites. However, some of these associations were sex-specific. There was no strong evidence to support IGF-1 moderating the association between height and cancer.
Collapse
Affiliation(s)
- Solange Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Frederick K Ho
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Carlos Celis-Morales
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ, UK. .,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK. .,Centre of Exercise Physiology Research (CIFE), Universidad Mayor, Santiago, Chile. .,Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
99
|
Vincent EE, Yaghootkar H. Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence? Diabetologia 2020; 63:1706-1717. [PMID: 32705315 PMCID: PMC7406536 DOI: 10.1007/s00125-020-05228-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Recent developments in the field of genetics have accelerated our understanding of the aetiology of complex diseases. Type 2 diabetes mellitus and cancer are no exception, with large-scale genome-wide association studies (GWAS) facilitating exploration of the underlying pathology. Here, we discuss how genetics studies can be used to investigate the relationship between these complex diseases. Observational epidemiological studies consistently report that people with type 2 diabetes have a higher risk of several types of cancer. Indeed, type 2 diabetes and cancer share many common risk factors, such as obesity, ageing, poor diet and low levels of physical activity. However, questions remain regarding the biological mechanisms that link these two diseases. Large-scale GWAS of type 2 diabetes and cancer allow us to consider the evidence for shared genetic architecture. Several shared susceptibility genes have been identified, yet tissue specificity and direction of effect must be taken into account when considering common genetic aetiology. We also consider how GWAS, and associated techniques such as Mendelian randomisation, allow us to dissect the link between the two diseases and address questions such as 'Does type 2 diabetes cause cancer or is the increased risk observed driven by higher adiposity or another associated metabolic feature?' Graphical abstract.
Collapse
Affiliation(s)
- Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, Biomedical Science Building, University of Bristol, Bristol, BS8 1TW, UK.
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
- School of Life Sciences, College of Liberal Arts and Science, University of Westminster, London, UK
- Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
100
|
Larsson SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin-like growth factor-1 and site-specific cancers: A Mendelian randomization study. Cancer Med 2020; 9:6836-6842. [PMID: 32717139 PMCID: PMC7520358 DOI: 10.1002/cam4.3345] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is involved in several processes relevant to carcinogenesis. We used 416 single-nucleotide polymorphisms robustly associated with serum IGF-1 levels to assess the potential causal associations between this hormone and site-specific cancers through Mendelian randomization. Summary-level genetic association estimates for prostate, breast, ovarian, and lung cancer were obtained from large-scale consortia including individuals of European-descent. Furthermore, we estimated genetic associations with 14 site-specific cancers in European-descent individuals in UK Biobank. Supplementary analyses were conducted for six site-specific cancers using summary-level data from the BioBank Japan Project. Genetically predicted serum IGF-1 levels were associated with colorectal cancer. The odds ratio (OR) per standard deviation increase of IGF-1 levels was 1.11 (95% confidence interval [CI] 1.01-1.22; P = .03) in UK Biobank and 1.22 (95% CI 1.09-1.36; P = 3.9 × 10-4 ) in the BioBank Japan Project. For prostate cancer, the corresponding OR was 1.10 (95% CI 1.01-1.21; P = .04) in UK Biobank, 1.03 (95% CI 0.97-1.09; P = .41) in the prostate cancer consortium, and 1.08 (95% CI 0.95-1.22; P = .24) in the BioBank Japan Project. For breast cancer, the corresponding OR was 0.99 (95% CI 0.92-1.07; P = .85) in UK Biobank and 1.08 (95% CI 1.02-1.13; P = 4.4 × 10-3 ) in the Breast Cancer Association Consortium. There was no statistically significant association between genetically predicted IGF-1 levels and 14 other cancers. This study found some support for a causal association between elevated serum IGF-1 levels and increased risk of colorectal cancer. There was inconclusive or no evidence of a causal association of IGF-1 levels with prostate, breast, and other cancers.
Collapse
Affiliation(s)
- Susanna C. Larsson
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Paul Carter
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | | | - Siddhartha Kar
- MRC Integrative Epidemiology UnitBristol Medical SchoolUniversity of BristolBristolUK
| | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology UnitDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Cambridge Biomedical Research CentreUniversity of Cambridge and Cambridge University HospitalsCambridgeUK
| | - Stephen Burgess
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|