51
|
Abstract
Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks.
Collapse
Affiliation(s)
| | - Baratang A Lubisi
- Onderstepoort Veterinary Institute, Onderstepoort, Pretoria, South Africa
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
52
|
de la Fuente C, Pinkham C, Dabbagh D, Beitzel B, Garrison A, Palacios G, Hodge KA, Petricoin EF, Schmaljohn C, Campbell CE, Narayanan A, Kehn-Hall K. Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS One 2018; 13:e0191983. [PMID: 29408900 PMCID: PMC5800665 DOI: 10.1371/journal.pone.0191983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-β superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Brett Beitzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aura Garrison
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kimberley Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Connie Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
53
|
Anti-Rift Valley fever virus activity in vitro, pre-clinical pharmacokinetics and oral bioavailability of benzavir-2, a broad-acting antiviral compound. Sci Rep 2018; 8:1925. [PMID: 29386590 PMCID: PMC5792431 DOI: 10.1038/s41598-018-20362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.
Collapse
|
54
|
Ejiri H, Lim CK, Isawa H, Yamaguchi Y, Fujita R, Takayama-Ito M, Kuwata R, Kobayashi D, Horiya M, Posadas-Herrera G, Iizuka-Shiota I, Kakiuchi S, Katayama Y, Hayashi T, Sasaki T, Kobayashi M, Morikawa S, Maeda K, Mizutani T, Kaku K, Saijo M, Sawabe K. Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Res 2017; 244:252-261. [PMID: 29197549 DOI: 10.1016/j.virusres.2017.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
In Japan, indigenous tick-borne phleboviruses (TBPVs) and their associated diseases first became evident in 2013 by reported human cases of severe fever with thrombocytopenia syndrome (SFTS). In this study, we report a novel member of the genus Phlebovirus designated as Kabuto Mountain virus (KAMV), which was isolated from the ixodid tick Haemaphysalis flava in Hyogo, Japan. A complete viral genome sequencing and phylogenetic analyses showed that KAMV is a novel member of TBPVs, which is closely related to the Uukuniemi and Kaisodi group viruses. However, unlike the Uukuniemi group viruses, the 165-nt intergenic region (IGR) in the KAMV S segment was highly C-rich in the genomic sense and not predicted to form a secondary structure, which are rather similar to those of the Kaisodi group viruses and most mosquito/sandfly-borne phleboviruses. Furthermore, the NSs protein of KAMV was highly divergent from those of other TBPVs. These results provided further insights into the genetic diversity and evolutionary relationships of TBPVs. KAMV could infect and replicate in some rodent and primate cell lines. We evaluated the infectivity and pathogenicity of KAMV in suckling mice, where we obtained a virulent strain after two passages via intracerebral inoculation. This is the first report showing the existence of a previously unrecognized TBPV in Japan, other than the SFTS virus.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Itoe Iizuka-Shiota
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satsuki Kakiuchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koki Kaku
- Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
55
|
Noronha LE, Wilson WC. Comparison of two zoonotic viruses from the order Bunyavirales. Curr Opin Virol 2017; 27:36-41. [PMID: 29128744 DOI: 10.1016/j.coviro.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
A comparison of two geographicallly distinct viruses in the order Bunyavirales that are zoonotic and known to cause congenital abnormalities in ruminant livestock was performed. One of these viruses, Cache Valley fever virus, is found in the Americas and is primarily associated with disease in sheep. The other, Rift Valley fever virus, is found in Sub-Saharan Africa and is associated with disease in camels, cattle, goats and sheep. Neither virus has been associated with teratogenicity in humans to date. These two viruses are briefly reviewed and potential for genetic changes especially if introduced into new ecology that could affect pathogenicity are discussed.
Collapse
Affiliation(s)
- Leela E Noronha
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States.
| |
Collapse
|
56
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
57
|
Bob NS, Bâ H, Fall G, Ishagh E, Diallo MY, Sow A, Sembene PM, Faye O, El Kouri B, Sidi ML, Sall AA. Detection of the Northeastern African Rift Valley Fever Virus Lineage During the 2015 Outbreak in Mauritania. Open Forum Infect Dis 2017. [PMID: 28638845 PMCID: PMC5473438 DOI: 10.1093/ofid/ofx087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Rift Valley fever (RVF) is an acute viral anthropozoonosis that causes epizootics and epidemics among livestock population and humans. Multiple emergences and reemergences of the virus have occurred in Mauritania over the last decade. This article describes the outbreak that occurred in 2015 in Mauritania and reports the results of serological and molecular investigations of blood samples collected from suspected RVF patients. Methods An RVF outbreak was reported from 14 September to 26 November 2015 in Mauritania. Overall, 184 suspected cases from different localities were identified by 26 health facilities. Blood samples were collected and tested by enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription polymerase chain reaction (RT-PCR) at the Institut Pasteur de Dakar (IPD). Sequencing of partial genomes and phylogenetic analyses were performed on RT-PCR–positive samples. As part of routine surveillance at IPD, samples were also screened for dengue, yellow fever, West Nile, Crimean Congo hemorrhagic fever, Zika, and Chikungunya viruses by ELISA and RT-PCR. Results Of the 184 suspected cases, there were 57 confirmed cases and 12 deaths. Phylogenetic analysis of the sequences indicated an emergence of a virus that originated from Northeastern Africa. Our results show co-circulation of other arboviruses in Mauritania—dengue, Crimean Congo hemorrhagic fever, and West Nile viruses. Conclusion The Northeastern Africa lineage of RVF was responsible for the outbreak in Mauritania in 2015. Co-circulation of multiples arboviruses was detected. This calls for systematic differential diagnosis and highlights the need to strengthen arbovirus surveillance in Africa.
Collapse
Affiliation(s)
- Ndeye Sakha Bob
- Pole of Virology, Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, Senegal
| | - Hampâté Bâ
- Viral Hemorrhagic Fevers Diagnostics Unit, National Institute of Public Health Research, Nouakchott, Mauritania
| | - Gamou Fall
- Pole of Virology, Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, Senegal
| | - Elkhalil Ishagh
- Department of Epidemiological Surveillance, Ministry of Health, Islamic Republic of Mauritania, Nouakchott
| | - Mamadou Y Diallo
- Health Securities and Emergency, World Health Organization,Mauritania
| | - Abdourahmane Sow
- Pole of Virology, Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, Senegal.,West African Health Organization, Ouagadougou, Burkina Fasso
| | | | - Ousmane Faye
- Pole of Virology, Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, Senegal
| | - Brahim El Kouri
- Viral Hemorrhagic Fevers Diagnostics Unit, National Institute of Public Health Research, Nouakchott, Mauritania
| | - Mohamed Lemine Sidi
- Direction of Diseases Control, Ministry of Health, Islamic Republic of Mauritania, Nouakchott
| | - Amadou Alpha Sall
- Pole of Virology, Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, Senegal
| |
Collapse
|
58
|
Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR, Hewson R. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017; 98:875-887. [PMID: 28555542 DOI: 10.1099/jgv.0.000765] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus-host and vector-virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.
Collapse
Affiliation(s)
- Sarah Lumley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,School of Veterinary Medicine, University of Surrey, Guildford, UK.,Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Luis L M Hernandez-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Johnson
- School of Veterinary Medicine, University of Surrey, Guildford, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Roger Hewson
- Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
59
|
RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. mSphere 2017; 2:mSphere00090-17. [PMID: 28497117 PMCID: PMC5415632 DOI: 10.1128/msphere.00090-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.
Collapse
|
60
|
Faburay B, Richt JA. Short Interfering RNA Inhibits Rift Valley Fever Virus Replication and Degradation of Protein Kinase R in Human Cells. Front Microbiol 2016; 7:1889. [PMID: 27933051 PMCID: PMC5121222 DOI: 10.3389/fmicb.2016.01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing severe outbreaks in humans and livestock in sub-Saharan Africa and the Arabian Peninsula. Human infections are characterized by fever, sometimes leading to encephalitis, retinitis, hemorrhagic fever, and occasionally death. There are currently no fully licensed vaccines or effective therapies for human use. Gene silencing mediated by double-stranded short interfering RNA (siRNA) is a sequence-specific, highly conserved mechanism in eukaryotes, which serves as an antiviral defense mechanism. Here, we demonstrate that siRNA duplexes directed against the RVFV nucleoprotein can effectively inhibit RVFV replication in human (MRC5 cells) and African green monkey cells (Vero E6 cells). Using these cells, we demonstrate that individual or complex siRNAs, targeting the RVFV nucleoprotein gene completely abrogate viral protein expression and prevent degradation of the host innate antiviral factor, protein kinase R (PKR). Importantly, pre-treatment of cells with the nucleoprotein-specific siRNAs markedly reduces the virus titer. The antiviral effect of the siRNAs was not attributable to interferon or the interferon response effector molecule, PKR. Thus, the antiviral activity of RVFV nucleoprotein-specific siRNAs may provide novel therapeutic strategy against RVFV infections in animals and humans.
Collapse
Affiliation(s)
- Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan KS, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan KS, USA
| |
Collapse
|
61
|
Yamaoka S, Ebihara H. The two faces of Rift Valley fever virus virulence factor NSs: The development of a vaccine and the elucidation of pathogenesis. Virulence 2016; 7:856-859. [PMID: 27432532 DOI: 10.1080/21505594.2016.1213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Satoko Yamaoka
- a Molecular Virology and Host-Pathogen Interaction Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Hideki Ebihara
- a Molecular Virology and Host-Pathogen Interaction Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| |
Collapse
|
62
|
Lang Y, Henningson J, Jasperson D, Li Y, Lee J, Ma J, Li Y, Cao N, Liu H, Wilson W, Richt J, Ruder M, McVey S, Ma W. Mouse model for the Rift Valley fever virus MP12 strain infection. Vet Microbiol 2016; 195:70-77. [PMID: 27771072 DOI: 10.1016/j.vetmic.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licensed for use for veterinary purposes in the U.S. which was excluded from the select agent rule of Health and Human Services and the U.S. Department of Agriculture. The MP12 vaccine strain is commonly used in BSL-2 laboratories that is generally not virulent in mice. To establish a small animal model that can be used in a BSL-2 facility for antiviral drug development, we investigated susceptibility of six mouse strains (129S6/SvEv, STAT-1 KO, 129S1/SvlmJ, C57BL/6J, NZW/LacJ, BALB/c) to the MP12 virus infection via an intranasal inoculation route. Severe weight loss, obvious clinical and neurologic signs, and 50% mortality was observed in the STAT-1 KO mice, whereas the other 5 mouse strains did not display obvious and/or severe disease. Virus replication and histopathological lesions were detected in brain and liver of MP12-infected STAT-1 KO mice that developed the acute-onset hepatitis and delayed-onset encephalitis. In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection, indicating that it can be used to investigate RVFV antivirals in a BSL-2 environment.
Collapse
Affiliation(s)
- Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dane Jasperson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Nan Cao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Haixia Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - William Wilson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Mark Ruder
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Scott McVey
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
63
|
Xia H, Beck AS, Gargili A, Forrester N, Barrett ADT, Bente DA. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci Rep 2016; 6:35819. [PMID: 27775001 PMCID: PMC5075774 DOI: 10.1038/srep35819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023] Open
Abstract
The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses.
Collapse
Affiliation(s)
- Han Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Andrew S Beck
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Naomi Forrester
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA
| |
Collapse
|
64
|
The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses 2016; 8:v8070202. [PMID: 27455305 PMCID: PMC4974537 DOI: 10.3390/v8070202] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle.
Collapse
|
65
|
Blomström AL, Scharin I, Stenberg H, Figueiredo J, Nhambirre O, Abilio A, Berg M, Fafetine J. Seroprevalence of Rift Valley fever virus in sheep and goats in Zambézia, Mozambique. Infect Ecol Epidemiol 2016; 6:31343. [PMID: 27388698 PMCID: PMC4933789 DOI: 10.3402/iee.v6.31343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Rift Valley fever virus (RVFV) is a vector-borne virus that causes disease in ruminants, but it can also infect humans. In humans, the infection can be asymptomatic but can also lead to illness, ranging from a mild disease with fever, headache and muscle pain to a severe disease with encephalitis and haemorrhagic fever. In rare cases, death can occur. In infected animals, influenza-like symptoms can occur, and abortion and mortality in young animals are indicative of RVFV infection. Since the initial outbreak in Kenya in the 1930s, the virus has become endemic to most of sub-Saharan Africa. In 2000, the virus appeared in Yemen and Saudi Arabia; this was the first outbreak of RVF outside of Africa. Rift Valley fever epidemics are often connected to heavy rainfall, leading to an increased vector population and spread of the virus to animals and/or humans. However, the virus needs to be maintained during the inter-epidemic periods. In this study, we investigated the circulation of RVFV in small ruminants (goats and sheep) in Zambézia, Mozambique, an area with a close vector/wildlife/livestock/human interface. MATERIALS AND METHODS Between September and October 2013, 181 sheep and 187 goat blood samples were collected from eight localities in the central region of Zambézia, Mozambique. The samples were analysed for the presence of antibodies against RVFV using a commercial competitive ELISA. RESULTS AND DISCUSSION The overall seroprevalence was higher in sheep (44.2%) than goats (25.1%); however, there was a high variation in seroprevalence between different localities. The data indicate an increased seroprevalence for sheep compared to 2010, when a similar study was conducted in this region and in overlapping villages. No noticeable health problems in the herds were reported. CONCLUSIONS This study shows an inter-epidemic circulation of RVFV in small ruminants in Zambézia, Mozambique. Neither outbreaks of RVF nor typical clinical signs of RVFV have been reported in the investigated herds, indicating subclinical infection.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden;
| | - Isabelle Scharin
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hedvig Stenberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ofélia Nhambirre
- Biotechnology Center, Eduardo Mondlane University, Maputo, Mozambique
| | - Ana Abilio
- National Health Institute, Maputo, Mozambique
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - José Fafetine
- Biotechnology Center, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
66
|
Faburay B, Wilson WC, Gaudreault NN, Davis AS, Shivanna V, Bawa B, Sunwoo SY, Ma W, Drolet BS, Morozov I, McVey DS, Richt JA. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Sci Rep 2016; 6:27719. [PMID: 27296136 PMCID: PMC4906348 DOI: 10.1038/srep27719] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.
Collapse
Affiliation(s)
- Bonto Faburay
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - A Sally Davis
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Vinay Shivanna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sun Young Sunwoo
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - D Scott McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
67
|
Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression. Viruses 2016; 8:v8060151. [PMID: 27231931 PMCID: PMC4926171 DOI: 10.3390/v8060151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.
Collapse
|
68
|
Ndiaye EH, Fall G, Gaye A, Bob NS, Talla C, Diagne CT, Diallo D, B A Y, Dia I, Kohl A, Sall AA, Diallo M. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasit Vectors 2016; 9:94. [PMID: 26897521 PMCID: PMC4761212 DOI: 10.1186/s13071-016-1383-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito-borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. METHODS Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70-80% relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. RESULTS The infection rates varied between 30.0-85.0% for Ae. vexans, 3.3-27% for Cx. quinquefasciatus and 8.3-46.7% for Cx. poicilipes, and the dissemination rates varied between 10.5-37% for Ae. vexans, 9.5-28.6% for Cx. quinquefasciatus and 3.0-40.9% for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3-33.3% in Ae. vexans, 50% in Cx. quinquefasciatus and 11.1% in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. CONCLUSION Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted.
Collapse
Affiliation(s)
- El Hadji Ndiaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal. .,Université Cheikh Anta Diop de Dakar, Département de Biologie Animale, Faculté des Sciences et Techniques, Dakar, Senegal.
| | - Gamou Fall
- Institut Pasteur de Dakar, Unité des Arbovirus et Virus de Fièvres hémorragiques, Dakar, Senegal.
| | - Alioune Gaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal. .,Université Cheikh Anta Diop de Dakar, Département de Biologie Animale, Faculté des Sciences et Techniques, Dakar, Senegal.
| | - Ndeye Sakha Bob
- Institut Pasteur de Dakar, Unité des Arbovirus et Virus de Fièvres hémorragiques, Dakar, Senegal.
| | - Cheikh Talla
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Cheikh Tidiane Diagne
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal. .,Université Cheikh Anta Diop de Dakar, Département de Biologie Animale, Faculté des Sciences et Techniques, Dakar, Senegal.
| | - Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Yamar B A
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Amadou Alpha Sall
- Institut Pasteur de Dakar, Unité des Arbovirus et Virus de Fièvres hémorragiques, Dakar, Senegal.
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
69
|
Ahsan NA, Sampey GC, Lepene B, Akpamagbo Y, Barclay RA, Iordanskiy S, Hakami RM, Kashanchi F. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection. Front Microbiol 2016; 7:139. [PMID: 26904012 PMCID: PMC4749701 DOI: 10.3389/fmicb.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T-cells and monocytic cells) showed drastic rate of apoptosis through PARP cleavage and caspase 3 activation from some but not all exosome enriched preparations. Collectively, these data suggest that exosomes from RVFV infected cells alter the dynamics of the immune cells and may contribute to pathology of the viral infection.
Collapse
Affiliation(s)
- Noor A. Ahsan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Gavin C. Sampey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Ben Lepene
- Ceres Nanosciences, Inc., ManassasVA, USA
| | - Yao Akpamagbo
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Robert A. Barclay
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Ramin M. Hakami
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
- Laboratory of Molecular Virology, George Mason University, ManassasVA, USA
| |
Collapse
|
70
|
β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites. Mol Cell Biol 2015; 36:13-29. [PMID: 26459757 DOI: 10.1128/mcb.00641-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Rapid upregulation of interferon beta (IFN-β) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-β in naive cells. However, the mechanisms capable of modulating constitutive IFN-β expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-β expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of β-catenin to the IFN-β promoter. Under these conditions, IFN-β expression occurred through the T-cell factor (TCF) binding sites present on the IFN-β promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-β per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-β expression. Further emphasizing the role of β-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/β-catenin pathway and the formation of active TCF/β-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.
Collapse
|
71
|
Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015; 33:5520-5531. [PMID: 26296499 DOI: 10.1016/j.vaccine.2015.08.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Lorraine McElhinney
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
72
|
Nishiyama S, Ikegami T. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses. Front Microbiol 2015; 6:787. [PMID: 26322023 PMCID: PMC4531298 DOI: 10.3389/fmicb.2015.00787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.
Collapse
Affiliation(s)
- Shoko Nishiyama
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX USA ; Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, TX USA ; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX USA
| |
Collapse
|
73
|
Nanyingi MO, Munyua P, Kiama SG, Muchemi GM, Thumbi SM, Bitek AO, Bett B, Muriithi RM, Njenga MK. A systematic review of Rift Valley Fever epidemiology 1931-2014. Infect Ecol Epidemiol 2015; 5:28024. [PMID: 26234531 PMCID: PMC4522434 DOI: 10.3402/iee.v5.28024] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/15/2015] [Accepted: 07/10/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. METHODOLOGY Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. RESULTS AND DISCUSSION A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. CONCLUSION This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.
Collapse
Affiliation(s)
- Mark O Nanyingi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
- Kenya Medical Research Institute, Nairobi, Kenya;
| | - Peninah Munyua
- Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Stephen G Kiama
- Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, Nairobi, Kenya
| | - Gerald M Muchemi
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Samuel M Thumbi
- Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Austine O Bitek
- Zoonotic Disease Unit, Nairobi, Kenya
- Directorate of Veterinary Service, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - M Kariuki Njenga
- Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| |
Collapse
|
74
|
Benedict A, Bansal N, Senina S, Hooper I, Lundberg L, de la Fuente C, Narayanan A, Gutting B, Kehn-Hall K. Repurposing FDA-approved drugs as therapeutics to treat Rift Valley fever virus infection. Front Microbiol 2015. [PMID: 26217313 PMCID: PMC4495339 DOI: 10.3389/fmicb.2015.00676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are currently no FDA-approved therapeutics available to treat Rift Valley fever virus (RVFV) infection. In an effort to repurpose drugs for RVFV treatment, a library of FDA-approved drugs was screened to determine their ability to inhibit RVFV. Several drugs from varying compound classes, including inhibitors of growth factor receptors, microtubule assembly/disassembly, and DNA synthesis, were found to reduce RVFV replication. The hepatocellular and renal cell carcinoma drug, sorafenib, was the most effective inhibitor, being non-toxic and demonstrating inhibition of RVFV in a cell-type and virus strain independent manner. Mechanism of action studies indicated that sorafenib targets at least two stages in the virus infectious cycle, RNA synthesis and viral egress. Computational modeling studies also support this conclusion. siRNA knockdown of Raf proteins indicated that non-classical targets of sorafenib are likely important for the replication of RVFV.
Collapse
Affiliation(s)
- Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Neha Bansal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Bradford Gutting
- Chemical, Biological, Radiological Defense Division, Naval Surface Warfare Center Dahlgren, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
75
|
Gowen BB, Westover JB, Sefing EJ, Bailey KW, Nishiyama S, Wandersee L, Scharton D, Jung KH, Ikegami T. MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters. Front Microbiol 2015; 6:651. [PMID: 26175722 PMCID: PMC4484224 DOI: 10.3389/fmicb.2015.00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 12/02/2022] Open
Abstract
Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10–20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.
Collapse
Affiliation(s)
- Brian B Gowen
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA ; School of Veterinary Medicine, Utah State University , Logan, UT, USA
| | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Eric J Sefing
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Kevin W Bailey
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Shoko Nishiyama
- Department of Pathology, The University of Texas Medical Branch , Galveston, TX, USA
| | - Luci Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Dionna Scharton
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Kie-Hoon Jung
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University , Logan, UT, USA ; Institute for Antiviral Research, Utah State University , Logan, UT, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch , Galveston, TX, USA ; Sealy Center for Vaccine Development, The University of Texas Medical Branch , Galveston, TX, USA ; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
76
|
Boushab BM, Savadogo M, Sow SM, Soufiane S. [Survey of investigation around cases of Rift Valley Fever at Tagant, Mauritania]. Rev Epidemiol Sante Publique 2015; 63:213-6. [PMID: 25959009 DOI: 10.1016/j.respe.2015.03.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/06/2014] [Accepted: 03/23/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is a zoonotic arbovirosis. Among animals, it mainly affects ruminants, causing abortions in gravid females and deaths among young animals. In humans, RVF virus infection is usually asymptomatic or characterized by a moderate fever. However, in 1-3% of cases, the disease progresses to a severe form with 50% mortality. OBJECTIVE Search for risk factors and to propose appropriate measures to prevent the potential for extension of the epidemic, and to make recommendations for disease monitoring and control. METHODS This investigation involved human RVF cases reported between October 12 and November 20, 2012 in the area of Tagant in Mauritania. Arbovirosis diagnosis was established by the laboratory of the National Institute of Public Health Research in Nouakchott (Mauritania) in collaboration with the Pasteur Institute of Dakar (Senegal). RESULTS Of 212 subjects, RVF serology was positive in 26 (12%). Among those seropositive for RVF, 11 (42%) had severe hemorrhagic forms. The case fatality rate was 91%. A series of animal abortions (cattle, sheep and goats) was observed in the area where all but two subjects resided. Exposure to potential risk factors for RVF virus infection was found in all patients. CONCLUSION Mortality is very high in the hemorrhagic forms of RVF. Disease prevention is necessary by strengthening the fight against vectors, avoiding contact and consumption of organic products from diseased animals and vaccination of animals in areas where the disease is endemic. Furthermore, it is essential to establish management procedures for patients infected with the RVF virus. An appropriately equipped referral hospital is necessary, together with strengthened epidemiological surveillance by notifying all suspected cases of hemorrhagic fevers.
Collapse
Affiliation(s)
- B M Boushab
- Service de médecine interne, centre hospitalier d'Aïoun, Aïoun, Mauritanie.
| | - M Savadogo
- Service des maladies infectieuses, centre hospitalo-universitaire de Yalgado Ouédraogo, Yalgado Ouédraogo, Burkina Faso
| | - S M Sow
- Service des maladies infectieuses, centre hospitalo-universitaire de Donka, Donka, Guinée Conakry
| | - S Soufiane
- Centre de traitement ambulatoire, centre hospitalier national de Nouakchott, Nouakchott, Mauritanie
| |
Collapse
|
77
|
Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments. J Virol 2015; 89:7262-76. [PMID: 25948740 DOI: 10.1128/jvi.00135-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine.
Collapse
|
78
|
Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proc Natl Acad Sci U S A 2015; 112:4749-54. [PMID: 25825721 DOI: 10.1073/pnas.1502864112] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein synthesis machineries of two distinct phyla of the Animal kingdom, insects of Arthropoda and mammals of Chordata, have different preferences for how to best encode proteins. Nevertheless, arboviruses (arthropod-borne viruses) are capable of infecting both mammals and insects just like arboviruses that use insect vectors to infect plants. These organisms have evolved carefully balanced genomes that can efficiently use the translational machineries of different phyla, even if the phyla belong to different kingdoms. Using dengue virus as an example, we have undone the genome encoding balance and specifically shifted the encoding preference away from mammals. These mammalian-attenuated viruses grow to high titers in insect cells but low titers in mammalian cells, have dramatically increased LD50s in newborn mice, and induce high levels of protective antibodies. Recoded arboviruses with a bias toward phylum-specific expression could form the basis of a new generation of live attenuated vaccine candidates.
Collapse
|
79
|
Tokuda S, Do Valle TZ, Batista L, Simon-Chazottes D, Guillemot L, Bouloy M, Flamand M, Montagutelli X, Panthier JJ. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice. Genes Immun 2015; 16:206-12. [PMID: 25569261 DOI: 10.1038/gene.2014.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/09/2022]
Abstract
The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.
Collapse
Affiliation(s)
- S Tokuda
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - T Z Do Valle
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France [3] Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Fiocruz, Rio de Janeiro, Brasil
| | - L Batista
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris, France
| | - D Simon-Chazottes
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - L Guillemot
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - M Bouloy
- Institut Pasteur, Bunyaviruses Molecular Genetics, Paris, France
| | - M Flamand
- Institut Pasteur, Structural Virology, Paris, France
| | - X Montagutelli
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - J-J Panthier
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| |
Collapse
|
80
|
Abstract
UNLABELLED Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that was first reported in China in 2009. Phylogenetic analysis of the viral genome showed that SFTS virus represents a new lineage within the Phlebovirus genus, distinct from the existing sandfly fever and Uukuniemi virus groups, in the family Bunyaviridae. SFTS disease is characterized by gastrointestinal symptoms, chills, joint pain, myalgia, thrombocytopenia, leukocytopenia, and some hemorrhagic manifestations with a case fatality rate of about 2 to 15%. Here we report the development of reverse genetics systems to study STFSV replication and pathogenesis. We developed and optimized functional T7 polymerase-based M- and S-segment minigenome assays, which revealed errors in the published terminal sequences of the S segment of the Hubei 29 strain of SFTSV. We then generated recombinant viruses from cloned cDNAs prepared to the antigenomic RNAs both of the minimally passaged virus (HB29) and of a cell culture-adapted strain designated HB29pp. The growth properties, pattern of viral protein synthesis, and subcellular localization of viral N and NSs proteins of wild-type HB29pp (wtHB29pp) and recombinant HB29pp viruses were indistinguishable. We also show that the viruses fail to shut off host cell polypeptide production. The robust reverse genetics system described will be a valuable tool for the design of therapeutics and the development of killed and attenuated vaccines against this important emerging pathogen. IMPORTANCE SFTSV and related tick-borne phleboviruses such as Heartland virus are emerging viruses shown to cause severe disease in humans in the Far East and the United States, respectively. Study of these novel pathogens would be facilitated by technology to manipulate these viruses in a laboratory setting using reverse genetics. Here, we report the generation of infectious SFTSV from cDNA clones and demonstrate that the behavior of recombinant viruses is similar to that of the wild type. This advance will allow for further dissection of the roles of each of the viral proteins in the context of virus infection, as well as help in the development of antiviral drugs and protective vaccines.
Collapse
|
81
|
Bunyavirus-vector interactions. Viruses 2014; 6:4373-97. [PMID: 25402172 PMCID: PMC4246228 DOI: 10.3390/v6114373] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023] Open
Abstract
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.
Collapse
|
82
|
Kreher F, Tamietti C, Gommet C, Guillemot L, Ermonval M, Failloux AB, Panthier JJ, Bouloy M, Flamand M. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 2014; 3:e71. [PMID: 26038497 PMCID: PMC4217093 DOI: 10.1038/emi.2014.71] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/05/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Rift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm′, was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm′ was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts.
Collapse
Affiliation(s)
- Felix Kreher
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité , F-75205 Paris, France
| | - Carole Tamietti
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| | - Céline Gommet
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France ; Central Animal Facilities, Institut Pasteur , F-75015 Paris, France
| | - Laurent Guillemot
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Myriam Ermonval
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | | | - Jean-Jacques Panthier
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Michèle Bouloy
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | - Marie Flamand
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| |
Collapse
|
83
|
Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. THE LANCET. INFECTIOUS DISEASES 2014; 14:763-772. [DOI: 10.1016/s1473-3099(14)70718-2] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
84
|
Wilson WC, Bawa B, Drolet BS, Lehiy C, Faburay B, Jasperson DC, Reister L, Gaudreault NN, Carlson J, Ma W, Morozov I, McVey DS, Richt JA. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination. Vet Microbiol 2014; 172:44-50. [PMID: 24856133 DOI: 10.1016/j.vetmic.2014.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVFV MP-12 strain has been the most safety tested attenuated vaccine strain; thus it is being considered as a potential vaccine for the US national veterinary stockpile. This study was designed to establish safety protocols for large animal research with virulent RVF viruses, establish a target host immune response baseline using RVF MP-12 strain, and independently evaluate this strain as a potential US emergency response vaccine. Ten, approximately four month-old lambs and calves were vaccinated with RVF MP-12 strain; two additional animals per species provided negative control specimens. The animals were monitored for clinical and immune response, fever, and viremia. Two animals per species were sacrificed on 2, 3, 4, 10 and 28 days post infection and full necropsies were performed for histopathological examination. No clinical or febrile responses were observed in this study. The onset and titer of the immune response is discussed. There was no significant histopathology in the lambs; however, 6 out of 10 vaccinated calves had multifocal, random areas of hepatocellular degeneration and necrosis. RVF MP12 antigen was detected in these areas of necrosis by immunohistochemistry in one calf. This study provides independent and baseline information on the RVF MP-12 attenuated vaccination in vaccine relevant age target species and indicates the importance of performing safety testing on vaccine relevant aged target animals.
Collapse
Affiliation(s)
- William C Wilson
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA.
| | - Bhupinder Bawa
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara S Drolet
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Chris Lehiy
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Bonto Faburay
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Dane C Jasperson
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Lindsey Reister
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Natasha N Gaudreault
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Jolene Carlson
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Wenjun Ma
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Igor Morozov
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - D Scott McVey
- USDA-ARS Arthropod-Borne Animal Disease Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Jürgen A Richt
- Diagnostic Medicine and Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
85
|
Basler CF, Woo PCY. Editorial overview: emerging viruses. Curr Opin Virol 2014; 5:v-vii. [PMID: 24680706 PMCID: PMC7128464 DOI: 10.1016/j.coviro.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Christopher F Basler
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1124, Madison Avenue & 100th Street, New York, NY 10029-6574, USA.
| | - Patrick C Y Woo
- Department of Microbiology, University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
86
|
Reed DS, Bethel LM, Powell DS, Caroline AL, Hartman AL. Differences in aerosolization of Rift Valley fever virus resulting from choice of inhalation exposure chamber: implications for animal challenge studies. Pathog Dis 2014; 71:227-33. [PMID: 24532259 DOI: 10.1111/2049-632x.12157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
The aerosol characteristics of Rift Valley fever virus (RVFV) were evaluated to achieve reproducible infection of experimental animals with aerosolized RVFV suitable for animal efficacy studies. Spray factor (SF), the ratio between the concentrations of the aerosolized agent to the agent in the aerosol generator, is used to compare performance differences between aerosol exposures. SF indicates the efficiency of the aerosolization process; a higher SF means a lower nebulizer concentration is needed to achieve a desired inhaled dose. Relative humidity levels as well as the duration of the exposure and choice of exposure chamber all impacted RVFV SF. Differences were also noted between actual and predicted minute volumes for different species of nonhuman primates. While NHP from Old World species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) generally had a lower actual minute volume than predicted, the actual minute volume for marmosets (Callithrix jacchus) was higher than predicted (150% for marmosets compared with an average of 35% for all other species examined). All of these factors (relative humidity, chamber, duration, and minute volume) impact the ability to reliably and reproducibly deliver a specific dose of aerosolized RVFV. The implications of these findings for future pivotal efficacy studies are discussed.
Collapse
Affiliation(s)
- Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
87
|
Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol 2014; 5:50-7. [PMID: 24607799 PMCID: PMC4031632 DOI: 10.1016/j.coviro.2014.01.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
The Bunyavidae family is the largest grouping of RNA viruses and arguably the most diverse. Bunyaviruses have a truly global distribution and can infect vertebrates, invertebrates and plants. The majority of bunyaviruses are vectored by arthropods and thus have the remarkable capability to replicate in hosts of disparate phylogeny. The family has provided many examples of emerging viruses including Sin Nombre and related viruses responsible for hantavirus cardiopulmonary syndrome in the Americas, first identified in 1993, and Schmallenberg virus which emerged in Europe in 2011, causing foetal malformations in ruminants. In addition, some well-known bunyaviruses like Rift Valley fever and Crimean-Congo haemorrhagic fever viruses continue to emerge in new geographical locations. In this short review we focus on newly identified viruses associated with severe haemorrhagic disease in humans in China and the US.
Collapse
Affiliation(s)
- Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK.
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
88
|
McMahon B, Manore C, Hyman J, LaBute M, Fair J. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2014; 9:161-177. [PMID: 25892858 PMCID: PMC4398965 DOI: 10.1051/mmnp/20149211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.
Collapse
Affiliation(s)
- B.H. McMahon
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM 87545
| | - C.A. Manore
- Department of Mathematics, Tulane University, New Orleans, LA 70118
- Center for Computational Science, Tulane University, New Orleans, LA 70118
| | - J.M. Hyman
- Department of Mathematics, Tulane University, New Orleans, LA 70118
| | - M.X. LaBute
- Lawrence Livermore National Laboratory, Applied Statistics Group – Computational Engineering Division, Mailstop L-174, 7000 East Ave. Livermore, CA 94550
| | - J.M. Fair
- Los Alamos National Laboratory, Environmental Stewardship, K404, Los Alamos, NM 87545
| |
Collapse
|
89
|
Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 2014; 449:270-86. [DOI: 10.1016/j.virol.2013.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/02/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
|
90
|
Lihoradova O, Ikegami T. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor NSs.. Future Virol 2014; 9:27-39. [PMID: 24910709 DOI: 10.2217/fvl.13.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae. RVFV encodes a major virulence factor, NSs, which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications.
Collapse
Affiliation(s)
- Olga Lihoradova
- Department of Pathology, University of Texas Medical Branch, MMNP3.206D, 301 University Blvd. Galveston, TX 77555-0436, USA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, MMNP3.206D, 301 University Blvd. Galveston, TX 77555-0436, USA ; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, USA ; Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
91
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
92
|
Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 2013; 5:2447-68. [PMID: 24100888 PMCID: PMC3814597 DOI: 10.3390/v5102447] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022] Open
Abstract
Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod.
Collapse
|
93
|
Zhang Y, Wu S, Wang J, Wernike K, Lv J, Feng C, Zhang J, Wang C, Deng J, Yuan X, Lin X. Expression and purification of the nucleocapsid protein of Schmallenberg virus, and preparation and characterization of a monoclonal antibody against this protein. Protein Expr Purif 2013; 92:1-8. [PMID: 23988909 DOI: 10.1016/j.pep.2013.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Schmallenberg virus (SBV) is a novel orthobunyavirus that primarily infects ruminants such as cattle, sheep and goats. The nucleocapsid (N) protein of SBV has been shown to be an ideal target antigen for serological detection. To prepare a monoclonal antibody (mAb) against the N protein, the full-length coding sequence of the SBV N gene was cloned into pET-28a-c(+) and pMAL-c5X vectors to generate two recombinant plasmids, which were expressed in Escherichia coli BL21 as histidine (His)-tagged (His-SBV-N) and maltose-binding protein (MBP)-tagged (MBP-SBV-N) fusion proteins, respectively. After affinity purification of His-SBV-N with Ni-NTA agarose and MBP-SBV-N with amylose resin, His-SBV-N was used to immunize BALB/c mice, while MBP-SBV-N was utilized to screen for mAb-secreting hybridomas. Six hybridoma cell lines stably secreting mAbs against N were obtained. Clone 2C8 was selected for further study because of its rapid growth characteristics in vitro and good reactivity with recombinant SBV N proteins in enzyme-linked immunosorbent assays. The epitope recognized by 2C8 is located at amino acids 51-76 of the SBV N protein. Western blot analyses showed that 2C8 reacts with both recombinant SBV N proteins and SBV isolates. It is also cross-reactive with the N proteins of genetically related Shamonda, Douglas and Akabane viruses, but not with the Rift Valley fever virus N protein. The successful preparation of recombinant N proteins and mAbs provides valuable materials that can be used in the serological diagnosis of SBV.
Collapse
Affiliation(s)
- Yongning Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838491. [PMID: 24058915 PMCID: PMC3766601 DOI: 10.1155/2013/838491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
Collapse
|
95
|
Lihoradova O, Ikegami T. Modifying the NSs gene to improve live-attenuated vaccine for Rift Valley fever. Expert Rev Vaccines 2013; 11:1283-5. [PMID: 23249225 DOI: 10.1586/erv.12.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Capripoxvirus-vectored vaccines against livestock diseases in Africa. Antiviral Res 2013; 98:217-27. [DOI: 10.1016/j.antiviral.2013.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 02/27/2013] [Indexed: 11/18/2022]
|
97
|
Indran SV, Lihoradova OA, Phoenix I, Lokugamage N, Kalveram B, Head JA, Tigabu B, Smith JK, Zhang L, Juelich TL, Gong B, Freiberg AN, Ikegami T. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice. J Gen Virol 2013; 94:1441-1450. [PMID: 23515022 DOI: 10.1099/vir.0.051250-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.
Collapse
Affiliation(s)
- Sabarish V Indran
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Olga A Lihoradova
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Inaia Phoenix
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nandadeva Lokugamage
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer A Head
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bersabeh Tigabu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lihong Zhang
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry L Juelich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tetsuro Ikegami
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
98
|
Xu W, Watts DM, Costanzo MC, Tang X, Venegas LA, Jiao F, Sette A, Sidney J, Sewell AK, Wooldridge L, Makino S, Morrill JC, Peters CJ, Kan-Mitchell J. The nucleocapsid protein of Rift Valley fever virus is a potent human CD8+ T cell antigen and elicits memory responses. PLoS One 2013; 8:e59210. [PMID: 23527138 PMCID: PMC3601065 DOI: 10.1371/journal.pone.0059210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/10/2023] Open
Abstract
There is no licensed human vaccine currently available for Rift Valley Fever Virus (RVFV), a Category A high priority pathogen and a serious zoonotic threat. While neutralizing antibodies targeting the viral glycoproteins are protective, they appear late in the course of infection, and may not be induced in time to prevent a natural or bioterrorism-induced outbreak. Here we examined the immunogenicity of RVFV nucleocapsid (N) protein as a CD8(+) T cell antigen with the potential for inducing rapid protection after vaccination. HLA-A*0201 (A2)-restricted epitopic determinants were identified with N-specific CD8(+) T cells from eight healthy donors that were primed with dendritic cells transduced to express N, and subsequently expanded in vitro by weekly re-stimulations with monocytes pulsed with 59 15mer overlapping peptides (OLPs) across N. Two immunodominant epitopes, VT9 (VLSEWLPVT, N(121-129)) and IL9 (ILDAHSLYL, N165-173), were defined. VT9- and IL9-specific CD8(+) T cells identified by tetramer staining were cytotoxic and polyfunctional, characteristics deemed important for viral control in vivo. These peptides induced specific CD8(+) T cell responses in A2-transgenic mice, and more importantly, potent N-specific CD8(+) T cell reactivities, including VT9- and IL9-specific ones, were mounted by mice after a booster vaccination with the live attenuated RVF MP-12. Our data suggest that the RVFV N protein is a potent human T cell immunogen capable of eliciting broad, immunodominant CD8(+) T cell responses that are potentially protective. Understanding the immune responses to the nucleocapsid is central to the design of an effective RVFV vaccine irrespective of whether this viral protein is effective as a stand-alone immunogen or only in combination with other RVFV antigens.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Biological Science and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Indran SV, Ikegami T. Novel approaches to develop Rift Valley fever vaccines. Front Cell Infect Microbiol 2012; 2:131. [PMID: 23112960 PMCID: PMC3481114 DOI: 10.3389/fcimb.2012.00131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/05/2012] [Indexed: 01/26/2023] Open
Abstract
Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed.
Collapse
Affiliation(s)
- Sabarish V Indran
- Department of Pathology, The University of Texas Medical Branch Galveston, TX, USA
| | | |
Collapse
|