51
|
Frisard MI, Wu Y, McMillan RP, Voelker KA, Wahlberg KA, Anderson AS, Boutagy N, Resendes K, Ravussin E, Hulver MW. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle. Metabolism 2015; 64:416-27. [PMID: 25528444 PMCID: PMC4501015 DOI: 10.1016/j.metabol.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and mitochondria isolated from rodent skeletal muscle. MATERIALS/METHODS Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. RESULTS Acute LPS exposure resulted in significant reductions in Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. CONCLUSION LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present.
Collapse
Affiliation(s)
- Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060
| | - Yaru Wu
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060
| | - Kevin A Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Kristin A Wahlberg
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Angela S Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Nabil Boutagy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060
| | - Kyle Resendes
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Eric Ravussin
- John S McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA, 70808
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060.
| |
Collapse
|
52
|
Visalli G, Baluce B, Bertuccio M, Picerno I, Di Pietro A. Mitochondrial-mediated apoptosis pathway in alveolar epithelial cells exposed to the metals in combustion-generated particulate matter. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:697-709. [PMID: 26039747 DOI: 10.1080/15287394.2015.1024081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previously a significant mitochondrial impairment was identified in alveolar epithelial cells exposed to metals adsorbed to combustion-generated particulate matter (PM). Due to the critical role of mitochondria in apoptosis, the aim of this study was to investigate the pro-apoptotic potential of metals present in oil fly ash (OFA). A549 cells were exposed to water-soluble components of an OFA sample, containing vanadium [V(IV)], iron [Fe(III)], and nickel [Ni(II)] (68.8, 110.4, and 18 μM, respectively). Experiments were also performed using individual metal solutions. Apoptosis was detected and the mitochondrial role was assessed by a caspase-9 inhibitor (Z-LEHD-FMK). To determine whether the presence of impaired mitochondria in unexposed daughter cells increased apoptosis, an in vitro model was developed that allowed determination of effects until the third cell generation. To specifically examine the toxicity of vanadium (V), that characterize the airborne pollutant examined in this study, p53involvement and metabolic impairment through changes in HIF-1α and Glut-1 expression were determined. OFA and individual metal solutions produced significant apoptosis in the progeny of exposed cells, triggering the intrinsic apoptosis pathway. In apoptosis induced by poorly genotoxic metal V, p53 did not play a significant role. However, V exposure increased nuclear translocation of HIF-1α and expression of the Glut-1 receptor, indicating metabolic impairment due to metal-induced mitochondrial dysfunction. Overall, these results improve our knowledge of the pathogenic role that airborne metals and in particular V exerted in respiratory epithelium.
Collapse
Affiliation(s)
- Giuseppa Visalli
- a Department of Biomedical Sciences and Morphological and Functional Images , University of Messina , Messina , Italy
| | | | | | | | | |
Collapse
|
53
|
Visalli G, Bertuccio MP, Picerno I, Spataro P, Di Pietro A. Mitochondrial dysfunction by pro-oxidant vanadium: ex vivo assessment of individual susceptibility. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:93-101. [PMID: 25473821 DOI: 10.1016/j.etap.2014.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
The aim was to assess the individual susceptibility to mitochondrial impairment induced by ex vivo exposure to vanadium, an airborne pro-oxidant pollutant. In lymphocyte cultures V(IV)-treated of forty-five healthy subjects, we evaluated the mitochondrial transmembrane potential (Δψm) and the H2O2 in comparison to background values. As variables, we included both lifestyle factors and genetic polymorphisms (GSTM1 and GSTT1 variants, and C677T and A1298C variants of methylenetetrahydrofolate reductase MTHFR). H2O2 mitochondrial content increased significantly (P<0.05) after metal exposure while, in comparison to basal Δψm, both depolarisation and hyperpolarisation were recorded. This underlined the mitochondrial dysfunction vanadium-induced that worsens the redox imbalance by endogenous ROS overproduction. Only age was found to contribute significantly to the high inter-individual variability, as assessed by multivariate analysis. In older subjects, the H2O2/Δψm values underline the organelle impairment and, under V-exposure, Δψm values were inversely related to age (R=-0.591; P=0.012).
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Maria Paola Bertuccio
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Isa Picerno
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Pasquale Spataro
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy.
| |
Collapse
|
54
|
Bordt EA, Polster BM. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 2014; 76:34-46. [PMID: 25091898 PMCID: PMC4252610 DOI: 10.1016/j.freeradbiomed.2014.07.033] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
Abstract
Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor-α, interleukin-1β (IL-1β), nitric oxide, and reactive oxygen species (ROS), which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1β and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially targeted ROS indicator MitoSOX and the mitochondrially targeted antioxidant MitoTEMPO, are also discussed.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
55
|
Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350432. [PMID: 25121095 PMCID: PMC4119900 DOI: 10.1155/2014/350432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022]
Abstract
The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival.
If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients.
Collapse
|
56
|
Affiliation(s)
- Roxane Paulin
- From the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
57
|
Kukat A, Dogan SA, Edgar D, Mourier A, Jacoby C, Maiti P, Mauer J, Becker C, Senft K, Wibom R, Kudin AP, Hultenby K, Flögel U, Rosenkranz S, Ricquier D, Kunz WS, Trifunovic A. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet 2014; 10:e1004385. [PMID: 24945157 PMCID: PMC4063685 DOI: 10.1371/journal.pgen.1004385] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan.
Collapse
Affiliation(s)
- Alexandra Kukat
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sukru Anil Dogan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniel Edgar
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Mourier
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Christoph Jacoby
- Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyanka Maiti
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jan Mauer
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Christina Becker
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Katharina Senft
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Wibom
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexei P. Kudin
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Flögel
- Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephan Rosenkranz
- Department III of Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC) and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Daniel Ricquier
- University Paris Descartes, Faculty of Medicine, CNRS FRE3210, Paris, France
| | - Wolfram S. Kunz
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Cologne Cardiovascular Research Center (CCRC) and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
58
|
Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. PLoS One 2014; 9:e98969. [PMID: 24904988 PMCID: PMC4056835 DOI: 10.1371/journal.pone.0098969] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.
Collapse
|
59
|
Shabalina IG, Vrbacký M, Pecinová A, Kalinovich AV, Drahota Z, Houštěk J, Mráček T, Cannon B, Nedergaard J. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:2017-2030. [PMID: 24769119 DOI: 10.1016/j.bbabio.2014.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
Abstract
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marek Vrbacký
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zdeněk Drahota
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Josef Houštěk
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
60
|
Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71:1171-90. [PMID: 23807210 PMCID: PMC11114077 DOI: 10.1007/s00018-013-1407-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
Collapse
Affiliation(s)
- Massimo Donadelli
- Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
61
|
Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr 2014; 54:35-49. [PMID: 24643755 DOI: 10.1007/s00394-014-0683-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE Exercise induces oxidative stress and causes adaptations in antioxidant defenses. The aim of the present study was to determine the effects of a 2-month diet supplementation with docosahexaenoic acid (DHA) on the pro-oxidant and antioxidant status of peripheral blood mononuclear cells (PBMCs) during football training and after acute exercise. METHODS Fifteen male football players, in a randomized double-blind trial, ingested a beverage enriched with DHA or a placebo for 8 weeks. Blood samples were collected in basal conditions before and after the training period and after an acute and intense exercise. RESULTS The training season increased the carbonyl and nitrotyrosine index but decreased the malondialdehyde (MDA) levels. Basal catalase activity decreased in both groups after 8 weeks of training, whereas glutathione peroxidase activity increased mainly in the placebo group. Protein levels of uncoupling proteins (UCP2 and UCP3) and inducible nitric oxide synthase significantly increased after the training period. Acute exercise induced redistribution in the number of circulating cells, increased the MDA levels and nitrotyrosine index, and decreased the levels of nitrate. Acute exercise also increased PBMCs reactive oxygen species (ROS) production after immune stimulation. Diet supplementation with DHA significantly increased the UCP3 levels after training and the superoxide dismutase protein levels after acute exercise, and reduced the production of ROS after acute exercise. CONCLUSION Docosahexaenoic acid increased the antioxidant capabilities while reducing the mitochondrial ROS production in a regular football training period and reduced the oxidative damage markers in response to acute exercise.
Collapse
|
62
|
JEŽEK P, OLEJÁR T, SMOLKOVÁ K, JEŽEK J, DLASKOVÁ A, PLECITÁ-HLAVATÁ L, ZELENKA J, ŠPAČEK T, ENGSTOVÁ H, PAJUELO REGUERA D, JABŮREK M. Antioxidant and Regulatory Role of Mitochondrial Uncoupling Protein UCP2 in Pancreatic β-cells. Physiol Res 2014; 63:S73-91. [DOI: 10.33549/physiolres.932633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on brown adipose tissue and its hallmark protein, mitochondrial uncoupling protein UCP1, has been conducted for half a century and has been traditionally studied in the Institute of Physiology (AS CR, Prague), likewise UCP2 residing in multiple tissues for the last two decades. Our group has significantly contributed to the elucidation of UCP uncoupling mechanism, fully dependent on free fatty acids (FFAs) within the inner mitochondrial membrane. Now we review UCP2 physiological roles emphasizing its roles in pancreatic β-cells, such as antioxidant role, possible tuning of redox homeostasis (consequently UCP2 participation in redox regulations), and fine regulation of glucose-stimulated insulin secretion (GSIS). For example, NADPH has been firmly established as being a modulator of GSIS and since UCP2 may influence redox homeostasis, it likely affects NADPH levels. We also point out the role of phospholipase iPLA2 isoform in providing FFAs for the UCP2 antioxidant function. Such initiation of mild uncoupling hypothetically precedes lipotoxicity in pancreatic β-cells until it reaches the pathological threshold, after which the antioxidant role of UCP2 can be no more cell-protective, for example due to oxidative stress-accumulated mutations in mtDNA. These mechanisms, together with impaired autocrine insulin function belong to important causes of Type 2 diabetes etiology.
Collapse
Affiliation(s)
- P. JEŽEK
- Department of Membrane Transport Biophysics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
64
|
Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 2013; 78:300-6. [PMID: 24334638 DOI: 10.1253/circj.cj-13-1187] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are the main facilitators of cardiovascular complications in diabetes mellitus (DM), and the ROS level is increased in cultured cells exposed to high glucose concentrations or in diabetic animal models. Emerging evidence shows that mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are dominant mechanisms of ROS production in the diabetic heart. Hyperpolarization of the mitochondrial inner membrane potentials and impaired mitochondrial function promote ROS production in the mitochondria of the diabetic heart. Uncoupling proteins are upregulated and may reduce the ROS level by depolarizing the mitochondrial inner membrane potential. NADPH oxidase is another major site of ROS production and its contribution to DM-induced ROS increase has been elucidated not only in vascular smooth muscle cells and endothelial cells, but also in cardiomyocytes. Protein kinase C, angiotensin II, and advanced glycation endproducts (AGEs)/receptor for AGEs can activate NADPH oxidase. Increased intracellular calcium level mediated via the Na(+)-H(+) exchanger and subsequent activation of Ca(2+)/calmodulin-dependent protein kinase II may also activate NADPH oxidase. This review presents the current understanding of the mechanisms of ROS production, focusing especially on the roles of mitochondria and NADPH oxidase.
Collapse
Affiliation(s)
- Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
66
|
Adjeitey CNK, Mailloux RJ, Dekemp RA, Harper ME. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am J Physiol Endocrinol Metab 2013; 305:E405-15. [PMID: 23757405 PMCID: PMC3742851 DOI: 10.1152/ajpendo.00057.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat.
Collapse
Affiliation(s)
- Cyril Nii-Klu Adjeitey
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
67
|
Graw JA, von Haefen C, Poyraz D, Möbius N, Sifringer M, Spies CD. Chronic alcohol consumption increases the expression of uncoupling protein-2 and -4 in the brain. Alcohol Clin Exp Res 2013; 37:1650-6. [PMID: 23800309 DOI: 10.1111/acer.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/07/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic alcohol consumption leads to oxidative stress in a variety of cells, especially in brain cells because they have a reduced oxidative metabolism of alcohol. Uncoupling proteins (UCPs) are anion channels of the inner mitochondrial membrane, which can decouple internal respiration. "Mild uncoupling" of the mitochondrial respiratory chain leads to a reduced production of free radicals (reactive oxygen species) and a reduction in oxidative cell stress. The extent to which chronic alcohol consumption regulates UCP-2 and -4 in the brain is still unknown. METHODS We examined the effects of a 12-week 5% alcohol diet in the brain of male Wistar rats (n = 34). Cerebral gene and protein expression of UCP-2, -4, as well as Bcl-2, and the release of cytochrome c out of the mitochondria were detected by real-time polymerase chain reaction and Western blot analysis. The percentage of degenerated cells was determined by Fluoro-Jade B staining of brain slices. RESULTS Brains of rats with a chronic alcohol diet showed an increased gene and protein expression of UCP-2 and -4. The expression of the antiapoptotic protein Bcl-2 in the brain of the alcohol-treated animals was decreased significantly, whereas cytochrome c release from mitochondria was increased. In addition increased neurodegeneration could be demonstrated in the alcohol-treated animals. CONCLUSIONS Chronic alcohol consumption leads to a cerebral induction of UCP-2 and -4 with a simultaneous decrease in the antiapoptotic protein Bcl-2, cytochrome c release from mitochondria and increased neurodegeneration. This study reveals a compensatory effect of UCP-2 and -4 in the brain during chronic alcohol consumption.
Collapse
Affiliation(s)
- Jan A Graw
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Jabůrek M, Ježek J, Zelenka J, Ježek P. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Int J Biochem Cell Biol 2013; 45:816-25. [PMID: 23354121 DOI: 10.1016/j.biocel.2013.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/24/2022]
Abstract
Mitochondrial uncoupling protein-2 (UCP2) has been suggested to participate in the attenuation of the reactive oxygen species production, but the mechanism of action and the physiological significance of UCP2 activity remain controversial. Here we tested the hypothesis that UCP2 provides feedback downregulation of oxidative stress in vivo via synergy with an H2O2-activated mitochondrial calcium-independent phospholipase A2 (mt-iPLA2). Tert-butylhydroperoxide or H2O2 induced free fatty acid release from mitochondrial membranes as detected by gas chromatography/mass spectrometry, which was inhibited by r-bromoenol lactone (r-BEL) but not by its stereoisomer s-BEL, suggesting participation of mt-iPLA2γ isoform. Tert-butylhydroperoxide or H2O2 also induced increase in respiration and decrease in mitochondrial membrane potential in lung and spleen mitochondria from control but not UCP2-knockout mice. These data suggest that mt-iPLA2γ-dependent release of free fatty acids promotes UCP2-dependent uncoupling. Upon such uncoupling, mitochondrial superoxide formation decreased instantly also in the s-BEL presence, but not when mt-iPLA2 was blocked by R-BEL and not in mitochondria from UCP2-knockout mice. Mt-iPLA2γ was alternatively activated by H2O2 produced probably in conjunction with the electron-transferring flavoprotein:ubiquinone oxidoreductase (ETFQOR), acting in fatty acid β-oxidation. Palmitoyl-d,l-carnitine addition to mouse lung mitochondria, respiring with succinate plus rotenone, caused a respiration increase that was sensitive to r-BEL and insensitive to s-BEL. We thus demonstrate for the first time that UCP2, functional due to fatty acids released by redox-activated mt-iPLA2γ, suppresses mitochondrial superoxide production by its uncoupling action. In conclusion, H2O2-activated mt-iPLA2γ and UCP2 act in concert to protect against oxidative stress.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | | | | | | |
Collapse
|
69
|
Garatachea N, Lucia A. Genes, physical fitness and ageing. Ageing Res Rev 2013; 12:90-102. [PMID: 23022740 DOI: 10.1016/j.arr.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Persons aged 80 years and older are the fastest growing segment of the population. As more individuals live longer, we should try to understand the mechanisms involved in healthy ageing and preserving functional independence in later life. In elderly people, functional independence is directly dependent on physical fitness, and ageing is inevitably associated with the declining functions of systems and organs (heart, lungs, blood vessels, skeletal muscles) that determine physical fitness. Thus, age-related diminished physical fitness contributes to the development of sarcopenia, frailty or disability, all of which severely deteriorate independent living and thus quality of life. Ageing is a complex process involving many variables that interact with one another, including - besides lifestyle factors or chronic diseases - genetics. Thus, several studies have examined the contribution of genetic endowment to a decline in physical fitness and subsequent loss of independence in later life. In this review, we compile information, including data from heritability, candidate-gene association, linkage and genome-wide association studies, on genetic factors that could influence physical fitness in the elderly.
Collapse
Affiliation(s)
- Nuria Garatachea
- Faculty of Health and Sport Science, University of Zaragoza, Huesca, Spain.
| | | |
Collapse
|
70
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
71
|
Stark M, Hodyl N, Butler M, Clifton V. Localisation and characterisation of uncoupling protein-2 (UCP2) in the human preterm placenta. Placenta 2012; 33:1020-5. [DOI: 10.1016/j.placenta.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
|
72
|
Montez P, Vázquez-Medina JP, Rodríguez R, Thorwald MA, Viscarra JA, Lam L, Peti-Peterdi J, Nakano D, Nishiyama A, Ortiz RM. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats. Endocrinology 2012; 153:5746-59. [PMID: 23087176 PMCID: PMC3512060 DOI: 10.1210/en.2012-1390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.
Collapse
Affiliation(s)
- Priscilla Montez
- Department of Molecular and Cellular Biology, University of California, Merced, CA 95343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ferro E, Visalli G, Civa R, La Rosa MA, Randazzo Papa G, Baluce B, D'Ascola DG, Piraino B, Salpietro C, Di Pietro A. Oxidative damage and genotoxicity biomarkers in transfused and untransfused thalassemic subjects. Free Radic Biol Med 2012; 53:1829-37. [PMID: 22995637 DOI: 10.1016/j.freeradbiomed.2012.08.592] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/23/2012] [Accepted: 08/24/2012] [Indexed: 12/16/2022]
Abstract
Chronic anemia and tissue hypoxia increase intestinal iron absorption and mitochondrial impairment in thalassemic patients. Regular blood transfusions improve hemoglobin levels but determine an iron overload that induces reactive oxygen species (ROS) overproduction. The aim of this study was to assess cellular oxidative damage by detection of ROS, lipid peroxidation, 8-oxo-dG, and mitochondrial transmembrane potential (Δψ(m)) in transfused and untransfused thalassemic patients. We have also evaluated genotoxicity by CBMN and comet assay. Our data show that ROS and lipid hydroperoxides are significantly higher in thalassemic patients than in controls, especially in untransfused thalassemia intermedia patients. Moreover, the latter have a significant decrease in Δψ(m) that highlights the energetic failure in hypoxic state and the ROS overproduction in the respiratory chain. 8-OHdG levels are higher in thalassemics than in controls, but do not differ significantly between the two patient groups. Both genotoxicity biomarkers highlight the mutagenic potential of hydroxyl radicals released by iron in the Fenton reaction. Values for percentage of DNA in the comet tail and micronuclei frequency, significantly higher in transfused patients, could also be due to active hepatitis C virus infection and to the many drug treatments. Our biomonitoring study confirms the oxidative damage in patients with thalassemia major and shows an unexpected cellular oxidative damage in untransfused thalassemic patients. In addition to iron overload, the results highlight the important role played by hypoxia-driven mitochondrial ROS overproduction in determining oxidative damage in β-thalassemias.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Medical and Surgical Pediatric Sciences, University Hospital of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:126-33. [DOI: 10.1016/j.cbpb.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 01/20/2023]
|
75
|
Chuang YC, Lin TK, Huang HY, Chang WN, Liou CW, Chen SD, Chang AYW, Chan SHH. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 2012; 9:184. [PMID: 22849356 PMCID: PMC3444895 DOI: 10.1186/1742-2094-9-184] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Woyda-Ploszczyca AM, Jarmuszkiewicz W. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. J Bioenerg Biomembr 2012; 44:525-38. [PMID: 22798183 DOI: 10.1007/s10863-012-9456-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/19/2012] [Indexed: 01/06/2023]
Abstract
We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.
Collapse
|
77
|
Abstract
Mitochondrial dysfunction contributes to the pathophysiology of acute neurologic disorders and neurodegenerative diseases. Bioenergetic failure is the primary cause of acute neuronal necrosis, and involves excitotoxicity-associated mitochondrial Ca(2+) overload, resulting in opening of the inner membrane permeability transition pore and inhibition of oxidative phosphorylation. Mitochondrial energy metabolism is also very sensitive to inhibition by reactive O(2) and nitrogen species, which modify many mitochondrial proteins, lipids, and DNA/RNA, thus impairing energy transduction and exacerbating free radical production. Oxidative stress and Ca(2+)-activated calpain protease activities also promote apoptosis and other forms of programmed cell death, primarily through modification of proteins and lipids present at the outer membrane, causing release of proapoptotic mitochondrial proteins, which initiate caspase-dependent and caspase-independent forms of cell death. This review focuses on three classifications of mitochondrial targets for neuroprotection. The first is mitochondrial quality control, maintained by the dynamic processes of mitochondrial fission and fusion and autophagy of abnormal mitochondria. The second includes targets amenable to ischemic preconditioning, e.g., electron transport chain components, ion channels, uncoupling proteins, and mitochondrial biogenesis. The third includes mitochondrial proteins and other molecules that defend against oxidative stress. Each class of targets exhibits excellent potential for translation to clinical neuroprotection.
Collapse
Affiliation(s)
- Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
78
|
Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not? Biochem Soc Trans 2012; 39:1305-9. [PMID: 21936806 DOI: 10.1042/bst0391305] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the last decade, the possibility that 'mild' uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even 'mild uncoupling', must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.
Collapse
|
79
|
Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, Ho SL. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Transl Neurodegener 2012; 1:3. [PMID: 23210978 PMCID: PMC3506996 DOI: 10.1186/2047-9158-1-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.
Collapse
Affiliation(s)
- Philip Wl Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Glushakova LG, Judge S, Cruz A, Pourang D, Mathews CE, Stacpoole PW. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts. Mol Genet Metab 2011; 104:255-60. [PMID: 21846590 PMCID: PMC3205311 DOI: 10.1016/j.ymgme.2011.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/13/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit.
Collapse
Affiliation(s)
- Lyudmyla G. Glushakova
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Sharon Judge
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Alex Cruz
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Deena Pourang
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32611
| |
Collapse
|
81
|
Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana. J Bioenerg Biomembr 2011; 43:717-27. [PMID: 21997226 DOI: 10.1007/s10863-011-9385-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/13/2011] [Indexed: 12/23/2022]
Abstract
We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.
Collapse
|
82
|
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011; 26:192-205. [PMID: 21670165 DOI: 10.1152/physiol.00046.2010] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondria couple respiration to ATP synthesis through an electrochemical proton gradient. Proton leak across the inner membrane allows adjustment of the coupling efficiency. The aim of this review is threefold: 1) introduce the unfamiliar reader to proton leak and its physiological significance, 2) review the role and regulation of uncoupling proteins, and 3) outline the prospects of proton leak as an avenue to treat obesity, diabetes, and age-related disease.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, United Kingdom
| | | |
Collapse
|
83
|
Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011; 51:1106-15. [PMID: 21762777 DOI: 10.1016/j.freeradbiomed.2011.06.022] [Citation(s) in RCA: 388] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada K1G8M5
| | | |
Collapse
|
84
|
Abstract
This review begins with the premise that an organism's life span is determined by the balance between two countervailing forces: (i) the sum of destabilizing effects and (ii) the sum of protective longevity-assurance processes. Against this backdrop, the role of electrophiles is discussed, both as destabilizing factors and as signals that induce protective responses. Because most biological macromolecules contain nucleophilic centers, electrophiles are particularly reactive and toxic in a biological context. The majority of cellular electrophiles are generated from polyunsaturated fatty acids by a peroxidation chain reaction that is readily triggered by oxygen-centered radicals, but propagates without further input of reactive oxygen species (ROS). Thus, the formation of lipid-derived electrophiles such as 4-hydroxynon-2-enal (4-HNE) is proposed to be relatively insensitive to the level of initiating ROS, but to depend mainly on the availability of peroxidation-susceptible fatty acids. This is consistent with numerous observations that life span is inversely correlated to membrane peroxidizability, and with the hypothesis that 4-HNE may constitute the mechanistic link between high susceptibility of membrane lipids to peroxidation and shortened life span. Experimental interventions that directly alter membrane composition (and thus their peroxidizability) or modulate 4-HNE levels have the expected effects on life span, establishing that the connection is not only correlative but causal. Specific molecular mechanisms are considered, by which 4-HNE could (i) destabilize biological systems via nontargeted reactions with cellular macromolecules and (ii) modulate signaling pathways that control longevity-assurance mechanisms.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
85
|
Rose G, Crocco P, D'Aquila P, Montesanto A, Bellizzi D, Passarino G. Two variants located in the upstream enhancer region of human UCP1 gene affect gene expression and are correlated with human longevity. Exp Gerontol 2011; 46:897-904. [PMID: 21827845 DOI: 10.1016/j.exger.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/31/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
Abstract
The brown fat specific UnCoupling Protein 1 (UCP1) is involved in thermogenesis, a process by which energy is dissipated as heat in response to cold stress and excess of caloric intake. Thermogenesis has potential implications for body mass control and cellular fat metabolism. In fact, in humans, the variability of the UCP1 gene is associated with obesity, fat gain and metabolism. Since regulation of metabolism is one of the key-pathways in lifespan extension, we tested the possible effects of UCP1 variability on survival. Two polymorphisms (A-3826G and C-3740A), falling in the upstream promoter region of UCP1, were analyzed in a sample of 910 subjects from southern Italy (475 women and 435 men; age range 40-109). By analyzing haplotype specific survival functions we found that the A-C haplotype favors survival in the elderly. Consistently, transfection experiments showed that the luciferase activity of the construct containing the A-C haplotype was significantly higher than that containing the G-A haplotype. Interestingly, the different UCP1 haplotypes responded differently to hormonal stimuli. The results we present suggest a correlation between the activity of UCP1 and human survival, indicating once again the intricacy of mechanisms involved in energy production, storage and consumption as the key to understanding human aging and longevity.
Collapse
Affiliation(s)
- Giuseppina Rose
- Department of Cell Biology, University of Calabria, Rende, Italy.
| | | | | | | | | | | |
Collapse
|
86
|
Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1095-105. [PMID: 21565164 DOI: 10.1016/j.bbabio.2011.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.
Collapse
|
87
|
Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, Harper ME. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 2011; 286:21865-75. [PMID: 21515686 DOI: 10.1074/jbc.m111.240242] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial uncoupling proteins 2 and 3 (UCP2 and -3) are known to curtail oxidative stress and participate in a wide array of cellular functions, including insulin secretion and the regulation of satiety. However, the molecular control mechanism(s) governing these proteins remains elusive. Here we reveal that UCP2 and UCP3 contain reactive cysteine residues that can be conjugated to glutathione. We further demonstrate that this modification controls UCP2 and UCP3 function. Both reactive oxygen species and glutathionylation were found to activate and deactivate UCP3-dependent increases in non-phosphorylating respiration. We identified both Cys(25) and Cys(259) as the major glutathionylation sites on UCP3. Additional experiments in thymocytes from wild-type and UCP2 null mice demonstrated that glutathionylation similarly diminishes non-phosphorylating respiration. Our results illustrate that UCP2- and UCP3-mediated state 4 respiration is controlled by reversible glutathionylation. Altogether, these findings advance our understanding of the roles UCP2 and UCP3 play in modulating metabolic efficiency, cell signaling, and oxidative stress processes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | | | | | |
Collapse
|
88
|
Cardoso S, Santos RX, Carvalho C, Correia S, Santos MS, Moreira PI. Mitochondrial Uncoupling Proteins and Oxidative Stress: Implications for Diabetes and Neurodegeneration. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Wojtczak L, Lebiedzińska M, Suski JM, Więckowski MR, Schönfeld P. Inhibition by purine nucleotides of the release of reactive oxygen species from muscle mitochondria: indication for a function of uncoupling proteins as superoxide anion transporters. Biochem Biophys Res Commun 2011; 407:772-6. [PMID: 21439941 DOI: 10.1016/j.bbrc.2011.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 02/07/2023]
Abstract
Release of reactive oxygen species (ROS), measured as the sum of hydrogen peroxide (H₂O₂) and superoxide anion radical (O₂·⁻), from respiring rat heart and skeletal muscle mitochondria was significantly decreased by millimolar concentrations of GTP or GDP. Attempts to differentiate between the two forms of ROS showed that the release of O₂·⁻ rather than that of H₂O₂ was affected. Meanwhile, intramitochondrial ROS accumulation, measured by inactivation of aconitase, increased. These results suggest that guanine nucleotides inhibit the release of O₂·⁻ from mitochondria. As these nucleotides are known inhibitors of uncoupling proteins (UCPs), it is proposed that UCPs may function as carriers of O₂·⁻, thus enabling its removal from the matrix compartment.
Collapse
Affiliation(s)
- Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
90
|
Tseng YC, Chen RD, Lucassen M, Schmidt MM, Dringen R, Abele D, Hwang PP. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish. PLoS One 2011; 6:e18180. [PMID: 21464954 PMCID: PMC3064598 DOI: 10.1371/journal.pone.0018180] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 02/22/2011] [Indexed: 12/13/2022] Open
Abstract
Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure.
Collapse
Affiliation(s)
- Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
- Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Biological Oceanography, Kiel, Germany
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
- Institute of Zoology, National Taiwan University, Taipei City, Taiwan
| | - Magnus Lucassen
- Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Maike M. Schmidt
- Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Doris Abele
- Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
91
|
Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 2011; 34 Suppl 1:S7-16. [PMID: 20935668 DOI: 10.1038/ijo.2010.177] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Only with the development of the uncoupling protein 1 (UCP1)-ablated mouse has it become possible to strictly delineate the physiological significance of the thermogenic capacity of brown adipose tissue. Considering the presence of active brown adipose tissue in adult humans, these insights may have direct human implications. In addition to classical nonshivering thermogenesis, all adaptive adrenergic thermogeneses, including diet-induced thermogenesis, is fully dependent on brown adipocyte activity. Any weight-reducing effect of β(3)-adrenergic agonists is fully dependent on UCP1 activity, as is any weight-reducing effect of leptin (in excess of its effect on reduction of food intake). Consequently, in the absence of the thermogenic activity of brown adipose tissue, obesity develops spontaneously. The ability of brown adipose tissue to contribute to glucose disposal is also mainly related to thermogenic activity. However, basal metabolic rate, cold-induced thermogenesis, acute cold tolerance, fevers, nonadaptive adrenergic thermogenesis and processes such as angiogenesis in brown adipose tissue itself are not dependent on UCP1 activity. Whereas it is likely that these conclusions are also qualitatively valid for adult humans, the quantitative significance of brown adipose tissue for human metabolism--and the metabolic consequences for a single individual possessing more or less brown adipose tissue--awaits clarification.
Collapse
Affiliation(s)
- B Cannon
- Department of Physiology, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
92
|
Di Pietro A, Visalli G, Baluce B, Micale RT, La Maestra S, Spataro P, De Flora S. Multigenerational mitochondrial alterations in pneumocytes exposed to oil fly ash metals. Int J Hyg Environ Health 2011; 214:138-44. [DOI: 10.1016/j.ijheh.2010.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
93
|
Development of Chromanes as Novel Inhibitors of the Uncoupling Proteins. ACTA ACUST UNITED AC 2011; 18:264-74. [DOI: 10.1016/j.chembiol.2010.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/15/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022]
|
94
|
Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc Natl Acad Sci U S A 2010; 108:403-8. [PMID: 21173252 DOI: 10.1073/pnas.1017884108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brown adipocytes are multilocular lipid storage cells that play a crucial role in nonshivering thermogenesis. Uncoupling protein 1 (UCP1) is a unique feature of brown fat cells that allows heat generation on sympathetic nervous system stimulation. As conventional transcriptional factors that are activated in various signaling pathways, liver-X receptors (LXRs) play important roles in many physiological processes. The role of LXRs in the regulation of energy homeostasis remains unclear, however. Female WT, LXRαβ(-/-), LXRα(-/-), and LXRβ(-/-) mice were fed with either a normal diet (ND) or a high-carbohydrate diet (HCD) supplemented with or without GW3965-LXR agonist. LXRαβ(-/-) mice exhibited higher energy expenditure (EE) as well as higher UCP1 expression in brown adipose tissue (BAT) compared with WT mice on the HCD. In addition, long-term treatment of WT mice with GW3965 showed lower EE at thermoneutrality (30 °C) and lower Ucp1 expression level in BAT. Furthermore, H&E staining of the BAT of LXRαβ(-/-) mice exhibited decreased lipid droplet size compared with WT mice on the HCD associated with a more intense UCP1-positive reaction. Quantification of triglyceride (TG) content in BAT showed lower TG accumulation in LXRβ(-/-) mice compared with WT mice. Surprisingly, GW3965 treatment increased TG content (twofold) in the BAT of WT and LXRα(-/-) mice but not in LXRβ(-/-) mice. Furthermore, glucose transporter (GLUT4) in the BAT of LXRα(-/-) and LXRβ(-/-) mice was sixfold and fourfold increased, respectively, compared with WT mice on the ND. These findings suggest that LXRα as well as LXRβ could play a crucial role in the regulation of energy homeostasis in female mice and may be a potential target for the treatment of obesity and energy regulation.
Collapse
|
95
|
Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:664-78. [PMID: 21111705 DOI: 10.1016/j.bbabio.2010.11.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Obesity is a complex disease caused by the interaction of a myriad of genetic, dietary, lifestyle and environmental factors, which favors a chronic positive energy balance, leading to increased body fat mass. There is emerging evidence of a strong association between obesity and an increased risk of cancer. However, the mechanisms linking both diseases are not fully understood. Here, we analyze the current knowledge about the potential contribution that expanding adipose tissue in obesity could make to the development of cancer via dysregulated secretion of pro-inflammatory cytokines, chemokines and adipokines such as TNF-α, IL-6, leptin, adiponectin, visfatin and PAI-1. Dietary factors play an important role in the risk of suffering obesity and cancer. The identification of bioactive dietary factors or substances that affect some of the components of energy balance to prevent/reduce weight gain as well as cancer is a promising avenue of research. This article reviews the beneficial effects of some bioactive food molecules (n-3 PUFA, CLA, resveratrol and lipoic acid) in energy metabolism and cancer, focusing on the molecular mechanisms involved, which may provide new therapeutic targets in obesity and cancer.
Collapse
|
96
|
Shuai Y, Guo J, Dong Y, Zhong W, Xiao P, Zhou T, Zhang L, Peng S. Global gene expression profiles of MT knockout and wild-type mice in the condition of doxorubicin-induced cardiomyopathy. Toxicol Lett 2010; 200:77-87. [PMID: 21040762 DOI: 10.1016/j.toxlet.2010.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
Increasing evidence from in vivo and in vitro studies has indicated that MT exerts protective effects against DOX-induced cardiotoxicity; however the underlying precise mechanisms still remain an enigma. Therefore, the present study was designed using MT knockout mice in concert with genomic approaches to explore the possible molecular and cellular mechanisms in terms of the genetic network changes. MT-I/II null (MT⁻/⁻) mice and corresponding wild-type mice (MT+/+) were administrated with a single dose of DOX (15 mg/kg, i.p.) or equal volume of saline. Animals were sacrificed on the 4th day after DOX administration and samples were collected for further analyses. Global gene expression profiles of cardiac mRNA from two genotype mice revealed that 381 characteristically MT-responsive genes were identified between MT+/+ mice and MT⁻/⁻ mice in response to DOX, including fos, ucp3, car3, atf3, map3k6, etc. Functional analysis implied MAPK signaling pathway, p53 signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway, Wnt signaling pathway, etc. might be involved to mediate the protection of DOX cardiomyopathy by MT. Results from the present study not only validated the previously reported possible mechanisms of MT protection against DOX toxicity, but also provided new clues into the molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Yi Shuai
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Science, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:42-52. [PMID: 20800569 DOI: 10.1016/j.bbabio.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/22/2022]
Abstract
We compared the influence of different adenine and guanine nucleotides on the free fatty acid-induced uncoupling protein (UCP) activity in non-phosphorylating Acanthamoeba castellanii mitochondria when the membranous ubiquinone (Q) redox state was varied. The purine nucleotides exhibit an inhibitory effect in the following descending order: GTP>ATP>GDP>ADP≫GMP>AMP. The efficiency of guanine and adenine nucleotides to inhibit UCP-sustained uncoupling in A. castellanii mitochondria depends on the Q redox state. Inhibition by purine nucleotides can be increased with decreasing Q reduction level (thereby ubiquinol, QH₂ concentration) even with nucleoside monophosphates that are very weak inhibitors at the initial respiration. On the other hand, the inhibition can be alleviated with increasing Q reduction level (thereby QH₂ concentration). The most important finding was that ubiquinol (QH₂) but not oxidised Q functions as a negative regulator of UCP inhibition by purine nucleotides. For a given concentration of QH₂, the linoleic acid-induced GTP-inhibited H(+) leak was the same for two types of A. castellanii mitochondria that differ in the endogenous Q content. When availability of the inhibitor (GTP) or the negative inhibition modulator (QH₂) was changed, a competitive influence on the UCP activity was observed. QH₂ decreases the affinity of UCP for GTP and, vice versa, GTP decreases the affinity of UCP for QH₂. These results describe the kinetic mechanism of regulation of UCP affinity for purine nucleotides by endogenous QH₂ in the mitochondria of a unicellular eukaryote.
Collapse
|
98
|
Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Ageing Dev 2010; 131:463-72. [PMID: 20363244 PMCID: PMC2924931 DOI: 10.1016/j.mad.2010.03.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 03/17/2010] [Accepted: 03/29/2010] [Indexed: 12/21/2022]
Abstract
The quest to understand why we age has given rise to numerous lines of investigation that have gradually converged to include metabolic control by mitochondrial activity as a major player. That is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production. Uncoupling can also occur through pharmacological induction of proton leak and activity of the uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how mitochondrial uncoupling impacts lifespan.
Collapse
|
99
|
Aguirre E, Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1716-26. [PMID: 20599679 DOI: 10.1016/j.bbabio.2010.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 12/17/2022]
Abstract
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | |
Collapse
|
100
|
Rodrigues AS, Lacerda B, Moreno AJM, Ramalho-Santos J. Proton leak modulation in testicular mitochondria affects reactive oxygen species production and lipid peroxidation. Cell Biochem Funct 2010; 28:224-31. [PMID: 20235330 DOI: 10.1002/cbf.1644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial proton leak can account for almost 20% of oxygen consumption and it is generally accepted that this process contributes to basal metabolism. In order to clarify the role of basal proton leak in testicular mitochondria, we performed a comparative study with kidney and liver mitochondrial fractions. Proton leak stimulated by linoleic acid and inhibited by guanosine diphosphate (GDP) was detected, in a manner that was correlated with protein levels for uncoupling protein 2 (UCP2) in the three fractions. Modulation of proton leak had an effect on reactive oxygen species production as well as on lipid peroxidation, and this effect was also tissue-dependent. However, a possible role for the adenine nucleotide transporter (ANT) in testicular mitochondria proton leak could not be excluded. The modulation of proton leak appears as a possible and attractive target to control oxidative stress with implications for male gametogenesis.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|