51
|
Kaltenegger M, Kremser J, Frewein MPK, Ziherl P, Bonthuis DJ, Pabst G. Intrinsic lipid curvatures of mammalian plasma membrane outer leaflet lipids and ceramides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183709. [PMID: 34332987 DOI: 10.1016/j.bbamem.2021.183709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023]
Abstract
We developed a global X-ray data analysis method to determine the intrinsic curvatures of lipids hosted in inverted hexagonal phases. In particular, we combined compositional modelling with molecular shape-based arguments to account for non-linear mixing effects of guest-in-host lipids on intrinsic curvature. The technique was verified by all-atom molecular dynamics simulations and applied to sphingomyelin and a series of phosphatidylcholines and ceramides with differing composition of the hydrocarbon chains. We report positive lipid curvatures for sphingomyelin and all phosphatidylcholines with disaturated and monounsaturated hydrocarbons. Phosphatidylcholines with diunsaturated hydrocarbons in turn yielded intrinsic lipid curvatures with negative values. All ceramides, with chain lengths varying between C2:0 and C24:0, displayed significant negative lipid curvature values. Moreover, we report non-additive mixing for C2:0 ceramide and sphingomyelin. This suggests for sphingolipids that in addition to lipid headgroup and hydrocarbon chain volumes also lipid-specific interactions are important contributors to membrane curvature stress.
Collapse
Affiliation(s)
- Michael Kaltenegger
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Johannes Kremser
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; Institut Laue-Langevin, 38043 Grenoble, France
| | - Primož Ziherl
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Douwe J Bonthuis
- Graz University of Technology, Institute of Theoretical and Computational Physics, NAWI Graz, 8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
52
|
Why Do Tethered-Bilayer Lipid Membranes Suit for Functional Membrane Protein Reincorporation? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane proteins (MPs) are essential for cellular functions. Understanding the functions of MPs is crucial as they constitute an important class of drug targets. However, MPs are a challenging class of biomolecules to analyze because they cannot be studied outside their native environment. Their structure, function and activity are highly dependent on the local lipid environment, and these properties are compromised when the protein does not reside in the cell membrane. Mammalian cell membranes are complex and composed of different lipid species. Model membranes have been developed to provide an adequate environment to envisage MP reconstitution. Among them, tethered-Bilayer Lipid Membranes (tBLMs) appear as the best model because they allow the lipid bilayer to be decoupled from the support. Thus, they provide a sufficient aqueous space to envisage the proper accommodation of large extra-membranous domains of MPs, extending outside. Additionally, as the bilayer remains attached to tethers covalently fixed to the solid support, they can be investigated by a wide variety of surface-sensitive analytical techniques. This review provides an overview of the different approaches developed over the last two decades to achieve sophisticated tBLMs, with a more and more complex lipid composition and adapted for functional MP reconstitution.
Collapse
|
53
|
Godoy-Hernandez A, McMillan DGG. The Profound Influence of Lipid Composition on the Catalysis of the Drug Target NADH Type II Oxidoreductase. MEMBRANES 2021; 11:membranes11050363. [PMID: 34067848 PMCID: PMC8156991 DOI: 10.3390/membranes11050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Lipids play a pivotal role in cellular respiration, providing the natural environment in which an oxidoreductase interacts with the quinone pool. To date, it is generally accepted that negatively charged lipids play a major role in the activity of quinone oxidoreductases. By changing lipid compositions when assaying a type II NADH:quinone oxidoreductase, we demonstrate that phosphatidylethanolamine has an essential role in substrate binding and catalysis. We also reveal the importance of acyl chain composition, specifically c14:0, on membrane-bound quinone-mediated catalysis. This demonstrates that oxidoreductase lipid specificity is more diverse than originally thought and that the lipid environment plays an important role in the physiological catalysis of membrane-bound oxidoreductases.
Collapse
|
54
|
Mirheydari M, Putta P, Mann EK, Kooijman EE. Interaction of Two Amphipathic α-Helix Bundle Proteins, ApoLp-III and ApoE 3, with the Oil-Aqueous Interface. J Phys Chem B 2021; 125:4746-4756. [PMID: 33939404 DOI: 10.1021/acs.jpcb.1c00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein-lipid interactions govern the structure and function of lipoprotein particles, which transport neutral lipids and other hydrophobic cargo through the blood stream. Apolipoproteins cover the surface of lipoprotein particles, including low-density (LDL) and high-density (HDL) lipoproteins, and determine their function. Previous work has focused on small peptides derived from these apolipoproteins or used such artificial lipid systems as Langmuir monolayers or the lipid disc assay to determine how apolipoproteins interact with the neutral lipid interface. Here, we focus on a recurring protein domain found in many neutral lipid-binding proteins, the amphipathic α-helix bundle. We use liquid droplet tensiometry to investigate protein-lipid interactions on an oil droplet, which mimics the real lipoprotein interface. The N-terminus of apoE 3 and full-length apoLp-III serve as model proteins. We find that each protein interacts with lipid monolayers at the oil-aqueous interface in unique ways. For the first time, we show that helix bundle unfolding is critical for proper protein insertion into the lipid monolayer at the oil-aqueous interface and that specific membrane lipids promote the rebinding of protein upon fluctuation in droplet size. These results shed new light on how amphipathic apolipoprotein α-helix bundles interact with neutral lipid particles.
Collapse
|
55
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
56
|
Sharma A, Flora SJS. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9074206. [PMID: 34007410 PMCID: PMC8102094 DOI: 10.1155/2021/9074206] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently recognized regulated form of cell death characterized by accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides and loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). This iron-dependent form of cell death is morphologically, biochemically, and also genetically discrete from other regulated cell death processes, which include autophagy, apoptosis, necrosis, and necroptosis. Ferroptosis is defined by three hallmarks, defined as the loss of lipid peroxide repair capacity by GPX4, the bioavailability of redox-active iron, and oxidation of polyunsaturated fatty acid- (PUFA-) containing phospholipids. Experimentally, it can be induced by many compounds (e.g., erastin, Ras-selective lethal small-molecule 3, and buthionine sulfoximine) and also can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and deferoxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin and liproxstatin). The sensitivity of a cell towards ferroptotic cell death is tightly associated with the metabolism of amino acid, iron, and polyunsaturated fatty acid metabolism, and also with the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis sensitivity is also governed by many regulatory proteins, which also link ferroptosis to the function of key tumour suppressor pathways. In this review, we highlight the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its association with other cellular metabolic processes.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| |
Collapse
|
57
|
The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces. MEMBRANES 2021; 11:membranes11040265. [PMID: 33917451 PMCID: PMC8067514 DOI: 10.3390/membranes11040265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic α-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal α-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic α-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.
Collapse
|
58
|
Tarasenko D, Meinecke M. Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:295-306. [PMID: 33527201 PMCID: PMC8071792 DOI: 10.1007/s00249-021-01501-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Cellular membranes can adopt a plethora of complex and beautiful shapes, most of which are believed to have evolved for a particular physiological reason. The closely entangled relationship between membrane morphology and cellular physiology is strikingly seen in membrane trafficking pathways. During clathrin-mediated endocytosis, for example, over the course of a minute, a patch of the more or less flat plasma membrane is remodeled into a highly curved clathrin-coated vesicle. Such vesicles are internalized by the cell to degrade or recycle plasma membrane receptors or to take up extracellular ligands. Other, steadier, membrane morphologies can be observed in organellar membranes like the endoplasmic reticulum or mitochondria. In the case of mitochondria, which are double membrane-bound, ubiquitous organelles of eukaryotic cells, especially the mitochondrial inner membrane displays an intricated ultrastructure. It is highly folded and consequently has a much larger surface than the mitochondrial outer membrane. It can adopt different shapes in response to cellular demands and changes of the inner membrane morphology often accompany severe diseases, including neurodegenerative- and metabolic diseases and cancer. In recent years, progress was made in the identification of molecules that are important for the aforementioned membrane remodeling events. In this review, we will sum up recent results and discuss the main players of membrane remodeling processes that lead to the mitochondrial inner membrane ultrastructure and in clathrin-mediated endocytosis. We will compare differences and similarities between the molecular mechanisms that peripheral and integral membrane proteins use to deform membranes.
Collapse
Affiliation(s)
- Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
| |
Collapse
|
59
|
Voskoboynikova N, Margheritis EG, Kodde F, Rademacher M, Schowe M, Budke-Gieseking A, Psathaki OE, Steinhoff HJ, Cosentino K. Evaluation of DIBMA nanoparticles of variable size and anionic lipid content as tools for the structural and functional study of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183588. [PMID: 33662362 DOI: 10.1016/j.bbamem.2021.183588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022]
Abstract
Amphiphilic maleic acid-containing polymers allow for the direct extraction of membrane proteins into stable, homogenous, water-soluble copolymer/lipid nanoparticles without the use of detergents. By adjusting the polymer/lipid ratio, the size of the nanoparticles can be tuned at convenience for the incorporation of protein complexes of different size. However, an increase in the size of the lipid nanoparticles may correlate with increased sample heterogeneity, thus hampering their application to spectroscopic and structural techniques where highly homogeneous samples are desirable. In addition, size homogeneity can be affected by low liposome solubilization efficiency by DIBMA, which carries a negative charge, in the presence of high lipid charge density. In this work, we apply biophysical tools to characterize the size and size heterogeneity of large (above 15 nm) lipid nanoparticles encased by the diisobutylene/maleic acid (DIBMA) copolymer at different DIBMA/lipid ratios and percentages of anionic lipids. Importantly, for nanoparticle preparations in the diameter range of 40 nm or below, the size homogeneity of the DIBMA/lipid nanoparticles (DIBMALPs) remains unchanged. In addition, we show that anionic lipids do not affect the production, size and size homogeneity of DIBMALPs. Furthermore, they do not affect the overall lipid dynamics in the membrane, and preserve the functionality of an enclosed membrane protein. This work strengthens the suitability of DIBMALPs as universal, native-like lipid environments for functional studies of membrane proteins and provide useful insight on the suitability of these systems for those structural techniques requiring highly homogeneous sample preparations.
Collapse
Affiliation(s)
| | | | - Felix Kodde
- Department of Physics, University of Osnabrück, 49069 Osnabrück, Germany
| | - Malte Rademacher
- Department of Physics, University of Osnabrück, 49069 Osnabrück, Germany
| | - Maurice Schowe
- Department of Physics, University of Osnabrück, 49069 Osnabrück, Germany
| | - Annette Budke-Gieseking
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Germany
| | - Olympia-Ekaterini Psathaki
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Germany
| | | | - Katia Cosentino
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Germany.
| |
Collapse
|
60
|
Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. MEMBRANES 2021; 11:membranes11020155. [PMID: 33671740 PMCID: PMC7926488 DOI: 10.3390/membranes11020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| | - Paola Bartoccioni
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| |
Collapse
|
61
|
Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. NANOSCALE HORIZONS 2021; 6:78-94. [PMID: 33400747 DOI: 10.1039/d0nh00605j] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liposomes are a unique platform for drug delivery, and a number of liposomal formulations have already been commercialized. Doxil is a representative example, which uses PEGylated liposomes to load doxorubicin for cancer therapy. Its delivery relies on the enhanced permeability and retention (EPR) effect or passive targeting. Drug loading can be achieved using both standard liposomes and also those containing a solid core such as mesoporous silica and poly(lactide-co-glycolide) (PLGA). Developments have also been made on active targeted delivery using bioaffinity ligands such as small molecules, antibodies, peptides and aptamers. Compared to other types of nanoparticles, the surface of liposomes is fluid, allowing dynamic organization of targeting ligands to achieve optimal binding to cell surface receptors. This review article summarizes development of liposomal targeted drug delivery systems, with an emphasis on the biophysical properties of lipids. In both passive and active targeting, the effects of liposome size, charge, fluidity, rigidity, head-group chemistry and PEGylation are discussed along with recent examples. Most of the examples are focused on targeting tumors or cancer cells. Finally, a few examples of commercialized formulations are described, and some future research opportunities are discussed.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | |
Collapse
|
62
|
Liu J, Bu B, Crowe M, Li D, Diao J, Ji B. Membrane packing defects in synaptic vesicles recruit complexin and synuclein. Phys Chem Chem Phys 2021; 23:2117-2125. [PMID: 33437978 DOI: 10.1039/d0cp03546g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexin-1 (Cpx) and α-synuclein (α-Syn) are involved in neurotransmitter release through an interaction with synaptic vesicles (SVs). Recent studies demonstrated that Cpx and α-Syn preferentially associate with highly curved membranes, like SVs, to correctly position them for fusion. Here, based on recent experimental results, to further propose a possible explanation for this mechanism, we performed in silico simulations probing interactions between Cpx or α-Syn and membranes of varying curvature. We found that the preferential association is attributed to smaller, curved membranes containing more packing defects that expose hydrophobic acyl tails, which may favorably interact with hydrophobic residues of Cpx and α-Syn. The number of membrane defects is proportional to the curvature and the size can be regulated by cholesterol.
Collapse
Affiliation(s)
- Jie Liu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
63
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
64
|
Yano Y, Watanabe Y, Matsuzaki K. Thermodynamic and kinetic stabilities of transmembrane helix bundles as revealed by single-pair FRET analysis: Effects of the number of membrane-spanning segments and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183532. [PMID: 33316240 DOI: 10.1016/j.bbamem.2020.183532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
The tertiary structures and conformational dynamics of transmembrane (TM) helical proteins are maintained by the interhelical interaction network in membranes, although it is complicated to analyze the underlying driving forces because the amino acid sequences can involve multiple and various types of interactions. To obtain insights into basal and common effects of the number of membrane-spanning segments and membrane cholesterol, we measured stabilities of helix bundles composed of simple TM helices (AALALAA)3 (1TM) and (AALALAA)3-G5-(AALALAA)3 (2TM). Association-dissociation dynamics for 1TM-1TM, 1TM-2TM, and 2TM-2TM pairs were monitored to compare stabilities of 2-, 3-, and 4-helical bundles, respectively, with single-pair fluorescence resonance energy transfer (sp-FRET) in liposome membranes. Both thermodynamic and kinetic stabilities of the helix bundles increased with a greater number of membrane-spanning segments in POPC. The presence of 30 mol% cholesterol strongly enhanced the formation of 1TM-1TM and 1TM-2TM bundles (~ - 9 kJ mol-1), whereas it only weakly stabilized the 2TM-2TM bundle (~ - 3 kJ mol-1). Fourier transform infrared-polarized attenuated total reflection (ATR-FTIR) spectroscopy revealed an ~30° tilt of the helix axis relative to bilayer normal for the 1TM-2TM pair in the presence of cholesterol, suggesting the formation of a tilted helix bundle to release high lateral pressure at the center of cholesterol-containing membranes. These results demonstrate that the number of membrane-spanning segments affects the stability and structure of the helix bundle, and their cholesterol-dependences. Such information is useful to understand the basics of folding and assembly of multispanning TM proteins.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
65
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|
66
|
Adeagbo BA, Akinlalu AO, Phan T, Guderian J, Boukes G, Willenburg E, Fenner C, Bolaji OO, Fox CB. Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved In Vitro Th1-Type Cytokine Recall Responses in Human Whole Blood. ACS OMEGA 2020; 5:31306-31313. [PMID: 33324841 PMCID: PMC7726955 DOI: 10.1021/acsomega.0c04774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) remains a foremost poverty-related disease with a high rate of mortality despite global immunization with Bacille Calmette-Guérin (BCG). Several adjuvanted recombinant proteins are in clinical development for TB to protect against the disease in infants and adults. Nevertheless, simple mixing of adjuvants with antigens may not be optimal for enhancing the immune response due to poor association. Hence, co-delivery of adjuvants with antigens has been advocated for improved immune response. This report, therefore, presents a strategy of using chemical conjugation to co-deliver an adjuvanted recombinant protein TB vaccine (ID93 + GLA-LSQ). Chemical conjugation involving glutaraldehyde (GA) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was used to associate the antigen (ID93) to the modified liposome (mGLA-LSQ). The physicochemical stability of the formulations was evaluated using high-performance liquid chromatography (HPLC) (adjuvant content), dynamic light scattering (DLS, particle size analysis), and sodium dodecyl sulfate-polyacrylamide gel (SDS) electrophoresis (protein analysis). The bioactivity was assessed by cytokine stimulation using fresh whole blood from 10 healthy donors. The conjugates of ID93 + mGLA_LSQ maintained liposomal and protein integrity with the two protein chemistries. The GLA and QS21 content of the vaccine were also stable for 3 months. However, only the glutaraldehyde conjugates provoked significant secretion of interleukin-2 (210.4 ± 11.45 vs 166.7 ± 9.15; p = 0.0059), interferon-gamma (210.5 ± 14.79 vs 144.1 ± 4.997; p = 0.0011), and tumor necrosis factor alpha (2075 ± 46.8 vs 1456 ± 144.8; p = 0.0082) compared to simple mixing. Conjugation of recombinant protein (ID93) to the liposome (mGLA_LSQ) through chemical conjugation resulted in a stable vaccine formulation, which could facilitate co-delivery of the subunit vaccine to promote a robust immune response.
Collapse
Affiliation(s)
- Babatunde Ayodeji Adeagbo
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Akintunde Oluseto Akinlalu
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Tony Phan
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Jeff Guderian
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Gerhardt Boukes
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Elize Willenburg
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Caryn Fenner
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Oluseye Oladotun Bolaji
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Christopher B. Fox
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
- Department
of Global Health, University of Washington, 3980 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
67
|
Prabudiansyah I, van der Valk R, Aubin-Tam ME. Reconstitution and functional characterization of the FtsH protease in lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183526. [PMID: 33278347 DOI: 10.1016/j.bbamem.2020.183526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, saturation, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length influences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.
Collapse
Affiliation(s)
- Irfan Prabudiansyah
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Ramon van der Valk
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands.
| |
Collapse
|
68
|
Zenak S, Sabeur S, López-Cascales J. Study of the insertion of a small symmetric star polymer into different phospholipid bilayers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol 2020; 36:383-397. [PMID: 33242213 DOI: 10.14670/hh-18-286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain injury is accompanied by serious iron metabolism disorder and oxidative stress. As a novel form of regulated cell death (RCD) depending on lipid peroxidation caused by iron overload, ferroptosis (FPT) further aggravates brain injury, which is different from apoptosis, autophagy and other traditional cell death in terms of biochemistry, morphology and genetics. Noteworthy, transcriptional regulator NRF2 plays a key role in the cell antioxidant system, and many genes related to FPT are under the control of NRF2, including genes for iron regulation, thiol-dependent antioxidant system, enzymatic detoxification of RCS and carbonyls, NADPH regeneration and ROS sources from mitochondria or extra-mitochondria, which place NRF2 in the key position of regulating the ferroptotic death. Importantly, NRF2 can reduce iron load and resist FPT. In the future, it is expected to open up a new way to treat brain injury by targeting NRF2 to alleviate FPT in brain.
Collapse
Affiliation(s)
- Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yaxuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Sheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
70
|
Corin K, Bowie JU. How bilayer properties influence membrane protein folding. Protein Sci 2020; 29:2348-2362. [PMID: 33058341 DOI: 10.1002/pro.3973] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
The question of how proteins manage to organize into a unique three-dimensional structure has been a major field of study since the first protein structures were determined. For membrane proteins, the question is made more complex because, unlike water-soluble proteins, the solvent is not homogenous or even unique. Each cell and organelle has a distinct lipid composition that can change in response to environmental stimuli. Thus, the study of membrane protein folding requires not only understanding how the unfolded chain navigates its way to the folded state, but also how changes in bilayer properties can affect that search. Here we review what we know so far about the impact of lipid composition on bilayer physical properties and how those properties can affect folding. A better understanding of the lipid bilayer and its effects on membrane protein folding is not only important for a theoretical understanding of the folding process, but can also have a practical impact on our ability to work with and design membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
71
|
Faulkner C, de Leeuw NH. In silico studies of the interactions between propofol and fentanyl using Gaussian accelerated molecular dynamics. J Biomol Struct Dyn 2020; 40:312-324. [PMID: 32909527 DOI: 10.1080/07391102.2020.1814415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fentanyl is a potent opioid analgesic, which for decades has been used routinely in surgical and therapeutic applications. In addition to its analgesic properties, fentanyl also possesses anesthetic properties, which are not well understood. Fentanyl is used in the general anesthesia process to induce and maintain anesthesia in combination with the general anesthetic propofol, which fentanyl is known to potentiate. As the atomic-level mechanism behind the potentiation of propofol is unclear, we have used classical molecular dynamics simulations to study the interactions of these drugs with the Gloeobacter violaceus ion channel (GLIC). This ion channel has been identified as a target for many anesthetic drugs. We identified multiple binding sites using flooding style and Gaussian accelerated molecular dynamics (GaMD) simulations, showing fentanyl acting as a stabiliser that holds propofol within binding sites. Our extensive GaMD simulations were also able to show the pathway by which propofol blocks the channel pore, which has previously been suggested as a mechanism for ion channel modulation. General anesthesia is a multi-drug process and this study provides the first insight into the interactions between two different drugs in the anesthesia process in a relevant biological environment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Nora H de Leeuw
- School of Chemistry, Cardiff University, Cardiff, UK.,School of Chemistry, University of Leeds, Leeds, UK
| |
Collapse
|
72
|
Wilhelm C, Goss R, Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153246. [PMID: 32777580 DOI: 10.1016/j.jplph.2020.153246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the '80 s and '90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a "controlled neighborhood" replaced the model of fluidity by the model of a "mixed crystal structure". In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Collapse
Affiliation(s)
- Christian Wilhelm
- Leipzig University, Institute of Biology, SenProf Algal Biotechnology, Permoserstr. 15, 04315, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| | - Reimund Goss
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Gyözö Garab
- Biological Research Centre, Institute of Plant Biology, Temesvári körút 62, H-6726, Szeged, Hungary; University of Ostrava, Department of Physics, Faculty of Science, Chittussiho 10, CZ-710 00, Ostrava, Slezská Ostrava, Czech Republic
| |
Collapse
|
73
|
Largo E, Queralt-Martín M, Carravilla P, Nieva JL, Alcaraz A. Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions. Bioelectrochemistry 2020; 137:107641. [PMID: 32889489 PMCID: PMC7444495 DOI: 10.1016/j.bioelechem.2020.107641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Classic swine fever is a highly contagious and often fatal viral disease that is caused by the classical swine fever virus (CSFV). Protein p7 of CFSV is a prototype of viroporin, a family of small, highly hydrophobic proteins postulated to modulate virus-host interactions during the processes of virus entry, replication and assembly. It has been shown that CSFV p7 displays substantial ion channel activity when incorporated into membrane systems, but a deep rationalization of the size and dynamics of the induced pores is yet to emerge. Here, we use high-resolution conductance measurements and current fluctuation analysis to demonstrate that CSFV p7 channels are ruled by equilibrium conformational dynamics involving protein-lipid interactions. Atomic force microscopy (AFM) confirms the existence of a variety of pore sizes and their tight regulation by solution pH. We conclude that p7 viroporin forms subnanometric channels involved in virus propagation, but also much larger pores (1-10 nm in diameter) with potentially significant roles in virus pathogenicity. Our findings provide new insights into the sources of noise in protein electrochemistry and demonstrate the existence of slow complex dynamics characteristic of crowded systems like biomembrane surfaces.
Collapse
Affiliation(s)
- Eneko Largo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain; Department of Immunology, Microbiology and Parasitology, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - Pablo Carravilla
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain; Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, Jena, Germany
| | - José L Nieva
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
74
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
75
|
Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V, Garab G. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci Rep 2020; 10:11959. [PMID: 32686730 PMCID: PMC7371714 DOI: 10.1038/s41598-020-68854-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content—yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Irena Kurasová
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Karlický
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia
| | - Nia Z Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sashka B Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Bettina Ughy
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | - Vladimír Špunda
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| | - Győző Garab
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
76
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
77
|
Schaich M, Sobota D, Sleath H, Cama J, Keyser UF. Characterization of lipid composition and diffusivity in OLA generated vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183359. [PMID: 32416194 PMCID: PMC7322398 DOI: 10.1016/j.bbamem.2020.183359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
Giant Unilamellar Vesicles (GUVs) are a versatile tool in many branches of science, including biophysics and synthetic biology. Octanol-Assisted Liposome Assembly (OLA), a recently developed microfluidic technique enables the production and testing of GUVs within a single device under highly controlled experimental conditions. It is therefore gaining significant interest as a platform for use in drug discovery, the production of artificial cells and more generally for controlled studies of the properties of lipid membranes. In this work, we expand the capabilities of the OLA technique by forming GUVs of tunable binary lipid mixtures of DOPC, DOPG and DOPE. Using fluorescence recovery after photobleaching we investigated the lateral diffusion coefficients of lipids in OLA liposomes and found the expected values in the range of 1 μm2/s for the lipid systems tested. We studied the OLA derived GUVs under a range of conditions and compared the results with electroformed vesicles. Overall, we found the lateral diffusion coefficients of lipids in vesicles obtained with OLA to be quantitatively similar to those in vesicles obtained via traditional electroformation. Our results provide a quantitative biophysical validation of the quality of OLA derived GUVs, which will facilitate the wider use of this versatile platform.
Collapse
Affiliation(s)
- Michael Schaich
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Diana Sobota
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Hannah Sleath
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jehangir Cama
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom; Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom.
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
| |
Collapse
|
78
|
van 't Klooster JS, Cheng TY, Sikkema HR, Jeucken A, Moody DB, Poolman B. Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae. J Mol Biol 2020; 432:4023-4031. [PMID: 32413406 PMCID: PMC8005870 DOI: 10.1016/j.jmb.2020.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/25/2022]
Abstract
Membrane lipids act as solvents and functional cofactors for integral membrane proteins. The yeast plasma membrane is unusual in that it may have a high lipid order, which coincides with low passive permeability for small molecules and a slow lateral diffusion of proteins. Yet, membrane proteins whose functions require altered conformation must have flexibility within membranes. We have determined the molecular composition of yeast plasma membrane lipids located within a defined diameter of model proteins, including the APC-superfamily lysine transporter Lyp1. We now use the composition of lipids that naturally surround Lyp1 to guide testing of lipids that support the normal functioning of the transporter, when reconstituted in vesicles of defined lipid composition. We find that phosphatidylserine and ergosterol are essential for Lyp1 function, and the transport activity displays a sigmoidal relationship with the concentration of these lipids. Non-bilayer lipids stimulate transport activity, but different types are interchangeable. Remarkably, Lyp1 requires a relatively high fraction of lipids with one or more unsaturated acyl chains. The transport data and predictions of the periprotein lipidome of Lyp1 support a new model in which a narrow band of lipids immediately surrounding the transmembrane stalk of a model protein allows conformational changes in the protein.
Collapse
Affiliation(s)
- Joury S van 't Klooster
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hendrik R Sikkema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Aike Jeucken
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
79
|
Goss R, Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:455. [PMID: 32425962 PMCID: PMC7212465 DOI: 10.3389/fpls.2020.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Collapse
Affiliation(s)
- Reimund Goss
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
80
|
Matsuo K, Kumashiro M, Gekko K. Characterization of the mechanism of interaction between α1‐acid glycoprotein and lipid membranes by vacuum‐ultraviolet circular‐dichroism spectroscopy. Chirality 2020; 32:594-604. [DOI: 10.1002/chir.23208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation CenterHiroshima University Higashi‐Hiroshima Japan
| | - Munehiro Kumashiro
- Department of Physical Science, Graduate School of ScienceHiroshima University Higashi‐Hiroshima Japan
| | - Kunihiko Gekko
- Hiroshima Synchrotron Radiation CenterHiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
81
|
Wang B, Jia J. Photoprotection mechanisms of Nannochloropsis oceanica in response to light stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Ballweg S, Sezgin E, Doktorova M, Covino R, Reinhard J, Wunnicke D, Hänelt I, Levental I, Hummer G, Ernst R. Regulation of lipid saturation without sensing membrane fluidity. Nat Commun 2020; 11:756. [PMID: 32029718 PMCID: PMC7005026 DOI: 10.1038/s41467-020-14528-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. We have reconstituted the core machinery for regulating lipid saturation in baker’s yeast to study its molecular mechanism. By combining molecular dynamics simulations with experiments, we uncover a remarkable sensitivity of the transcriptional regulator Mga2 to the abundance, position, and configuration of double bonds in lipid acyl chains, and provide insights into the molecular rules of membrane adaptation. Our data challenge the prevailing hypothesis that membrane fluidity serves as the measured variable for regulating lipid saturation. Rather, we show that Mga2 senses the molecular lipid-packing density in a defined region of the membrane. Our findings suggest that membrane property sensors have evolved remarkable sensitivities to highly specific aspects of membrane structure and dynamics, thus paving the way toward the development of genetically encoded reporters for such properties in the future. Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. Here authors reconstituted the core machinery for regulating lipid saturation in baker’s yeast to directly characterize its response to defined membrane environments and uncover its mode-of-action.
Collapse
Affiliation(s)
- Stephanie Ballweg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany. .,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
83
|
Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183135. [DOI: 10.1016/j.bbamem.2019.183135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
|
84
|
Josey BP, Heinrich F, Silin V, Lösche M. Association of Model Neurotransmitters with Lipid Bilayer Membranes. Biophys J 2020; 118:1044-1057. [PMID: 32032504 DOI: 10.1016/j.bpj.2020.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Aimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer-a process not considered in the established models-the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction. Experimental verification has been difficult because binding affinities of neurotransmitters to the lipid bilayer are low. We quantify this interaction with surface plasmon resonance to measure equilibrium dissociation constants in neurotransmitter membrane association. Neutron reflection measurements on artificial membranes, so-called sparsely tethered bilayer lipid membranes, reveal the structural aspects of neurotransmitters' association with zwitterionic and anionic bilayers. We thus establish that serotonin interacts nonspecifically with the membrane at physiologically relevant concentrations, whereas γ-aminobutyric acid does not. Surface plasmon resonance shows that serotonin adsorbs with millimolar affinity, and neutron reflectometry shows that it penetrates the membrane deeply, whereas γ-aminobutyric is excluded from the bilayer.
Collapse
Affiliation(s)
- Brian P Josey
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland
| | - Vitalii Silin
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
85
|
Tietz S, Leuenberger M, Höhner R, Olson AH, Fleming GR, Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J Biol Chem 2020; 295:1857-1866. [PMID: 31929108 DOI: 10.1074/jbc.ra119.011707] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are exposed to a complex and dynamic lipid environment modulated by nonbilayer lipids that can influence protein functions by lipid-protein interactions. The nonbilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant lipid in plant photosynthetic thylakoid membranes, but its impact on the functionality of energy-converting membrane protein complexes is unknown. Here, we optimized a detergent-based reconstitution protocol to develop a proteoliposome technique that incorporates the major light-harvesting complex II (LHCII) into compositionally well-defined large unilamellar lipid bilayer vesicles to study the impact of MGDG on light harvesting by LHCII. Using steady-state fluorescence spectroscopy, CD spectroscopy, and time-correlated single-photon counting, we found that both chlorophyll fluorescence quantum yields and fluorescence lifetimes clearly indicate that the presence of MGDG in lipid bilayers switches LHCII from a light-harvesting to a more energy-quenching mode that dissipates harvested light into heat. It is hypothesized that in the in vitro system developed here, MGDG controls light harvesting of LHCII by modulating the hydrostatic lateral membrane pressure profile in the lipid bilayer sensed by LHCII-bound peripheral pigments.
Collapse
Affiliation(s)
- Stefanie Tietz
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ricarda Höhner
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Alice H Olson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340.
| |
Collapse
|
86
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:molecules24244545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
|
87
|
Kourkoulou A, Grevias P, Lambrinidis G, Pyle E, Dionysopoulou M, Politis A, Mikros E, Byrne B, Diallinas G. Specific Residues in a Purine Transporter Are Critical for Dimerization, ER Exit, and Function. Genetics 2019; 213:1357-1372. [PMID: 31611232 PMCID: PMC6893392 DOI: 10.1534/genetics.119.302566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Transporters are transmembrane proteins that mediate the selective translocation of solutes across biological membranes. Recently, we have shown that specific interactions with plasma membrane phospholipids are essential for the formation and/or stability of functional dimers of the purine transporter UapA, a prototypic eukaryotic member of the ubiquitous nucleobase ascorbate transporter (NAT) family. Here, we provide strong evidence that distinct interactions of UapA with membrane lipids are essential for ab initio formation of functional dimers in the ER, or ER exit and further subcellular trafficking. Through genetic screens, we identify mutations that restore defects in dimer formation and/or trafficking. Suppressors of defective dimerization restore ab initio formation of UapA dimers in the ER. Most of these suppressors are located in the movable core domain, but also in the core-dimerization interface and in residues of the dimerization domain exposed to lipids. Molecular dynamics suggest that the majority of suppressors stabilize interhelical interactions in the core domain and thus assist the formation of functional UapA dimers. Among suppressors restoring dimerization, a specific mutation, T401P, was also isolated independently as a suppressor restoring trafficking, suggesting that stabilization of the core domain restores function by sustaining structural defects caused by the abolishment of essential interactions with specific lipids. Importantly, the introduction of mutations topologically equivalent to T401P into a rat homolog of UapA, namely rSNBT1, permitted the functional expression of a mammalian NAT in Aspergillus nidulans Thus, our results provide a potential route for the functional expression and manipulation of mammalian transporters in the model Aspergillus system.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - Pothos Grevias
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Euan Pyle
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Department of Chemistry, King's College London, SE1 1DB, UK
| | - Mariangela Dionysopoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | | | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| |
Collapse
|
88
|
Shahane G, Ding W, Palaiokostas M, Azevedo HS, Orsi M. Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers. J Membr Biol 2019; 252:317-329. [PMID: 31098677 PMCID: PMC6790193 DOI: 10.1007/s00232-019-00068-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
The resistance of pathogens to traditional antibiotics is currently a global issue of enormous concern. As the discovery and development of new antibiotics become increasingly challenging, synthetic antimicrobial lipopeptides (AMLPs) are now receiving renewed attention as a new class of antimicrobial agents. In contrast to traditional antibiotics, AMLPs act by physically disrupting the cell membrane (rather than targeting specific proteins), thus reducing the risk of inducing bacterial resistance. In this study, we use microsecond-timescale atomistic molecular dynamics simulations to quantify the interaction of a short AMLP (C16-KKK) with model bacterial lipid bilayers. In particular, we investigate how fundamental transmembrane properties change in relation to a range of lipopeptide concentrations. A number of structural, mechanical, and dynamical features are found to be significantly altered in a non-linear fashion. At 10 mol% concentration, lipopeptides have a condensing effect on bacterial bilayers, characterized by a decrease in the area per lipid and an increase in the bilayer order. Higher AMLP concentrations of 25 and 40 mol% destabilize the membrane by disrupting the bilayer core structure, inducing membrane thinning and water leakage. Important transmembrane properties such as the lateral pressure and dipole potential profiles are also affected. Potential implications on membrane function and associated proteins are discussed.
Collapse
Affiliation(s)
- Ganesh Shahane
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Helena S Azevedo
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Mario Orsi
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
89
|
Odendall F, Backes S, Tatsuta T, Weill U, Schuldiner M, Langer T, Herrmann JM, Rapaport D, Dimmer KS. The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Mol Biol Cell 2019; 30:2681-2694. [PMID: 31483742 PMCID: PMC6761770 DOI: 10.1091/mbc.e19-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.
Collapse
Affiliation(s)
- Fenja Odendall
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
90
|
Zelnik ID, Ventura AE, Kim JL, Silva LC, Futerman AH. The role of ceramide in regulating endoplasmic reticulum function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158489. [PMID: 31233888 DOI: 10.1016/j.bbalip.2019.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are an important class of membrane lipids containing a long chain sphingoid base backbone. SL synthesis is compartmentalized between two major cell organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. The initial steps of sphingolipid synthesis take place in the ER, where the simplest SL, ceramide, is synthesized. Although ceramide is a critical membrane component, an imbalance of ceramide levels can have significant deleterious effects on cell properties leading to events such as apoptosis. For this reason and others, ER ceramide levels must be tightly regulated. Here, we describe the biological and biophysical properties of ceramide and discuss how this might impact the ER membrane. This article is part of a special issue entitled: ER Platforms for Membrane Lipid Dynamics.
Collapse
Affiliation(s)
- Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ana E Ventura
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liana C Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
91
|
Ughy B, Karlický V, Dlouhý O, Javornik U, Materová Z, Zsiros O, Šket P, Plavec J, Špunda V, Garab G. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. PHYSIOLOGIA PLANTARUM 2019; 166:278-287. [PMID: 30666653 DOI: 10.1111/ppl.12929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Earlier experiments, using 31 P-NMR and time-resolved merocyanine fluorescence spectroscopy, have shown that isolated intact, fully functional plant thylakoid membranes, in addition to the bilayer phase, contain three non-bilayer (or non-lamellar) lipid phases. It has also been shown that the lipid polymorphism of thylakoid membranes can be characterized by remarkable plasticity, i.e. by significant variations in 31 P-NMR signatures. However, changes in the lipid-phase behaviour of thylakoids could not be assigned to changes in the overall membrane organization and the photosynthetic activity, as tested by circular dichroism and 77 K fluorescence emission spectroscopy and the magnitude of the variable fluorescence of photosystem II, which all showed only marginal variations. In this work, we investigated in more detail the temporal stability of the different lipid phases by recording 31 P-NMR spectra on isolated thylakoid membranes that were suspended in sorbitol- or NaCl-based media. We observed, at 5°C during 8 h in the dark, substantial gradual enhancement of the isotropic lipid phases and diminishment of the bilayer phase in the sorbitol-based medium. These changes compared well with the gradually increasing membrane permeability, as testified by the gradual acceleration of the decay of flash-induced electrochromic absorption changes and characteristic changes in the kinetics of fast chlorophyll a-fluorescence transients; all variations were much less pronounced in the NaCl-based medium. These observations suggest that non-bilayer lipids and non-lamellar lipid phases play significant roles in the structural dynamics and functional plasticity of thylakoid membranes.
Collapse
Affiliation(s)
- Bettina Ughy
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava CZ-710 00, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Ondřej Dlouhý
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava CZ-710 00, Czech Republic
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Zuzana Materová
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava CZ-710 00, Czech Republic
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Center of Excellence, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Center of Excellence, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava CZ-710 00, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava CZ-710 00, Czech Republic
| |
Collapse
|
92
|
Bhattacharyya D, Kim M, Mroue KH, Park M, Tiwari A, Saleem M, Lee D, Bhunia A. Role of non-electrostatic forces in antimicrobial potency of a dengue-virus derived fusion peptide VG16KRKP: Mechanistic insight into the interfacial peptide-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:798-809. [DOI: 10.1016/j.bbamem.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
93
|
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model 2019; 25:76. [PMID: 30806797 DOI: 10.1007/s00894-019-3964-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/07/2019] [Indexed: 02/04/2023]
Abstract
The physical properties of lipid bilayers are sensitive to the specific type and composition of the lipids that make up the many different types of cell membranes. Studying model bilayers of representative heterogeneous compositions can provide key insights into membrane functionality. In this work, we use atomistic molecular dynamics simulations to characterize key properties in a number of bilayer membranes of varying composition. We first examine basic properties, such as lipid area, volume, and bilayer thickness, of simple, homogeneous bilayers comprising several lipid types, which are prevalent in biological membranes. Such lipids are then used in simulations of heterogeneous systems representative of bacterial, mammalian, and cancer membranes. Our analysis is especially focused on depth-dependent, transmembrane profiles; in particular, we calculate lateral pressure and dipole potential profiles, two fundamental properties which play key roles in a large number of biological functions.
Collapse
Affiliation(s)
- Ganesh Shahane
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Mario Orsi
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
94
|
Tang CH, Shi SH, Lin CY, Li HH, Wang WH. Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1275-1283. [PMID: 30340273 DOI: 10.1016/j.scitotenv.2018.08.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The use of omics technologies to profile an organism's systemic response to environmental changes can improve the effectiveness of biomonitoring. In cell physiology, the dynamic characteristics of membranes can be used to identify lipid profiles that detect environmental threats and assess the health problems associated with them. The efficacy of this approach was demonstrated by profiling glycerophosphocholines (GPCs, a major membrane lipid class) in the coral Seriatopora caliendrum after exposure to Irgarol 1051. A quantitative biomonitoring model for this photosystem II herbicide was developed by correlating variations in coral lipid profile with herbicide exposure levels and degree of photoinhibition. After 4 days of exposure, the predominant changes correlated with photoinhibition were an increase in lyso-GPCs and saturated GPCs and a decrease in phosphatidylcholines with unsaturated C18 chains or a polyunsaturated C22 chain. A time-course experiment showed that most of these lipid changes occurred opposite to the initial response and that the persistent changes can be attributed to photosynthetic shortages and the membrane accommodation of photoinhibition-induced oxidative conditions. These changes can help predict risk factors leading to coral bleaching. In this study, the application of a lipidomic methodology to characterize the adaptation of coral to ambient contamination serves as a basis for advancing environmental monitoring and assessment.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan.
| | - Shu-Han Shi
- Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, 17 Hsu-Chou Rd., Taipei City 100, Taiwan
| | - Hsing-Hui Li
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 804, Taiwan.
| |
Collapse
|
95
|
Mechanical properties of bilayers containing sperm sphingomyelins and ceramides with very long-chain polyunsaturated fatty acids. Chem Phys Lipids 2019; 218:178-186. [PMID: 30610838 DOI: 10.1016/j.chemphyslip.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023]
Abstract
Sphingomyelins (SM) and ceramides (Cer) with very long chain polyunsaturated fatty acids (V) are important components of spermatozoa membranes. In this study, the mechanical properties of bilayers of SM and Cer with nonhydroxy (n-V) and 2-hydroxy (h-V) fatty acid (30:5) were studied by molecular dynamics simulation at different temperatures and in the presence and the absence of salt. From our results, it was evidenced how n-V SM and h-V SM bilayers showed similar behavior. When n-V Cer was added to a h-V SM bilayer, the Gaussian curvature modulus and Ecurve of binary bilayers decreased. This variation in the mechanical properties of the bilayer can be associated with an incipient step during the fecundation process.
Collapse
|
96
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
97
|
Dahl Å. Pollen Lipids Can Play a Role in Allergic Airway Inflammation. Front Immunol 2018; 9:2816. [PMID: 30619246 PMCID: PMC6297749 DOI: 10.3389/fimmu.2018.02816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023] Open
Abstract
In seed plants, pollen grains carry the male gametes to female structures. They are frequent in the ambient air, and cause airway inflammation in one out of four persons in the population. This was traditionally attributed to soluble glycoproteins, leaking into the nasal mucosa or the conjunctiva, and able to bind antibodies. It is now more and more recognized that also other immunomodulating compounds are present. Lipids bind to Toll-like and PPARγ receptors belonging to antigen-presenting cells in the mammal immune system, activate invariant Natural Killer T-cells, and are able to induce a Type 2 reaction in effector cells. They may also mimic lipid mediators from mammal mast cells. Pollen grains have a rich lipodome of their own. Among the lipids that have been associated with an atopic reaction are saturated and unsaturated fatty acids, glycophospholipids, sphingolipids, sterols, and oxylipids, as well as lipopolysaccharides from the microbiome on the pollen surface. Lipids can be ligands to allergenic proteins.
Collapse
Affiliation(s)
- Åslög Dahl
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
98
|
Lou J, Zhang X, Best MD. Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chemistry 2018; 25:20-25. [PMID: 30133869 DOI: 10.1002/chem.201803389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Indexed: 11/10/2022]
Abstract
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Xiaoyu Zhang
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
99
|
Palaiokostas M, Ding W, Shahane G, Orsi M. Effects of lipid composition on membrane permeation. SOFT MATTER 2018; 14:8496-8508. [PMID: 30346462 DOI: 10.1039/c8sm01262h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Passive permeation through lipid membranes is an essential process in biology. In vivo membranes typically consist of mixtures of lamellar and nonlamellar lipids. Lamellar lipids are characterized by their tendency to form lamellar sheet-like structures, which are predominant in nature. Nonlamellar lipids, when isolated, instead form more geometrically complex nonlamellar phases. While mixed lamellar/nonlamellar lipid membranes tend to adopt the ubiquitous lamellar bilayer structure, the presence of nonlamellar lipids is known to have profound effects on key membrane properties, such as internal distributions of stress and elastic properties, which in turn may alter related biological processes. This work focuses on one such process, i.e., permeation, by utilising atomistic molecular dynamics simulations in order to obtain transfer free energy profiles, diffusion profiles and permeation coefficients for a series of thirteen small molecules and drugs. Each permeant is tested on two bilayer membranes of different lipid composition, i.e., purely lamellar and mixed lamellar/nonlamellar. Our results indicate that the presence of nonlamellar lipids reduces permeation for smaller molecules (molecular weight < 100) but facilitates it for the largest ones (molecular weight > 100). This work represents an advancement towards the development of more realistic in silico permeability assays, which may have a substantial future impact in the area of rational drug design.
Collapse
Affiliation(s)
- Michail Palaiokostas
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
100
|
Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem Soc Trans 2018; 46:1355-1366. [PMID: 30190329 DOI: 10.1042/bst20170424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
Membrane proteins must be inserted into a membrane and folded into their correct structure to function correctly. This insertion occurs during translation and synthesis by the ribosome for most α-helical membrane proteins. Precisely how this co-translational insertion and folding occurs, and the role played by the surrounding lipids, is still not understood. Most of the work on the influence of the lipid environment on folding and insertion has focussed on denatured, fully translated proteins, and thus does not replicate folding during unidirectional elongation of nascent chains that occurs in the cell. This review aims to highlight recent advances in elucidating lipid composition and bilayer properties optimal for insertion and folding of nascent chains in the membrane and in the assembly of oligomeric proteins.
Collapse
|