51
|
Donovan M, Mackey CS, Platt GN, Rounds J, Brown AN, Trickey DJ, Liu Y, Jones KM, Wang Z. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol Stress 2020; 13:100278. [PMID: 33344730 PMCID: PMC7739176 DOI: 10.1016/j.ynstr.2020.100278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The absence of social support, or social isolation, can be stressful, leading to a suite of physical and psychological health issues. Growing evidence suggests that disruption of the gut-immune-brain axis plays a crucial role in the negative outcomes seen from social isolation stress. However, the mechanisms remain largely unknown. The socially monogamous prairie vole (Microtus ochrogaster) has been validated as a useful model for studying negative effects of social isolation on the brain and behaviors, yet how the gut microbiome and central immune system are altered in isolated prairie voles are still unknown. Here, we utilized this social rodent to examine how social isolation stress alters the gut-immune-brain axis and relevant behaviors. Adult male and female prairie voles (n = 48 per sex) experienced social isolation or were cohoused with a same-sex cagemate (control) for six weeks. Thereafter, their social and anxiety-like behaviors, neuronal circuit activation, neurochemical expression, and microgliosis in key brain regions, as well as gut microbiome alterations from the isolation treatment were examined. Social isolation increased anxiety-like behaviors and impaired social affiliation. Isolation also resulted in sex- and brain region-specific alterations in neuronal activation, neurochemical expression, and microgliosis. Further, social isolation resulted in alterations to the gut microbiome that were correlated with key brain and behavioral measures. Our data suggest that social isolation alters the gut-immune-brain axis in a sex-dependent manner and that gut microbes, central glial cells, and neurochemical systems may play a critical, integrative role in mediating negative outcomes from social isolation.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N. Wheeling St., Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Jacob Rounds
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| |
Collapse
|
52
|
Liu J, Huang S, Li G, Zhao J, Lu W, Zhang Z. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 126:104838. [PMID: 32791065 DOI: 10.1016/j.yhbeh.2020.104838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Density-dependence is an important mechanism in the population regulation of small mammals. Stressors induced by high-density (e.g., crowding and aggression) can cause physiological and neurological disorders, and are hypothesized to be associated with alterations in gut microbiota, which may in turn reduce the fitness of animals by increasing stress- or disease-associated microbes. In this study, we examined the effects of housing density on the hormone levels, immunity, and composition of gut microbiota in male Brandt's voles (Lasiopodomys brandtii) by conducting two specific housing density experiments with or without physical contact between voles. Voles in high density groups exhibited higher serum corticosterone (CORT), serotonin (5-HT), and immunoglobulin G (IgG) levels, as well as higher testosterone (T) levels only in the experiment with physical contact. Meanwhile, high-density treatments induced significant changes in the composition of gut microbiota by increasing disease-associated microbes. The levels of hormones and immunity (i.e., CORT, 5-HT, and IgG) elevated by the high density treatment were significantly correlated with some specific microbes. These results imply that high-density-induced stress may shape the fitness of animals under natural conditions by altering their gut microbiota. Our study provides novel insights into the potential roles of gut microbiota in the density-dependent population regulation of small rodents as well as the potential mechanisms underlying psychological disorders in humans and animals under crowded conditions.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
53
|
Li YJ, Yang LP, Hou JL, Li XM, Chen L, Zhu JH, Wang QY, Li G, Zhao PY, Liu XH, Shi ZJ. Prenatal Stress Impairs Postnatal Learning and Memory Development via Disturbance of the cGMP-PKG Pathway and Oxidative Phosphorylation in the Hippocampus of Rats. Front Mol Neurosci 2020; 13:158. [PMID: 33013315 PMCID: PMC7509422 DOI: 10.3389/fnmol.2020.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Clinical and animal studies have found that prenatal stress can lead to pathological changes in embryos and fetuses. However, the mechanisms through which this occurs have not been made clear. In the present study, pregnant rats were subjected to chronic psychological stress during gestational days using an improved communication box system, and the changes in behavioral performance and proteins in the hippocampus of offspring were analyzed. It was found that prenatal stress caused postnatal growth retardation and impairment in spatial learning and memory. Furthermore, in isobaric tags for relative and absolute quantitation-based proteomics analyses, 158 significantly differentially expressed proteins (DEPs) were found between the two groups. Further analyses showed that these DEPs are involved in different molecular function categories and participate in several biological processes, such as energy metabolism, learning or memory, and synaptic plasticity. Moreover, the enrichment of pathways showed that the learning and memory impairment was primarily connected with the cyclic guanosine monophosphate–protein kinase G (cGMP–PKG) pathway and oxidative phosphorylation. At the same time, the cGMP level and the expression of PKG protein were significantly decreased, and the neuronal mitochondria appeared to have a swollen and irregular shape in the hippocampus of offspring of stressed rats. These results suggest that the chronic psychological stress that pregnant rats were subjected to during gestational days may have impaired the spatial learning and memory of offspring. This affected the hippocampal oxidative phosphorylation and inhibited the cGMP–PKG pathway.
Collapse
Affiliation(s)
- Yu-Jie Li
- Pharmacology Laboratory, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li-Ping Yang
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jun-Lin Hou
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin-Min Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lei Chen
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiang-Hui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi-Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Gai Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pei-Yuan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xi-Hong Liu
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhan-Jiang Shi
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
54
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|
55
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
56
|
Kraeuter AK, Phillips R, Sarnyai Z. The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Front Psychiatry 2020; 11:799. [PMID: 32903683 PMCID: PMC7438757 DOI: 10.3389/fpsyt.2020.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is rapidly becoming the focus of interest as a possible factor involved in the pathophysiology of neuropsychiatric disorders. Recent understanding of the pathophysiology of schizophrenia emphasizes the role of systemic components, including immune/inflammatory and metabolic processes, which are influenced by and interacting with the gut microbiome. Here we systematically review the current literature on the gut microbiome in schizophrenia-spectrum disorders and in their animal models. We found that the gut microbiome is altered in psychosis compared to healthy controls. Furthermore, we identified potential factors related to psychosis, which may contribute to the gut microbiome alterations. However, further research is needed to establish the disease-specificity and potential causal relationships between changes of the microbiome and disease pathophysiology. This can open up the possibility of. manipulating the gut microbiome for improved symptom control and for the development of novel therapeutic approaches in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Riana Phillips
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
57
|
Fontana BD, Gibbon AJ, Cleal M, Sudwarts A, Pritchett D, Miletto Petrazzini ME, Brennan CH, Parker MO. Moderate early life stress improves adult zebrafish (Danio rerio) working memory but does not affect social and anxiety-like responses. Dev Psychobiol 2020; 63:54-64. [PMID: 32497270 DOI: 10.1002/dev.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Early life stress (ELS) is defined as a short or chronic period of trauma, environmental or social deprivation, which can affect different neurochemical and behavioral patterns during adulthood. Zebrafish (Danio rerio) have been widely used as a model system to understand human neurodevelopmental disorders and display translationally relevant behavioral and stress-regulating systems. In this study, we aimed to investigate the effects of moderate ELS by exposing young animals (6-weeks postfertilization), for 3 consecutive days, to three stressors, and analyzing the impact of this on adult zebrafish behavior (16-week postfertilization). The ELS impact in adults was assessed through analysis of performance on tests of unconditioned memory (free movement pattern Y-maze test), exploratory and anxiety-related task (novel tank diving test), and social cohesion (shoaling test). Here, we show for the first time that moderate ELS increases the number of alternations in turn-direction compared to repetitions in the unconditioned Y-maze task, suggesting increased working memory, but has no effect on shoal cohesion, locomotor profile, or anxiety-like behavior. Overall, our data suggest that moderate ELS may be linked to adaptive flexibility which contributes to build "resilience" in adult zebrafish by improving working memory performance.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Alistair J Gibbon
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - David Pritchett
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | | | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
58
|
Microbiome and Schizophrenia: Current Evidence and Future Challenges. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Peterson VL, Richards JB, Meyer PJ, Cabrera-Rubio R, Tripi JA, King CP, Polesskaya O, Baud A, Chitre AS, Bastiaanssen TFS, Woods LS, Crispie F, Dinan TG, Cotter PD, Palmer AA, Cryan JF. Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine 2020; 55:102769. [PMID: 32403084 PMCID: PMC7218262 DOI: 10.1016/j.ebiom.2020.102769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.
Collapse
Affiliation(s)
- Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Raul Cabrera-Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Amelie Baud
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, CA, USA; Center for Microbiome Innovation, University of California San Diego, CA, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
60
|
Park HS, Kim TW, Park SS, Lee SJ. Swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis, serotonin expression, and inhibiting apoptosis in social isolation rats during adolescence. J Exerc Rehabil 2020; 16:132-140. [PMID: 32509697 PMCID: PMC7248435 DOI: 10.12965/jer.2040216.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Social isolation during adolescence is associated with anxiety, depres-sion, and memory impairment. Exercise has been reported as a positive effect on brain function, especially hippocampus. The present study ex-amined the effect of swimming exercise on apoptosis, cell proliferation, and serotonin expression in social isolation rats during adolescence stage. Social isolation started at postnatal day 21 and continued for 6 weeks. The rats in the swimming group were forced to swim for 60 min once daily during 6 days per week for 6 consecutive weeks. The rats in the social isolation during adolescence showed anxiety, depression, short-term memory impairment. Social isolation facilitated apoptosis and inhibited cell proliferation and differentiation. Social isolation sup-pressed expression of serotonin, brain-derived neurotrophic factor, and tyrosine kinase B. Swimming exercise alleviated anxiety, depression, short-term impairment. Swimming exercise suppressed apoptosis, en-hanced neurogenesis, and increased serotonin expression. In our study, swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis and serotonin expression and inhibiting apoptosis in social isolation.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabiliation, Tongmyong University, Busan, Korea
| |
Collapse
|
61
|
Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, Record MJ, Urban JH, Rosenkranz JA. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun 2020; 84:180-199. [PMID: 31785394 PMCID: PMC7010555 DOI: 10.1016/j.bbi.2019.11.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
A link exists between immune function and psychiatric conditions, particularly depressive and anxiety disorders. Psychological stress is a powerful trigger for these disorders and stress influences immune state. However, the nature of peripheral immune changes after stress conflicts across studies, perhaps due to the focus on few measures of pro-inflammatory or anti-inflammatory processes. The basolateral amygdala (BLA) is critical for emotion, and plays an important role in the effects of stress on anxiety. As such, it may be a primary central nervous system (CNS) mediator for the effects of peripheral immune changes on anxiety after stress. Therefore, this study aimed to delineate the influence of stress on peripheral pro-inflammatory and anti-inflammatory aspects, BLA immune activation, and its impact on BLA neuronal activity. To produce a more encompassing view of peripheral immune changes, this study used a less restrictive approach to categorize and group peripheral immune changes. We found that repeated social defeat stress in adult male Sprague-Dawley rats increased the frequencies of mature T-cells positive for intracellular type 2-like cytokine and serum pro-inflammatory cytokines. Principal component analysis and hierarchical clustering was used to guide grouping of T-cells and cytokines, producing unique profiles. Stress shifted the balance towards a specific set that included mostly type 2-like T-cells and pro-inflammatory cytokines. Within the CNS component, repeated stress caused an increase of activated microglia in the BLA, increased anxiety-like behaviors across several assays, and increased BLA neuronal firing in vivo that was prevented by blockade of microglia activation. Because repeated stress can trigger anxiety states by actions in the BLA, and altered immune function can trigger anxiety, these results suggest that repeated stress may trigger anxiety-like behaviors by inducing a pro-inflammatory state in the periphery and the BLA. These results begin to uncover how stress may recruit the immune system to alter the function of brain regions critical to emotion.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Maxine K. Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Nicole Ferrara
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - M. Regina DeJoseph
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alexandra Ritger
- Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Matthew J. Record
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Janice H. Urban
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Corresponding Author: J. Amiel Rosenkranz, Ph.D., Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA., Telephone: 847-578-8680; Fax: 847-578-3268,
| |
Collapse
|
62
|
The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain Behav Immun 2020; 84:209-217. [PMID: 31812778 DOI: 10.1016/j.bbi.2019.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
There has been a growing recognition of the involvement of the gastrointestinal microbiota in the development of stress-related disorders. Acute stress leads to activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells. Both these response systems are independently known to be primed by the microbiota, even though much is still unclear about the role of the gastrointestinal microbiota in acute stress-induced immune activation. In this study, we investigated whether the microbiota influences acute stress-induced changes in innate immunity using conventionally colonised mice, mice devoid of any microbiota (i.e. germ-free, GF), and colonised GF mice (CGF). We also explored the kinetics of stress-induced immune cell mobilisation in the blood, the spleen and mesenteric lymph nodes (MLNs). Mice were either euthanised prior to stress or underwent restraint stress and were then euthanised at various time points (i.e. 0, 45- and 240-minutes) post-stress. Plasma adrenaline and noradrenaline levels were analysed using ELISA and immune cell levels were quantified using flow cytometry. GF mice had increased baseline levels of adrenaline and noradrenaline, of which adrenaline was normalised in CGF mice. In tandem, GF mice had decreased circulating levels of LY6Chi and LY6Cmid, CCR2+ monocytes, and granulocytes, but not LY6C-, CX3CR1+ monocytes. These deficits were normalised in CGF mice. Acute stress decreased blood LY6Chi and LY6Cmid, CCR2+ monocytes while increasing granulocyte levels in all groups 45 min post-stress. However, only GF mice showed stress-induced changes in LY6Chi monocytes and granulocytes 240 min post-stress, indicating impairments in the recovery from acute stress-induced changes in levels of specific innate immune cell types. LY6C-, CX3CR1+ monocytes remained unaffected by stress, indicating that acute stress impacts systemic innate immunity in a cell-type-specific manner. Overall, these data reveal novel cell-type-specific changes in the innate immune system in response to acute stress, which in turn are impacted by the microbiota. In conclusion, the microbiota influences the priming and recovery of the innate immune system to an acute stressor and may inform future microbiota-targeted therapeutics aimed at modulating stress-induced immune activation in stress-related disorders.
Collapse
|
63
|
Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 2019; 108:712-731. [PMID: 31821833 DOI: 10.1016/j.neubiorev.2019.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
There has been an accumulation of knowledge about the human microbiome, some detailed investigations of the gastrointestinal microbiota and its functions, and the highlighting of complex interactions between the gut, the gut microbiota, and the central nervous system. That assumes the involvement of the microbiome in the pathogenesis of various CNS diseases, including schizophrenia. Given this information and the fact, that the gut microbiota is sensitive to internal and environmental influences, we have speculated that among the factors that influence the formation and composition of gut microbiota during life, possible key elements in the schizophrenia development chain are hidden where gut microbiota is a linking component. This article aims to describe and understand the developmental relationships between intestinal microbiota and the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Bogdana Golofast
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| |
Collapse
|
64
|
Rosuvastatin improves olanzapine's effects on behavioral impairment and hippocampal, hepatic and metabolic damages in isolated reared male rats. Behav Brain Res 2019; 378:112305. [PMID: 31634496 DOI: 10.1016/j.bbr.2019.112305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Schizophrenia is a chronic, disabling neurological illness. This study investigated the effect of rosuvastatin (RSU) addition to the antipsychotic drug: olanzapine (OLZ) in treatment of post-weaning isolation rearing (IR) damaging effect and assessed behavioral impairment, metabolic and hepatic abnormalities, oxidative stress, and inflammatory markers. METHODS Treatment with OLZ (6 mg/kg, P.O.) and/or RSU (10 mg/kg, I.P.) have been started 6 weeks after isolation. We assessed behavioral tests, serum cortisol level, and hippocampal content of neurotransmitters. In addition, we assessed histopathology, inflammatory and oxidative stress markers of hippocampus, liver and adipose tissue RESULTS: Treatment of IR animals with OLZ, and/or RSU significantly counteracted the changes in hippocampus, liver and adipose tissue induced by post-weaning IR. Co-treatment of IR rats with both OLZ and RSU showed additive effects in some areas like improving both tumor necrosis factor alpha (TNFα) in both hippocampus and liver, histopathology of liver, oxidative stress markers of adipose tissue, β3 adrenergic receptors (ADRβ3), serum cortisol and total cholesterol. In addition, RSU alone alleviated the damage of IR rats by the same efficacy as OLZ with more benefit in cognition and exploration. CONCLUSION post-weaning IR as a model has behavioral, hippocampal, hepatic and marked metabolic changes more relevant to schizophrenia than drug-induced models. These effects were ameliorated by RSU and/or OLZ that are explained by their antioxidant, anti-inflammatory, anti-stress and anti-hyperlipidemic properties. Interestingly, co-treatment with both drugs showed a better effect.
Collapse
|
65
|
Bassett SA, Young W, Fraser K, Dalziel JE, Webster J, Ryan L, Fitzgerald P, Stanton C, Dinan TG, Cryan JF, Clarke G, Hyland N, Roy NC. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci Rep 2019; 9:14026. [PMID: 31575902 PMCID: PMC6773725 DOI: 10.1038/s41598-019-50593-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Stress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that the greatest difference between the SD and WKY microbiomes were the predicted relative abundance of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for developing novel biomarkers of stress vulnerability, some of which appear genotype specific.
Collapse
Affiliation(s)
- Shalome A Bassett
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Julie E Dalziel
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Jim Webster
- Farm Systems North, AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Leigh Ryan
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Patrick Fitzgerald
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Nicole C Roy
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
66
|
van de Wouw M, Boehme M, Dinan TG, Cryan JF. Monocyte mobilisation, microbiota & mental illness. Brain Behav Immun 2019; 81:74-91. [PMID: 31330299 DOI: 10.1016/j.bbi.2019.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
67
|
Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii). ISME JOURNAL 2019; 13:3037-3053. [PMID: 31455805 DOI: 10.1038/s41396-019-0492-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Gut microbiota play a critical role in orchestrating metabolic homeostasis of the host. However, the crosstalk between host and microbial symbionts in small mammals are rarely illustrated. We used male Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that gut microbiota and host neurotransmitters, such as norepinephrine (NE), interact to regulate energetics and thermogenesis during cold acclimation. We found that increases in food intake and thermogenesis were associated with increased monoamine neurotransmitters, ghrelin, short-chain fatty acids, and altered cecal microbiota during cold acclimation. Further, our pair-fed study showed that cold temperature can alter the cecal microbiota independently of overfeeding. Using cecal microbiota transplant along with β3-adrenoceptor antagonism and PKA inhibition, we confirmed that transplant of cold-acclimated microbiota increased thermogenesis through activation of cAMP-PKA-pCREB signaling. In addition, NE manipulation induced a long-term alteration in gut microbiota structure. These data demonstrate that gut microbiota-NE crosstalk via cAMP signaling regulates energetics and thermogenesis during cold acclimation in male Brandt's voles.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, China
| | - Xiao-Wei Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
68
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
69
|
Menneson S, Ménicot S, Ferret-Bernard S, Guérin S, Romé V, Le Normand L, Randuineau G, Gambarota G, Noirot V, Etienne P, Coquery N, Val-Laillet D. Validation of a Psychosocial Chronic Stress Model in the Pig Using a Multidisciplinary Approach at the Gut-Brain and Behavior Levels. Front Behav Neurosci 2019; 13:161. [PMID: 31379533 PMCID: PMC6646532 DOI: 10.3389/fnbeh.2019.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Psychological chronic stress is an important risk factor for major depressive disorder, of which consequences have been widely studied in rodent models. This work aimed at describing a pig model of chronic stress based on social isolation, environmental impoverishment and unpredictability. Three groups of animals of both sexes were constituted. Two were exposed to the psychosocial stressors while receiving (SF, n = 12) or not (SC, n = 22) the antidepressant fluoxetine, and a third group (NSC, n = 22) remained unstressed. Animals were observed in home pens and during dedicated tests to assess resignation and anxiety-like behaviors. Brain structure and function were evaluated via proton MRS and fMRI. Hippocampal molecular biology and immunodetection of cellular proliferation (Ki67+) and neuron maturation (DCX+) in the dentate gyrus were also performed. Salivary cortisol, fecal short-chain fatty acids (SCFAs), and various plasmatic and intestinal biomarkers were analyzed. Compared to NSC, SC animals showed more resignation (p = 0.019) and had a higher level of salivary cortisol (p = 0.020). SC brain responses to stimulation by a novel odor were lower, similarly to their hippocampal neuronal density (p = 0.015), cellular proliferation (p = 0.030), and hippocampal levels of BDNF and 5-HT1AR (p = 0.056 and p = 0.007, respectively). However, the number of DCX+ cells was higher in the ventral dentate gyrus in this group (p = 0.025). In addition, HOMA-IR was also higher (p < 0.001) and microbiota fermentation activity was lower (SCFAs, SC/NSC: p < 0.01) in SC animals. Fluoxetine partially or totally reversed several of these effects. Exposure to psychosocial stressors in the pig model induced effects consistent with the human and rodent literature, including resignation behavior and alterations of the HPA axis and hippocampus. This model opens the way to innovative translational research exploring the mechanisms of chronic stress and testing intervention strategies with good face validity related to human.
Collapse
Affiliation(s)
- Sophie Menneson
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France.,Phodé, Terssac, France
| | - Samuel Ménicot
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | | | - Sylvie Guérin
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Véronique Romé
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Laurence Le Normand
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Gwénaëlle Randuineau
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | | | | | | | - Nicolas Coquery
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - David Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
70
|
Bauer KC, Rees T, Finlay BB. The Gut Microbiota-Brain Axis Expands Neurologic Function: A Nervous Rapport. Bioessays 2019; 41:e1800268. [PMID: 31099408 DOI: 10.1002/bies.201800268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Does exploration of the gut microbiota-brain axis expand our understanding of what it means to be human? Recognition and conceptualization of a gut microbiota-brain axis challenges our study of the nervous system. Here, integrating gut microbiota-brain research into the metaorganism model is proposed. The metaorganism-an expanded, dynamic unit comprising the host and commensal organisms-asserts a radical blurring between man and microbe. The metaorganism nervous system interacts with the exterior world through microbial-colored lenses. Ongoing studies have reported that gut microbes contribute to brain function and pathologies, even shaping higher neurological functions. How will continued collaborative efforts (e.g., between neurobiology and microbiology), including partnerships with the arts (e.g., philosophy), contribute to the knowledge of microbe-to-mind interactions? While this is not a systemic review, this nascent field is briefly described, highlighting ongoing challenges and recommendations for emerging gut microbiota-brain research. Also see the video abstract here https://youtu.be/lP9gOW8StXg.
Collapse
Affiliation(s)
- Kylynda C Bauer
- CIFAR (Canadian Institute for Advanced Research), Humans and the Microbiome Program, MaRS Centre, West Tower 661 University Ave. Suite 505, Toronto, ON, M5G 1M1, Canada.,Michael Smith Laboratories, University of British Columbia, #301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Tobias Rees
- CIFAR (Canadian Institute for Advanced Research), Humans and the Microbiome Program, MaRS Centre, West Tower 661 University Ave. Suite 505, Toronto, ON, M5G 1M1, Canada.,New School for Social Research, The New School, 66 West 12th Street, New York City, NY, 10011, USA.,Transformations of the Human Program, Berggruen Institute, Bradbury Building, 304 S. Broadway, Suite 500, Los Angeles, CA, 90013, USA
| | - Barton Brett Finlay
- CIFAR (Canadian Institute for Advanced Research), Humans and the Microbiome Program, MaRS Centre, West Tower 661 University Ave. Suite 505, Toronto, ON, M5G 1M1, Canada.,Michael Smith Laboratories, University of British Columbia, #301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
71
|
Kentner AC, Cryan JF, Brummelte S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev Psychobiol 2019; 61:350-375. [PMID: 30311210 PMCID: PMC6447439 DOI: 10.1002/dev.21775] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the increasing attention to early life adversity and its long-term consequences on health, behavior, and the etiology of neurodevelopmental disorders, our understanding of the adaptations and interventions that promote resiliency and rescue against such insults are underexplored. Specifically, investigations of the perinatal period often focus on negative events/outcomes. In contrast, positive experiences (i.e. enrichment/parental care//healthy nutrition) favorably influence development of the nervous and endocrine systems. Moreover, some stressors result in adaptations and demonstrations of later-life resiliency. This review explores the underlying mechanisms of neuroplasticity that follow some of these early life experiences and translates them into ideas for interventions in pediatric settings. The emerging role of the gut microbiome in mediating stress susceptibility is also discussed. Since many negative outcomes of early experiences are known, it is time to identify mechanisms and mediators that promote resiliency against them. These range from enrichment, quality parental care, dietary interventions and those that target the gut microbiota.
Collapse
Affiliation(s)
- Amanda C. Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115,
| | - John F. Cryan
- Dept. Anatomy & Neuroscience & APC Microbiome Institute, University College Cork, College Rd., Cork, Ireland,
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Ave, Detroit, MI 48202,
| |
Collapse
|
72
|
Yuan X, Kang Y, Zhuo C, Huang XF, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 2019; 512:373-380. [PMID: 30898321 DOI: 10.1016/j.bbrc.2019.02.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe mental disorder with unknown etiology. Many mechanisms, including dysregulation of neurotransmitters, immune disturbance, and abnormal neurodevelopment, are proposed for the pathogenesis of schizophrenia. The significance of communication between intestinal flora and the central nervous system through the gut-brain axis is increasingly being recognized. The intestinal microbiota plays an important role in regulating neurotransmission, immune homeostasis, and brain development. We hypothesize that an imbalance in intestinal flora causes immune activation and dysfunction in the gut-brain axis, contributing to schizophrenia. In this review, we examine recent studies that explore the intestinal flora and immune-mediated neurodevelopment of schizophrenia. We conclude that an imbalance in intestinal flora may reduce protectants and increase neurotoxin and inflammatory mediators, causing neuronal and synaptic damage, which induces schizophrenia.
Collapse
Affiliation(s)
- Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
73
|
Wei CL, Wang S, Yen JT, Cheng YF, Liao CL, Hsu CC, Wu CC, Tsai YC. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res 2019; 1711:202-213. [PMID: 30684456 DOI: 10.1016/j.brainres.2019.01.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that ingestion of specific probiotics, known as "psychobiotics", confer beneficial effects on mental health. This study investigated antidepressant-like effects and possible underlying mechanisms of Lactobacillus paracasei PS23 (PS23), live or heat-killed, in a mouse model of corticosterone-induced depression using fluoxetine as standard drug. PS23 were orally gavaged to mice from day 1 to 41 or fluoxetine from day 17 to 41 and injected with corticosterone from day 17 to 37. After the last corticosterone treatment, anxiety- and depression-like behaviors were tested within 4 days. On day 42, serum and brain tissue were collected 24 min after forced swim stress. Abnormal behavioral changes induced by corticosterone were ameliorated by treatment with live PS23 in open field and sucrose preference tests, with heat-killed PS23 in open field, forced swim and sucrose preference tests, and with fluoxetine in open field and forced swim tests. Furthermore, both live and heat-killed PS23 and fluoxetine reversed corticosterone-reduced protein levels of brain-derived neurotropic factor, mineralocorticoid, and glucocorticoid receptors in the hippocampus. In addition, live PS23 also reverses corticosterone-reduced serotonin levels in hippocampus, prefrontal cortex and striatum; whereas heat-killed PS23 reverses corticosterone-reduced dopamine levels in hippocampus and prefrontal cortex. And fluoxetine normalized reduced corticosterone level in serum. These studies showed that both live and heat-killed PS23 can reverse chronic corticosterone-induced anxiety- and depression-like behaviors and that may provide insights into the mechanism and a potential psychobiotic for depression management.
Collapse
Affiliation(s)
- Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Rd., Chiayi City 60004, Taiwan.
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Jui-Ting Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Yun-Fang Cheng
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Chih-Chieh Hsu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan; Microbiome Research Center, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan.
| |
Collapse
|
74
|
Andrews K, Gonzalez A. Contextual risk factors impacting the colonization and development of the intestinal microbiota: Implications for children in low- and middle-income countries. Dev Psychobiol 2019; 61:714-728. [PMID: 30663777 DOI: 10.1002/dev.21823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Early adversities, such as poverty, maternal stress, and malnutrition, can affect the structure and functioning of the developing brain with implications for biological systems such as the intestinal microbiota. To date, most studies examining the impact of these risk factors on the development and functioning of the intestinal microbiota have primarily been conducted in high-income countries. However, arguably, children in low- and middle-income countries may be at increased risk given cumulative biological and psychosocial adversities during their development. Accumulating evidence in low- and middle-income countries has linked dysbiosis of the intestinal microbiota to child health outcomes such as stunting, malnutrition, and diarrheal diseases characterized by reduced microbial diversity and elevated pathogenic bacteria, which has implications for psychosocial outcomes. This review summarizes empirical findings that highlight the association between risk factors prevalent in low- and middle-income countries and the intestinal microbiota of children. Additionally, we briefly survey the current evidence regarding the effect of nutritional interventions on the microbial composition of children in low- and middle-income countries. We conclude that these empirical studies have the capacity to inform future research investigating the influence of preventive interventions on biological systems by targeting the predominant risk factors faced by children in low- and middle-income countries.
Collapse
Affiliation(s)
- Krysta Andrews
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Offord Centre for Child Studies, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Gonzalez
- Offord Centre for Child Studies, McMaster University, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
75
|
Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF. Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biol Psychiatry 2019; 85:150-163. [PMID: 30064690 DOI: 10.1016/j.biopsych.2018.06.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
It has been nearly 30 years since Dr. David Barker first highlighted the importance of prenatal factors in contributing to the developmental origins of adult disease. This concept was later broadened to include postnatal events. It is clear that the interaction between genetic predisposition and early life environmental exposures is key in this regard. However, recent research has also identified another important factor in the microbiota-the trillions of microorganisms that inhabit key body niches, including the vagina and gastrointestinal tract. Because the composition of these maternal microbiome sites has been linked to maternal metabolism and is also vertically transmitted to offspring, changes in the maternal microbiota are poised to significantly affect the newborn. In fact, several lines of evidence show that the gut microbiota interacts with diet, drugs, and stress both prenatally and postnatally and that these exogenous factors could also affect the dynamic changes in the microbiota composition occurring during pregnancy. Animal models have shown great utility in illuminating how these disruptions result in behavioral and brain morphological phenotypes reminiscent of psychiatric disorders (anxiety, depression, schizophrenia, and autism spectrum disorders). Increasing evidence points to critical interactions among the microbiota, host genetics, and both the prenatal and postnatal environments to temporally program susceptibility to psychiatric disorders later in life. Sex-specific phenotypes may be programmed through the influence of the microbiota on the hypothalamic-pituitary-adrenal axis and neuroimmune system.
Collapse
Affiliation(s)
- Martin G Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
76
|
Corsi-Zuelli F, Fachim HA, Loureiro CM, Shuhama R, Bertozi G, Joca SRL, Menezes PR, Louzada-Junior P, Del-Ben CM. Prolonged Periods of Social Isolation From Weaning Reduce the Anti-inflammatory Cytokine IL-10 in Blood and Brain. Front Neurosci 2019; 12:1011. [PMID: 30686977 PMCID: PMC6337063 DOI: 10.3389/fnins.2018.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 01/31/2023] Open
Abstract
Life stressors during critical periods are reported to trigger an immune dysfunction characterised by abnormal production of inflammatory cytokines. Despite the relationship between early stressors and schizophrenia is described, the evidence on inflammatory biomarkers remains limited. We aimed to investigate whether an imbalance between pro- and anti-inflammatory cytokines in the brain is reflected in the peripheral blood of rats submitted to post-weaning social isolation (pwSI), a model with validity to study schizophrenia. We evaluated pro- and anti-inflammatory cytokines (IL-6, TNF-α, and IL-10) simultaneously at blood, prefrontal cortex and hippocampal tissues (Milliplex MAP), including the respective cytokines gene expression (mRNA) (qRT-PCR TaqMan mastermix). We also performed a correlation matrix to explore significant correlations among cytokines (protein and mRNA) in blood and brain, as well as cytokines and total number of square crossings in the open field for isolated-reared animals. Male Wistar rats (n = 10/group) were kept isolated (n = 1/cage) or grouped (n = 3–4/cage) since weaning for 10 weeks. After this period, rats were assessed for locomotion and sacrificed for blood and brain cytokines measurements. Prolonged pwSI decreased IL-10 protein and mRNA in the blood, and IL-10 protein in the hippocampus, along with decreased IL-6 and its mRNA expression in the prefrontal cortex. Our results also showed that cytokines tend to correlate to one-another among the compartments investigated, although blood and brain correlations are far from perfect. IL-10 hippocampal levels were negatively correlated with hyperlocomotion in the open field. Despite the unexpected decrease in IL-6 and unchanged TNF-α levels contrast to the expected pro-inflammatory phenotype, this may suggest that reduced anti-inflammatory signalling may be critical for eliciting abnormal behaviour in adulthood. Altogether, these results suggest that prolonged early-life adverse events reduce the ability to build proper anti-inflammatory cytokine that is translated from blood-to-brain.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helene Aparecida Fachim
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Camila Marcelino Loureiro
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosana Shuhama
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giuliana Bertozi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Marta Del-Ben
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
77
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
78
|
Halcomb M, Argyriou E, Cyders MA. Integrating Preclinical and Clinical Models of Negative Urgency. Front Psychiatry 2019; 10:324. [PMID: 31191369 PMCID: PMC6541698 DOI: 10.3389/fpsyt.2019.00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Overwhelming evidence suggests that negative urgency is robustly associated with rash, ill-advised behavior, and this trait may hamper attempts to treat patients with substance use disorder. Research applying negative urgency to clinical treatment settings has been limited, in part, due to the absence of an objective, behavioral, and translational model of negative urgency. We suggest that development of such a model will allow for determination of prime neurological and physiological treatment targets, the testing of treatment effectiveness in the preclinical and the clinical laboratory, and, ultimately, improvement in negative-urgency-related treatment response and effectiveness. In the current paper, we review the literature on measurement of negative urgency and discuss limitations of current attempts to assess this trait in human models. Then, we review the limited research on animal models of negative urgency and make suggestions for some promising models that could lead to a translational measurement model. Finally, we discuss the importance of applying objective, behavioral, and translational models of negative urgency, especially those that are easily administered in both animals and humans, to treatment development and testing and make suggestions on necessary future work in this field. Given that negative urgency is a transdiagnostic risk factor that impedes treatment success, the impact of this work could be large in reducing client suffering and societal costs.
Collapse
Affiliation(s)
- Meredith Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, Indianapolis, IN, United States
| | - Evangelia Argyriou
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Melissa A Cyders
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| |
Collapse
|
79
|
The Role of the Microbiome in Asthma: The Gut⁻Lung Axis. Int J Mol Sci 2018; 20:ijms20010123. [PMID: 30598019 PMCID: PMC6337651 DOI: 10.3390/ijms20010123] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Asthma is one of the most common chronic respiratory diseases worldwide. It affects all ages but frequently begins in childhood. Initiation and exacerbations may depend on individual susceptibility, viral infections, allergen exposure, tobacco smoke exposure, and outdoor air pollution. The aim of this review was to analyze the role of the gut⁻lung axis in asthma development, considering all asthma phenotypes, and to evaluate whether microbe-based therapies may be used for asthma prevention. Several studies have confirmed the role of microbiota in the regulation of immune function and the development of atopy and asthma. These clinical conditions have apparent roots in an insufficiency of early life exposure to the diverse environmental microbiota necessary to ensure colonization of the gastrointestinal and/or respiratory tracts. Commensal microbes are necessary for the induction of a balanced, tolerogenic immune system. The identification of commensal bacteria in both the gastroenteric and respiratory tracts could be an innovative and important issue. In conclusion, the function of microbiota in healthy immune response is generally acknowledged, and gut dysbacteriosis might result in chronic inflammatory respiratory disorders, particularly asthma. Further investigations are needed to improve our understanding of the role of the microbiome in inflammation and its influence on important risk factors for asthma, including tobacco smoke and host genetic features.
Collapse
|
80
|
Koyama H, Tachibana Y, Takaura K, Takemoto S, Morii K, Wada S, Kaneko H, Kimura M, Toyoda A. Effects of housing conditions on behaviors and biochemical parameters in juvenile cynomolgus monkeys (Macaca fascicularis). Exp Anim 2018; 68:195-211. [PMID: 30584201 PMCID: PMC6511518 DOI: 10.1538/expanim.18-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the effects of environmental enrichment on laboratory monkeys, we studied
behavioral and physiological differences following changes in housing conditions. Ten male
and female juvenile cynomolgus monkeys were first housed in pairs for 8 weeks after
quarantine/acclimatization (singly housed) and subsequently housed alone for the next 8
weeks. Monkeys were subjected to evaluations of body weight gain, stereotypic or
affiliative behaviors, cortisol, 4-ethylphenyl sulfate (4EPS) and catecholamine
concentrations in biological samples, and blood chemistry tests under both housing
conditions. Under paired housing, the stereotypic behavioral score decreased in both
sexes, and the affiliative behavioral score increased in males and showed an increasing
trend in females. Under single housing, the stereotypic score increased in both sexes, and
the affiliative score decreased in males. Paired housing decreased serum calcium and urine
cortisol concentrations in both sexes and decreased plasma cortisol in males and plasma
4EPS concentrations in females. The stereotypic score was positively correlated with serum
calcium, plasma and urine cortisol, and plasma 4EPS concentration and negatively
correlated with the affiliative score. The feces painting score, affiliative score, and
plasma cortisol and serum calcium concentrations showed sex differences, suggesting
differences in responsiveness to environmental changes between males and females. In
conclusion, paired housing improved behavioral abnormalities in juvenile cynomolgus
monkeys, suggesting that it may be an effective environmental enrichment paradigm.
Calcium, cortisol, and 4EPS concentrations in biological samples may be useful indices for
evaluating the effects of environmental enrichment.
Collapse
Affiliation(s)
- Hironari Koyama
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.,United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuki Tachibana
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Kaoru Takaura
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Shigetoshi Takemoto
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Kiyoshi Morii
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Sou Wada
- Laboratory Animal Science Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hayato Kaneko
- Screening Science and Technology Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Mayuko Kimura
- Screening Science and Technology Division, Astellas Research Technologies Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Atsushi Toyoda
- United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,College of Agriculture, Ibaraki University, 3-21-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| |
Collapse
|
81
|
Peter J, Fournier C, Durdevic M, Knoblich L, Keip B, Dejaco C, Trauner M, Moser G. A Microbial Signature of Psychological Distress in Irritable Bowel Syndrome. Psychosom Med 2018; 80:698-709. [PMID: 30095672 PMCID: PMC6250280 DOI: 10.1097/psy.0000000000000630] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/10/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Irritable bowel syndrome (IBS) is associated with alterations along the brain-gut-microbiota axis. Previous studies have suggested a parallel segregation of microbial features and psychological burden in IBS. This study aimed at exploring the microbial correlates of psychological distress in patients with IBS. METHODS Forty-eight patients with IBS (Rome III criteria, M (SD) age = 42 (15) years, 35 female, 25 diarrhea-dominant, 5 constipation-dominant, and 18 alternating-type IBS) were assessed for psychological and clinical variables with validated questionnaires, fecal samples underwent microbial 16S rRNA analyses (regions V1-2). Microbial analyses comprised examination of alpha and beta diversity, correlational analyses of bacterial abundance and comparisons among subgroups defined by thresholds of psychological and IBS symptom variables, and machine learning to identify bacterial patterns corresponding with psychological distress. RESULTS Thirty-one patients (65%) showed elevated psychological distress, 22 (31%) anxiety, and 10 depression (21%). Microbial beta diversity was significantly associated with distress and depression (q = .036 each, q values are p values false discovery rate-corrected for multiple testing). Depression was negatively associated with Lachnospiraceae abundance (Spearman's ρ = -0.58, q = .018). Patients exceeding thresholds of distress, anxiety, depression, and stress perception showed significantly higher abundances of Proteobacteria (q = .020-.036). Patients with anxiety were characterized by elevated Bacteroidaceae (q = .036). A signature of 148 unclassified species accounting for 3.9% of total bacterial abundance co-varied systematically with the presence of psychological distress. CONCLUSIONS Psychological variables significantly segregated gut microbial features, underscoring the role of brain-gut-microbiota interaction in IBS. A microbial signature corresponding with psychological distress was identified. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02536131, retrospectively registered.
Collapse
Affiliation(s)
- Johannes Peter
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria (Peter, Fournier, Knoblich, Keip, Dejaco, Trauner, Moser); and Center for Medical Research, Medical University of Graz, Austria (Durdevic)
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Jadhav KS, Peterson VL, Halfon O, Ahern G, Fouhy F, Stanton C, Dinan TG, Cryan JF, Boutrel B. Gut microbiome correlates with altered striatal dopamine receptor expression in a model of compulsive alcohol seeking. Neuropharmacology 2018; 141:249-259. [DOI: 10.1016/j.neuropharm.2018.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
|
83
|
van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596:4923-4944. [PMID: 30066368 DOI: 10.1113/jp276431] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Chronic (psychosocial) stress changes gut microbiota composition, as well as inducing behavioural and physiological deficits. The microbial metabolites short-chain fatty acids (SCFAs) have been implicated in gastrointestinal functional, (neuro)immune regulation and host metabolism, but their role in stress-induced behavioural and physiological alterations is poorly understood. Administration of SCFAs to mice undergoing psychosocial stress alleviates enduring alterations in anhedonia and heightened stress-responsiveness, as well as stress-induced increases in intestinal permeability. In contrast, chronic stress-induced alterations in body weight gain, faecal SCFAs and the gene expression of the SCFA receptors FFAR2 and FFAR3 remained unaffected by SCFA supplementation. These results present novel insights into mechanisms underpinning the influence of the gut microbiota on brain homeostasis, behaviour and host metabolism, informing the development of microbiota-targeted therapies for stress-related disorders. ABSTRACT There is a growing recognition of the involvement of the gastrointestinal microbiota in the regulation of physiology and behaviour. Microbiota-derived metabolites play a central role in the communication between microbes and their host, with short-chain fatty acids (SCFAs) being perhaps the most studied. SCFAs are primarily derived from fermentation of dietary fibres and play a pivotal role in host gut, metabolic and immune function. All these factors have previously been demonstrated to be adversely affected by stress. Therefore, we sought to assess whether SCFA supplementation could counteract the enduring effects of chronic psychosocial stress. C57BL/6J male mice received oral supplementation of a mixture of the three principle SCFAs (acetate, propionate and butyrate). One week later, mice underwent 3 weeks of repeated psychosocial stress, followed by a comprehensive behavioural analysis. Finally, plasma corticosterone, faecal SCFAs and caecal microbiota composition were assessed. SCFA treatment alleviated psychosocial stress-induced alterations in reward-seeking behaviour, and increased responsiveness to an acute stressor and in vivo intestinal permeability. In addition, SCFAs exhibited behavioural test-specific antidepressant and anxiolytic effects, which were not present when mice had also undergone psychosocial stress. Stress-induced increases in body weight gain, faecal SCFAs and the colonic gene expression of the SCFA receptors free fatty acid receptors 2 and 3 remained unaffected by SCFA supplementation. Moreover, there were no collateral effects on caecal microbiota composition. Taken together, these data show that SCFA supplementation alleviates selective and enduring alterations induced by repeated psychosocial stress and these data may inform future research into microbiota-targeted therapies for stress-related disorders.
Collapse
Affiliation(s)
- Marcel van de Wouw
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niamh Wiley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| |
Collapse
|
84
|
Medel-Matus JS, Shin D, Dorfman E, Sankar R, Mazarati A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 2018; 3:290-294. [PMID: 29881810 PMCID: PMC5983141 DOI: 10.1002/epi4.12114] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 12/11/2022] Open
Abstract
There has been growing interest in the role of intestinal microbiome in brain disorders. We examined whether dysbiosis can predispose to epilepsy. The study was performed in female and male Sprague‐Dawley rats. To induce dysbiosis, the rats were subjected to chronic restraint stress (two 2‐h long sessions per day, over 2 weeks). Cecal content from stressed and sham‐stressed donors was transplanted via oral gavage to recipients, in which commensal microbiota had been depleted by the antibiotics. The study included the following groups: (1) Sham stress, no microbiota transplant; (2) Stress, no microbiota transplant; (3) Sham‐stressed recipients transplanted with microbiota from sham‐stressed donors; (4) Stressed recipients transplanted with microbiota from sham‐stressed donors; (5) Sham‐stressed recipients transplanted with microbiota from stressed donors; and (6) Stressed recipients transplanted with microbiota from stressed donors. After microbiota transplant, all animals were subjected to kindling of the basolateral amygdala. Both chronic stress and microbiome transplanted from stressed to sham‐stressed subjects accelerated the progression and prolonged the duration of kindled seizures. Microbiome from sham‐stressed animals transplanted to chronically stressed rats, counteracted proepileptic effects of restraint stress. These findings directly implicate perturbations in the gut microbiome, particularly those associated with chronic stress, in the increased susceptibility to epilepsy.
Collapse
Affiliation(s)
| | - Don Shin
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Edward Dorfman
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Raman Sankar
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,UCLA Children's Discovery and Innovation Institute Los Angeles California U.S.A
| | - Andrey Mazarati
- Department of Pediatrics David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,UCLA Children's Discovery and Innovation Institute Los Angeles California U.S.A
| |
Collapse
|
85
|
Characterization of Behavioral, Signaling and Cytokine Alterations in a Rat Neurodevelopmental Model for Schizophrenia, and Their Reversal by the 5-HT 6 Receptor Antagonist SB-399885. Mol Neurobiol 2018; 55:7413-7430. [PMID: 29423817 PMCID: PMC6096968 DOI: 10.1007/s12035-018-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Post-weaning social isolation of rats produces neuroanatomical, neurochemical and behavioral alterations resembling some core features of schizophrenia. This study examined the ability of the 5-HT6 receptor antagonist SB-399885 to reverse isolation-induced cognitive deficits, then investigated alterations in hippocampal cell proliferation and hippocampal and frontal cortical expression of selected intracellular signaling molecules and cytokines. Male Lister hooded rats (weaned on post-natal days 21-24 and housed individually or in groups of 3-4) received six i.p. injections of vehicle (1% Tween 80, 1 mL/kg) or SB-399885 (5 or 10 mg/kg) over a 2-week period starting 40 days post-weaning, on the days that locomotor activity, novel object discrimination (NOD), pre-pulse inhibition of acoustic startle and acquisition, retention and extinction of a conditioned freezing response (CFR) were assessed. Tissue was collected 24 h after the final injection for immunohistochemistry, reverse-phase protein microarray and western blotting. Isolation rearing impaired NOD and cue-mediated CFR, decreased cell proliferation within the dentate gyrus, and elevated hippocampal TNFα levels and Cdc42 expression. SB-399885 reversed the NOD deficit and partially normalized CFR and cell proliferation. These effects were accompanied by altered expression of several members of the c-Jun N-terminal Kinase (JNK) and p38 MAPK signaling pathways (including TAK1, MKK4 and STAT3). Although JNK and p38 themselves were unaltered at this time point hippocampal TAK1 expression and phosphorylation correlated with visual recognition memory in the NOD task. Continued use of this neurodevelopmental model could further elucidate the neurobiology of schizophrenia and aid assessment of novel therapies for drug-resistant cognitive symptoms.
Collapse
|