51
|
Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, Lévy F, Lucion AB, Morrell JI, Numan M, Uriarte N. New theoretical and experimental approaches on maternal motivation in mammals. Neurosci Biobehav Rev 2013; 37:1860-74. [PMID: 23608127 DOI: 10.1016/j.neubiorev.2013.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 01/23/2023]
Abstract
Maternal behavior is expressed in different modalities, physiological conditions, and contexts. It is the result of a highly motivated brain, that allows the female to flexibily adapt her caring activities to different situations and social demands. To understand how mothers coordinate maternal and other motivated behaviors we discuss the limitations of current theoretical approaches to study maternal motivation (e.g. distinction between appetitive and consummatory behaviors), and propose a different approach (i.e. motorically active vs. passive motivations) and a distinction between maternal motivated state and maternal motivated behaviors. We review the evidence supporting dopamine mediation of maternal motivation and describe how different phases of the dopaminergic response - basal, tonic, and phasic release in the nucleus accumbens - relate to increased salience, invigorating behavior, and behavioral switching. The existing and new experimental paradigms to investigate maternal motivation, and its coexpression and coordination with other social or non-social motivations are also analyzed. An example of how specificity of motivational systems (e.g. maternal and sexual behavior at postpartum estrus) could be processed at the neural level is also provided. This revision offers new theoretical and experimental approaches to address the fundamental question of how mothers flexibly adapt and coordinate the different components of maternal behavior with other motivated behaviors, also critical for the survival of the species.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, Lévy F, Lucion AB, Morrell JI, Numan M, Uriarte N. Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neurosci Biobehav Rev 2013; 37:1875-92. [PMID: 23608126 DOI: 10.1016/j.neubiorev.2013.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022]
Abstract
Maternal behavior is species-specific and expressed under different physiological conditions, and contexts. It is the result of neural processes that support different forms (e.g. postpartum, cycling sensitized and spontaneous maternal behavior) and modalities of mother-offspring interaction (e.g. maternal interaction with altricial/precocious young; selective/non-selective bond). To understand how the brain adapts to and regulates maternal behavior in different species, and physiological and social conditions we propose new neural models to explain different forms of maternal expression (e.g. sensitized and spontaneous maternal behavior) and the behavioral changes that occur across the postpartum period. We emphasize the changing role of the medial preoptic area in the neural circuitry that supports maternal behavior and the cortical regulation and adjustment of ongoing behavioral performance. Finally, we discuss how our accumulated knowledge about the psychobiology of mothering in animal models supports the validity of animal studies to guide our understanding of human mothering and to improve human welfare and health.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 2013; 521:1633-63. [DOI: 10.1002/cne.23251] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023]
|
54
|
Pereira M, Morrell JI. Functional mapping of the neural circuitry of rat maternal motivation: effects of site-specific transient neural inactivation. J Neuroendocrinol 2011; 23:1020-35. [PMID: 21815954 PMCID: PMC3196804 DOI: 10.1111/j.1365-2826.2011.02200.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioural approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that, during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, it is further revealed that maternal responsiveness becomes progressively less dependent on the medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behaviour. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period.
Collapse
Affiliation(s)
- M Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark Campus, Newark, NJ 07102, USA.
| | | |
Collapse
|
55
|
Kuroda KO, Tachikawa K, Yoshida S, Tsuneoka Y, Numan M. Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1205-31. [PMID: 21338647 DOI: 10.1016/j.pnpbp.2011.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
Abstract
To support the well-being of the parent-infant relationship, the neuromolecular mechanisms of parental behaviors should be clarified. From neuroanatomical analyses in laboratory rats, the medial preoptic area (MPOA) has been shown to be of critical importance in parental retrieving behavior. More recently, various gene-targeted mouse strains have been found to be defective in different aspects of parental behaviors, contributing to the identification of molecules and signaling pathways required for the behavior. Therefore, the neuromolecular basis of "mother love" is now a fully approachable research field in modern molecular neuroscience. In this review, we will provide a summary of the required brain areas and gene for parental behavior in laboratory mice (Mus musculus) and rats (Rattus norvegicus). Basic protocols and technical considerations on studying the mechanism of parental behavior using genetically-engineered mouse strains will also be presented.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Unit for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
56
|
Abstract
OBJECTIVE It has been proposed that early attachment relationships shape the structure and reactivity of social brain structures that underlie later social capacities. We provide a review of the literature surrounding the development of neurological regulatory systems during infancy and outline recent research suggesting these systems go on to underlie adaptive parental responses. METHOD We review evidence in the peer-reviewed psychiatric literature including (i) observational human literature on the neurobiological and social sequelae of early parenting experiences, (ii) experimental animal literature on the effects of early maternal care on neurological development, (iii) experimental animal literature on the neurobiological underpinnings of parenting behaviours, (iv) observational and fMRI evidence on the neurobiological correlates of parenting behaviours, (v) functional and volumetric imaging studies on adults affected by borderline personality disorder. RESULTS The development of infant regulatory systems is influenced by early parenting experiences. These frontolimbic regulatory systems are also heavily implicated in normal parental responses to infant cues. These frontolimbic disturbances are also observed in studies of borderline personality disorder; a disorder associated with poor emotional regulation, early trauma and disturbed parenting. CONCLUSIONS While the current literature is limited to animal models of abnormal care giving, existing disorders associated with deficits in regulatory capacity and abnormal frontolimbic functioning may yet provide a human model of the neurobiology of parenting disturbance.
Collapse
Affiliation(s)
- Louise K Newman
- Centre for Developmental Psychiatry and Psychology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
57
|
Sobor M, Timár J, Riba P, Friedmann T, Király KP, Gyarmati S, Al-Khrasani M, Fürst S. Effects of opioid agonist and antagonist in dams exposed to morphine during the perinatal period. Brain Res Bull 2011; 84:53-60. [DOI: 10.1016/j.brainresbull.2010.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/05/2010] [Accepted: 10/01/2010] [Indexed: 12/01/2022]
|
58
|
Stolzenberg DS, Numan M. Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats. Neurosci Biobehav Rev 2011; 35:826-47. [DOI: 10.1016/j.neubiorev.2010.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 12/25/2022]
|
59
|
Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Bernabé J, Alexandre L, Giuliano F. Neuroanatomical distribution of the melanocortin-4 receptors in male and female rodent brain. J Chem Neuroanat 2010; 40:310-24. [DOI: 10.1016/j.jchemneu.2010.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
|
60
|
Numan M, Bress JA, Ranker LR, Gary AJ, DeNicola AL, Bettis JK, Knapp SE. The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behav Brain Res 2010; 214:368-76. [DOI: 10.1016/j.bbr.2010.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/03/2010] [Indexed: 12/31/2022]
|
61
|
Cummings JA, Clemens LG, Nunez AA. Mother counts: how effects of environmental contaminants on maternal care could affect the offspring and future generations. Front Neuroendocrinol 2010; 31:440-51. [PMID: 20685293 DOI: 10.1016/j.yfrne.2010.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/15/2022]
Abstract
Various compounds of anthropogenic origin represent environmental contaminants (EC) that penetrate the food chain and are frequently detected in human milk and maternal blood at the time of delivery. These ECs can affect the development of the fetus and can be transferred to the newborn during lactation. Many studies have used animal models to study the impact of ECs on the development of the nervous system and have reported effects of early exposure on neural and neuroendocrine systems and on behavior, when the exposed animals are tested as adults. Some of these effects persist across generations and may involve epigenetic mechanisms. The majority of these studies in developmental toxicology treat the pregnant or lactating animal with ECs in order to deliver the contaminants to the developing offspring. Almost universally, the mother is viewed as a passive conduit for the ECs, and maternal behavior is rarely assessed. Here we review the literature on the effects of ECs on maternal care and find mounting evidence that important components of the care given to the offspring are affected by maternal exposure to different ECs. Some of these changes in maternal behavior appear to be secondary to changes in the behavior and/or stimulus properties of the exposed offspring, but others are likely to be direct effects of the ECs on the maternal nervous and endocrine systems. Considering the extent to which the quality of maternal care affects the development of the offspring, it becomes imperative to determine the contributions that changes in maternal behavior make to the deficits traditionally ascribed solely to direct effects of ECs on the developing organism. Given the complexity and importance of mother-infant interactions, future research on developmental toxicology must consider the effects of ECs not only on the offspring, but also on the mother and on the interactions and social bond between mother and infant.
Collapse
Affiliation(s)
- J A Cummings
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
62
|
Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav Brain Res 2010; 210:251-6. [DOI: 10.1016/j.bbr.2010.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 11/29/2022]
|
63
|
GABAA receptor signaling in caudal periaqueductal gray regulates maternal aggression and maternal care in mice. Behav Brain Res 2010; 213:230-7. [PMID: 20457185 DOI: 10.1016/j.bbr.2010.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/07/2010] [Accepted: 05/03/2010] [Indexed: 01/16/2023]
Abstract
Maternal aggression (maternal defense) is exhibited by lactating females towards intruders and contributes to the protection of offspring. Enhancement of Gamma-Aminobutyric acid (GABA)(A) receptor signaling by benzodiazepines elevates maternal aggression, and we previously found indirect evidence (via c-Fos immunohistochemistry) that caudal periaqueductal gray (cPAG) and lateral septum (LS) could be sites where benzodiazepines increase aggression. We recently found that GABA(A) receptor signaling in LS modulates maternal aggression, and in this study, we tested the hypothesis that GABA(A) receptor signaling in cPAG also regulates this behavior. Site-directed injections to cPAG were made in lactating mice using the GABA(A) receptor antagonist, bicuculline (3-9 ng) or the GABA(A) receptor positive modulator, chlordiazepoxide (CDP), a benzodiazepine (2.5-20 microg). Maternal aggression, other maternal behaviors, and anxiety-like measures (using the light-dark box) were then examined. GABA(A) receptor positive modulator did not increase aggression, which could have resulted from a ceiling effect. However, 8 ng and 9 ng of bicuculline in cPAG significantly decreased maternal aggression without altering other maternal behaviors or light-dark box performance, suggesting some GABA(A) receptor signaling in cPAG is required for full maternal aggression expression. Additionally, 7 ng of bicuculline significantly increased licking/grooming of pups, and decreased the number of transitions between the light and dark compartments of the light-dark box without affecting aggression. Given these results indicating that antagonizing GABA(A) receptor in cPAG dose-dependently promotes offspring grooming behavior while impairing aggression, it is possible that the cPAG represents a key site for decision making (aggression versus other behaviors) in the lactating female.
Collapse
|
64
|
Pereira M, Morrell JI. The medial preoptic area is necessary for motivated choice of pup- over cocaine-associated environments by early postpartum rats. Neuroscience 2010; 167:216-31. [PMID: 20156528 PMCID: PMC2850262 DOI: 10.1016/j.neuroscience.2010.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/23/2022]
Abstract
Converging evidence suggests that the motivation to seek cocaine during the postpartum period is significantly impacted by the competing incentives of offspring, a stimulus unique to this life stage. In the present study, the functional role of the medial preoptic area (mPOA), a critical site involved in maternal responsiveness, on processing incentive value of pup-associated cues and influencing response allocation for pup- over cocaine-associated environments was investigated using a concurrent pup/cocaine choice conditioned place preference (CPP) paradigm. Early postpartum females with bilateral guide cannulae aimed into the mPOA or into anatomical control sites were conditioned, from postpartum days (PPD) 4 to 7, to associate different uniquely featured environments with pups or cocaine. CPP was tested on PPD8 following intra-mPOA infusions of either 2% bupivacaine or saline vehicle. In two additional experiments, the effects of intra-mPOA infusions of bupivacaine on expression of conditioned responding induced by environments associated with either pups or cocaine were examined separately. Transient inactivation of the mPOA selectively blocked the conditioned preferences for pup-associated environments, significantly contrasting the robust pup-CPP found in non-surgical and intra-mPOA vehicle-treated females. In contrast, mPOA inactivation failed to alter cocaine-CPP in postpartum females. When given a choice between environments associated with pups or cocaine, transient functional inactivation of the mPOA altered choice behavior, biasing the preference of females toward cocaine-associated environments, such that almost all preferred cocaine- and none the pup-associated option. The anatomical specificity was revealed when inactivation of adjacent regions to the mPOA did not affect CPP responses for pups. The findings support a critical role for the mPOA in mediating pup-seeking behavior, and further suggest that the competing properties of pups over alternative incentives, including drugs of abuse, rely on mPOA integrity to provide relevant pup-related information to the circuitry underlying the choice behavior between pups and alternative stimuli.
Collapse
Affiliation(s)
- M Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102-1814, USA.
| | | |
Collapse
|
65
|
Febo M, Felix-Ortiz AC, Johnson TR. Inactivation or inhibition of neuronal activity in the medial prefrontal cortex largely reduces pup retrieval and grouping in maternal rats. Brain Res 2010; 1325:77-88. [PMID: 20156425 DOI: 10.1016/j.brainres.2010.02.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 12/19/2022]
Abstract
Previous research suggests that the maternal medial prefrontal cortex (mPFC) may play a role in maternal care and that cocaine sensitization before pregnancy can affect neuronal activity within this region. The present work was carried out to test whether the mPFC does actually play a role in the expression of maternal behaviors in the rats and to understand what specific behaviors this cortical area may modulate. In the first experiment, tetrodotoxin (TTX) was used to chemically inactivate the mPFC during tests for maternal behavior latencies. Lactating rats were tested on postpartum days 7-9. The results of this first experiment indicate that there is a large effect of TTX-induced inactivation on retrieval behavior latencies. TTX nearly abolished the expression of maternal retrieval of pups without significantly impairing locomotor activity. In the second experiment, GABA-mediated inhibition was used to test maternal behavior latencies and durations of maternal and other behaviors in postpartum dams. In agreement with experiment 1, it was observed that dams capable of retrieving are rendered incapable by inhibition in the mPFC. GABA-mediated inhibition in the mPFC largely reduced retrieval without altering other indices of maternal care and non-specific behavior such as ambulation time, self-grooming, and inactivity. Moreover, in both experiments, dams were able to establish contact with pups within seconds. The overall results indicate that the mPFC may play an active role in modulating maternal care, particularly retrieval behavior. External factors that affect the function of the frontal cortical site may result in significant impairments in maternal goal-directed behavior as reported in our earlier work.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
66
|
Lee G, Gammie SC. GABA(A) receptor signaling in the lateral septum regulates maternal aggression in mice. Behav Neurosci 2010; 123:1169-77. [PMID: 20001101 DOI: 10.1037/a0017535] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal aggression (maternal defense) is a fierce aggression produced by lactating females toward intruders that plays an important role in protection of vulnerable offspring. Enhancement of GABA(A) receptor signaling by benzodiazepines increases maternal aggression, and we recently found indirect evidence that lateral septum (LS) could be a key site where benzodiazepines elevate aggression. In this study, we directly tested the hypothesis that activation of GABA(A) receptors in LS would promote maternal aggression while inhibition of this receptor would decrease aggression. Site-directed injections to LS were made using the GABA(A) receptor antagonist, bicuculline (3-30 ng), or the GABA(A) receptor agonists, chlordiazepoxide, a benzodiazepine (2.5-5 microg), and muscimol (0.05-5 ng). Maternal aggression and other behavioral measures were then evaluated in lactating mice. Neither GABA(A) receptor agonist elevated aggression, which could reflect a ceiling effect. However, 7 ng of the GABA(A) receptor antagonist, bicuculline, in LS significantly decreased maternal aggression without altering other maternal behaviors or light-dark box performance, suggesting some GABA(A) receptor signaling in LS is required for full maternal aggression expression. Together, these results confirm a role for GABA(A) receptor signaling in LS in the regulation of maternal aggression.
Collapse
Affiliation(s)
- Grace Lee
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
67
|
Stolzenberg DS, Zhang KY, Luskin K, Ranker L, Bress J, Numan M. Dopamine D(1) receptor activation of adenylyl cyclase, not phospholipase C, in the nucleus accumbens promotes maternal behavior onset in rats. Horm Behav 2010; 57:96-104. [PMID: 19799904 DOI: 10.1016/j.yhbeh.2009.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
Abstract
A body of evidence supports the idea that the mesolimbic dopamine (DA) system modulates the natural increase in responsiveness female rats show toward offspring (biological or foster) at birth. In the absence of the full hormonal changes associated with pregnancy and birth, female rats do not show immediate responsiveness toward foster offspring. Activation of the mesolimbic DA system can produce an immediate onset of maternal behavior in these females. For example, female rats that are hysterectomized and ovariectomized on day 15 of pregnancy (15HO) and presented with pups 48 hours later normally show maternal behavior after 2-3 days of pup exposure, but will show maternal behavior on day 0 of testing after microinjection of the DA D(1) receptor agonist, SKF 38393, into the nucleus accumbens (NA) at the time of pup presentation. DA D(1) receptor stimulation is known to activate cAMP intracellular signaling cascades via its stimulation of adenylyl cyclase (AC). However, some DA D(1) receptors are also linked to phospholipase C (PLC) and are capable of activating phosphatidylinositol signaling cascades. SKF 38393 stimulates both types of D(1) receptors. Here we provide evidence that the facilitatory effects of DA D(1) receptor stimulation in the NA on maternal behavior are mediated by AC-linked DA D(1) receptors. By examining the effects of intra-NA application of SKF 83822, a drug which selectively binds DA D(1)-AC receptors, or SKF 83959, a drug which selectively activates D(1)-PLC-linked receptors, we find that only SKF 83822 facilitates maternal behavior onset.
Collapse
|
68
|
Pereira M, Morrell JI. The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: facilitation followed by inhibition. Behav Brain Res 2009; 205:238-48. [PMID: 19549547 PMCID: PMC2769204 DOI: 10.1016/j.bbr.2009.06.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 01/21/2023]
Abstract
Maternal behavior in rats undergoes considerable plasticity in parallel to the developmental stage of the pups, resulting in distinct patterns of maternal behavior and care at different postpartum time points. The medial preoptic area (mPOA) of the hypothalamus is one critical neural substrate underlying the onset and early expression of maternal behavior in rats but little is known about its specific functional role in the evolving expression of maternal behavior across the postpartum period. The present study uses a reversible local neural inactivation method to examine the role of the mPOA in the regulation of maternal behavior throughout the postpartum period, particularly extending into the late postpartum, a little examined period. This approach avoids the compensatory plasticity in CNS that occurs after permanent lesions, and allows the repeated testing of same individuals. Early (PPD7-8) and late (PPD13-14) postpartum maternal behavior was evaluated in female rats following infusions of bupivacaine or vehicle into the mPOA or into control areas. As expected, mPOA inactivation severely but transiently disrupted early postpartum maternal behavior whereas infusion of vehicle or inactivation of adjacent control sites did not. Later in the postpartum period, however, transient mPOA inactivation facilitated the expression of maternal behaviors, highly contrasting the behavioral expression levels characteristic of late postpartum. Results strongly demonstrate that the mPOA is differentially engaged throughout postpartum in orchestrating appropriate maternal responses with the developmental stage of the pups.
Collapse
Affiliation(s)
- Mariana Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark Campus, NJ 07102, USA.
| | | |
Collapse
|
69
|
Nephew BC, Caffrey MK, Felix-Ortiz AC, Ferris CF, Febo M. Blood oxygen level-dependent signal responses in corticolimbic 'emotions' circuitry of lactating rats facing intruder threat to pups. Eur J Neurosci 2009; 30:934-45. [PMID: 19709175 DOI: 10.1111/j.1460-9568.2009.06875.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactating rats must continuously maintain a critical balance between caring for pups and aggressively responding to nest threats. We tested the neural response of lactating females to the presentation of their own pups and novel intruder males using blood oxygen level-dependent functional magnetic resonance imaging at 7 T. Dams were presented with a single sequence of a control stimulus, pups or a male intruder in one imaging session (n = 7-9). To further determine the selectivity of neural processing, dams were imaged for their response to a male intruder in both the absence and presence of their pups (n = 6). Several maternal cortical and limbic brain regions were significantly activated by intruder presentation but not by pups or a control stimulus. These included the nucleus accumbens, periaqueductal gray, anterior cingulate, anterior thalamus, basal nucleus of the amygdala, temporal cortex, prelimbic/orbital area and insula. The nucleus accumbens, periaqueductal gray, temporal cortex and mediodorsal thalamus still showed greater neural activity when compared with intruder presentation in the absence of pups. The present results suggest that the high emotional state generated by a threat to pups involves robust activation of classical limbic regions controlling emotional responses. This pattern of blood oxygen level-dependent activity may precede behavioral states upon which lactating rats initiate attacks against a potential threat to offspring.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Psychology and Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
70
|
Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol 2009; 30:46-64. [PMID: 19022278 DOI: 10.1016/j.yfrne.2008.10.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/20/2008] [Accepted: 10/27/2008] [Indexed: 02/07/2023]
Abstract
The medial preoptic area (MPOA) and dopamine (DA) neural systems interact to regulate maternal behavior in rats. Two DA systems are involved: the mesolimbic DA system and the incerto-hypothalamic DA system. The hormonally primed MPOA regulates the appetitive aspects of maternal behavior by activating mesolimbic DA input to the shell region of the nucleus accumbens (NAs). DA action on MPOA via the incerto-hypothalamic system may interact with steroid and peptide hormone effects so that MPOA output to the mesolimbic DA system is facilitated. Neural oxytocin facilitates the onset of maternal behavior by actions at critical nodes in this circuitry. DA-D1 receptor agonist action on either the MPOA or NAs can substitute for the effects of estradiol in stimulating the onset of maternal behavior, suggesting an overlap in underlying cellular mechanisms between estradiol and DA. Maternal memory involves the neural plasticity effects of mesolimbic DA activity. Finally, early life stressors may affect the development of MPOA-DA interactions and maternal behavior.
Collapse
|
71
|
Pueta M, Abate P, Haymal OB, Spear NE, Molina JC. Ethanol exposure during late gestation and nursing in the rat: effects upon maternal care, ethanol metabolism and infantile milk intake. Pharmacol Biochem Behav 2008; 91:21-31. [PMID: 18602418 PMCID: PMC2568972 DOI: 10.1016/j.pbb.2008.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022]
Abstract
Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water or ethanol during the postpartum period. Intoxication during nursing disrupted the capability of the dam to retrieve the pups and to adopt a crouching posture. These disruptions were attenuated when dams had exposure to ethanol during pregnancy. Ethanol experiences during gestation did not affect pharmacokinetic processes during nursing, whereas progressive postpartum ethanol experience resulted in metabolic tolerance. Pups suckling from intoxicated dams, with previous ethanol experiences, ingested more milk than did infants suckling from ethanol-intoxicated dams without such experience. Ethanol gestational experience results in subsequent resistance to the drug's disruptions in maternal care. Consequently, better maternal care by an intoxicated dam with ethanol experience during gestation facilitates access of pups to milk which could be contaminated with ethanol.
Collapse
Affiliation(s)
- Mariana Pueta
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC - CONICET), Córdoba, C.P 5016, Argentina.
| | | | | | | | | |
Collapse
|
72
|
Frye CA, Paris JJ, Rhodes ME. Exploratory, anti-anxiety, social, and sexual behaviors of rats in behavioral estrus is attenuated with inhibition of 3alpha,5alpha-THP formation in the midbrain ventral tegmental area. Behav Brain Res 2008; 193:269-76. [PMID: 18590775 DOI: 10.1016/j.bbr.2008.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/19/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022]
Abstract
The progesterone (P(4)) metabolite and neurosteroid, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP) acts in the midbrain ventral tegmental area (VTA) to modulate lordosis of female rats. 3alpha,5alpha-THP also mediates exploratory, affective, and social behaviors; whether actions of 3alpha,5alpha-THP in the VTA mediate these behaviors is of interest. To elucidate the role of the VTA in mediating exploratory, affective, and social behaviors, the present study examined effects of inhibiting 3alpha,5alpha-THP formation in the VTA. Rats received intra-VTA infusions of either PK11195 (400ng/mul, which inhibits de novo 3alpha,5alpha-THP production), indomethacin (10mug/mul, which blocks metabolism of P(4) to 3alpha,5alpha-THP), PK11195 and indomethacin together, or beta-cyclodextrin vehicle and tested on a battery of anxiety (open field and elevated plus maze), social (partner preference and social interaction), and sexual (paced mating) tasks. Compared to rats infused with vehicle to the VTA, rats infused with inhibitor(s) demonstrated significant reductions in central entries in the open field, time on open arms of an elevated plus maze, time spent interacting with a conspecific, initiation and intensity of lordosis, sexual solicitations, and midbrain 3alpha,5alpha-THP levels. These findings suggest that actions of 3alpha,5alpha-THP in the VTA are important for mediating aspects of exploration, anxiety, and social behavior related to mating.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Life Sciences Research Building 01058, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | |
Collapse
|
73
|
Cameron NM, Shahrokh D, Del Corpo A, Dhir SK, Szyf M, Champagne FA, Meaney MJ. Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J Neuroendocrinol 2008; 20:795-801. [PMID: 18513204 DOI: 10.1111/j.1365-2826.2008.01725.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies across multiple organisms reveal considerable phenotypic variation in reproductive tactics. In some species, this variation is associated with maternal effects in which variation in maternal investment results in stable individual differences in reproductive function. Recent studies with the rat suggest that maternal effects can alter the function of neuroendocrine systems associated with female sexual behaviour as well as maternal behaviour. These maternal effects appear to be mediated by epigenetic modifications at the promoter for oestrogen receptor alpha (ERalpha) and subsequent effects on gene expression. The tissue-specific nature of such effects may underlie the co-ordinated variation in multiple forms of reproductive function, resulting in distinct reproductive strategies.
Collapse
Affiliation(s)
- N M Cameron
- Sackler Program for Epigenetics and Psychobiology at McGill University and Douglas University Mental Health Institute, McGill University, Montréal, Canada
| | | | | | | | | | | | | |
Collapse
|
74
|
Gammie SC, Edelmann MN, Mandel-Brehm C, D'Anna KL, Auger AP, Stevenson SA. Altered dopamine signaling in naturally occurring maternal neglect. PLoS One 2008; 3:e1974. [PMID: 18398484 PMCID: PMC2276864 DOI: 10.1371/journal.pone.0001974] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking. METHODOLOGY/PRINCIPAL FINDINGS The current study characterizes a population of mice (MaD1) which naturally exhibit maternal neglect (little or no care of offspring) at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI), ventral tegmental area (VTA), and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production) was significantly elevated in ZI and higher in VTA (although not significantly) in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams. CONCLUSIONS/SIGNIFICANCE These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally occurring neglect and that MaD1 mice are a useful model for understanding the basis of naturally occurring neglect.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | | | |
Collapse
|
75
|
Lee AW, Brown RE. Comparison of medial preoptic, amygdala, and nucleus accumbens lesions on parental behavior in California mice (Peromyscus californicus). Physiol Behav 2007; 92:617-28. [PMID: 17610916 DOI: 10.1016/j.physbeh.2007.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/31/2006] [Accepted: 05/07/2007] [Indexed: 11/21/2022]
Abstract
We have previously shown that medial preoptic area (MPOA) lesions disrupt parental behavior in both male and female California mice (P. californicus). In the present study, we compare the effects of lesions in the MPOA, with those in the basolateral amygdala (BA) and nucleus accumbens (NA) on male and female parental behaviors in the biparental California mouse. A male or multiparous female from each male-female pair was given an electrolytic or sham lesion in the MPOA, BA, or NA and tested for parental responsiveness. Since female P. californicus show postpartum estrus, they were likely pregnant during parental testing. MPOA lesions produced deficits in both male and female parental behaviors, and BA lesions disrupted male, and to a lesser extent, female parental behavior. NA lesions produced mild effects on pup-retrieval in males and no effect on parental behavior in females. However, NA lesions incompletely destroyed the NA shell, the region most relevant for maternal behavior in rats, and should be investigated further. These results support a role for the MPOA and BA in both male and female parental behaviors.
Collapse
Affiliation(s)
- Anna W Lee
- Psychology Department, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| | | |
Collapse
|
76
|
Febo M, Ferris CF. Development of cocaine sensitization before pregnancy affects subsequent maternal retrieval of pups and prefrontal cortical activity during nursing. Neuroscience 2007; 148:400-12. [PMID: 17651902 PMCID: PMC2220157 DOI: 10.1016/j.neuroscience.2007.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/10/2007] [Accepted: 05/29/2007] [Indexed: 11/25/2022]
Abstract
Pups are a highly rewarding stimulus for early postpartum rats. Our previous work supports this notion by showing that suckling activates the mesocorticolimbic system in mothers. In the present study, we tested whether development of behavioral sensitization to cocaine before pregnancy affects the neural response to pups during the early postpartum days (PD). Virgin rats were repeatedly administered cocaine for 14 days (15 mg kg(-1)) and withdrawn from treatment during breeding and pregnancy. The neural response to suckling was measured at PD 4-8 using blood-oxygen-level-dependent (BOLD) MRI or microdialysis. Our results show that BOLD activation in the medial prefrontal cortex (PFC), septum and auditory cortex was curtailed in cocaine-sensitized dams. No differences between cocaine sensitized and saline control dams were observed in the nucleus accumbens, olfactory structures, or in 48 additional major brain regions that were analyzed. Baseline, but not pup-stimulated, dopamine (DA) levels in the medial PFC were lower in cocaine-sensitized dams than in controls. When tested for maternal behaviors, cocaine-sensitized dams showed significantly faster retrieval of pups without changes in other maternal behaviors such as grouping, crouching and defending the nest. Taken together, the present findings suggest that maternal motivation to retrieve pups was enhanced by repeated cocaine exposure and withdrawal, a result reminiscent of 'cross-sensitization' between the drug and a natural reward. Changes in retrieval behavior in cocaine-sensitized mothers might be associated with a hypo-responsive medial PFC.
Collapse
Affiliation(s)
- M Febo
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.
| | | |
Collapse
|
77
|
Abstract
Jay Rosenblatt's approach-avoidance model of maternal behavior proposes that maternal behavior occurs when the tendency to approach infant stimuli is greater than the tendency to avoid such stimuli. Our research program has uncovered neural circuits which conform to such a model. We present evidence that the medial preoptic area (MPOA: located in the rostral hypothalamus) may regulate maternal responsiveness by depressing antagonistic neural systems which promote withdrawal responses while also activating appetitive neural systems which increase the attractiveness of infant-related stimuli. These MPOA circuits are activated by the hormonal events of late pregnancy. Preoptic efferents may suppress a central aversion system which includes an amygdala to anterior hypothalamic circuit. Preoptic efferents are also shown to interact with components of the mesolimbic dopamine (DA) system to regulate proactive voluntary maternal responses. We make a distinction between specific (MPOA neurons) and nonspecific motivational systems (mesolimbic DA system) in the regulation of maternal responsiveness.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, McGuinn Hall, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
78
|
Abstract
A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
79
|
Lee G, Gammie SC. GABA enhancement of maternal defense in mice: possible neural correlates. Pharmacol Biochem Behav 2007; 86:176-87. [PMID: 17275080 PMCID: PMC1853310 DOI: 10.1016/j.pbb.2006.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 12/08/2006] [Accepted: 12/27/2006] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that low doses of GABA(A) receptor agonists facilitate maternal defense of offspring (maternal aggression), without significantly affecting other maternal behaviors. In addition, it has been demonstrated that endogenous changes in GABAergic neurotransmission occur in association with lactation. This study investigated the effects of GABA(A) receptor agonist, chlordiazepoxide (CDP), a benzodiazepine (BDZ), on maternal behaviors including aggression, and identified brain regions with altered activity in association with treatment. Another aim of the study was to determine whether CDP injections could prevent decreases in maternal aggression that occur with pup separation. Intraperitoneal injections of 1 mg/kg of CDP significantly increased maternal defense without affecting other maternal behaviors, although a trend towards elevated nursing was noted. CDP significantly reduced c-Fos in lateral septum (LS) and caudal periaqueductal gray (cPAG) in behaviorally-experienced mice relative to vehicle-injected controls. In behaviorally-naïve subjects, CDP also decreased c-Fos in LS, but in cPAG this decrease was just above significance (p=0.051). CDP was not sufficient to "rescue" maternal aggression when pup stimulus was removed. Overall, these studies provide further insights into the role for GABA in maternal behaviors, including aggression, and how and where BDZs may act to modulate behavior.
Collapse
Affiliation(s)
- Grace Lee
- University of Wisconsin, Zoology Department, 1117 West Johnson Street, Madison, WI 5370, USA
- *Corresponding Author: Grace Lee, Address: 1117 W. Johnson St., University of Wisconsin, Madison, WI 53706, , Telephone: (608) 265-4155, Fax: (608) 262-9083
| | - Stephen C. Gammie
- University of Wisconsin, Zoology Department, 1117 West Johnson Street, Madison, WI 5370, USA
- University of Wisconsin, Neuroscience Training Program, 1117 West Johnson Street, Madison, WI 5370, USA
| |
Collapse
|
80
|
Broad K, Curley J, Keverne E. Mother-infant bonding and the evolution of mammalian social relationships. Philos Trans R Soc Lond B Biol Sci 2006; 361:2199-214. [PMID: 17118933 PMCID: PMC1764844 DOI: 10.1098/rstb.2006.1940] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance.
Collapse
Affiliation(s)
| | | | - E.B Keverne
- Sub-Department of Animal Behaviour, University of CambridgeMadingley, Cambridge CB3 8AA, UK
| |
Collapse
|
81
|
Pereira M, Ferreira A. Demanding pups improve maternal behavioral impairments in sensitized and haloperidol-treated lactating female rats. Behav Brain Res 2006; 175:139-48. [PMID: 16996623 DOI: 10.1016/j.bbr.2006.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
The impairments in the maternal behavior of ovariectomized sensitized females, relative to lactating dams, resemble those deficits found in lactating females after treatment with the D1/D2 DA receptor antagonist haloperidol, which interferes with maternal motivation. Therefore, it could be speculated that these behavioral deficits found in sensitized females and haloperidol-treated dams are due to a reduced motivation to interact with pups. In support of this hypothesis, we have found that both sensitized and haloperidol-treated lactating females exhibited remarkably similar impairments in the expression of all active maternal behaviors relative to lactating dams. Furthermore, these deficits were overridden when they were allowed to interact with 12h-isolated pups (demanding pups). Interestingly, lactating dams also improved their maternal behavior in the presence of demanding pups, and clearly chose demanding more than non-demanding pups in a preference paradigm. These data support the idea that the behavioral deficits of sensitized and haloperidol-treated lactating females are due to a reduced behavioral activation in response to the incentive cues from pups compared to lactating dams, and not because of a motor inability to express maternal behavior. These findings ultimately suggest that pups modulate the activity of DA system involved in the regulation of maternal behavior.
Collapse
Affiliation(s)
- Mariana Pereira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
82
|
de Almeida RMM, Giovenardi M, da Silva SP, de Oliveira VP, Stein DJ. The effect of 5-HT2a/2c receptor agonist microinjected into central amygdaloid nucleus and median preoptic area on maternal aggressive behavior in rats. BRAZILIAN JOURNAL OF PSYCHIATRY 2006; 28:130-4. [PMID: 16810397 DOI: 10.1590/s1516-44462006000200011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: Much evidence supports the hypothesis that 5-hydroxytryptamine (5-HT) activation is related to the inhibition of aggression. We examined potentially pro- and anti-aggressive effects of the 5-HT2A/2C receptor agonist on specific brain sites. METHOD: Female Wistar rats on the 7th day postpartum were microinjected with the selective 5-HT2A/2C receptor agonist, alpha-methyl-5-hydroxytryptamine maleate (0.2 to 1.0 µg/0.2 µl) into the central amygdaloid nucleus and median preoptic nucleus. For each brain area studied, the frequency of the behaviors: locomotion, social investigation, lateral threat, attacks (frontal and lateral), and biting the intruder were compared among the various treatments by an Analysis of Variance, followed when appropriate, by Tukey's test. RESULTS: Microinjection of the selective 5-HT2A/2C receptor agonist, a-methyl-5-hydroxytryptamine maleate into central amygdaloid nucleus increased maternal aggression in the absence of concurrent changes in non-aggressive behavior. By contrast, microinjection of the selective 5-HT2A/2C receptor agonist at several dilutions into the median preoptic nucleusdid not alter aggressive behavior. CONCLUSIONS: The current and earlier data with pro- and anti-aggressive effects of the 5-HT2a/2c receptor agonist, when microinjected into the median preoptic nucleus relative to the central amygdaloid nucleus, medial septum and periaqueductal grey area in female rats point to functionally separate serotonin receptor populations in the amygdaloid-septal-hypothalamic and periaqueductal gray matter areas controlling aggressive behavior. It is possible that amygdaloid 5-HT2a/2c receptors may increase aggressive behavior in lactating females as a result of changes in fear.
Collapse
|
83
|
Febo M, Numan M, Ferris CF. Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci 2006; 25:11637-44. [PMID: 16354922 PMCID: PMC6726012 DOI: 10.1523/jneurosci.3604-05.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxytocin is released in the maternal brain during breastfeeding and may help strengthen the mother-infant relationship. Here, we used functional magnetic resonance imaging to determine whether oxytocin modulates brain activity in postpartum day 4-8 dams receiving suckling stimulation. During imaging sessions, dams were exposed to pup suckling before and after administration of an oxytocin receptor antagonist. Another group of dams received oxytocin alone. Changes in brain activation in response to suckling closely matched that elicited by oxytocin administration. The overlapping brain areas included the olfactory system, nucleus accumbens, insular cortex, prefrontal cortex, ventral tegmental area, cortical amygdala, and several cortical and hypothalamic nuclei. Blockade of oxytocin receptors largely attenuated activation in these regions. The data suggest that oxytocin may strengthen mother-infant bond formation partly by acting through brain areas involved in regulating olfactory discrimination, emotions, and reward.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
84
|
Olazábal DE, Young LJ. Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Horm Behav 2006; 49:681-7. [PMID: 16442534 DOI: 10.1016/j.yhbeh.2005.12.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/26/2022]
Abstract
The neuropeptide oxytocin has been implicated in the regulation of affiliative behavior and maternal responsiveness in several mammalian species. Rodent species vary considerably in the expression of juvenile alloparental behavior. For example, alloparental behavior is spontaneous in juvenile female prairie voles (approximately 20 days of age), takes 1-3 days of pup exposure to develop in juvenile rats, and is nearly absent in juvenile mice and meadow voles. Here, we tested the hypothesis that species differences in pup responsiveness in juvenile rodents are associated with oxytocin receptor (OTR) density in specific brain regions. We found that OTR density in the nucleus accumbens (NA) is highest in juvenile prairie voles, intermediate in juvenile rats, and lowest in juvenile mice and meadow voles. In the caudate putamen (CP), OTR binding was highest in prairie voles, intermediate in rats and meadow voles, and lowest in mice. In contrast, the lateral septum (LS) shows an opposite pattern, with OTR binding being high in mice and meadow voles and low in prairie voles and rats. Thus, alloparental responsiveness in juvenile rodents is positively correlated with OTR density in the NA and CP and negatively correlated with OTR density in the LS. We then investigated whether a similar receptor-behavior relationship exists among juvenile female prairie voles by correlating individual variation in alloparental behavior with variation in OTR density. The time spent adopting crouching postures, the most distinctive component of alloparental behavior in juveniles, was positively correlated with OTR density in the NA (r = 0.47) and CP (r = 0.45) and negatively correlated with OTR density in the lateral septum (r = -0.53). Thus, variation in OTR density in the NA, CP, and LS may underlie both species and individual differences in alloparental care in rodents.
Collapse
Affiliation(s)
- D E Olazábal
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
85
|
Numan M, Numan MJ, Pliakou N, Stolzenberg DS, Mullins OJ, Murphy JM, Smith CD. The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 2006; 119:1588-604. [PMID: 16420162 DOI: 10.1037/0735-7044.119.6.1588] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial preoptic area (MPOA), ventral pallidum (VP), and nucleus accumbens (NA) receive dopaminergic afferents and are involved in maternal behavior. Experiments investigated whether dopamine (DA) receptor antagonism in NA disrupts maternal behavior, determined the type of DA receptor involved, and investigated the involvement of drug spread to VP or MPOA. Injection of SCH 23390 (D1 DA receptor antagonist) into NA of postpartum rats disrupted retrieving at dosage levels that were ineffective when injected into MPOA or VP. Motor impairment was not the cause of the deficit. Injection of eticlopride (D2 DA receptor antagonist) into NA or VP was without effect. Results emphasize the importance of DA action on D1 receptors in NA for retrieval behavior.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Boston, Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Olazábal DE, Young LJ. Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 2006; 141:559-568. [PMID: 16725274 DOI: 10.1016/j.neuroscience.2006.04.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/07/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Oxytocin and the nucleus accumbens have been extensively implicated in the regulation of maternal behavior, and the processing of pup-related stimuli relevant for this behavior. Oxytocin receptor density in the nucleus accumbens is highly variable in virgin female prairie voles, as is their behavioral response to pups, ranging from neglecting and infanticidal to full maternal behavior. We hypothesized that oxytocin receptor in the nucleus accumbens facilitates the expression of "spontaneous" maternal behavior in prairie voles. Forty sexually-naive adult females were exposed to pups for the first time and tested for maternal behavior. Oxytocin receptor binding in the nucleus accumbens and other brain regions was later determined using autoradiography. Females that showed maternal behavior (lick and groom the pups and hover over them for at least 30 s, n=24) had higher oxytocin receptor density in the nucleus accumbens (shell subregion) (P<0.05) than females that did not show maternal behavior or attacked the pups (n=16). No differences were found in other brain regions (medial preoptic area, septum, prelimbic cortex). In a second experiment, we tested whether infusions of the oxytocin receptor antagonist (d(CH2)5(1),Tyr(Me)2,Orn8)-AVT into the nucleus accumbens would block "spontaneous" maternal behavior. As a control region, oxytocin receptor antagonist was also infused into the caudate putamen. Ten females were infused bilaterally into the nucleus accumbens or caudate putamen with either 2 ng/0.5 microl of oxytocin receptor antagonist or CSF (vehicle). While five of 10 nucleus accumbens CSF-infused animals showed maternal behavior, none of the nucleus accumbens oxytocin receptor antagonist-infused subjects did (0/10; chi2, P<0.01). Nucleus accumbens oxytocin receptor antagonist-infused females recovered the next day and were not different from controls. Animals infused with CSF or oxytocin receptor antagonist into the caudate putamen did not differ (four/10, four/10). This is the first study to show that the nucleus accumbens is involved in the regulation of "spontaneous" maternal behavior and that oxytocin receptor in this brain region facilitates maternal responses.
Collapse
Affiliation(s)
- D E Olazábal
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA.
| | - L J Young
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
87
|
Friedman E, Berman M, Overstreet D. Swim test immobility in a genetic rat model of depression is modified by maternal environment: A cross-foster study. Dev Psychobiol 2006; 48:169-77. [PMID: 16489594 DOI: 10.1002/dev.20119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Flinders sensitive line (FSL) genetic animal model of depression exhibits marked immobility during forced swimming, an accepted index of depressive like behavior in rodent depression models. The present experiment tested the hypothesis that swim test behavior in the FSL rats is influenced in part by early experience, specifically maternal environment. Male FSL and control Flinders resistant line (FRL) pups were cross fostered onto dams of the same or complementary strain. Nest quality and dam behavior during pup retrieval were measured on PN5 and PN8, and swim test behavior assessed in the adult males on PN60. FSL rats reared by foster FRL dams were significantly less immobile than FSL rats raised by FSL dams, but still significantly more immobile that the two FRL groups, which did not differ from each other. FSL dams took significantly longer to retrieve their pups and dropped them more often than the FRL control dams. Moreover, strain differences in maternal retrieval behavior significantly predicted later swim test immobility in the FSL animals. These findings suggest that swim test immobility in the FSL rats is modified by maternal environment. In contrast, the FRL control rats were relatively insensitive to the influence of maternal environment. The FSL model offers promise for understanding the interactions of genetic vulnerabilities and environmental influences in the etiology of clinical depression.
Collapse
Affiliation(s)
- Elliot Friedman
- Psychology Department, Williams College Williamstown, Massachusetts 01267, USA.
| | | | | |
Collapse
|
88
|
Miller SM, Lonstein JS. Dopamine D1 and D2 Receptor Antagonism in the Preoptic Area Produces Different Effects on Maternal Behavior in Lactating Rats. Behav Neurosci 2005; 119:1072-83. [PMID: 16187835 DOI: 10.1037/0735-7044.119.4.1072] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The preoptic area (POA) is critical for maternal behavior in rats but little is known about what neurotransmitters released here influence maternal responding. POA infusion of 10 microg (but not 2 microg) of the dopamine D1 receptor antagonist SCH-23390 greatly impaired retrieval and licking of pups but not other maternal or nonmaternal behaviors in lactating rats. In contrast, POA infusion of 10 microg (but not 2 microg) of the D2 receptor antagonist raclopride facilitated nursing but did not affect oral maternal behaviors. SCH-23390 in the medial hypothalamus tended to impair licking but not retrieval. Raclopride in the medial hypothalamus had no effects. Therefore, D1 and D2 receptor activity, particularly in the POA, is important for regulating different maternal behaviors.
Collapse
Affiliation(s)
- Stephanie M Miller
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|