51
|
Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. AN ACAD BRAS CIENC 2017; 91:e20170238. [PMID: 28876358 DOI: 10.1590/0001-3765201720170238] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022] Open
Abstract
Animal models have been used in experimental research to increase human knowledge and contribute to finding solutions to biological and biomedical questions. However, increased concern for the welfare of the animals used, and a growing awareness of the concept of animal rights, has brought a greater focus on the related ethical issues. In this review, we intend to give examples on how animals are used in the health research related to some major health problems in Brazil, as well as to stimulate discussion about the application of ethics in the use of animals in research and education, highlighting the role of National Council for the Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal - CONCEA) in these areas. In 2008, Brazil emerged into a new era of animal research regulation, with the promulgation of Law 11794, previously known as the Arouca Law, resulting in an increased focus, and rapid learning experience, on questions related to all aspects of animal experimentation. The law reinforces the idea that animal experiments must be based on ethical considerations and integrity-based assumptions, and provides a regulatory framework to achieve this. This review describes the health research involving animals and the current Brazilian framework for regulating laboratory animal science, and hopes to help to improve the awareness of the scientific community of these ethical and legal rules.
Collapse
Affiliation(s)
- Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo/UNIFESP, Rua Napoleão de Barros, 925, 04024-002 São Paulo, SP, Brazil
| | - Lucile M F Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo/USP, Rua do Matão, Travessa 14, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
52
|
Ma L, Demin KA, Kolesnikova TO, Kharsko SL, Zhu X, Yuan X, Song C, Meshalkina DA, Leonard BE, Tian L, Kalueff AV. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017; 12:995-1009. [DOI: 10.1080/17460441.2017.1362385] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Ma
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | - Xiaokang Zhu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Brian E. Leonard
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Li Tian
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Allan V. Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technologies, Ural Federal University, Ekaterinburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
53
|
Vogt MA, Pfeiffer N, Le Guisquet AM, Brandwein C, Brizard B, Gass P, Belzung C, Chourbaji S. May the use of different background strains 'strain' the stress-related phenotype of GR +/- mice? Behav Brain Res 2017; 335:71-79. [PMID: 28782590 DOI: 10.1016/j.bbr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023]
Abstract
Genetically altered mice are available on different background strains. While respective backcrosses are often performed for pragmatic reasons, e.g. references, comparability, or existing protocols, the interaction between the mutations per se and the background strain often remains a neglected factor. The heterozygous mutation of the glucocorticoid receptor gene (GR) represents a well-examined model for depressive-like behavior in mice. To address the question in how far a robust depressive-like phenotype on a distinct background strain may allow a generalized conclusion, we analyzed respective phenotypes in two commonly used inbred strains: i.) C57BL/6N and ii.) BALB/c. Beside the use of different genetic models, we also extended our approach by applying two alternative paradigms to induce a depressive-like phenotype. Our study therefore comprised the model of 'unpredictable chronic mild stress' (UCMS) for four weeks and 'learned helplessness' (LH), which were used to study the role of GR, a key player in the development of depression. In the course of the experiment two cohorts of male GR+/- mice on either C57BL/6N or BALB/c background strain underwent a behavioral test battery to assess basal and depressive-like features. While both stress paradigms were functional in inducing depressive-like changes, the results were strictly strain-dependent. The genetic consequences became even more obvious under non-stress conditions with significant effects detected in BALB/c mice, which indicates a different basal stress predisposition due to differences in the genetic background.
Collapse
Affiliation(s)
- Miriam A Vogt
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany.
| | - Natascha Pfeiffer
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anne Marie Le Guisquet
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Christiane Brandwein
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Bruno Brizard
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Peter Gass
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Catherine Belzung
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| |
Collapse
|
54
|
Interaction of Depression and Anxiety in the Development of Mixed Anxiety/Depression Disorder. Experimental Studies of the Mechanisms of Comorbidity (review). ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0458-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Casarrubea M, Santangelo A, Crescimanno G. Multivariate approaches to behavioral physiology. Oncotarget 2017; 8:34022-34023. [PMID: 28415656 PMCID: PMC5470944 DOI: 10.18632/oncotarget.16612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Maurizio Casarrubea
- Department of Biomedicine and Clinical Neurosciences, Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", School of Medicine, University of Palermo, Italy
| | - Andrea Santangelo
- Department of Biomedicine and Clinical Neurosciences, Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", School of Medicine, University of Palermo, Italy
| | - Giuseppe Crescimanno
- Department of Biomedicine and Clinical Neurosciences, Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", School of Medicine, University of Palermo, Italy
| |
Collapse
|
56
|
Kirlic N, Young J, Aupperle RL. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav Res Ther 2017; 96:14-29. [PMID: 28495358 DOI: 10.1016/j.brat.2017.04.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Avoidance behavior in clinical anxiety disorders is often a decision made in response to approach-avoidance conflict, resulting in a sacrifice of potential rewards to avoid potential negative affective consequences. Animal research has a long history of relying on paradigms related to approach-avoidance conflict to model anxiety-relevant behavior. This approach includes punishment-based conflict, exploratory, and social interaction tasks. There has been a recent surge of interest in the translation of paradigms from animal to human, in efforts to increase generalization of findings and support the development of more effective mental health treatments. This article briefly reviews animal tests related to approach-avoidance conflict and results from lesion and pharmacologic studies utilizing these tests. We then provide a description of translational human paradigms that have been developed to tap into related constructs, summarizing behavioral and neuroimaging findings. Similarities and differences in findings from analogous animal and human paradigms are discussed. Lastly, we highlight opportunities for future research and paradigm development that will support the clinical utility of this translational work.
Collapse
Affiliation(s)
- Namik Kirlic
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States.
| | - Jared Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093, United States; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States.
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States; School of Community Medicine, University of Tulsa, 800 S Tucker Dr, Tulsa, OK 74104, United States.
| |
Collapse
|
57
|
Thakare VN, Dhakane VD, Patel BM. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice. Metab Brain Dis 2017; 32:401-413. [PMID: 27785705 DOI: 10.1007/s11011-016-9922-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/19/2016] [Indexed: 01/24/2023]
Abstract
Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Valmik D Dhakane
- Research and Development, Astec Life Sciences, Mumbai, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
58
|
Levo-Tetrahydroberberrubine Produces Anxiolytic-Like Effects in Mice through the 5-HT1A Receptor. PLoS One 2017; 12:e0168964. [PMID: 28085967 PMCID: PMC5234788 DOI: 10.1371/journal.pone.0168964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/10/2016] [Indexed: 12/02/2022] Open
Abstract
Tetrahydroprotoberberines (THPBs) are isoquinoline alkaloids isolated from the Chinese herb Corydalis yanhusuo. In the present study, we performed competitive binding assays to examine the binding of l-THBr to neurotransmitter receptors known to be involved in sedation, hypnosis and anxiety. Our results show that l-THBr does not interact with GABAergic receptors but has binding affinities for dopamine and serotonin receptors. In addition, cAMP and [35S]GTPγS assays were used to determine the agonist or antagonist properties of l-THBr at dopamine (D1, D2) or serotonin (5-HT) receptors. Our results show that l-THBr displays D1 and D2 antagonist and 5-HT1A agonist properties. Moreover, l-THBr-treated rodents exhibit anxiolytic-like effects in the light/dark box and elevated plus-maze tests, and the anxiolytic effect of l-THBr can be reduced by WAY-100635, a selective 5-HT1A receptor antagonist. Our results suggest that l-THBr may produce potent anxiolytic-like effects mainly through serotonin receptors.
Collapse
|
59
|
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions. Sci Rep 2017; 7:39877. [PMID: 28071731 PMCID: PMC5223199 DOI: 10.1038/srep39877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023] Open
Abstract
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.
Collapse
|
60
|
|
61
|
Chen J, Kaitsuka T, Fujino R, Araki K, Tomizawa K, Yamamoto T. Mutation of the key residue for extraribosomal function of ribosomal protein S19 cause increased grooming behaviors in mice. Neurosci Lett 2016; 629:221-226. [DOI: 10.1016/j.neulet.2016.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
62
|
Shemesh Y, Forkosh O, Mahn M, Anpilov S, Sztainberg Y, Manashirov S, Shlapobersky T, Elliott E, Tabouy L, Ezra G, Adler ES, Ben-Efraim YJ, Gil S, Kuperman Y, Haramati S, Dine J, Eder M, Deussing JM, Schneidman E, Yizhar O, Chen A. Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics. Nat Neurosci 2016; 19:1489-1496. [DOI: 10.1038/nn.4346] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022]
|
63
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
64
|
Huang X, Yang Z. Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest 2016; 39:607-15. [PMID: 26662574 DOI: 10.1007/s40618-015-0408-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE This review aimed to discuss the conflicting findings from resistin research in rodents and humans as well as recent advances in our understanding of resistin's role in obesity and insulin resistance. METHODS A comprehensive review and synthesis of resistin's role in obesity and insulin resistance as well as conflicting findings from resistin research in rodents and humans. RESULTS In rodents, resistin is increased in high-fat/high-carbohydrate-fed, obese states characterized by impaired glucose uptake and insulin sensitivity. Resistin plays a causative role in the development of insulin resistance in rodents via 5' AMP-activated protein kinase (AMPK)-dependent and AMPK-independent suppressor of cytokine signaling-3 (SOCS-3) signaling. In contrast to rodents, human resistin is primarily secreted by peripheral-blood mononuclear cells (PBMCs) as opposed to white adipocytes. Circulating resistin levels have been positively associated with central/visceral obesity (but not BMI) as well as insulin resistance, while other studies show no such association. Human resistin has a role in pro-inflammatory processes that have been conclusively associated with obesity and insulin resistance. PBMCs, as well as vascular cells, have been identified as the primary targets of resistin's pro-inflammatory activity via nuclear factor-κB (NF-κB, p50/p65) and other signaling pathways. CONCLUSION Mounting evidence reveals a continuing disconnect between resistin's role in rodents and humans due to significant differences between these two species with respect to resistin's gene and protein structure, differential gene regulation, tissue-specific distribution, and insulin resistance induction as well as a paucity of evidence regarding the resistin receptor and downstream signaling mechanisms of action.
Collapse
Affiliation(s)
- X Huang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Internal Medicine, Hechuan Hospital of First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Yang
- Department of Internal Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
65
|
Kapadia M, Xu J, Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev 2016; 68:195-217. [PMID: 27229758 DOI: 10.1016/j.neubiorev.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide "cognitive" dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer's disease. Lastly, we highlight the need for standardization of inferential criteria on "cognitive" dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Josie Xu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
66
|
Homberg JR, Kyzar EJ, Scattoni ML, Norton WH, Pittman J, Gaikwad S, Nguyen M, Poudel MK, Ullmann JFP, Diamond DM, Kaluyeva AA, Parker MO, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res Bull 2016; 125:79-91. [PMID: 27113433 DOI: 10.1016/j.brainresbull.2016.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of prevalent neuropsychiatric illnesses with various degrees of social, cognitive, motor, language and affective deficits. NDDs are caused by aberrant brain development due to genetic and environmental perturbations. Common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Genetic and epigenetic/environmental factors play a key role in these NDDs with significant societal impact. Given the lack of their efficient therapies, it is important to gain further translational insights into the pathobiology of NDDs. To address these challenges, the International Stress and Behavior Society (ISBS) has established the Strategic Task Force on NDDs. Summarizing the Panel's findings, here we discuss the neurobiological mechanisms of selected common NDDs and a wider NDD+ spectrum of associated neuropsychiatric disorders with developmental trajectories. We also outline the utility of existing preclinical (animal) models for building translational and cross-diagnostic bridges to improve our understanding of various NDDs.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | | | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Michael Nguyen
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA; New York University School of Medicine, NY, NY, USA
| | - Manoj K Poudel
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA; J.A. Haley Veterans Hospital, Research and Development Service, Tampa, FL, USA
| | - Aleksandra A Kaluyeva
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
67
|
Yang L, Faraone SV, Zhang-James Y. Autism spectrum disorder traits in Slc9a9 knock-out mice. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:363-76. [PMID: 26755066 DOI: 10.1002/ajmg.b.32415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/22/2015] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which begin in childhood and persist into adulthood. They cause lifelong impairments and are associated with substantial burdens to patients, families, and society. Genetic studies have implicated the sodium/proton exchanger (NHE) nine gene, Slc9a9, to ASDs and attention-deficit/hyperactivity disorder(ADHD). Slc9a9 encodes, NHE9, a membrane protein of the late recycling endosomes. The recycling endosome plays an important role in synapse development and plasticity by regulating the trafficking of membrane neurotransmitter receptors and transporters. Here we tested the hypothesis that Slc9a9 knock-out (KO) mice would show ADHD-like and ASD-like traits. Ultrasonic vocalization (USV) recording showed that Slc9a9 KO mice emitted fewer calls and had shorter call durations, which suggest communication impairment. Slc9a9 KO mice lacked a preference for social novelty, but did not show deficits in social approach; Slc9a9 KO mice spent more time self-grooming, an indicator for restricted and repetitive behavior. We did not observe hyperactivity or other behavior impairments which are commonly comorbid with ASDs in human, such as anxiety-like behavior. Our study is the first animal behavior study that links Slc9a9 to ASDs. By eliminatingNHE9 activity, it provides strong evidence that lack of Slc9a9leads to ASD-like behaviors in mice and provides the field with a new mouse model of ASDs.
Collapse
Affiliation(s)
- Lina Yang
- Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Stephen V Faraone
- Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Psychiatry, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Yanli Zhang-James
- Departments of Psychiatry, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
68
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
69
|
Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol Psychiatry 2016; 79:32-8. [PMID: 26058706 DOI: 10.1016/j.biopsych.2015.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/26/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Animal models are widely used in biomedical research, but their applicability to psychiatric disorders is less clear. There are several reasons for this, including 1) emergent features of psychiatric illness that are not captured by the sum of individual symptoms, 2) a lack of equivalency between model animal behavior and human psychiatric symptoms, and 3) the possibility that model organisms do not have (and may not be capable of having) the same illnesses as humans. Here, we discuss the effective use, and inherent limitations, of model animals for psychiatric research. As disrupted-in-schizophrenia 1 (DISC1) is a genetic risk factor across a spectrum of psychiatric disorders, we focus on the results of studies using mice with various mutations of DISC1. The data from a broad range of studies show remarkable consistency with the effects of DISC1 mutation on developmental/anatomical endophenotypes. However, when one expands the phenotype to include behavioral correlates of human psychiatric diseases, much of this consistency ends. Despite these challenges, model animals remain valuable for understanding the basic brain processes that underlie psychiatric diseases. We argue that model animals have great potential to help us understand the core neurobiological dysfunction underlying psychiatric disorders and that marrying genetics and brain circuits with behavior is a good way forward.
Collapse
|
70
|
Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 2015; 17:45-59. [PMID: 26675822 DOI: 10.1038/nrn.2015.8] [Citation(s) in RCA: 487] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA.,Institute of Translational Biomedicine, St Petersburg State University, St Petersburg 199034, Russia.,Institutes of Chemical Technologies and Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia
| | - Adam Michael Stewart
- Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada.,Graduate Institute of Neural Cognitive Science, China Medical University, Taichung 000001, Taiwan
| | - Kent C Berridge
- Department of Psychology, University of Michigan, 525E University Str, Ann Arbor, Michigan 48109, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA
| | - John C Fentress
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
71
|
Homberg JR, Kyzar EJ, Stewart AM, Nguyen M, Poudel MK, Echevarria DJ, Collier AD, Gaikwad S, Klimenko VM, Norton W, Pittman J, Nakamura S, Koshiba M, Yamanouchi H, Apryatin SA, Scattoni ML, Diamond DM, Ullmann JFP, Parker MO, Brown RE, Song C, Kalueff AV. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opin Drug Discov 2015; 11:11-25. [DOI: 10.1517/17460441.2016.1115834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
| | | | | | | | - David J Echevarria
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Adam D Collier
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Viktor M Klimenko
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg, Russia
| | - William Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Shun Nakamura
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mamiko Koshiba
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | - Hideo Yamanouchi
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | | | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Research and Development Service, J.A. Haley Veterans Hospital, Tampa, FL, USA
| | - Jeremy FP Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technology and Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
72
|
Moshe H, Gal R, Barnea-Ygael N, Gulevsky T, Alyagon U, Zangen A. Prelimbic Stimulation Ameliorates Depressive-Like Behaviors and Increases Regional BDNF Expression in a Novel Drug-Resistant Animal Model of Depression. Brain Stimul 2015; 9:243-50. [PMID: 26655599 DOI: 10.1016/j.brs.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/28/2015] [Accepted: 10/23/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Approximately one third of all major depression patients fail to respond to conventional pharmacological antidepressants, and brain stimulation methods pose a promising alternative for this population. Recently, based on repeated multifactorial selective inbreeding of rats for depressive-like behaviors, we introduced a novel animal model for MDD. Rats from this Depressive Rat Line (DRL) exhibit inherent depressive-like behaviors, which are correlated with lower levels of brain-derived neurotrophic factor (BDNF) in specific brain regions. In addition, DRL rats do not respond to antidepressant medication but respond to electroconvulsive treatment, and they can thus be utilized to test the effectiveness of brain stimulation on hereditary, medication-resistant depressive-like behaviors. OBJECTIVE To test the effect of sub-convulsive electrical stimulation (SCES) of the prelimbic cortex, using TMS-like temporal pattern of stimulation, on depressive-like behaviors and regional BDNF levels in DRL rats. METHODS SCES sessions were administered daily for 10 days through chronically implanted electrodes. Temporal stimulation parameters were similar to those used in TMS for major depression in human patients. Depressive-like behaviors were assayed after treatment, followed by brain extraction and regional BDNF measurements. RESULTS SCES normalized both the depressive-like behaviors and the reduced BDNF levels observed in DRL rats. Correlation analyses suggest that changes in specific behaviors are mediated, at least in part, by BDNF expression in reward-related brain regions. CONCLUSIONS Brain stimulation is effective in a drug-resistant, inherited animal model for depression. BDNF alterations in specific regions may mediate different antidepressant effects.
Collapse
Affiliation(s)
- Hagar Moshe
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ram Gal
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Noam Barnea-Ygael
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tatiana Gulevsky
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uri Alyagon
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abraham Zangen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
73
|
Stewart AM, Kaluyeva AA, Poudel MK, Nguyen M, Song C, Kalueff AV. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity. Zebrafish 2015; 12:339-48. [DOI: 10.1089/zeb.2015.1106] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Adam Michael Stewart
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Alexandra A. Kaluyeva
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Manoj K. Poudel
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Michael Nguyen
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
| | - Allan V. Kalueff
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University (SPSU), St. Petersburg, Russia
| |
Collapse
|
74
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
75
|
High-resolution genetic mapping of complex traits from a combined analysis of F2 and advanced intercross mice. Genetics 2015; 198:103-16. [PMID: 25236452 DOI: 10.1534/genetics.114.167056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross (n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of "realized relatedness." QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chromosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and 12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL.
Collapse
|
76
|
Colla ARS, Rosa JM, Cunha MP, Rodrigues ALS. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol 2015; 758:171-6. [PMID: 25861934 DOI: 10.1016/j.ejphar.2015.03.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/05/2023]
Abstract
Ursolic acid is a pentacyclic triterpenoid that possesses several biological and neuropharmacological effects including antidepressant-like activity. Anxiety disorders represent common and disability psychiatric conditions that are often associated with depressive symptoms. This work investigated the anxiolytic-like effects of ursolic acid administration in different behavioral paradigms that evaluate anxiety in mice: open field test, elevated plus maze test, light/dark box test and marble burying test. To this end, mice were administered with ursolic acid (0.1, 1 and 10mg/kg, p.o.) or diazepam (2mg/kg, p.o.), positive control, and submitted to the behavioral tests. The results show that ursolic acid (10mg/kg) elicited an anxiolytic-like effect observed by the increased total time in the center and decreased number of rearings responses in the open field test and an increased percentage of entries and total time spent in the open arms of elevated plus maze, similarly to diazepam. No significant effects of ursolic acid were shown in the light/dark box and marble burying test. These data indicate that ursolic acid exhibits anxiolytic-like effects in the open field and elevated plus maze test, but not in the light/dark box and marble burying test, showing the relevance of testing several behavioral paradigms in the evaluation of anxiolytic-like actions. Of note, the results extend the understanding on the effects of ursolic acid in the central nervous system and suggest that it may be a novel approach for the management of anxiety-related disorders.
Collapse
Affiliation(s)
- André R S Colla
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
77
|
Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ. Evolution of optogenetic microdevices. NEUROPHOTONICS 2015; 2:031206. [PMID: 26158015 PMCID: PMC4481025 DOI: 10.1117/1.nph.2.3.031206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/27/2015] [Indexed: 05/30/2023]
Abstract
Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices.
Collapse
Affiliation(s)
- Rajas P. Kale
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Abbas Z. Kouzani
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Ken Walder
- Deakin University School of Medicine, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia
- Orygen, National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia
- University of Melbourne, Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia
| | - Susannah J. Tye
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
78
|
Schweinfurth N, Lang UE. Behavioral Testing of Mice Concerning Anxiety and Depression. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2015. [DOI: 10.1027/2151-2604/a000215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. In the development of new psychiatric drugs and the exploration of their efficacy, behavioral testing in mice has always shown to be an inevitable procedure. By studying the behavior of mice, diverse pathophysiological processes leading to depression, anxiety, and sickness behavior have been revealed. Moreover, laboratory research in animals increased at least the knowledge about the involvement of a multitude of genes in anxiety and depression. However, multiple new possibilities to study human behavior have been developed recently and improved and enable a direct acquisition of human epigenetic, imaging, and neurotransmission data on psychiatric pathologies. In human beings, the high influence of environmental and resilience factors gained scientific importance during the last years as the search for key genes in the development of affective and anxiety disorders has not been successful. However, environmental influences in human beings themselves might be better understood and controllable than in mice, where environmental influences might be as complex and subtle. The increasing possibilities in clinical research and the knowledge about the complexity of environmental influences and interferences in animal trials, which had been underestimated yet, question more and more to what extent findings from laboratory animal research translate to human conditions. However, new developments in behavioral testing of mice involve the animals’ welfare and show that housing conditions of laboratory mice can be markedly improved without affecting the standardization of results.
Collapse
Affiliation(s)
- Nina Schweinfurth
- Department of Psychiatry, University Hospital of Basel (UPK), Switzerland
| | - Undine E. Lang
- Department of Psychiatry, University Hospital of Basel (UPK), Switzerland
| |
Collapse
|
79
|
Onaka Y, Shintani N, Nakazawa T, Haba R, Ago Y, Wang H, Kanoh T, Hayata-Takano A, Hirai H, Nagata KY, Nakamura M, Hashimoto R, Matsuda T, Waschek JA, Kasai A, Nagayasu K, Baba A, Hashimoto H. CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice. Behav Brain Res 2015; 284:131-7. [DOI: 10.1016/j.bbr.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
|
80
|
Müller LG, Stolz ED, Betti AH, Herzfeldt V, Rates SMK. Synergistic interaction between diene valepotriates from V
aleriana glechomifolia Meyer (Valerianaceae) and classical antidepressants: an isobolographic analysis. J Pharm Pharmacol 2015; 67:1008-16. [DOI: 10.1111/jphp.12396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/25/2015] [Indexed: 12/28/2022]
Abstract
Abstract
Objectives
Combinations of different classes of antidepressants (including herbal adjuvants) have been used as an alternative means of achieving better results in the treatment of depressed patients. However, studies characterizing the interactions between herbal adjuvants and antidepressants are lacking. This study is the first to investigate the interaction between diene valepotriates (VAL) from Valeriana glechomifolia, a species with antidepressant-like effects, and imipramine (IMI), desipramine (DESI) and bupropion (BUP). The interactions were assessed via isobolographic analyses, which represent a tool for evaluating interactions between drugs.
Methods
The interaction between VAL and each antidepressant was evaluated in mice given concurrent oral administration of each drug with fixed ED50 ratios and subjected to a forced swimming test (FST). Spontaneous locomotion was measured in the open field test.
Key findings
The drug combinations produced a dose-dependent anti-immobility effect in the FST without altering mouse locomotor activity. Isobolographic analysis revealed that VAL resulted in synergistic interactions in combination with each of the antidepressants tested.
Conclusion
The synergistic interactions between VAL and IMI, DESI and BUP highlight the potential for VAL to serve as adjuvants to antidepressant drugs and suggest that VAL does not directly target the same sites on neuronal transporters as the antidepressants.
Collapse
Affiliation(s)
- Liz G Müller
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eveline D Stolz
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andresa H Betti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Herzfeldt
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Stela M K Rates
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
81
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
82
|
Stewart AM, Nguyen M, Poudel MK, Warnick JE, Echevarria DJ, Beaton EA, Song C, Kalueff AV. The failure of anxiolytic therapies in early clinical trials: what needs to be done. Expert Opin Investig Drugs 2015; 24:543-56. [PMID: 25727478 DOI: 10.1517/13543784.2015.1019063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Anxiety spectrum disorders (ASDs) are highly prevalent psychiatric illnesses that affect millions of people worldwide. Strongly associated with stress, common ASDs include generalized anxiety disorder, panic, social anxiety, phobias and drug-abuse-related anxiety. In addition to ASDs, several other prevalent psychiatric illnesses represent trauma/stressor-related disorders, such as post-traumatic stress disorder and acute stress disorder. Anxiolytic drugs, commonly prescribed to treat ASDs and trauma/stressor-related disorders, form a highly heterogenous group, modulating multiple neurotransmitters and physiological mechanisms. However, overt individual differences in efficacy and the potential for serious side-effects (including addiction and drug interaction) indicate a need for further drug development. Yet, over the past 50 years, there has been relatively little progress in the development of novel anxiolytic medications, especially when promising candidate drugs often fail in early clinical trials. AREAS COVERED Herein, the authors present recommendations of the Task Force on Anxiolytic Drugs of the International Stress and Behavior Society on how to improve anxiolytic drug discovery. These recommendations cover a wide spectrum of aspects, ranging from methodological improvements to conceptual insights and innovation. EXPERT OPINION In order to improve the success of anxiolytic drugs in early clinical trials, the goals of preclinical trials may need to be adjusted from a clinical perspective and better synchronized with those of clinical studies. Indeed, it is important to realize that the strategic goals and approaches must be similar if we want to have a smoother transition between phases.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Stewart AM, Ullmann JF, Norton WH, Brennan CH, Parker MO, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry 2015; 20:2-17. [PMID: 25349164 PMCID: PMC4318706 DOI: 10.1038/mp.2014.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Jeremy F.P. Ullmann
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - William H.J. Norton
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd N Mississauga, Ontario L5L1C6, Canada
| | - Allan V. Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| |
Collapse
|
84
|
Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behav Brain Res 2015; 276:1-7. [DOI: 10.1016/j.bbr.2014.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
|
85
|
Stewart AM, Kalueff AV. Developing better and more valid animal models of brain disorders. Behav Brain Res 2015; 276:28-31. [DOI: 10.1016/j.bbr.2013.12.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/18/2013] [Indexed: 11/24/2022]
|
86
|
Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:1-6. [PMID: 24593944 DOI: 10.1016/j.pnpbp.2014.01.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational neuroscience and biological psychiatry research. Here we discuss conceptual, practical and other related aspects of using zebrafish in this field ("from tank to bedside"), and critically evaluate both advantages and limitations of zebrafish models of human brain disorders. We emphasize the need to more actively develop zebrafish models for neuroscience research focusing on complex traits.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - David J Echevarria
- Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Adam Michael Stewart
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
87
|
Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: modeling depression and antidepressant action in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:26-39. [PMID: 24657522 DOI: 10.1016/j.pnpbp.2014.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 12/20/2022]
Abstract
Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| |
Collapse
|
88
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
89
|
Enhanced Aggressive Behaviour in a Mouse Model of Depression. Neurotox Res 2014; 27:129-42. [DOI: 10.1007/s12640-014-9498-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
|
90
|
Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety. Eur J Pharmacol 2014; 742:94-101. [DOI: 10.1016/j.ejphar.2014.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/13/2023]
|
91
|
Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:269-273. [PMID: 25245382 DOI: 10.1016/j.aquatox.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Fluoxetine is one of the most prescribed psychotropic medications, and is an agent of increasing interest for environmental toxicology. Fish and other aquatic organisms are excellent models to study neuroactive small molecules like fluoxetine. However, prone to variance due to experimental factors, data obtained in these models need to be interpreted with caution, using proper experimental protocols, study designs, validated endpoints as well as well-established models and tests. Choosing the treatment protocol and dose range for fluoxetine and other serotonergic drugs is critical for obtaining valid test results and correct data interpretation. Here we discuss the value of aquatic models to study fluoxetine effects, based on prior high-quality research, and outline the directions of future translational studies in the field. We review fluoxetine-evoked phenotypes in acute vs. chronic protocols, discussing them in the contact of complex role of serotonin in behavioral regulation. We conclude that zebrafish and other aquatic models represent a useful in-vivo tool for fluoxetine pharmacology and (eco)toxicology research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Leah Grossman
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; St. George's University School of Medicine, Grenada, WI, USA
| | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Center for Biological and Health Sciences, State University of Para, Maraba, Para, Brazil
| | - Denis Broock Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Ave, Santa Maria, Brazil
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
92
|
Chaby LE, Cavigelli SA, Hirrlinger AM, Caruso MJ, Braithwaite VA. Chronic unpredictable stress during adolescence causes long-term anxiety. Behav Brain Res 2014; 278:492-5. [PMID: 25448433 DOI: 10.1016/j.bbr.2014.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023]
Abstract
Exposure to stress during adolescence can cause long-term changes in behavior and cognition. Anxiety diagnoses rise during adolescence and are increased by adverse experiences. Currently, it is unknown how long stress during adolescence alters anxiety in adulthood. We found that rats exposed to chronic unpredictable stress during adolescence expressed altered behavior 6.5 months later; showing increased anxiety in a feeding test in a novel environment. Although behavioral changes indicative of anxiety were detected in late adulthood, the basal levels of fecal corticoid metabolites in prior-stressed rats did not differ from unstressed, control rats.
Collapse
Affiliation(s)
- L E Chaby
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, United States; Department of Ecosystem Science & Management, Pennsylvania State University, University Park, PA 16802, United States; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States.
| | - S A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, United States; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, United States; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - A M Hirrlinger
- Department of Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - M J Caruso
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, United States; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, United States
| | - V A Braithwaite
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, United States; Department of Ecosystem Science & Management, Pennsylvania State University, University Park, PA 16802, United States; Department of Biology, Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
93
|
Kedia S, Chattarji S. Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods 2014; 233:150-4. [DOI: 10.1016/j.jneumeth.2014.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 01/08/2023]
|
94
|
Casarrubea M, Magnusson MS, Roy V, Arabo A, Sorbera F, Santangelo A, Faulisi F, Crescimanno G. Multivariate temporal pattern analysis applied to the study of rat behavior in the elevated plus maze: methodological and conceptual highlights. J Neurosci Methods 2014; 234:116-26. [PMID: 24932963 DOI: 10.1016/j.jneumeth.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/29/2022]
Abstract
Aim of this article is to illustrate the application of a multivariate approach known as t-pattern analysis in the study of rat behavior in elevated plus maze. By means of this multivariate approach, significant relationships among behavioral events in the course of time can be described. Both quantitative and t-pattern analyses were utilized to analyze data obtained from fifteen male Wistar rats following a trial 1-trial 2 protocol. In trial 2, in comparison with the initial exposure, mean occurrences of behavioral elements performed in protected zones of the maze showed a significant increase counterbalanced by a significant decrease of mean occurrences of behavioral elements in unprotected zones. Multivariate t-pattern analysis, in trial 1, revealed the presence of 134 t-patterns of different composition. In trial 2, the temporal structure of behavior become more simple, being present only 32 different t-patterns. Behavioral strings and stripes (i.e. graphical representation of each t-pattern onset) of all t-patterns were presented both for trial 1 and trial 2 as well. Finally, percent distributions in the three zones of the maze show a clear-cut increase of t-patterns in closed arm and a significant reduction in the remaining zones. Results show that previous experience deeply modifies the temporal structure of rat behavior in the elevated plus maze. In addition, this article, by highlighting several conceptual, methodological and illustrative aspects on the utilization of t-pattern analysis, could represent a useful background to employ such a refined approach in the study of rat behavior in elevated plus maze.
Collapse
Affiliation(s)
- M Casarrubea
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), Human Physiology Section "Giuseppe Pagano", Laboratory of Behavioral Physiology, University of Palermo, Palermo, Italy.
| | - M S Magnusson
- Human Behavior Laboratory, University of Iceland, Reykjavik, Iceland.
| | - V Roy
- PSY-NCA, EA4700, Laboratoire de Psychologie et de Neurosciences de la Cognition et de l'Affectivité, Université de Rouen, Mont-Saint-Aignan, France.
| | - A Arabo
- PSY-NCA, EA4700, Laboratoire de Psychologie et de Neurosciences de la Cognition et de l'Affectivité, Université de Rouen, Mont-Saint-Aignan, France.
| | - F Sorbera
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), Human Physiology Section "Giuseppe Pagano", Laboratory of Behavioral Physiology, University of Palermo, Palermo, Italy.
| | - A Santangelo
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), Human Physiology Section "Giuseppe Pagano", Laboratory of Behavioral Physiology, University of Palermo, Palermo, Italy.
| | - F Faulisi
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), Human Physiology Section "Giuseppe Pagano", Laboratory of Behavioral Physiology, University of Palermo, Palermo, Italy.
| | - G Crescimanno
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), Human Physiology Section "Giuseppe Pagano", Laboratory of Behavioral Physiology, University of Palermo, Palermo, Italy.
| |
Collapse
|
95
|
Inherited behaviors, BDNF expression and response to treatment in a novel multifactorial rat model for depression. Int J Neuropsychopharmacol 2014; 17:945-55. [PMID: 24513109 DOI: 10.1017/s1461145714000030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a common and devastating mental illness behaviorally characterized by various symptoms, including reduced motivation, anhedonia and psychomotor retardation. Although the etiology of MDD is still obscure, a genetic predisposition appears to play an important role. Here we used, for the first time, a multifactorial selective breeding procedure to generate a distinct 'depressed' rat line (DRL); our selection was based upon mobility in the forced swim test, sucrose preference and home-cage locomotion, three widely used tests associated with core characteristics of MDD. Other behavioral effects of the selection process, as well as changes in brain-derived neurotrophic factor (BDNF) and the response to three antidepressant treatments, were also examined. We show that decreased mobility in the forced swim test and decreased sucrose preference (two directly selected traits), as well as decreased exploration in the open field test (an indirectly selected trait), are hereditary components in DRL rats. In addition, lower BDNF levels are observed in the dorsal hippocampus of DRL rats, complying with the neurotrophic hypothesis of depression. Finally, electroconvulsive shocks (ECS) but not pharmacological treatment normalizes both the depressive-like behavioral impairments and the BDNF-related molecular alterations in DRL rats, highlighting the need for robust treatment when the disease is inherited and not necessarily triggered by salient chronic stress. We therefore provide a novel multifactorial genetic rat model for depression-related behaviors. The model can be used to further study the etiology of the disease and suggest molecular correlates and possible treatments for the disease.
Collapse
|
96
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 450] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
97
|
Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:27-36. [PMID: 24315837 DOI: 10.1016/j.pnpbp.2013.11.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder with complex symptoms and unclear, multi-factorial pathogenesis. Animal (rodent) models of ASD-like behavior are extensively used to study genetics, circuitry and molecular mechanisms of ASD. The evolutionarily conserved nature of social behavior and its molecular pathways suggests that alternative experimental models can be developed to complement and enhance the existing rodent ASD paradigms. The zebrafish (Danio rerio) is rapidly becoming a popular model organism in neuroscience and biological psychiatry to study brain function, model human brain disorders and explore their genetic or pharmacological modulation. Representing highly social animals, zebrafish emerge as a strong potential model organism to study normal and pathological social phenotypes, as well as several other ASD-like symptoms. Here, we discuss the developing utility of zebrafish in modeling ASD as a new emerging field in translational neuroscience and drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Keith Wong
- University of California San Diego (UCSD) School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manoj K Poudel
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Allan V Kalueff
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
98
|
He F. The relationship of prenatal ethanol exposure and anxiety-related behaviors and central androgen receptor and vasopressin expression in adult male mandarin voles. Neuroscience 2014; 266:224-34. [DOI: 10.1016/j.neuroscience.2014.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 01/13/2023]
|
99
|
Widge AS, Moritz CT. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface. J Neural Eng 2014; 11:024001. [PMID: 24608127 PMCID: PMC4394990 DOI: 10.1088/1741-2560/11/2/024001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). APPROACH We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. MAIN RESULTS All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. SIGNIFICANCE Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Collapse
Affiliation(s)
- Alik S. Widge
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA
- Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA
| | - Chet T. Moritz
- Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA
- Department of Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA
| |
Collapse
|
100
|
Kalueff AV, Nguyen M. Testing anxiolytic drugs in the C57BL/6J mouse strain. J Pharmacol Toxicol Methods 2014; 69:205-7. [DOI: 10.1016/j.vascn.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|