51
|
Layfield D, Sidell N, Abdullahi A, Newman EL. Dorsal hippocampus not always necessary in a radial arm maze delayed win-shift task. Hippocampus 2019; 30:121-129. [PMID: 31453652 DOI: 10.1002/hipo.23141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Spatial working memory is important for foraging and navigating the environment. However, its neural underpinnings remain poorly understood. The hippocampus, known for its spatial coding and involvement in spatial memory, is widely understood to be necessary for spatial working memory when retention intervals increase beyond seconds into minutes. Here, we describe new evidence that the dorsal hippocampus is not always necessary for spatial working memory for retention intervals of 8 min. Rats were trained to perform a delayed spatial win shift radial arm maze task with an 8-min delay between study and test phases. We then tested whether bilateral inactivation of the dorsal hippocampus between the study and test phases impaired behavioral performance at test. Inactivation was achieved through a bilateral infusion of lidocaine. Performance following lidocaine was compared to control trials, in which, sterile phosphate buffered saline (PBS) was infused. Test performance did not differ between the lidocaine and PBS conditions, remaining high in each. To explore the possibility that this insensitivity to inactivation was a result of overtraining, a second cohort of animals received substantially less training prior to the infusions. In this second cohort, lidocaine infusions did significantly impair task performance. These data indicate that successful performance of a spatial win-shift task on the 8-arm maze need not always be hippocampally dependent.
Collapse
Affiliation(s)
- Dylan Layfield
- Department of Psychological and Brain Sciences, Indiana University, Indiana
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, Indiana
| | - Afnan Abdullahi
- Department of Psychological and Brain Sciences, Indiana University, Indiana
| | - Ehren L Newman
- Department of Psychological and Brain Sciences, Indiana University, Indiana
| |
Collapse
|
52
|
Khan IS, D'Agostino EN, Calnan DR, Lee JE, Aronson JP. Deep Brain Stimulation for Memory Modulation: A New Frontier. World Neurosurg 2019; 126:638-646. [DOI: 10.1016/j.wneu.2018.12.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
|
53
|
Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiol Learn Mem 2018; 156:103-116. [PMID: 30408525 PMCID: PMC7310386 DOI: 10.1016/j.nlm.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 01/23/2023]
Abstract
The dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) are brain regions essential for processing and storing episodic memory. In rodents, the DH has a well-established role in supporting the consolidation of episodic-like memory in tasks such as object recognition and object placement. However, the role of the mPFC in the consolidation of episodic-like memory tasks remains controversial. Therefore, the present study examined involvement of the DH and mPFC, alone and in combination, in object and spatial recognition memory consolidation in ovariectomized female mice. To this end, we utilized two types of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to inactivate the DH alone, the mPFC alone, or both brain regions concurrently immediately after object training to assess the role of each region in the consolidation of object recognition and spatial memories. Our results using single and multiplexed DREADDS suggest that excitatory activity in the DH and mPFC, alone or in combination, is required for the successful consolidation of object recognition and spatial memories. Together, these studies provide critical insight into how the DH and mPFC work in concert to facilitate memory consolidation in female mice.
Collapse
|
54
|
Abbas AI, Sundiang MJM, Henoch B, Morton MP, Bolkan SS, Park AJ, Harris AZ, Kellendonk C, Gordon JA. Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron 2018; 100:926-939.e3. [PMID: 30318409 DOI: 10.1016/j.neuron.2018.09.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Decreased hippocampal-prefrontal synchrony may mediate cognitive deficits in schizophrenia, but it remains unclear which cells orchestrate this long-range synchrony. Parvalbumin (PV)- and somatostatin (SOM)-expressing interneurons show histological abnormalities in individuals with schizophrenia and are hypothesized to regulate oscillatory synchrony within the prefrontal cortex. To examine the relationship between interneuron function, long-range hippocampal-prefrontal synchrony, and cognition, we optogenetically inhibited SOM and PV neurons in the medial prefrontal cortex (mPFC) of mice performing a spatial working memory task while simultaneously recording neural activity in the mPFC and the hippocampus (HPC). We found that inhibiting SOM, but not PV, interneurons during the encoding phase of the task impaired working memory accuracy. This behavioral impairment was associated with decreased hippocampal-prefrontal synchrony and impaired spatial encoding in mPFC neurons. These findings suggest that interneuron dysfunction may contribute to cognitive deficits associated with schizophrenia by disrupting long-range synchrony between the HPC and PFC.
Collapse
Affiliation(s)
- Atheir I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Marina J M Sundiang
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Britt Henoch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mitchell P Morton
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Scott S Bolkan
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alan J Park
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Joshua A Gordon
- National Institute of Mental Health, Bethesda, MD 20892, USA.
| |
Collapse
|
55
|
Kesner RP. Exploration of the Neurobiological Basis for a Three-System, Multiattribute Model of Memory. Curr Top Behav Neurosci 2018; 37:325-359. [PMID: 27677780 DOI: 10.1007/7854_2016_454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The structure and utilization of memory is central to one's knowledge of the past, interpretation of the present, and prediction of the future. Therefore, the understanding of the structural and process components of memory systems at the psychological and neurobiological level is of paramount importance. There have been a number of attempts to divide learning and memory into multiple memory systems. Schacter and Tulving, Memory systems 1994. MIT Press, Cambridge (1994) have suggested that one needs to define memory systems in terms of the kind of information to be represented, the processes associated with the operation of each system, and the neurobiological substrates, including neural structures and mechanisms, that subserve each system. Furthermore, it is likely that within each system there are multiple forms or subsystems associated with each memory system and there are likely to be multiple processes that define the operation of each system. Finally, there are probably multiple neural structures that form the overall substrate of a memory system.
Collapse
Affiliation(s)
- Raymond P Kesner
- Department of Psychology, University of Utah, Salt Lake City, USA.
| |
Collapse
|
56
|
Myroshnychenko M, Seamans JK, Phillips AG, Lapish CC. Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions During the Delay Period of a Working Memory-Guided Foraging Task. Cereb Cortex 2018; 27:5331-5342. [PMID: 28927240 PMCID: PMC6057518 DOI: 10.1093/cercor/bhx184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/25/2022] Open
Abstract
Connections between the hippocampus (HC) and medial prefrontal cortex (mPFC) are critical for working memory; however, the precise contribution of this pathway is a matter of debate. One suggestion is that it may stabilize retrospective memories of recently encountered task-relevant information. Alternatively, it may be involved in encoding prospective memories, or the internal representation of future goals. To explore these possibilities, simultaneous extracellular recordings were made from mPFC and HC of rats performing the delayed spatial win-shift on a radial maze. Each trial consisted of a training-phase (when 4 randomly chosen arms were open) and test phase (all 8 arms were open but only previously blocked arms contained food) separated by a 60-s delay. Theta power was highest during the delay, and mPFC units were more likely to become entrained to hippocampal theta as the delay progressed. Training and test phase performance were accurately predicted by a linear classifier, and there was a transition in classification for training-phase to test-phase activity patterns throughout the delay on trials where the rats performed well. These data suggest that the HC and mPFC become more strongly synchronized as mPFC circuits preferentially shift from encoding retrospective to prospective information.
Collapse
Affiliation(s)
- Maxym Myroshnychenko
- Program in Neural Science, Indiana University, Multidisciplinary Science Building II, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Jeremy K Seamans
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christopher C Lapish
- Department of Psychology, Stark Neuroscience Institute, Institute for Mathematical Modeling and Computational Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
57
|
Frick KM, Tuscher JJ, Koss WA, Kim J, Taxier LR. Estrogenic regulation of memory consolidation: A look beyond the hippocampus, ovaries, and females. Physiol Behav 2018; 187:57-66. [PMID: 28755863 PMCID: PMC5787049 DOI: 10.1016/j.physbeh.2017.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
The potent estrogen 17β-estradiol (E2) has long been known to regulate the hippocampus and hippocampal-dependent memories in females, and research from the past decade has begun to shed light on the molecular mechanisms through which E2 mediates memory formation in females. Although E2 can also regulate hippocampal function in males, relatively little is known about how E2 influences memory formation in males, or whether sex differences in underlying mechanisms exist. This review, based on a talk given in April 2017 at the American University symposium entitled, "Sex Differences: From Neuroscience to the Clinic and Beyond", first provides an overview of the molecular mechanisms in the dorsal hippocampus through which E2 enhances memory consolidation in ovariectomized female mice. Next, newer research is described demonstrating key roles for the prefrontal cortex and de novo hippocampal E2 synthesis to the memory-enhancing effects of E2 in females. The review then discusses the effects of de novo and exogenous E2 on hippocampal memory consolidation in both sexes, and putative sex differences in the underlying molecular mechanisms through which E2 enhances memory formation. The review concludes by discussing the importance and implications of sex differences in the molecular mechanisms underlying E2-induced memory consolidation for human health.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
58
|
Viena TD, Linley SB, Vertes RP. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus 2018; 28:297-311. [PMID: 29357198 DOI: 10.1002/hipo.22831] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023]
Abstract
The hippocampal formation (HF) and medial prefrontal cortex (mPFC) play critical roles in spatial working memory (SWM). The nucleus reuniens (RE) of the ventral midline thalamus is an important anatomical link between the HF and mPFC, and as such is crucially involved in SWM functions that recruit both structures. Little is known, however, regarding the role of RE in other behaviors mediated by this circuit. In the present study, we examined the role of RE in spatial working memory and executive functioning following reversible inactivation of RE with either muscimol or procaine. Rats were implanted with an indwelling cannula targeting RE and trained in a delayed nonmatch to sample spatial alternation T-maze task. For the task, sample and choice runs were separated by moderate or long delays (30, 60, and 120 s). Following asymptotic performance, rats were tested following infusions of drug or vehicle. Muscimol infused into RE impaired SWM at all delays, whereby procaine only impaired performance at the longest delays. Furthermore, RE inactivation with muscimol produced a failure in win-shift strategy as well as severe spatial perseveration, whereby rats persistently made re-entries into incorrect arms during correction trials, despite the absence of reward. This demonstrated marked changes in behavioral flexibility and response strategy. These results strengthen the role of nucleus reuniens as a pivotal link between hippocampus and prefrontal cortex in cognitive and executive functions and suggest that nucleus reuniens may be a potential target in the treatment of CNS disorders such as schizophrenia, attention deficit hyperactivity disorder, addiction, and obsessive-compulsive disorder, whose symptoms are defined by hippocampal-prefrontal dysfunctions.
Collapse
Affiliation(s)
- Tatiana D Viena
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431.,Department of Psychology, Florida Atlantic University, Boca Raton, Florida 33431
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
59
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
60
|
Gu L, Wu D, Tang X, Qi X, Li X, Bai F, Chen X, Ren Q, Zhang Z. Myelin changes at the early stage of 5XFAD mice. Brain Res Bull 2017; 137:285-293. [PMID: 29288735 DOI: 10.1016/j.brainresbull.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023]
Abstract
Previous studies have demonstrated myelin deficits in Alzheimer's disease (AD). However, it is still unclear whether myelin deficits occur at early stage of AD. Our study aimed to investigate myelin deficits in 5XFAD mice dynamically in different cognition-associated brain regions at early stage of AD. Transmission electron microscopy (TEM) was applied to detect myelin changes in late-myelinating regions such as prelimbic area (PrL), retrosplenial granular cortex (Rsg), field CA1 of hippocampus (CA1) and entorhinal cortex (ERC) respectively at different stages (1, 2, 3 and 5 months of age) in 5XFAD mouse model. In addition, we assessed spatial learning and memory with Morris water maze (MWM) in 5XFAD mice. Myelin deficits in 5XFAD mice started from 1 month of age and this deterioration continued during ageing, whereas the same myelin abnormality could only be observed in 5-month-old wild-type mice. Additionally, the g-ratio (an index associated with myelin thickness) was increased in 1-month-old 5XFAD mice in the regions including PrL, CA1 and ERC, compared to wild-type mice. As animals aged, the increased g-ratio in 5XFAD appeared in more regions of the brain. Moreover, 5XFAD mice showed spatial memory deficits from 1 month of age and spatial learning deficits from 2 months of age. In conclusion, myelin deficits occurred at an early stage and progressed with ageing in 5XFAD mouse model. Notably, a sequential myelin change was detected in cognition-associated brain regions. Combined with cognitive examinations, this study suggests that myelin changes might contribute to cognitive dysfunction.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Tang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoli Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, the Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
61
|
Prospective memory deficits in patients with depression: A meta-analysis. J Affect Disord 2017; 220:79-85. [PMID: 28600931 DOI: 10.1016/j.jad.2017.05.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/03/2017] [Accepted: 05/28/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Prospective memory (PM) can be impaired in patients with psychiatric disorders including depression. This meta-analysis systematically examined PM in patients with depression. METHODS The meta-analysis was conducted according to the guidelines from Strengthening the Reporting of Observational studies in Epidemiology (STROBE). Case-control studies on PM in patients with depression were included. Standardized mean differences (SMDs) and 95% confidence interval (CI) were calculated using random effect models. RESULTS Ten case-control studies (n = 596) comparing patients with depression (n = 299) with healthy controls (n = 297) were included in the analyses. Compared with healthy controls, patients with depression had significant impairment in event-based PM (EBPM) [8 trials, n = 436; SMD: -0.87 (95%CI: -1.43, -0.31), P = 0.002; I2 = 87%]. Significance was observed after removing two outlier trials [SMD: -0.44 (95%CI: -0.69, -0.20), P = 0.0004; I2 = 23%] and also in 8 out of the 13 subgroup analyses. Similarly, time-based PM (TBPM) was significantly impaired in patients with depression [4 trials, n = 239; SMD: -0.89 (95%CI: -1.46, -0.31), P = 0.003; I2 = 78%] when compared with healthy controls. CONCLUSIONS This meta-analysis showed that both TBPM and EBPM appeared to be impaired in patients with depression.
Collapse
|
62
|
Ventral Midline Thalamus Is Critical for Hippocampal-Prefrontal Synchrony and Spatial Working Memory. J Neurosci 2017; 36:8372-89. [PMID: 27511010 DOI: 10.1523/jneurosci.0991-16.2016] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/15/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Maintaining behaviorally relevant information in spatial working memory (SWM) requires functional synchrony between the dorsal hippocampus and medial prefrontal cortex (mPFC). However, the mechanism that regulates synchrony between these structures remains unknown. Here, we used a unique dual-task approach to compare hippocampal-prefrontal synchrony while rats switched between an SWM-dependent task and an SWM-independent task within a single behavioral session. We show that task-specific representations in mPFC neuronal populations are accompanied by SWM-specific oscillatory synchrony and directionality between the dorsal hippocampus and mPFC. We then demonstrate that transient inactivation of the reuniens and rhomboid (Re/Rh) nuclei of the ventral midline thalamus abolished only the SWM-specific activity patterns that were seen during dual-task sessions within the hippocampal-prefrontal circuit. These findings demonstrate that Re/Rh facilitate bidirectional communication between the dorsal hippocampus and mPFC during SWM, providing evidence for a causal role of Re/Rh in regulating hippocampal-prefrontal synchrony and SWM-directed behavior. SIGNIFICANCE STATEMENT Hippocampal-prefrontal synchrony has long been thought to be critical for spatial working memory (SWM) and the ventral midline thalamic reuniens and rhomboid nuclei (Re/Rh) have long been considered a potential site for synchronizing the hippocampus and medial prefrontal cortex. However, the hypothesis that Re/Rh are critical for hippocampal-prefrontal synchrony and SWM has not been tested. We first used a dual-task approach to identify SWM-specific patterns of hippocampal-prefrontal synchrony. We then demonstrated that Re/Rh inactivation concurrently disrupted SWM-specific behavior and the SWM-specific patterns of hippocampal-prefrontal synchrony seen during dual-task performance. These results provide the first direct evidence that Re/Rh contribute to SWM by modulating hippocampal-prefrontal synchrony.
Collapse
|
63
|
Ko J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front Neural Circuits 2017; 11:41. [PMID: 28659766 PMCID: PMC5468389 DOI: 10.3389/fncir.2017.00041] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives.
Collapse
Affiliation(s)
- Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| |
Collapse
|
64
|
Lee SH, Walker ZM, Hale JB, Chen SHA. Frontal-subcortical circuitry in social attachment and relationships: A cross-sectional fMRI ALE meta-analysis. Behav Brain Res 2017; 325:117-130. [PMID: 28237296 DOI: 10.1016/j.bbr.2017.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
Researchers have explored the concept of attachment in multiple ways, from animal studies examining imprinting to abnormal attachment in psychopathology. However, until recently, few have considered how neural circuitry develops the effective social bonds that are subsequently replicated in relationships across the lifespan. This current cross-sectional study undertook a fMRI Activation Likelihood Estimation (ALE) meta-analyses to examine the neurocircuitry that governs emotional and behavioural functions critical for building effective social relationships in children and adults. Results suggest that dissociable dorsal cognitive ("cool") and ventral - affective ("hot") frontal-subcortical circuits (FSC) work together to govern social relationships, with repeated social consequences leading to potentially adaptive - or maladaptive - relationships that can become routinized in the cerebellum. Implications for forming stable, functional, social bonds are considered, followed by recommendations for those who struggle with cool and hot FSC functioning that can hinder the development of adaptive prosocial relationships.
Collapse
Affiliation(s)
- Shu-Hui Lee
- Psychology, Nanyang Technological University, Singapore.
| | | | - James B Hale
- Psychology, Nanyang Technological University, Singapore; Center for Teaching Brain Literacy, USA
| | - S H Annabel Chen
- Psychology, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore.
| |
Collapse
|
65
|
Interaction between the medial prefrontal cortex and hippocampal CA1 area is essential for episodic-like memory in rats. Neurobiol Learn Mem 2017; 141:72-77. [DOI: 10.1016/j.nlm.2017.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022]
|
66
|
Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System. Neurochem Res 2017; 42:1299-1307. [DOI: 10.1007/s11064-016-2171-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
|
67
|
Kim DJ, St. Louis N, Molaro RA, Hudson GT, Chorley RC, Anderson BJ. Repeated unpredictable threats without harm impair spatial working memory in the Barnes maze. Neurobiol Learn Mem 2017; 137:92-100. [DOI: 10.1016/j.nlm.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/04/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
68
|
Quinolinic acid injection in mouse medial prefrontal cortex affects reversal learning abilities, cortical connectivity and hippocampal synaptic plasticity. Sci Rep 2016; 6:36489. [PMID: 27819338 PMCID: PMC5098239 DOI: 10.1038/srep36489] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Intracerebral injection of the excitotoxic, endogenous tryptophan metabolite, quinolinic acid (QA), constitutes a chemical model of neurodegenerative brain disease. Complementary techniques were combined to examine the consequences of QA injection into medial prefrontal cortex (mPFC) of C57BL6 mice. In accordance with the NMDAR-mediated synapto- and neurotoxic action of QA, we found an initial increase in excitability and an augmentation of hippocampal long-term potentiation, converting within two weeks into a reduction and impairment, respectively, of these processes. QA-induced mPFC excitotoxicity impaired behavioral flexibility in a reversal variant of the hidden-platform Morris water maze (MWM), whereas regular, extended MWM training was unaffected. QA-induced mPFC damage specifically affected the spatial-cognitive strategies that mice use to locate the platform during reversal learning. These behavioral and cognitive defects coincided with changes in cortical functional connectivity (FC) and hippocampal neuroplasticity. FC between various cortical regions was assessed by resting-state fMRI (rsfMRI) methodology, and mice that had received QA injection into mPFC showed increased FC between various cortical regions. mPFC and hippocampus (HC) are anatomically as well as functionally linked as part of a cortical network that controls higher-order cognitive functions. Together, these observations demonstrate the central functional importance of rodent mPFC as well as the validity of QA-induced mPFC damage as a preclinical rodent model of the early stages of neurodegeneration.
Collapse
|
69
|
Linley SB, Gallo MM, Vertes RP. Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Res 2016; 1649:110-122. [PMID: 27544424 PMCID: PMC5796786 DOI: 10.1016/j.brainres.2016.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and the medial prefrontal cortex (mPFC) and has been shown to mediate the transfer of information between these structures. It has become increasingly well established that RE serves a critical role in mnemonic tasks requiring the interaction of the HF and mPFC, but essentially not tasks relying solely on the HF. Very few studies have addressed the independent actions of RE on prefrontal executive functioning. The present report examined the effects of lesions of the ventral midline thalamus, including RE and the dorsally adjacent rhomboid nucleus (RH) in rats on attention and behavioral flexibility using the attentional set shifting task (AST). The task uses odor and tactile stimuli to test for attentional set formation, attentional set shifting, behavioral flexibility and reversal learning. By comparison with sham controls, lesioned rats were significantly impaired on reversal learning and intradimensional (ID) set shifting. Specifically, RE/RH lesioned rats were impaired on the first reversal stage of the task which required a change in response strategy to select a previously non-rewarded stimulus for reward. RE/RH lesioned rats also exhibited deficits in the ability to transfer or generalize rules of the task which requires making the same modality-based choices (e.g., odor vs. tactile) to different sets of stimuli in the ID stage of the task. These results demonstrate that in addition to its role in tasks dependent on HF-mPFC interactions, nucleus reuniens is also critically involved cognitive/executive functions associated with the medial prefrontal cortex. As such, the deficits in the AST task produced by RE/RH lesions suggest the ventral midline thalamus directly contributes to flexible goal directed behavior.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Michelle M Gallo
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
70
|
Functional connectivity of the left and right hippocampi: Evidence for functional lateralization along the long-axis using meta-analytic approaches and ultra-high field functional neuroimaging. Neuroimage 2016; 135:64-78. [DOI: 10.1016/j.neuroimage.2016.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 01/31/2016] [Accepted: 04/09/2016] [Indexed: 12/17/2022] Open
|
71
|
Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus. J Neurosci 2016; 36:1483-9. [PMID: 26843632 DOI: 10.1523/jneurosci.3135-15.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2. SIGNIFICANCE STATEMENT Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of ERK and mTOR activation in the DH prevented E2 from increasing DH and mPFC spines, demonstrating that DH ERK and mTOR activation is necessary for E2-induced spinogenesis in the DH and mPFC. These findings provide novel insights into the molecular mechanisms through which E2 mediates dendritic spine density in CA1 and mPFC.
Collapse
|
72
|
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats. Life Sci 2016; 149:96-103. [DOI: 10.1016/j.lfs.2016.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/30/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
|
73
|
Tao J, Liu J, Egorova N, Chen X, Sun S, Xue X, Huang J, Zheng G, Wang Q, Chen L, Kong J. Increased Hippocampus-Medial Prefrontal Cortex Resting-State Functional Connectivity and Memory Function after Tai Chi Chuan Practice in Elder Adults. Front Aging Neurosci 2016; 8:25. [PMID: 26909038 PMCID: PMC4754402 DOI: 10.3389/fnagi.2016.00025] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/01/2016] [Indexed: 01/28/2023] Open
Abstract
Previous studies provide evidence that aging is associated with the decline of memory function and alterations in the hippocampal (HPC) function, including functional connectivity to the medial prefrontal cortex (mPFC). In this study, we investigated if longitudinal (12-week) Tai Chi Chuan and Baduanjin practice can improve memory function and modulate HPC resting-state functional connectivity (rs-FC). Memory function measurements and resting-state functional magnetic resonance imaging (rs-fMRI) were applied at the beginning and the end of the experiment. The results showed that (1) the memory quotient (MQ) measured by the Wechsler Memory Scale-Chinese Revision significantly increased after Tai Chi Chuan and Baduanjin practice as compared with the control group, and no significant difference was observed in MQ between the Tai Chi Chuan and Baduanjin groups; (2) rs-FC between the bilateral hippocampus and mPFC significantly increased in the Tai Chi Chuan group compared to the control group (also in the Baduanjin group compared to the control group, albeit at a lower threshold), and no significant difference between the Tai Chi Chuan and Baduanjin groups was observed; (3) rs-FC increases between the bilateral hippocampus and mPFC were significantly associated with corresponding memory function improvement across all subjects. Similar results were observed using the left or right hippocampus as seeds. Our results suggest that both Tai Chi Chuan and Baduanjin may be effective exercises to prevent memory decline during aging.
Collapse
Affiliation(s)
- Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation of Technology, Fuzhou, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Natalia Egorova
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiangli Chen
- The School of Social and Political Science, University of Edinburgh, Edinburgh, UK
| | - Sharon Sun
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation of Technology, Fuzhou, China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Rehabilitation of Technology, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Sigurdsson T, Duvarci S. Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. Front Syst Neurosci 2016; 9:190. [PMID: 26858612 PMCID: PMC4727104 DOI: 10.3389/fnsys.2015.00190] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
The hippocampus and prefrontal cortex (PFC) have long been known to play a central role in various behavioral and cognitive functions. More recently, electrophysiological and functional imaging studies have begun to examine how interactions between the two structures contribute to behavior during various tasks. At the same time, it has become clear that hippocampal-prefrontal interactions are disrupted in psychiatric disease and may contribute to their pathophysiology. These impairments have most frequently been observed in schizophrenia, a disease that has long been associated with hippocampal and prefrontal dysfunction. Studies in animal models of the illness have also begun to relate disruptions in hippocampal-prefrontal interactions to the various risk factors and pathophysiological mechanisms of the illness. The goal of this review is to summarize what is known about the role of hippocampal-prefrontal interactions in normal brain function and compare how these interactions are disrupted in schizophrenia patients and animal models of the disease. Outstanding questions for future research on the role of hippocampal-prefrontal interactions in both healthy brain function and disease states are also discussed.
Collapse
Affiliation(s)
- Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University FrankfurtFrankfurt, Germany
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University FrankfurtFrankfurt, Germany
| |
Collapse
|
75
|
Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. Eur Neuropsychopharmacol 2016; 26:55-64. [PMID: 26689328 DOI: 10.1016/j.euroneuro.2015.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/16/2015] [Accepted: 11/08/2015] [Indexed: 01/09/2023]
Abstract
In many species, adolescence is a critical phase in which the endocannabinoid system can regulate the maturation of important neuronal networks that underlie cognitive function. Therefore, adolescents may be more susceptible to the neural consequences of chronic cannabis abuse. We reported previously that chronically exposing adolescent rats to the synthetic cannabinoid agonist CP55,940 leads to impaired performances in adulthood i.e. long-lasting deficits in both visual and spatial short-term working memories. Here, we examined the synaptic structure and function in the prefrontal cortex (PFC) of adult rats that were chronically treated with CP55,940 during adolescence. We found that chronic cannabinoid exposure during adolescence induces long-lasting changes, including (1) significantly altered dendritic arborization of pyramidal neurons in layer II/III in the medial PFC (2) impaired hippocampal input-induced synaptic plasticity in the PFC and (3) significant changes in the expression of PSD95 (but not synaptophysin or VGLUT3) in the medial PFC. These changes in synaptic structure and function in the PFC provide key insight into the structural, functional and molecular underpinnings of long-term cognitive deficits induced by adolescent cannabinoid exposure. They suggest that cannabinoids may impede the structural maturation of neuronal circuits in the PFC, thus leading to impaired cognitive function in adulthood.
Collapse
|
76
|
Jin J, Maren S. Prefrontal-Hippocampal Interactions in Memory and Emotion. Front Syst Neurosci 2015; 9:170. [PMID: 26696844 PMCID: PMC4678200 DOI: 10.3389/fnsys.2015.00170] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
The hippocampal formation (HPC) and medial prefrontal cortex (mPFC) have well-established roles in memory encoding and retrieval. However, the mechanisms underlying interactions between the HPC and mPFC in achieving these functions is not fully understood. Considerable research supports the idea that a direct pathway from the HPC and subiculum to the mPFC is critically involved in cognitive and emotional regulation of mnemonic processes. More recently, evidence has emerged that an indirect pathway from the HPC to the mPFC via midline thalamic nucleus reuniens (RE) may plays a role in spatial and emotional memory processing. Here we will consider how bidirectional interactions between the HPC and mPFC are involved in working memory, episodic memory and emotional memory in animals and humans. We will also consider how dysfunction in bidirectional HPC-mPFC pathways contributes to psychiatric disorders.
Collapse
Affiliation(s)
- Jingji Jin
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
77
|
Chao OY, Huston JP, Li JS, Wang AL, de Souza Silva MA. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus 2015; 26:633-45. [DOI: 10.1002/hipo.22547] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Owen Y. Chao
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Joseph P. Huston
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Jay-Shake Li
- Department of Psychology; National Chung Cheng University, Minhsiung; Chiayi 62102 Taiwan
| | - An-Li Wang
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Maria A. de Souza Silva
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| |
Collapse
|
78
|
Schaefers AT. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running – A role for the prefrontal cortex in hippocampal plasticity? Brain Res 2015. [DOI: 10.1016/j.brainres.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Layfield DM, Patel M, Hallock H, Griffin AL. Inactivation of the nucleus reuniens/rhomboid causes a delay-dependent impairment of spatial working memory. Neurobiol Learn Mem 2015; 125:163-7. [PMID: 26391450 DOI: 10.1016/j.nlm.2015.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/11/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
Inactivation of the rodent medial prefrontal cortex (mPFC) and hippocampus or disconnection of the hippocampus from the mPFC produces deficits in spatial working memory tasks. Previous studies have shown that delay length determines the extent to which mPFC and hippocampus functionally interact, with both structures being necessary for tasks with longer delays and either structure being sufficient for tasks with shorter delays. In addition, inactivation of the nucleus reuniens (Re)/rhomboid nucleus (Rh) of the thalamus, which has bidirectional connections with the mPFC and hippocampus, also produces deficits in these tasks. However, it is unknown how delay duration relates to the function of Re/Rh. If Re/Rh are critical in modulating mPFC-hippocampus interactions, inactivation of the RE/Rh should produce a delay-dependent impairment in spatial working memory performance. To investigate this question, groups of rats were trained on one of three different spatial working memory tasks: continuous alternation (CA), delayed alternation with a five-second delay (DA5), or with a thirty-second delay (DA30). The Re/Rh were inactivated with muscimol infusions prior to testing. The results demonstrate that inactivation of RE/Rh produces a deficit only on the two DA tasks, supporting the notion that the Re/Rh is a critical orchestrator of mPFC-HC interactions.
Collapse
Affiliation(s)
- Dylan M Layfield
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Monica Patel
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Henry Hallock
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, United States.
| |
Collapse
|
80
|
Robinson JL, Barron DS, Kirby LAJ, Bottenhorn KL, Hill AC, Murphy JE, Katz JS, Salibi N, Eickhoff SB, Fox PT. Neurofunctional topography of the human hippocampus. Hum Brain Mapp 2015; 36:5018-37. [PMID: 26350954 DOI: 10.1002/hbm.22987] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Much of what was assumed about the functional topography of the hippocampus was derived from a single case study over half a century ago. Given advances in the imaging sciences, a new era of discovery is underway, with potential to transform the understanding of healthy processing as well as the ability to treat disorders. Coactivation-based parcellation, a meta-analytic approach, and ultra-high field, high-resolution functional and structural neuroimaging to characterize the neurofunctional topography of the hippocampus was employed. Data revealed strong support for an evolutionarily preserved topography along the long-axis. Specifically, the left hippocampus was segmented into three distinct clusters: an emotional processing cluster supported by structural and functional connectivity to the amygdala and parahippocampal gyrus, a cognitive operations cluster, with functional connectivity to the anterior cingulate and inferior frontal gyrus, and a posterior perceptual cluster with distinct structural connectivity patterns to the occipital lobe coupled with functional connectivity to the precuneus and angular gyrus. The right hippocampal segmentation was more ambiguous, with plausible 2- and 5-cluster solutions. Segmentations shared connectivity with brain regions known to support the correlated processes. This represented the first neurofunctional topographic model of the hippocampus using a robust, bias-free, multimodal approach.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama.,Department of Kinesiology, Auburn University, 226 Thach Hall, Auburn, Alabama
| | | | - Lauren A J Kirby
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Katherine L Bottenhorn
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Ashley C Hill
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Jerry E Murphy
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Jeffrey S Katz
- Department of Psychology, Auburn University, 226 Thach Hall, Auburn, Alabama.,Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama
| | - Nouha Salibi
- Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, 560 Devall Drive, Auburn, Alabama.,Siemens Healthcare, MR Research & Development, 51 Valley Stream Parkway, Malvern, Pennsylvania
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,South Texas Veterans Health Care System, Research Service, 7400 Merton Minter, San Antonio, Texas.,Shenzhen University School of Medicine, Neuroimaging Laboratory, Nanhai Ave 3688, Shenzhen, Guangong, 518060, People's Republic of China
| |
Collapse
|
81
|
Rossato JI, Köhler CA, Radiske A, Bevilaqua LRM, Cammarota M. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation. Neurobiol Learn Mem 2015; 125:146-51. [PMID: 26348793 DOI: 10.1016/j.nlm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/10/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.
Collapse
Affiliation(s)
- Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.
| |
Collapse
|
82
|
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 2015; 74:28-36. [PMID: 25993604 PMCID: PMC4573337 DOI: 10.1016/j.yhbeh.2015.05.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes.
Collapse
Affiliation(s)
- Maya Frankfurt
- Department of Science Education, Hofstra-North Shore LIJ School of Medicine, USA.
| | | |
Collapse
|
83
|
Griffin AL. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 2015; 9:29. [PMID: 25805977 PMCID: PMC4354269 DOI: 10.3389/fnsys.2015.00029] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC). Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE) is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.
Collapse
Affiliation(s)
- Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| |
Collapse
|
84
|
Hale JB, Fitzer KR. Evaluating orbital-ventral medial system regulation of personal attention: a critical need for neuropsychological assessment and intervention. APPLIED NEUROPSYCHOLOGY-CHILD 2015; 4:106-15. [PMID: 25749156 DOI: 10.1080/21622965.2015.1005486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Attention to self and environment form the basis of effective social exchange and relationships. Although implicit in this basic social competency is the ability to be self-aware and responsive to the circumstances of others, many neuropsychologists have yet to understand or measure its basic functions, let alone recognize the brain-behavior relationships that govern this area. Several years ago, interest in "emotional intelligence" rose to the forefront of popular psychology, but we are still unraveling the cortical, subcortical, and neurocellular interactions that produce this nebulous construct, and we are determining how dysfunctional frontal-subcortical and cortico-cerebellar circuitry can lead to aberrant social dynamics and ultimately psychopathology when maladaptive patterns become routinized. In this article, we explore the orbital-ventral medial circuitry thought to govern emotional attention, personal self-regulation, social concern and exchange, and affective aspects of interpersonal relationships. Our examination notes both the dearth of and need for neuropsychological research on the biological basis and measurement of executive regulation of emotional attention, behavioral regulation, and social competence. We conclude with a call for development of neuropsychological measures and methods that can foster differential diagnosis and targeted treatment strategies for children with orbital-ventral medial circuit dysfunction.
Collapse
Affiliation(s)
- James B Hale
- a Faculties of Medicine and Education , University of Calgary , Calgary , Alberta , Canada
| | | |
Collapse
|
85
|
Hamilton DA, Brigman JL. Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. GENES, BRAIN, AND BEHAVIOR 2015; 14:4-21. [PMID: 25561028 PMCID: PMC4482359 DOI: 10.1111/gbb.12191] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
Abstract
Research examining the contribution of genetics to behavior is increasingly focused on higher order behavioral and cognitive processes including the ability to modify behaviors when environmental demands change. The frontal cortices of mammals, including rodents, subserve a diverse set of behavioral and cognitive functions including motor planning, social behavior, evaluation of expected outcomes and working memory, which may be particularly sensitive to genetic factors and interactions with experience (e.g. stress). Behavioral flexibility is a core attribute of these functions. This review orients readers to the current landscape of the literature on the frontocortical bases of behavioral flexibility in rodent laboratory experiments. Studies are divided into three broad categories: reversal learning, inhibitory learning and set-shifting. Functional dissociations within the broader scope of behavioral flexibility are reviewed, followed by discussion of the associations between specific components of frontal cortex and specific aspects of relevant behavioral processes. Finally, the authors identify open questions that need to be addressed to better establish the constituents of frontal cortex underlying behavioral flexibility.
Collapse
Affiliation(s)
- D A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
86
|
Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Gonçalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol Biochem Behav 2014; 128:89-95. [PMID: 25433326 DOI: 10.1016/j.pbb.2014.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have revealed alterations in mitochondrial complexes in the brains of bipolar patients. However, few studies have examined changes in the enzymes of the tricarboxylic acid cycle. Several preclinical studies have suggested that histone deacetylase inhibitors may have antimanic effects. The present study aims to investigate the effects of lithium, valproate and sodium butyrate, a histone deacetylase inhibitor, on the activity of tricarboxylic acid cycle enzymes in the brains of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single intracerebroventricular injection of ouabain or cerebrospinal fluid. Starting on the day following the intracerebroventricular injection, the rats were treated for 7days with intraperitoneal injections of saline, lithium, valproate or sodium butyrate. Risk-taking behavior, locomotor and exploratory activities were measured using the open-field test. Citrate synthase, succinate dehydrogenase, and malate dehydrogenase were examined in the frontal cortex and hippocampus. All treatments reversed ouabain-related risk-taking behavior and hyperactivity in the open-field test. Ouabain inhibited tricarboxylic acid cycle enzymes in the brain, and valproate and sodium butyrate but not lithium reversed this ouabain-induced dysfunction. Thus, protecting the tricarboxylic acid cycle may contribute to the therapeutic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jéssica Lopes-Borges
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil.
| | - Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Paula T Tonin
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Julia S Vieira
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
87
|
Zhou FC, Hou WM, Wang CY, Ungvari GS, Chiu HFK, Correll CU, Shum DHK, Man D, Liu DT, Xiang YT. Prospective memory performance in non-psychotic first-degree relatives of patients with schizophrenia: a controlled study. PLoS One 2014; 9:e111562. [PMID: 25365028 PMCID: PMC4218767 DOI: 10.1371/journal.pone.0111562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022] Open
Abstract
Objective We aimed at investigating prospective memory and its socio-demographic and neurocognitive correlates in non-psychotic, first-degree relatives (FDRs) of patients with schizophrenia compared to patients with first episode schizophrenia (FES), and healthy controls (HCs). Methods Forty-seven FES patients, 50 non-psychotic FDRs (23 offspring and 27 siblings) of patients with chronic schizophrenia (unrelated to the FES group) and 51 HCs were studied. The Chinese version of the Cambridge Prospective Memory Test (C-CAMPROMPT) was used to measure time-based prospective memory (TBPM) and event-based prospective memory (EBPM) performance. Other cognitive functions (involving respective memory and executive functions) were evaluated with standardized tests. Results After controlling for basic demographic characteristics including age, gender and educational level, there was a significant difference between FDRs, FES and HCs with respect to both TBPM (F(2,142) = 10.4, p<0.001) and EBPM (F(2,142) = 10.8, p<0.001). Multiple linear regression analyses revealed that lower scores of the Hopkins Verbal Learning Test-Revised (HVLT-R) and the STROOP Word-Color Test (SWCT) contributed to TBPM impairment, while lower educational level and higher scores of the Color Trails Test-2 (CTT-2) contributed to EBPM deficit in FDRs. Conclusions FDRs share similar but attenuated prospective memory impairments with schizophrenia patients, suggesting that prospective memory deficits may represent an endophenotype of schizophrenia.
Collapse
Affiliation(s)
- Fu-Chun Zhou
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Wei-Min Hou
- Beijing Daxing Mental Health Center, Beijing, China
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- * E-mail: (C-YW); (Y-TX)
| | - Gabor S. Ungvari
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Perth, Australia
| | - Helen F. K. Chiu
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christoph U. Correll
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York, United States of America
| | - David H. K. Shum
- School of Psychology and Griffith Health Institute, Griffith University, Brisbane, Queensland, Australia
| | - David Man
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Deng-Tang Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Macao SAR, China
- * E-mail: (C-YW); (Y-TX)
| |
Collapse
|
88
|
Cholvin T, Loureiro M, Cassel R, Cosquer B, Herbeaux K, de Vasconcelos AP, Cassel JC. Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats. Brain Struct Funct 2014; 221:91-102. [PMID: 25260556 DOI: 10.1007/s00429-014-0894-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023]
Abstract
Systems-level consolidation models propose that recent memories are initially hippocampus-dependent. When remote, they are partially or completely dependent upon the medial prefrontal cortex (mPFC). An implication of the mPFC in recent memory, however, is still debated. Different amounts of muscimol (MSCI 0, 30, 50, 80 and 250 ng in 1 µL PBS) were used to assess the impact of inactivation of the dorsal hippocampus (dHip) or the mPFC (targeting the prelimbic cortex) on a 24-h delayed retrieval of a platform location that rats had learned drug-free in a water maze. The two smallest amounts of MSCI (30 and 50 ng) did not affect recall, whatever the region. 80 ng MSCI infused into the dHip disrupted spatial memory retrieval, as did the larger amount. Infusion of MSCI into the mPFC did not alter performance in the 0-80 ng range. At 250 ng, it induced an as dramatic memory impairment as after efficient dHip inactivation. Stereological quantifications showed that 80 ng MSCI in the dHip and 250 ng MSCI in the mPFC induced a more than 80% reduction of c-Fos expression, suggesting that, beyond the amounts infused, it is the magnitude of the neuronal activity decrease which is determinant as to the functional outcome of the inactivation. Because, based on the literature, even 250 ng MSCI is a small amount, our results point to a contribution of the mPFC to the recall of a recently acquired spatial memory and thereby extend our knowledge about the functions of this major actor of cognition.
Collapse
Affiliation(s)
- Thibault Cholvin
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| | - Michaël Loureiro
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| | - Raphaelle Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| | - Karin Herbeaux
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Neuropôle de Strasbourg, GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
89
|
Hallock HL, Wang A, Shaw CL, Griffin AL. Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behav Neurosci 2014; 127:860-6. [PMID: 24341710 DOI: 10.1037/a0034653] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Working memory depends on communication between the hippocampus and the prefrontal cortex (PFC); however, the neural circuitry that mediates interactions between these brain areas has not been well characterized. Two candidate structures are the thalamic reuniens (RE) and rhomboid (Rh) nuclei, which are reciprocally connected with both the hippocampus and PFC. These known anatomical connections suggest that RE/Rh may be involved in mediating hippocampal-prefrontal communication, and therefore may be critical for working memory processing. To test the hypothesis that RE/Rh are necessary for working memory, we trained separate groups of rats to perform 1 of 2 tasks in a T-maze. The first task was a working memory-dependent conditional discrimination (CDWM) task, and the second task was a nonworking memory-dependent conditional discrimination (CD) task. These tasks took place in the same maze, featured the same number of trials, and utilized the same cue (a tactile-visual maze insert). After rats had learned either task, RE/Rh were transiently inactivated with the GABAA receptor agonist muscimol, and performance was assessed. RE/Rh inactivation caused performance deficits on the CDWM task, but not the CD task. This result suggests that RE/Rh are a necessary component of working memory task performance, which is also thought to depend on the hippocampal-prefrontal circuit. RE/Rh inactivation did not cause a performance deficit on the CD task, suggesting that RE/Rh have dissociable contributions to working memory-dependent and nonworking memory-dependent tasks, independently of the known contributions of these 2 thalamic nuclei to the sensorimotor and attention-related aspects of other memory tasks.
Collapse
|
90
|
Wang X, Yan S, Wang A, Li Y, Zhang F. Gastrodin ameliorates memory deficits in 3,3'-iminodipropionitrile-induced rats: possible involvement of dopaminergic system. Neurochem Res 2014; 39:1458-66. [PMID: 24842556 DOI: 10.1007/s11064-014-1335-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce neurotoxicity, and therefore cause motor dysfunction and cognitive deficits. Gastrodin is a main bioactive constituent of a Chinese herbal medicine (Gastrodia elata Blume) widely used for treating various neurological disorders and showed greatly improved mental function. This study was designed to determine whether administration of gastrodin attenuates IDPN-induced working memory deficits in Y-maze task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (150 mg/kg/day, v.o.) significantly impaired working memory and that long-term gastrodin (200 mg/kg/day, v.o.) could effectively rescue these IDPN-induced memory impairments as indicated by increased spontaneous alternation in the Y-maze test. Additionally, gastrodin treatment prevented IDPN-induced reductions of dopamine (DA) and its metabolites, as well as elevation of dopamine turnover ratio (DOPAC + HVA)/DA. Gastrodin treatment also prevented alterations in dopamine D2 receptor and dopamine transporter protein levels in the rat hippocampus. Our results suggest that long-term gastrodin treatment may have potential therapeutic values for IDPN-induced cognitive impairments, which was mediated, in part, by normalizing the dopaminergic system.
Collapse
Affiliation(s)
- Xiaona Wang
- Institute of Physiology, Shandong University School of Medicine, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
91
|
Baker PM, Ragozzino ME. The prelimbic cortex and subthalamic nucleus contribute to cue-guided behavioral switching. Neurobiol Learn Mem 2014; 107:65-78. [PMID: 24246555 PMCID: PMC4012559 DOI: 10.1016/j.nlm.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Frontal cortex-basal ganglia circuitry supports behavioral switching when a change in outcome information is used to adapt response patterns. Less is known about whether specific frontal cortex-basal ganglia circuitry supports behavioral switching when cues signal that a change in response patterns should occur. The present experiments investigated whether the prelimbic cortex and subthalamic nucleus in male Long-Evans rats supports cue-guided switching in a conditional discrimination test. Rats learned in a cross-maze that a start arm cue (black or white) signaled which of two maze arms to enter for a food reward. The cue was switched every 3-6 trials. Baclofen and muscimol infused into the prelimbic cortex significantly impaired performance by increasing switch trial errors, as well as trials immediately following a switch trial (perseveration) and after initially making a correct switch (maintenance error). NMDA receptor blockade in the subthalamic nucleus significantly impaired performance by increasing switch errors and perseveration. Contralateral disconnection of these areas significantly reduced conditional discrimination performance by increasing switch and perseverative errors. These findings suggest that the prelimbic area and subthalamic nucleus support the use of cue information to facilitate an initial switch away from a previously relevant response pattern.
Collapse
Affiliation(s)
- Phillip M Baker
- Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael E Ragozzino
- Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States; Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
92
|
Blot K, Kimura SI, Bai J, Kemp A, Manahan-Vaughan D, Giros B, Tzavara E, Otani S. Modulation of Hippocampus-Prefrontal Cortex Synaptic Transmission and Disruption of Executive Cognitive Functions by MK-801. Cereb Cortex 2013; 25:1348-61. [DOI: 10.1093/cercor/bht329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
93
|
Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats. J Neurosci 2013; 33:15716-25. [PMID: 24089480 DOI: 10.1523/jneurosci.2087-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.
Collapse
|
94
|
del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav Immun 2013; 33:15-23. [PMID: 23747799 DOI: 10.1016/j.bbi.2013.05.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that long-term potentiation (LTP) induces hippocampal IL-1β and IL-6 over-expression, and interfering their signalling either inhibits or supports, respectively, LTP maintenance. Consistently, blockade of endogenous IL-1 or IL-6 restricts or favours hippocampal-dependent memory, effects that were confirmed in genetically manipulated mice. Since cytokines are known for their high degree of mutual crosstalk, here we studied whether a network of cytokines with known neuromodulatory actions is activated during LTP and learning. We found that, besides IL-1β and IL-6, also IL-1 receptor antagonist (IL-1ra) and IL-18, but not TNFα are over-expressed during LTP maintenance in freely moving rats. The increased expression of these cytokines is causally related to an increase in synaptic strength since it was abrogated when LTP was interfered by blockade of NMDA-glutamate receptors. Likewise, IL-1 and IL-6 were found to be over-expressed in defined regions of the hippocampus during learning a hippocampus-dependent task. However, during learning, changes in IL-18 were restricted to the dorsal hippocampus, and no differences in TNFα and IL1-ra expression were noticed in the hippocampus. Noticeably, IL-1ra transcripts were significantly reduced in the prefrontal cortex. The relation between cytokine expression and learning was causal because such changes were not observed in animals from a pseudo-trained group that was subject to the same manipulation but could not learn the task. Taken together with previous studies, we conclude that activation of a cytokine network in the brain is a physiologic relevant phenomenon not only for LTP maintenance but also for certain types of learning.
Collapse
Affiliation(s)
- Adriana del Rey
- Research Group Immunophysiology, Institute of Physiology and Pathophysiology, Philipps University, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
95
|
The role of Homer 1a in increasing locomotor activity and non-selective attention, and impairing learning and memory abilities. Brain Res 2013; 1515:39-47. [DOI: 10.1016/j.brainres.2013.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/12/2013] [Accepted: 03/13/2013] [Indexed: 10/26/2022]
|
96
|
Conejo NM, Cimadevilla JM, González-Pardo H, Méndez-Couz M, Arias JL. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PLoS One 2013; 8:e64749. [PMID: 23724089 PMCID: PMC3665627 DOI: 10.1371/journal.pone.0064749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/16/2013] [Indexed: 01/16/2023] Open
Abstract
Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions.
Collapse
Affiliation(s)
- Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
97
|
Cholvin T, Loureiro M, Cassel R, Cosquer B, Geiger K, De Sa Nogueira D, Raingard H, Robelin L, Kelche C, Pereira de Vasconcelos A, Cassel JC. The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 2013; 33:8772-83. [PMID: 23678120 PMCID: PMC6618831 DOI: 10.1523/jneurosci.0771-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological and neuroanatomical evidence for reciprocal connections with the medial prefrontal cortex (mPFC) and the hippocampus make the reuniens and rhomboid (ReRh) thalamic nuclei a putatively major functional link for regulations of cortico-hippocampal interactions. In a first experiment using a new water escape device for rodents, the double-H maze, we demonstrated in rats that a bilateral muscimol (MSCI) inactivation (0.70 vs 0.26 and 0 nmol) of the mPFC or dorsal hippocampus (dHip) induces major deficits in a strategy shifting/spatial memory retrieval task. By way of comparison, only dHip inactivation impaired recall in a classical spatial memory task in the Morris water maze. In the second experiment, we showed that ReRh inactivation using 0.70 nmol of MSCI, which reduced performance without obliterating memory retrieval in the water maze, produces an as large strategy shifting/memory retrieval deficit as mPFC or dHip inactivation in the double-H maze. Thus, behavioral adaptations to task contingency modifications requiring a shift toward the use of a memory for place might operate in a distributed circuit encompassing the mPFC (as the potential set-shifting structure), the hippocampus (as the spatial memory substrate), and the ventral midline thalamus, and therein the ReRh (as the coordinator of this processing). The results of the current experiments provide a significant extension of our understanding of the involvement of ventral midline thalamic nuclei in cognitive processes: they point to a role of the ReRh in strategy shifting in a memory task requiring cortical and hippocampal functions and further elucidate the functional system underlying behavioral flexibility.
Collapse
Affiliation(s)
- Thibault Cholvin
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Michaël Loureiro
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Raphaelle Cassel
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Brigitte Cosquer
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Karine Geiger
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - David De Sa Nogueira
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Hélène Raingard
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Laura Robelin
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Christian Kelche
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratory of Cognitive and Adaptive Neurosciences, UMR 7364, University of Strasbourg–National Center of Scientific Research (CNRS), Federal Research Institute 37 of Neurosciences, CNRS Research Group 2905, Faculty of Psychology, F-67000 Strasbourg, France
| |
Collapse
|
98
|
Blot K, Bai J, Otani S. The effect of non-competitive NMDA receptor antagonist MK-801 on neuronal activity in rodent prefrontal cortex: an animal model for cognitive symptoms of schizophrenia. ACTA ACUST UNITED AC 2013; 107:448-51. [PMID: 23603055 DOI: 10.1016/j.jphysparis.2013.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022]
Abstract
Schizophrenia affects about 1% of the world population and is a major socio-economical problem in ours societies. Cognitive symptoms are particularly resistant to current treatments and are believed to be closely related to an altered function of prefrontal cortex (PFC). Particularly, abnormalities in the plasticity processes in the PFC are a candidate mechanism underlying cognitive symptoms, and the recent evidences in patients are in line with this hypothesis. Animal pharmacological models of cognitive symptoms, notably with non-competitive NMDA receptor antagonists such as MK-801, are commonly used to investigate the underlying cellular and molecular mechanisms of schizophrenia. However, it is still unknown whether in these animal models, impairments in plasticity of PFC neurons are present. In this article, we briefly summarize the current knowledge on the effect of non-competitive NMDA receptor antagonist MK-801 on medial PFC (mPFC) neuronal activity and then introduce a form of plasticity found after acute exposure to MK-801, which was accompanied by cognitive deficits. These observations suggest a potential correlation between cognitive deficits and the aberrant plasticity in the mPFC in the animal model of schizophrenia.
Collapse
Affiliation(s)
- Kevin Blot
- INSERM U952/CNRS UMR 7224, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75252 Paris cedex 05, France.
| | | | | |
Collapse
|
99
|
Mansouri MT, Naghizadeh B, López-Larrubia P, Cauli O. Behavioral deficits induced by lead exposure are accompanied by serotonergic and cholinergic alterations in the prefrontal cortex. Neurochem Int 2012; 62:232-9. [PMID: 23266395 DOI: 10.1016/j.neuint.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 11/24/2022]
Abstract
The effects of long-term lead (Pb) exposure producing a blood Pb concentration of lower than 20 μg/dL, i.e. below that associated with overt neurological deficits in occupationally exposed individuals, was studied in adult rats. In order to assess gender differences, we performed parallel behavioral experiments in male and female rats. Exposure to Pb acetate (50 ppm in drinking water) for 6 months induced motor and cognitive alterations, however these effects were gender- and task-dependent. Chronic lead exposure impaired spatial learning assessed in the Morris water maze test (MWM) in both genders, whereas it only induced hyperactivity in the open field and impaired motor coordination in the rotarod test, only in male rats. Hyperactivity in male rats was accompanied by an increase in extracellular level of acetylcholine in the prefrontal cortex. Extracellular dopamine concentration in the prefrontal cortex was unaffected by lead exposure whereas serotonin concentration in the same brain area was significantly decreased in both male and female rats exposed to lead. These results unveil new molecular mechanisms underlying neuropsychiatric alterations induced by chronic lead exposure.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology, Physiology Research Center, School of Medicine, Ahwaz Jundishapur Univ. of Med. Sciences (AJUMS), Ahwaz, Iran
| | | | | | | |
Collapse
|
100
|
Inverardi F, Chikhladze M, Donzelli A, Moroni RF, Regondi MC, Pennacchio P, Zucca I, Corradini I, Braida D, Sala M, Franceschetti S, Frassoni C. Cytoarchitectural, behavioural and neurophysiological dysfunctions in the BCNU-treated rat model of cortical dysplasia. Eur J Neurosci 2012; 37:150-62. [PMID: 23095101 DOI: 10.1111/ejn.12032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
Cortical dysplasias (CDs) include a spectrum of cerebral lesions resulting from cortical development abnormalities during embryogenesis that lead to cognitive disabilities and epilepsy. The experimental model of CD obtained by means of in utero administration of BCNU (1-3-bis-chloroethyl-nitrosurea) to pregnant rats on embryonic day 15 mimics the histopathological abnormalities observed in many patients. The aim of this study was to investigate the behavioural, electrophysiological and anatomical profile of BCNU-treated rats in order to determine whether cortical and hippocampal lesions can directly lead to cognitive dysfunction. The BCNU-treated rats showed impaired short-term working memory but intact long-term aversive memory, whereas their spontaneous motor activity and anxiety-like response were normal. The histopathological and immunohistochemical analyses, made after behavioural tests, revealed the disrupted integrity of neuronal populations and connecting fibres in hippocampus and prefrontal and entorhinal cortices, which are involved in memory processes. An electrophysiological evaluation of the CA1 region of in vitro hippocampal slices indicated a decrease in the efficiency of excitatory synaptic transmission and impaired paired pulse facilitation, but enhanced long-term potentiation (LTP) associated with hyperexcitability in BCNU-treated rats compared with controls. The enhanced LTP, associated with hyperexcitability, may indicate a pathological distortion of long-term plasticity. These findings suggest that prenatal developmental insults at the time of peak cortical neurogenesis can induce anatomical abnormalities associated with severe impairment of spatial working memory in adult BCNU-treated rats and may help to clarify the pathophysiological mechanisms of cognitive dysfunction that is often associated with epilepsy in patients with CD.
Collapse
Affiliation(s)
- Francesca Inverardi
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|