51
|
Qi R, Zhang X, Xie Y, Jiang S, Liu Y, Liu X, Xie W, Jia X, Bade R, Shi R, Li S, Ren C, Gong K, Zhang C, Shao G. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway. Biomed Pharmacother 2019; 118:109219. [PMID: 31325707 DOI: 10.1016/j.biopha.2019.109219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells. METHODS 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid. RESULTS 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy. CONCLUSIONS 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.
Collapse
Affiliation(s)
- Ruifang Qi
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Zhang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyuan Jiang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - You Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoe Jia
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rengui Bade
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ruili Shi
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of neurosurgery, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Guo Shao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
52
|
Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui MH, Gulinello M, Branch CA, Gubbi S, Patel K, Moellering DR, Tarantini S, Kiss T, Yabluchanskiy A, Ungvari Z, Sonntag WE, Huffman DM. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. GeroScience 2019; 41:185-208. [PMID: 31076997 DOI: 10.1007/s11357-019-00065-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Disruptions in growth hormone/insulin-like growth factor-1 (GH/IGF-1) signaling have been linked to improved longevity in mice and humans. Nevertheless, while IGF-1 levels are associated with increased cancer risk, they have been paradoxically implicated with protection from other age-related conditions, particularly in the brain, suggesting that strategies aimed at selectively increasing central IGF-1 action may have favorable effects on aging. To test this hypothesis, we generated inducible, brain-specific (TRE-IGF-1 × Camk2a-tTA) IGF-1 (bIGF-1) overexpression mice and studied effects on healthspan. Doxycycline was removed from the diet at 12 weeks old to permit post-development brain IGF-1 overexpression, and animals were monitored up to 24 months. Brain IGF-1 levels were increased approximately twofold in bIGF-1 mice, along with greater brain weights, volume, and myelin density (P < 0.05). Age-related changes in rotarod performance, exercise capacity, depressive-like behavior, and hippocampal gliosis were all attenuated specifically in bIGF-1 male mice (P < 0.05). However, chronic brain IGF-1 failed to prevent declines in cognitive function or neurovascular coupling. Therefore, we performed a short-term intranasal (IN) treatment of either IGF-1 or saline in 24-month-old male C57BL/6 mice and found that IN IGF-1 treatment tended to reduce depressive (P = 0.09) and anxiety-like behavior (P = 0.08) and improve motor coordination (P = 0.07) and unlike transgenic mice improved motor learning (P < 0.05) and visuospatial and working memory (P < 0.05). These data highlight important sex differences in how brain IGF-1 action impacts healthspan and suggest that translational approaches that target IGF-1 centrally can restore cognitive function, a possibility that should be explored as a strategy to combat age-related cognitive decline.
Collapse
Affiliation(s)
- Gabriela E Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zunju Hu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Behavioral Core Facility, Dominick S. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sriram Gubbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Internal Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Khushbu Patel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
53
|
Kou X, Chen D, Chen N. Physical Activity Alleviates Cognitive Dysfunction of Alzheimer's Disease through Regulating the mTOR Signaling Pathway. Int J Mol Sci 2019; 20:ijms20071591. [PMID: 30934958 PMCID: PMC6479697 DOI: 10.3390/ijms20071591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common aging-related progressive neurodegenerative disorders, and can result in great suffering for a large portion of the aged population. Although the pathogenesis of AD is being elucidated, the exact mechanisms are still unclear, thereby impeding the development of effective drugs, supplements, and other interventional strategies for AD. In recent years, impaired autophagy associated with microRNA (miRNA) dysfunction has been reported to be involved in aging and aging-related neurodegenerative diseases. Therefore, miRNA-mediated regulation for the functional status of autophagy may become one of the potent interventional strategies for AD. Mounting evidence from in vivo AD models has demonstrated that physical activity can exert a neuroprotective role in AD. In addition, autophagy is strictly regulated by the mTOR signaling pathway. In this article, the regulation of the functional status of autophagy through the mTOR signaling pathway during physical activity is systematically discussed for the prevention and treatment of AD. This concept will be beneficial to developing novel and effective targets that can create a direct link between pharmacological intervention and AD in the future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Dandan Chen
- Graduate School, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
54
|
Bhukel A, Beuschel CB, Maglione M, Lehmann M, Juhász G, Madeo F, Sigrist SJ. Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nat Commun 2019; 10:1318. [PMID: 30899013 PMCID: PMC6428838 DOI: 10.1038/s41467-019-09262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy is an evolutionarily conserved cellular maintenance program, meant to protect the brain from premature aging and neurodegeneration. How neuronal autophagy, usually loosing efficacy with age, intersects with neuronal processes mediating brain maintenance remains to be explored. Here, we show that impairing autophagy in the Drosophila learning center (mushroom body, MB) but not in other brain regions triggered changes normally restricted to aged brains: impaired associative olfactory memory as well as a brain-wide ultrastructural increase of presynaptic active zones (metaplasticity), a state non-compatible with memory formation. Mechanistically, decreasing autophagy within the MBs reduced expression of an NPY-family neuropeptide, and interfering with autocrine NPY signaling of the MBs provoked similar brain-wide metaplastic changes. Our results in an exemplary fashion show that autophagy-regulated signaling emanating from a higher brain integration center can execute high-level control over other brain regions to steer life-strategy decisions such as whether or not to form memories.
Collapse
Affiliation(s)
- Anuradha Bhukel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Christine Brigitte Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Martin Lehmann
- Leibniz Forschungsinstitut Für Molecular Pharmakologie, Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Gabor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány, s. 1/C. 6.520, Budapest, H-1117, Hungary
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/EG, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany.
| |
Collapse
|
55
|
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell 2019; 18:e12876. [PMID: 30430746 PMCID: PMC6351830 DOI: 10.1111/acel.12876] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulation of dysfunctional and damaged cellular proteins and organelles occurs during aging, resulting in a disruption of cellular homeostasis and progressive degeneration and increases the risk of cell death. Moderating the accrual of these defunct components is likely a key in the promotion of longevity. While exercise is known to promote healthy aging and mitigate age‐related pathologies, the molecular underpinnings of this phenomenon remain largely unclear. However, recent evidences suggest that exercise modulates the proteome. Similarly, caloric restriction (CR), a known promoter of lifespan, is understood to augment intracellular protein quality. Autophagy is an evolutionary conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This housekeeping system has been reliably linked to the aging process. Moreover, autophagic activity declines during aging. The target of rapamycin complex 1 (TORC1), a central kinase involved in protein translation, is a negative regulator of autophagy, and inhibition of TORC1 enhances lifespan. Inhibition of TORC1 may reduce the production of cellular proteins which may otherwise contribute to the deleterious accumulation observed in aging. TORC1 may also exert its effects in an autophagy‐dependent manner. Exercise and CR result in a concomitant downregulation of TORC1 activity and upregulation of autophagy in a number of tissues. Moreover, exercise‐induced TORC1 and autophagy signaling share common pathways with that of CR. Therefore, the longevity effects of exercise and CR may stem from the maintenance of the proteome by balancing the synthesis and recycling of intracellular proteins and thus may represent practical means to promote longevity.
Collapse
Affiliation(s)
- Kurt A. Escobar
- Department of Kinesiology; California State University, Long Beach; Long Beach California
| | - Nathan H. Cole
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Christine M. Mermier
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Trisha A. VanDusseldorp
- Department of Exercise Science & Sports Management; Kennesaw State University; Kennesaw Georgia
| |
Collapse
|
56
|
Gonzalez Porras MA, Sieck GC, Mantilla CB. Impaired Autophagy in Motor Neurons: A Final Common Mechanism of Injury and Death. Physiology (Bethesda) 2019; 33:211-224. [PMID: 29638184 DOI: 10.1152/physiol.00008.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a cellular digestion process that contributes to cellular homeostasis and adaptation by the elimination of proteins and damaged organelles. Evidence suggests that dysregulation of autophagy plays a role in neurodegenerative diseases, including motor neuron disorders. Herein, we review emerging evidence indicating the roles of autophagy in physiological motor neuron processes and its function in specific compartments. Moreover, we discuss the involvement of autophagy in the pathogenesis of motor neuron diseases, including spinal cord injury and aging, and recent developments that offer promising therapeutic approaches to mitigate effects of dysregulated autophagy in health and disease.
Collapse
Affiliation(s)
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
57
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
58
|
Yanar K, Simsek B, Çaylı N, Övül Bozkır H, Mengi M, Belce A, Aydin S, Çakatay U. Caloric restriction and redox homeostasis in various regions of aging male rat brain: Is caloric restriction still worth trying even after early-adulthood?: Redox homeostasis and caloric restriction in brain. J Food Biochem 2018; 43:e12740. [PMID: 31353564 DOI: 10.1111/jfbc.12740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Despite recent studies have shown that caloric restriction (CR) could improve some functional loss associated with brain aging, the biochemical effects of CR on brain aging are still not well understood on a quantifiable biochemical basis, including whether CR could be protective when started around middle adulthood, when age-related neurodegenerative diseases are thought to set in. Therefore, in the light of more than ever aging societies and increasing neurodegenerative diseases, we aimed to test the biochemical effects of CR on redox homeostasis in different parts of male Sprague-Dawley rat brain by using the biomarkers we consistently validated in our previous work (TOS, PCO, AOPP, AGEs, sRAGE, P-SH, LHPs, 4-HNE, TAS, Cu, Zn-SOD). Our results indicate that oxidative stress biomarkers are lower in CR group, implying a more favorable redox status that has been previously shown to be correlated with better neural function. PRACTICAL APPLICATIONS: We report that the beneficial effects of caloric restriction (CR) on various brain tissues result in significant improvements in biochemical markers, even though CR is not started in early adulthood. Hence, our select age group provides a sound redox status-related neurochemical understanding for many recent CR studies, where a functional loss was detected at this age.
Collapse
Affiliation(s)
- Karolin Yanar
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nisanur Çaylı
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Haktan Övül Bozkır
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Murat Mengi
- Faculty of Medicine, Department of Physiology, Namik Kemal University, Tekirdag, Turkey
| | - Ahmet Belce
- Faculty of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Seval Aydin
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
59
|
Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem Pharmacol 2018; 158:207-216. [DOI: 10.1016/j.bcp.2018.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022]
|
60
|
Rubio Osornio MDC, Custodio Ramírez V, Calderón Gámez D, Paz Tres C, Carvajal Aguilera KG, Phillips Farfán BV. Metformin Plus Caloric Restriction Show Anti-epileptic Effects Mediated by mTOR Pathway Inhibition. Cell Mol Neurobiol 2018; 38:1425-1438. [PMID: 30132243 DOI: 10.1007/s10571-018-0611-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Abstract
Caloric restriction (CR) has anti-epileptic effects in different animal models, at least partially due to inhibition of the mechanistic or mammalian target of rapamycin (mTOR) signaling pathway. Adenosine monophosphate-activated protein kinase (AMPK) inhibits mTOR cascade function if energy levels are low. Since hyper-activation of mTOR participates in epilepsy, its inhibition results in beneficial anti-convulsive effects. A way to attain this is to activate AMPK with metformin. The effects of metformin, alone or combined with CR, on the electrical kindling epilepsy model and the mTOR cascade in the hippocampus and the neocortex were studied. Combined metformin plus CR beneficially affected many kindling aspects, especially those relating to generalized convulsive seizures. Therefore, metformin plus CR could decrease measures of epileptic activity in patients with generalized convulsive seizures. Patients that are obese, overweight or that have metabolic syndrome in addition to having an epileptic disease are an ideal population for clinical trials to test the effectiveness of metformin plus CR.
Collapse
Affiliation(s)
- María Del Carmen Rubio Osornio
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, 14269, Mexico City, Mexico
| | - Verónica Custodio Ramírez
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, 14269, Mexico City, Mexico
| | - Daniela Calderón Gámez
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Av. Insurgentes Sur 3700, Letra C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, Mexico City, Mexico
| | - Carlos Paz Tres
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, 14269, Mexico City, Mexico
| | - Karla G Carvajal Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Av. Insurgentes Sur 3700, Letra C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, Mexico City, Mexico
| | - Bryan V Phillips Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Av. Insurgentes Sur 3700, Letra C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, Mexico City, Mexico.
| |
Collapse
|
61
|
Russo R, Varano GP, Adornetto A, Nazio F, Tettamanti G, Girardello R, Cianfanelli V, Cavaliere F, Morrone LA, Corasaniti MT, Cecconi F, Bagetta G, Nucci C. Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival. Cell Death Dis 2018; 9:981. [PMID: 30250019 PMCID: PMC6155349 DOI: 10.1038/s41419-018-1044-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
Autophagy, the cellular process responsible for degradation and recycling of cytoplasmic components through the autophagosomal–lysosomal pathway, is fundamental for neuronal homeostasis and its deregulation has been identified as a hallmark of neurodegeneration. Retinal hypoxic–ischemic events occur in several sight-treating disorders, such as central retinal artery occlusion, diabetic retinopathy, and glaucoma, leading to degeneration and loss of retinal ganglion cells. Here we analyzed the autophagic response in the retinas of mice subjected to ischemia induced by transient elevation of intraocular pressure, reporting a biphasic and reperfusion time-dependent modulation of the process. Ischemic insult triggered in the retina an acute induction of autophagy that lasted during the first hours of reperfusion. This early upregulation of the autophagic flux limited RGC death, as demonstrated by the increased neuronal loss observed in mice with genetic impairment of basal autophagy owing to heterozygous ablation of the autophagy-positive modulator Ambra1 (Ambra1+/gt). Upregulation of autophagy was exhausted 24 h after the ischemic event and reduced autophagosomal turnover was associated with build up of the autophagic substrate SQSTM-1/p62, decreased ATG12-ATG5 conjugate, ATG4 and BECN1/Beclin1 expression. Animal fasting or subchronic systemic treatment with rapamycin sustained and prolonged autophagy activation and improved RGC survival, providing proof of principle for autophagy induction as a potential therapeutic strategy in retinal neurodegenerative conditions associated with hypoxic/ischemic stresses.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy.
| | - Giuseppe Pasquale Varano
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy.,Ophtalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Francesca Nazio
- Department of Pediatric Hematology and Oncology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Federica Cavaliere
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Luigi Antonio Morrone
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | | | - Francesco Cecconi
- Department of Pediatric Hematology and Oncology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophtalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
62
|
Yan BC, Jiang D, Wang J, Zhang Y, Zhu X, Xu P, Yu X, Won MH, Su PQ. Both decreased Akt expression and mTOR phosphorylation are related to decreased neuronal differentiation in the hippocampal alveus of aged mice. Aging Clin Exp Res 2018; 30:737-743. [PMID: 29027613 DOI: 10.1007/s40520-017-0833-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/13/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aging is an inevitable process which results in many changes. These changes are closely related to the hippocampus which is in charge of long-term learning and episodic memory. AIM This study was to investigate age-related changes of the cell proliferation, neuroblast differentiation and Akt/mTOR signaling in the hippocampal alveus of aged mice. METHODS In the present study, we compared the differences of neurogenesis in the hippocampal alveus between adult (postnatal month 6) and aged (postnatal month 24) mice using immunohistochemistry and western blot analysis. RESULTS The cell proliferation, neuroblast differentiation, and the increased astrocyte activation in the hippocampal alveus of mice were decreased in an age-dependent manner. In addition, during normal aging, the protein level of AKT, mTOR and the phosphorylation of mTOR were all decreased. However, the protein level of AKT was increased. DISCUSSION These results indicate the neurogenesis in the immature neurons in the hippocampal alveus of aged mice was closely related to the normal aging process. In addition, during normal aging, the increased AKT phosphorylation and decreased mTOR phosphorylation in the hippocampus may play a role in aging development. CONCLUSION The result indicates that increased activation of astrocyte, increased phosphorylation of AKT and decreased phosphorylation of mTOR may be involved in the decreased cell proliferation and neuroblast differentiation in the alveus of hippocampus of aged mice.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China.
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Yuanyuan Zhang
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Pei Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Xing Yu
- Department of Pharmacy, Yangzhou Maternal and Child Care Service Center, Yangzhou, 225002, People's Republic of China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Pei Qing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
63
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
64
|
Zong J, Liao X, Ren B, Wang Z. The antidepressant effects of rosiglitazone on rats with depression induced by neuropathic pain. Life Sci 2018; 203:315-322. [DOI: 10.1016/j.lfs.2018.04.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
65
|
von Haefen C, Sifringer M, Endesfelder S, Kalb A, González-López A, Tegethoff A, Paeschke N, Spies CD. Physostigmine Restores Impaired Autophagy in the Rat Hippocampus after Surgery Stress and LPS Treatment. J Neuroimmune Pharmacol 2018; 13:383-395. [PMID: 29790105 DOI: 10.1007/s11481-018-9790-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
Tissue damage and pathogen invasion during surgical trauma have been identified as contributing factors leading to neuroinflammation in the hippocampus, which can be protected by stimulation of the cholinergic anti-inflammatory pathway using the acetylcholinesterase inhibitor physostigmine. Macroautophagy, an intracellular degradation pathway used to recycle and eliminate damaged proteins and organelles by lysosomal digestion, seems to be important for cell survival under stress conditions. This study aimed to examine the role of autophagy in physostigmine-mediated hippocampal cell protection in a rat model of surgery stress. In the presence or absence of physostigmine, adult Wistar rats underwent surgery in combination with lipopolysaccharide (LPS). Activated microglia, apoptosis-, autophagy-, and anti-inflammatory-related genes and -proteins in the hippocampus were determined by Real-Time PCR, Western blot and fluorescence microscopy after 1 h, 24 h and 3 d. Surgery combined with LPS-treatment led to microglia activation after 1 h and 24 h which was accompanied by apoptotic cell death after 24 h in the hippocampus. Furthermore, it led to a decreased expression of ATG-3 after 24 h and an increased expression of p62/ SQSTM1 after 1 h and 24 h. Administration of physostigmine significantly increased autophagy related markers and restored the autophagic flux after surgery stress, detected by increased degradation of p62/ SQSTM1 in the hippocampus after 1 h and 24 h. Furthermore, physostigmine reduced activated microglia and apoptosis relevant proteins and elevated the increased expression of TGF-beta1 and MFG-E8 after surgery stress. In conclusion, activation of autophagy may be essential in physostigmine-induced neuroprotection against surgery stress.
Collapse
Affiliation(s)
- Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Marco Sifringer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Kalb
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Adrián González-López
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Annalena Tegethoff
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nadine Paeschke
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
66
|
Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in Age-Associated Neurodegeneration. Cells 2018; 7:cells7050037. [PMID: 29734735 PMCID: PMC5981261 DOI: 10.3390/cells7050037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The elimination of abnormal and dysfunctional cellular constituents is an essential prerequisite for nerve cells to maintain their homeostasis and proper function. This is mainly achieved through autophagy, a process that eliminates abnormal and dysfunctional cellular components, including misfolded proteins and damaged organelles. Several studies suggest that age-related decline of autophagy impedes neuronal homeostasis and, subsequently, leads to the progression of neurodegenerative disorders due to the accumulation of toxic protein aggregates in neurons. Here, we discuss the involvement of autophagy perturbation in neurodegeneration and present evidence indicating that upregulation of autophagy holds potential for the development of therapeutic interventions towards confronting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
67
|
Chen Y, Guo Z, Peng X, Xie W, Chen L, Tan Z. Nimodipine represses AMPK phosphorylation and excessive autophagy after chronic cerebral hypoperfusion in rats. Brain Res Bull 2018; 140:88-96. [PMID: 29625150 DOI: 10.1016/j.brainresbull.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/29/2018] [Accepted: 03/30/2018] [Indexed: 12/29/2022]
Abstract
Chronic cerebral hypofusion (CCH) after bilateral carotid artery occlusion (2VO) causes cognitive damage and neuronal degeneration in the cortex and hippocampal CA1 area, and influences the oxygen and glucose supply in the brain which often results in metabolic alterations and oxidative stress. AMP-activated protein kinase (AMPK) phosphorylation, a sensor of cellular energy status, directs metabolic adaptation to support cellular growth and survival after CCH. Autophagy is also likely to be involved in metabolic adaptation and plays an important role in neuronal deterioration and cognitive decline after CCH. Nimodipine, an L-type calcium channel antagonist, has been reported to exert neuroprotective effects. However, the potential role of nimodipine in autophagy and the energy sensing AMPK signal is not well understood. In addition, little is known about the relationship between autophagy and AMPK signal. Here, we designed a way to evaluate these issues. Adult male Wistar rats were subjected to 2VO and randomly divided into three groups: the Vehicle (2VO), Nimodipine (2VO + nimodipine 10 mg/kg) groups. A third group served as sham controls. Each group was investigated at 2 and 4 weeks post gavage and tested using the Morris water maze. The activities of LC3B and AMPK signal were examined using immunohistochemistry and western blotting. Nimodipine significantly alleviated spatial learning and memory impairments and the number of lesion neurons. At 2 weeks of durg administration, these drug effects, suppressing AMPK activation and excessive autophagy, were more pronounced at the cortex than at hippocampal CA1 area. The effects of nimodipine were significant in the hippocampal CA1 area after 4 weeks of administration. Furthermore, nimodipine inhibited expression of eIF2α/ATF4 signaling related to energy deficit stress in 2VO rats. These results suggest that excessive autophagy has promoted neuronal and tissue injury after 2VO in rats. Nimodipine protected the brain from CCH by inhibiting the autophagy activity. The p-AMPK and eIF2α/ATF4 pathway is likely part of an integrated pro-autophagy signaling network after CCH.
Collapse
Affiliation(s)
- Yan Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, China; Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, China
| | - Zhenli Guo
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, China
| | - Xingming Peng
- Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Wenting Xie
- Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Lizhu Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, China
| | - Zihu Tan
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, China.
| |
Collapse
|
68
|
Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li BJ. Effect of caloric restriction on depression. J Cell Mol Med 2018; 22:2528-2535. [PMID: 29465826 PMCID: PMC5908110 DOI: 10.1111/jcmm.13418] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Stephen Malunga Manchishi
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Physiology, University of Cambridge, Cambridge, UK
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Qian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
69
|
Kuga GK, Muñoz VR, Gaspar RC, Nakandakari SCBR, da Silva ASR, Botezelli JD, Leme JACDA, Gomes RJ, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Impaired insulin signaling and spatial learning in middle-aged rats: The role of PTP1B. Exp Gerontol 2018; 104:66-71. [PMID: 29421605 DOI: 10.1016/j.exger.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several deleterious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims to investigate the age-related changes in PTP1B content, insulin signaling, β-amyloid content, and Tau phosphorylation in the hippocampus of middle-aged rats. Young (3 months) and middle-aged (17 months) Wistar rats were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippocampus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM. Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3β, mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and β-amyloid content in the hippocampus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing to insulin resistance and the onset of the AD.
Collapse
Affiliation(s)
- Gabriel Keine Kuga
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | | | - José Diego Botezelli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Ricardo José Gomes
- Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, SP, Brazil
| | - Leandro Pereira de Moura
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
70
|
Liang Y, Sigrist S. Autophagy and proteostasis in the control of synapse aging and disease. Curr Opin Neurobiol 2018; 48:113-121. [DOI: 10.1016/j.conb.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022]
|
71
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
72
|
Kim SE, Han JH, Ko IG, Kim CJ, Kim KH. Alpha1-adrenergic receptor antagonist tamsulosin ameliorates aging-induced memory impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus of old-aged rats. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1404492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee Medical Center, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University School of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
73
|
Hadem IKH, Majaw T, Kharbuli B, Sharma R. Beneficial effects of dietary restriction in aging brain. J Chem Neuroanat 2017; 95:123-133. [PMID: 29031555 DOI: 10.1016/j.jchemneu.2017.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/14/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Aging is a multifactorial complex process that leads to the deterioration of biological functions wherein its underlying mechanism is not fully elucidated. It affects the organism at the molecular and cellular level that contributes to the deterioration of structural integrity of the organs. The central nervous system is the most vulnerable organ affected by aging and its effect is highly heterogeneous. Aging causes alteration in the structure, metabolism and physiology of the brain leading to impaired cognitive and motor-neural functions. Dietary restriction (DR), a robust mechanism that extends lifespan in various organisms, ameliorates brain aging by reducing oxidative stress, improving mitochondrial function, activating anti-inflammatory responses, promoting neurogenesis and increasing synaptic plasticity. It also protects and prevents age-related structural changes. DR alleviates many age-associated diseases including neurodegeneration and improves cognitive functions. DR inhibits/activates nutrient signaling cascades such as insulin/IGF-1, mTOR, AMPK and sirtuins. Because of its sensitivity to energy status and hormones, AMPK is considered as the global nutrient sensor. This review will present an elucidative potential role of dietary restriction in the prevention of phenotypic features during aging in brain and its diverse mechanisms.
Collapse
Affiliation(s)
| | - Teikur Majaw
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Babiangshisha Kharbuli
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
74
|
Gratuze M, Julien J, Morin F, Marette A, Planel E. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:452-461. [PMID: 28779908 DOI: 10.1016/j.pnpbp.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. METHODS We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. RESULTS We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. CONCLUSION In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies.
Collapse
Affiliation(s)
- Maud Gratuze
- Université Laval, Faculté de médecine, Département de Psychiatrie et Neurosciences, Québec, Canada; Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.
| | - Jacinthe Julien
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.
| | - Françoise Morin
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.
| | - André Marette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Emmanuel Planel
- Université Laval, Faculté de médecine, Département de Psychiatrie et Neurosciences, Québec, Canada; Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.
| |
Collapse
|
75
|
Zhang H, Forman HJ. 4-hydroxynonenal-mediated signaling and aging. Free Radic Biol Med 2017; 111:219-225. [PMID: 27876535 PMCID: PMC5438786 DOI: 10.1016/j.freeradbiomed.2016.11.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
4-Hydroxy-2-nonenal (HNE), one of the major α, β-unsaturated aldehydes produced during lipid peroxidation, is a potent messenger in mediating signaling pathways. Lipid peroxidation and HNE production appear to increase with aging. Although the cause and effect relation remains arguable, aging is associated with significant changes in diverse signaling events, characterized by enhanced or diminished responses of specific signaling pathways. In this review we will discuss how HNE may contribute to aging-related alterations of signaling pathways.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
76
|
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2017; 61:146-168. [PMID: 29080498 DOI: 10.1016/j.neurobiolaging.2017.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023]
Abstract
In healthy beings, age is the ultimate reason of cellular malfunction and death. In the rat retina, age causes a functional decline and loss of specific neuronal populations. In this regard, controversial conclusions have been reported for the innermost retina. Here, we have studied the albino and pigmented retina for the duration of the rat life-span. Independent of age (21 days-22 months), the electroretinographic recordings and the volume of the retina and its layers are smaller in albinos. Functionally, aging causes in both strains a loss of cone- and rod-mediated responses. Anatomically, cell density decreases with age because the retina grows linearly with time; no cell loss is observed in the ganglion cell layer; and only in the pigmented rat, there is a decrease in cone photoreceptors. In old animals of both strains, there is gliosis in the superior colliculi and a diminution of the area innervated by retinal ganglion cells. In conclusion, this work provides the basis for further studies linking senescence to neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
77
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
78
|
Affiliation(s)
- Komal Saraswat
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
79
|
Hu M, Liu Z, Lv P, Wang H, Zhu Y, Qi Q, Xu J. Autophagy and Akt/CREB signalling play an important role in the neuroprotective effect of nimodipine in a rat model of vascular dementia. Behav Brain Res 2017; 325:79-86. [PMID: 27923588 DOI: 10.1016/j.bbr.2016.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
Abstract
The Akt/CREB signalling pathway is involved in neuronal survival and protection. Autophagy is also likely to be involved in survival mechanisms. Nimodipine is an L-type calcium channel antagonist that reduces excessive calcium influx during pathological conditions (contributing to its neuroprotective properties). However, the potential role of nimodipine in autophagic and Akt/CREB signalling is not well understood. In addition, little is known about the relationship between autophagic and Akt/CREB signalling. Here, we designed a way to evaluate these issues. Adult male Sprague-Dawley rats were subjected to permanent bilateral occlusion of the common carotid artery (2VO) and randomly divided into three groups: the Vehicle (2VO), Nimodipine10 (2VO+nimodipine 10mg/kg), and Nimodipine20 (2VO+nimodipine 20mg/kg) groups. A fourth group of animals served as Sham controls. Each group was investigated at 4 and 8 weeks post-operatively and assessed using the Morris water maze. Nimodipine significantly alleviated spatial learning and memory impairments and inhibited the loss of neurons in the CA1 region of the hippocampus. These drug effects were more pronounced at 8 weeks than at 4 weeks. The activities of LC3 II p-Akt and p-CREB were examined using immunohistochemistry and western blotting. Suppressing autophagy induced pyramidal cell death without affecting increased pro-survival signalling induced by nimodipine. Nimodipine protected the brain from chronic cerebral hypoperfusion by activating the Akt/CREB signalling pathway. Autophagy has a neuroprotective effect on rats after 2VO. Autophagy is likely part of an integrated survival signalling network involving the Akt/CREB pathway.
Collapse
Affiliation(s)
- Ming Hu
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China
| | - Zhijuan Liu
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China.
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China
| | - Yifei Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Xinhua District, Shijiazhuang 050000, Hebei Province, People's Republic of China
| | - Qianqian Qi
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang 050051, Hebei Province, People's Republic of China
| |
Collapse
|
80
|
Fu Y, Chen Y, Li L, Wang Y, Kong X, Wang J. Food restriction affects Y‐maze spatial recognition memory in developing mice. Int J Dev Neurosci 2017; 60:8-15. [DOI: 10.1016/j.ijdevneu.2017.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/05/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yu Fu
- Medical FacultyKunming University of Science & TechnologyKunmingYunnan650500PR China
| | - Yanmei Chen
- Medical FacultyKunming University of Science & TechnologyKunmingYunnan650500PR China
| | - Liane Li
- Medical FacultyKunming University of Science & TechnologyKunmingYunnan650500PR China
| | - Yumei Wang
- Medical FacultyKunming University of Science & TechnologyKunmingYunnan650500PR China
| | - Xiangyang Kong
- Medical FacultyKunming University of Science & TechnologyKunmingYunnan650500PR China
| | - Jianhong Wang
- Kunming Primates Research Center, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223PR China
| |
Collapse
|
81
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|
82
|
Takamatsu Y, Ho G, Koike W, Sugama S, Takenouchi T, Waragai M, Wei J, Sekiyama K, Hashimoto M. Combined immunotherapy with "anti-insulin resistance" therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinsons Dis 2017; 3:4. [PMID: 28649604 PMCID: PMC5445606 DOI: 10.1038/s41531-016-0001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a pathological hallmark of and may play a central role in the neurotoxicity in age-associated neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Accordingly, inhibiting aggregation of amyloidogenic proteins, including amyloid β and α-synuclein, has been a main therapeutic target for these disorders. Among various strategies, amyloid β immunotherapy has been extensively investigated in Alzheimer's disease, followed by similar studies of α-synuclein in Parkinson's disease. Notably, a recent study of solanezumab, an amyloid β monoclonal antibody, raises hope for the further therapeutic potential of immunotherapy, not only in Alzheimer's disease, but also for other neurodegenerative disorders, including Parkinson's disease. Thus, it is expected that further refinement of immunotherapy against neurodegenerative diseases may lead to increasing efficacy. Meanwhile, type II diabetes mellitus has been associated with an increased risk of neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease, and studies have shown that metabolic dysfunction and abnormalities surrounding insulin signaling may underlie disease progression. Naturally, "anti-insulin resistance" therapy has emerged as a novel paradigm in the therapy of neurodegenerative diseases. Indeed, incretin agonists, which stimulate pancreatic insulin secretion, reduce dopaminergic neuronal loss and suppress Parkinson's disease disease progression in clinical trials. Similar studies are ongoing also in Alzheimer's disease. This paper focuses on critical issues in "immunotherapy" and "anti-insulin resistance" therapy in relation to therapeutic strategies against neurodegenerative disease, and more importantly, how they might merge mechanistically at the point of suppression of protein aggregation, raising the possibility that combined immunotherapy and "anti-insulin resistance" therapy may be superior to either monotherapy.
Collapse
Affiliation(s)
- Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Gilbert Ho
- The PCND Neuroscience Research Institute, Poway, CA 92064 USA
| | - Wakako Koike
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602 Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634 Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| |
Collapse
|
83
|
Luo L, Dai JR, Guo SS, Lu AM, Gao XF, Gu YR, Zhang XF, Xu HD, Wang Y, Zhu Z, Wood LJ, Qin ZH. Lysosomal Proteolysis Is Associated With Exercise-Induced Improvement of Mitochondrial Quality Control in Aged Hippocampus. J Gerontol A Biol Sci Med Sci 2017; 72:1342-1351. [DOI: 10.1093/gerona/glw242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Li Luo
- School of Physical Education and Sports Science and
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Jia-Ru Dai
- School of Physical Education and Sports Science and
| | | | - A-Ming Lu
- School of Physical Education and Sports Science and
| | | | - Yan-Rong Gu
- School of Physical Education and Sports Science and
| | | | - Hai-Dong Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Zhou Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| | - Lisa J Wood
- School of Nursing, Massachusetts General Hospital Institute of Health Professions, Boston, Massachusetts
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, China
| |
Collapse
|
84
|
Griffith CM, Macklin LN, Bartke A, Patrylo PR. Differential Fasting Plasma Glucose and Ketone Body Levels in GHRKO versus 3xTg-AD Mice: A Potential Contributor to Aging-Related Cognitive Status? Int J Endocrinol 2017; 2017:9684061. [PMID: 28638409 PMCID: PMC5468562 DOI: 10.1155/2017/9684061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cognitive function declines with age and appears to correlate with decreased cerebral metabolic rate (CMR). Caloric restriction, an antiaging manipulation that extends life-span and can preserve cognitive function, is associated with decreased glucose uptake, decreased lactate levels, and increased ketone body (KB) levels in the brain. Since the majority of brain nutrients come from the periphery, this study examined whether the capacity to regulate peripheral glucose levels and KB production differs in animals with successful cognitive aging (growth hormone receptor knockouts, GHRKOs) versus unsuccessful cognitive aging (the 3xTg-AD mouse model of Alzheimer's disease). Animals were fasted for 5 hours with their plasma glucose and KB levels subsequently measured. Intriguingly, in GHRKO mice, compared to those in controls, fasting plasma glucose levels were significantly decreased while their KB levels were significantly increased. Conversely, 3xTg-AD mice, compared to controls, exhibited significantly elevated plasma glucose levels and significantly reduced plasma KB levels. Taken together, these results suggest that the capacity to provide the brain with KBs versus glucose throughout an animal's life could somehow help preserve cognitive function with age, potentially through minimizing overall brain exposure to reactive oxygen species and advanced glycation end products and improving mitochondrial function.
Collapse
Affiliation(s)
- Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Lauren N. Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- *Peter R. Patrylo:
| |
Collapse
|
85
|
Kougias DG, Hankosky ER, Gulley JM, Juraska JM. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats. Physiol Behav 2016; 170:93-99. [PMID: 28038406 DOI: 10.1016/j.physbeh.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/03/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats.
Collapse
Affiliation(s)
- Daniel G Kougias
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Emily R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA.
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Janice M Juraska
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
86
|
Gureev AP, Syromyatnikov MY, Gorbacheva TM, Starkov AA, Popov VN. Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice. Neurosci Res 2016; 113:19-27. [DOI: 10.1016/j.neures.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023]
|
87
|
Jeong JH, Yu KS, Bak DH, Lee JH, Lee NS, Jeong YG, Kim DK, Kim JJ, Han SY. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis. Exp Ther Med 2016; 12:3021-3028. [PMID: 27882110 DOI: 10.3892/etm.2016.3852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Kwang Sik Yu
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Dong Ho Bak
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Je Hun Lee
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Nam Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Young Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Dong Kwan Kim
- Department of Physiology, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| | - Jwa-Jin Kim
- Department of Anatomy, Brain Research Institute, College of Medicine, Chungnam National University, Jung-gu, Daejeon 301-747, Republic of Korea; LES Corporation Inc., Yuseong-gu, Daejeon 305-335, Republic of Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Seo-gu, Daejeon 302-718, Republic of Korea
| |
Collapse
|
88
|
Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Exp Neurol 2016; 283:129-41. [PMID: 27288242 DOI: 10.1016/j.expneurol.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Reham Helwa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
89
|
Park JA, Park JH, Ahn JH, Kim JD, Won MH, Lee CH. Age‑dependent increase in the expression of antioxidant‑like protein‑1 in the gerbil hippocampus. Mol Med Rep 2016; 14:3215-9. [PMID: 27511601 PMCID: PMC5042740 DOI: 10.3892/mmr.2016.5619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/26/2016] [Indexed: 01/03/2023] Open
Abstract
Antioxidant-like protein-1 (AOP-1) reduces the intracellular level of reactive oxygen species. In the present study, the age‑related change in AOP‑1 expression in the hippocampus among young, adult and aged gerbils was compared using western blot analysis and immunohistochemistry. The results demonstrated that the protein expression of AOP‑1 was gradually and significantly increased in the hippocampus during the normal aging process. In addition, the age‑dependent increase in AOP‑1 immunoreactivity was also observed in pyramidal neurons of the hippocampus proper; however, in the dentate gyrus, AOP‑1 immunoreactivity was not altered during the normal aging process. These results indicated that the expression of AOP‑1 is significantly increased in the hippocampus proper, but not in the dentate gyrus, during the normal aging process.
Collapse
Affiliation(s)
- Jin-A Park
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| |
Collapse
|
90
|
Garza-Lombó C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function. Front Cell Neurosci 2016; 10:157. [PMID: 27378854 PMCID: PMC4910040 DOI: 10.3389/fncel.2016.00157] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| |
Collapse
|
91
|
Dong W, Wang R, Ma LN, Xu BL, Zhang JS, Zhao ZW, Wang YL, Zhang X. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet. Aging Clin Exp Res 2016; 28:303-11. [PMID: 26138818 DOI: 10.1007/s40520-015-0398-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent studies indicate that consumption of the different calorie diet may be an important way to accelerate or slow the neurodegenerative disorder related to age. Long-term consumption of a high-calorie diet affects the brain and increase the risk of neurodegenerative disorders. And consumption of a low-calorie diet (caloric restriction, CR) could delay aging, and protect the central nervous system from neurodegenerative disorders. The underlying mechanisms have not yet been clearly defined. METHOD Thirty 6-week-old C57/BL6 mice were randomly assigned to a NC group (fed standard diet, n = 10), a CR group (fed a low-calorie diet, n = 10) or a HC group (fed a high-calorie diet, n = 10) for 10 months. Body weight was measured monthly. Learning and memory capacity were determined by Morris water maze. Pathological changes of the hippocampus cells were detected with HE and Nissl staining. The expression of GFAP was determined by immunofluorescence and western blot. The expression of mTOR, S6K and LC3B in the hippocampus was determined by immunofluorescence. RESULTS After feeding for 10 months, compared with mice in the NC group, mean body weight was significantly higher in the HC group and significantly lower in the CR group. The result of Morris water maze showed that compared with mice in the NC group, the learning and memory capacity was significantly increased in the CR group, and significantly decreased in the HC group. HE and Nissl staining of the hippocampus showed cells damaged obviously in the HC group. In the hippocampus, the expression of GFAP, mTOR and S6K was increased in the HC group, and decreased in the CR group. The expression of LC3B was decreased in the HC group, and increased in the CR group. CONCLUSIONS Long-term consumption of a high-calorie diet could inhibit autophagy function, and facilitate neuronal loss in the hippocampus, which in turn aggravate age-related cognition impairment. And consumption of a low-calorie diet (caloric restriction, CR) could enhance the degree of autophagy, protect neurons effectively against aging and damage, and keep learning and memory capacity better.
Collapse
Affiliation(s)
- Wen Dong
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Li-Na Ma
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, #2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jing-Shuang Zhang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhi-Wei Zhao
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yu-Lan Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xu Zhang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
92
|
Garcia-Huerta P, Troncoso-Escudero P, Jerez C, Hetz C, Vidal RL. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases? Brain Res 2016; 1649:173-180. [PMID: 26993573 DOI: 10.1016/j.brainres.2016.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile
| | - Paulina Troncoso-Escudero
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile
| | - Carolina Jerez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neurounion Biomedical Foundation, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.
| | - Rene L Vidal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
93
|
Choi HS, Ahn JH, Park JH, Won MH, Lee CH. Age-dependent changes in the protein expression levels of Redd1 and mTOR in the gerbil hippocampus during normal aging. Mol Med Rep 2016; 13:2409-14. [PMID: 26846432 PMCID: PMC4768963 DOI: 10.3892/mmr.2016.4835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022] Open
Abstract
Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and a negative regulator of mammalian target of rapamycin (mTOR). Redd1 is also closely associated with oxidative stress and DNA damage. In the present study, age-related changes in the protein expression levels of mTOR and Redd1 were investigated using immunohistochemistry and western blot in the gerbil hippocampus at postnatal month (PM) 3, 6, 12 and 24. No significant differences were identified in the levels of mTOR among the experimental groups, whereas, the levels of phosphorylated mTOR decreased with age. The protein expression levels of Redd1 were observed to gradually increase with age; in the PM 24 group, the level was significantly increased (~189.2%), compared with the PM 3 group. In addition, Redd1 immunoreactivity was significantly increased in the hippocampal principal neurons of the PM 24 group, including the pyramidal cells in the hippocampus proper and granule cells in the dentate gyrus, compared with the other experimental groups. These results demonstrated that the protein expression of Redd1 in the hippocampus was markedly increased during normal aging, indicating that the age-related increase in the expression of Redd1 may be closely associated with age-related hippocampal change.
Collapse
Affiliation(s)
- Hee-Soo Choi
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Chungcheong 31116, Republic of Korea
| |
Collapse
|
94
|
Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol Aging 2016; 40:78-85. [PMID: 26973106 DOI: 10.1016/j.neurobiolaging.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a supplement commonly used to maintain muscle in elderly and clinical populations, has been unexplored in the aging brain. In both healthy aging humans and rat models, there are cognitive deficits associated with age-related dendritic shrinkage within the prefrontal cortex. The present study explores the effects of relatively short- and long-term (7 and 31 weeks) oral HMB supplementation starting at 12 months of age in male and female rats on the dendritic tree of layer 5 pyramidal neurons in the medial prefrontal cortex. Since female rats continue to secrete ovarian hormones after reaching reproductive senescence, middle-aged female rats were ovariectomized to model humans. As expected, there were fewer spines and a retraction of dendritic material in the apical and basilar trees in old age controls of both sexes compared with their middle-aged counterparts. However, these losses did not occur in the HMB-treated rats in either dendrites or the total number of dendritic spines. Thus, HMB forestalled the effects of aging on the dendritic tree of this population of neurons.
Collapse
|
95
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
96
|
Abstract
AbstractEnergy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.
Collapse
|
97
|
Li ZQ, Li LX, Mo N, Cao YY, Kuerban B, Liang YX, Fan DS, Chui DH, Guo XY. Duration-dependent regulation of autophagy by isoflurane exposure in aged rats. Neurosci Bull 2015; 31:505-13. [PMID: 26254062 DOI: 10.1007/s12264-015-1549-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Current evidence suggests a central role for autophagy in many inflammatory brain disorders, including Alzheimer's disease (AD). Furthermore, it is also well accepted that some inhalation anesthetics, such as isoflurane, may cause AD-like neuropathogenesis and resultant postoperative cognitive dysfunction, especially in the elderly population. However, the impact of inhalation anesthetics on autophagic components in the brain remains to be documented. Hence, our objective was to investigate the effects of different durations of isoflurane exposure on hippocampus-dependent learning and hippocampal autophagy in aged rats. Aged Sprague-Dawley rats (20 months old) were randomly exposed to 1.5% isoflurane or 100% oxygen for 1 or 4 h. Animals were then trained in the Morris water maze (4 trials/day for 5 consecutive days). Hippocampal phagophore formation markers, beclin 1 and protein microtubule-associated protein 1 light chain-3B (LC3B), as well as p62, an indicator of autophagic flux, were quantified by western blotting. There was no significant difference in the escape latencies and time spent in the target quadrant, as well as hippocampal expression of beclin 1, LC3B-II, and p62 at 24 h post-anesthesia between the 1-h isoflurane-exposed rats and their controls (P >0.05). Four-hour exposure to isoflurane resulted in spatial learning and memory deficits, as evidenced by prolonged escape latencies on days 4 and 5 post-anesthesia and less time spent in the target quadrant than sham-exposed animals (P <0.05). These events were accompanied by a decline in hippocampal expression of LC3B-I, LC3B-II, and beclin 1 24 h after isoflurane (P <0.01 and P <0.05). Nevertheless, no significant change in p62 expression was found. Further kinetics study of autophagic changes induced by 4 h of isoflurane showed a transient upregulation of LC3B-I, LC3B-II, and beclin 1 at the end of exposure and a subsequent striking decrease within 12-24 h post-anesthesia (P <0.05). Hippocampal p62 peaked at 6 h but subsequently resolved. These results from our pilot in vivo study support a duration-dependent relationship between 1.5% isoflurane exposure, and spatial cognitive function as well as hippocampal phagophore formation.
Collapse
Affiliation(s)
- Zheng-Qian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Takahashi T, Shimizu K, Shimazaki K, Toda H, Nibuya M. Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res 2015; 1592:113-23. [PMID: 25451096 DOI: 10.1016/j.brainres.2014.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
The findings that antidepressive treatments increase hippocampal neurotrophins have led researchers to emphasize the importance of neurogenesis, formation of new dendrites, and survival of neurons in the brain. However, it is difficult to maintain neural plasticity just by enriching the environment to facilitate formation of new networks. Neural plasticity also requires a degradation process that clears off unnecessary and undesirable components. We have recently reported an increase in autophagy signaling (wherein the cell digests components of itself) that has the potential of enhancing neuronal and synaptic plasticity after multiple sessions of electroconvulsive seizure treatment. The present study revealed an increase in autophagy signaling in the rat hippocampus following 2 weeks of environmental enrichment (EE), a procedure known to elicit antidepressive and anxiolytic behavioral changes in various animal paradigms. Western blot analysis showed an increase in hippocampal expression of microtubule-associated protein light chain 3-II (LC3-II), which is lipidated from LC3-I, in rats in the EE group. The effectiveness of the 2-week EE housing condition was validated by anxiolytic effects observed in the elevated plus maze test, enhanced habituation in the open field test, and elevation of hippocampal brain-derived neurotrophic factor expression. In addition, we showed that the EE housing condition ameliorated numbing/avoidance behaviors, but not hypervigilant behaviors, in an animal model of post-traumatic stress disorder (PTSD). This is the first report to show that EE can increase autophagy signaling and improve numbing/avoidance behaviors in an animal model of PTSD.
Collapse
|
99
|
Autophagy in axonal degeneration in glaucomatous optic neuropathy. Prog Retin Eye Res 2015; 47:1-18. [PMID: 25816798 DOI: 10.1016/j.preteyeres.2015.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023]
Abstract
The role of autophagy in retinal ganglion cell (RGC) death is still controversial. Several studies focused on RGC body death, although the axonal degeneration pathway in the optic nerve has not been well documented in spite of evidence that the mechanisms of degeneration of neuronal cell bodies and their axons differ. Axonal degeneration of RGCs is a hallmark of glaucoma, and a pattern of localized retinal nerve fiber layer defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. As models of preceding axonal degeneration, both the tumor necrosis factor (TNF) injection model and hypertensive glaucoma model may be useful in understanding the mechanism of axonal degeneration of RGCs, and the concept of axonal protection can be an attractive approach to the prevention of neurodegenerative optic nerve disease. Since mitochondria play crucial roles in glaucomatous optic neuropathy and can themselves serve as a part of the autophagosome, it seems that mitochondrial function may alter autophagy machinery. Like other neurodegenerative diseases, optic nerve degeneration may exhibit autophagic flux impairment resulting from elevated intraocular pressure, TNF, traumatic injury, ischemia, oxidative stress, and aging. As a model of aging, we used senescence-accelerated mice to provide new insights. In this review, we attempt to describe the relationship between autophagy and recently reported noteworthy factors including Nmnat, ROCK, and SIRT1 in the degeneration of RGCs and their axons and propose possible mechanisms of axonal protection via modulation of autophagy machinery.
Collapse
|
100
|
Phillips-Farfán BV, Rubio Osornio MDC, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 2015; 9:90. [PMID: 25814935 PMCID: PMC4356078 DOI: 10.3389/fncel.2015.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.
Collapse
Affiliation(s)
| | | | | | - Carlos Paz Tres
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía México City, México
| | | |
Collapse
|