51
|
Sphingolipids as Mediators in the Crosstalk between Microbiota and Intestinal Cells: Implications for Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:9890141. [PMID: 27656050 PMCID: PMC5021499 DOI: 10.1155/2016/9890141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) describes different illnesses characterized by chronic inflammation of the gastrointestinal tract. Although the pathogenic mechanisms leading to IBD are poorly understood, immune system disturbances likely underlie its development. Sphingolipids (SLs) have been identified as important players and promising therapeutic targets to control inflammation in IBD. Interestingly, it seems that microorganisms of the normal gut microbiota and probiotics are involved in sphingolipid function. However, there is a great need to investigate the role of SLs as intermediates in the crosstalk between intestinal immunity and microorganisms. This review focuses on recent investigations that describe some mechanisms involved in the regulation of cytokine profiles by SLs. We also describe the importance of gut microbiota in providing signaling molecules that favor the communication between resident bacteria and intestinal cells. This, in turn, modulates the immune response in the bowel and likely in other peripheral organs. The potential of SLs and gut microbiota as targets or therapeutic agents for IBD is also discussed.
Collapse
|
52
|
Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, Rohwer F, Dorrestein P. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. PeerJ 2016; 4:e2174. [PMID: 27602256 PMCID: PMC4991883 DOI: 10.7717/peerj.2174] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/04/2016] [Indexed: 11/28/2022] Open
Abstract
Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE) that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples) to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable). Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF) and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events) as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.
Collapse
Affiliation(s)
- Robert A. Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Mike Furlan
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Douglas Conrad
- Department of Medicine, University of California, San Diego, CA, United States
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
53
|
Jacob SP, Lakshmikanth CL, Chaithra VH, Kumari TRS, Chen CH, McIntyre TM, Marathe GK. Lipopolysaccharide Cross-Tolerance Delays Platelet-Activating Factor-Induced Sudden Death in Swiss Albino Mice: Involvement of Cyclooxygenase in Cross-Tolerance. PLoS One 2016; 11:e0153282. [PMID: 27064683 PMCID: PMC4827832 DOI: 10.1371/journal.pone.0153282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling through Toll-like receptor-4 (TLR-4) has been implicated in the pathogenesis of many infectious diseases. Some believe that TLR-mediated pathogenicity is due, in part, to the lipid pro-inflammatory mediator platelet-activating factor (PAF), but this has been questioned. To test the direct contribution of PAF in endotoxemia in murine models, we injected PAF intraperitoneally into Swiss albino mice in the presence and absence of LPS. PAF alone (5 μg/mouse) caused death within 15-20 min, but this could be prevented by pretreating mice with PAF-receptor (PAF-R) antagonists or PAF-acetylhydrolase (PAF-AH). A low dose of LPS (5 mg/kg body wt) did not impair PAF-induced death, whereas higher doses (10 or 20 mg/kg body wt) delayed death, probably via LPS cross-tolerance. Cross-tolerance occurred only when PAF was injected simultaneously with LPS or within 30 min of LPS injection. Tolerance does not appear to be due to an abundant soluble mediator. Histologic examination of lungs and liver and measurement of circulating TNF-α and IL-10 levels suggested that the inflammatory response is not diminished during cross-tolerance. Interestingly, aspirin, a non-specific cyclooxygenase (COX) inhibitor, partially blocked PAF-induced sudden death, whereas NS-398, a specific COX-2 inhibitor, completely protected mice from the lethal effects of PAF. Both COX inhibitors (at 20 mg/kg body wt) independently amplified the cross-tolerance exerted by higher dose of LPS, suggesting that COX-derived eicosanoids may be involved in these events. Thus, PAF does not seem to have a protective role in endotoxemia, but its effects are delayed by LPS in a COX-sensitive way. These findings are likely to shed light on basic aspects of the endotoxin cross-tolerance occurring in many disease conditions and may offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | | | | | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77225–0345, United States of America
| | - Thomas M. McIntyre
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, United States of America
| | - Gopal Kedihitlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
- * E-mail:
| |
Collapse
|
54
|
Damiani E, Ullrich SE. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer. Prog Lipid Res 2016; 63:14-27. [PMID: 27073146 DOI: 10.1016/j.plipres.2016.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
55
|
Lu X, Lian X, zheng J, Ai N, Ji C, Hao C, Fan X. LC-ESI-TOF-MS-based metabolomic analysis of ginsenoside Rd-induced anaphylactoid reaction in mice. RSC Adv 2016. [DOI: 10.1039/c5ra24301g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ginsenoside Rd-induced anaphylactoid reaction in mice was investigated by LC-ESI-TOF-MS-based metabolomic analysis as well as general toxicological assessments.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xueping Lian
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Jie zheng
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Ni Ai
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Cai Ji
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Cui Hao
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
56
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
57
|
Jeffery U, Kimura K, Gray R, Lueth P, Bellaire B, LeVine D. Dogs cast NETs too: Canine neutrophil extracellular traps in health and immune-mediated hemolytic anemia. Vet Immunol Immunopathol 2015; 168:262-8. [PMID: 26574161 DOI: 10.1016/j.vetimm.2015.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) are webs of DNA and protein with both anti-microbial and pro-thrombotic properties which have not been previously reported in dogs. To confirm dog neutrophils can form NETs, neutrophils were isolated from healthy dogs, and stimulated in vitro with 2μM, 8μM, 31μM, and 125μM platelet activating factor (PAF) or 0.03μM, 0.1μM, 0.4μM, 1.6μM and 6.4μM phorbol-12-myristate-13-acetate (PMA). Extracellular DNA was measured using the cell impermeable dye Sytox Green every hour for 4h. At 4h, extracellular DNA was significantly greater than non-stimulated cells at concentrations ≥31μM and ≥0.1μM for PAF and PMA, respectively. Cells stimulated with 31.25μM PAF reached maximal fluorescence by 1h, whereas maximal fluorescence was not achieved until 2h for cells stimulated with 0.1μM PMA. Immunofluorescent imaging using DAPI and anti-elastase antibody confirmed that extracellular DNA is released as NETs. As NETs have been implicated in thrombosis, nucleosomes, a marker correlated with NET formation, were measured in the serum of dogs with the thrombotic disorder primary immune-mediated hemolytic anemia (IMHA) (n=7) and healthy controls (n=20) using a commercially available ELISA. NETs were significantly higher in IMHA cases than controls (median 0.12 and 0.90, respectively, p=0.01), but there were large positive interferences associated with hemolysis and icterus. In summary, the study is the first to describe NET generation by canine neutrophils and provides preliminary evidence that a marker associated with NETs is elevated in IMHA. However, this apparent elevation must be interpreted with caution due to the effect of interference, emphasizing the need for a more specific and robust assay for NETs in clinical samples.
Collapse
Affiliation(s)
- Unity Jeffery
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Kayoko Kimura
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Robert Gray
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Paul Lueth
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan Bellaire
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
58
|
Lee HR, Jeon JH, Park OK, Chun JH, Park J, Rhie GE. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway. Mol Immunol 2015; 68:244-52. [PMID: 26350415 DOI: 10.1016/j.molimm.2015.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 01/01/2023]
Abstract
The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 363-951, South Korea
| | - Jun Ho Jeon
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 363-951, South Korea
| | - Ok-Kyu Park
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 363-951, South Korea
| | - Jeong-Hoon Chun
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 363-951, South Korea
| | - Jungchan Park
- Department of Bioscience and Biotechnology, Yongin 449-791, South Korea; Protein Research Center for Bioindustry, Hankuk University of Foreign Studies, Yongin 449-791, South Korea
| | - Gi-Eun Rhie
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 363-951, South Korea.
| |
Collapse
|
59
|
Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J Allergy Clin Immunol 2015; 135:1424-32. [PMID: 26051949 DOI: 10.1016/j.jaci.2015.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
Anaphylaxis is an acute, severe, life-threatening multisystem allergic reaction resulting from the sudden systemic release of biochemical mediators and chemotactic substances. Release of both preformed granule-associated mediators and newly generated lipid-derived mediators contributes to the amplification and prolongation of anaphylaxis. Platelet-activating factor (PAF) is a potent phospholipid-derived mediator the central role of which has been well established in experimental models of both immune-mediated and non-immune mediated anaphylaxis. It is produced and secreted by several types of cells, including mast cells, monocytes, tissue macrophages, platelets, eosinophils, endothelial cells, and neutrophils. PAF is implicated in platelet aggregation and activation through release of vasoactive amines in the inflammatory response, resulting in increased vascular permeability, circulatory collapse, decreased cardiac output, and various other biological effects. PAF is rapidly hydrolyzed and degraded to an inactive metabolite, lysoPAF, by the enzyme PAF acetylhydrolase, the activity of which has shown to correlate inversely with PAF levels and predispose to severe anaphylaxis. In addition to its role in anaphylaxis, PAF has also been implicated as a mediator in both allergic and nonallergic inflammatory diseases, including allergic rhinitis, sepsis, atherosclerotic disease, and malignancy, in which PAF signaling has an established role. The therapeutic role of PAF antagonism has been investigated for several diseases, with variable results thus far. Further investigation of its role in pathology and therapeutic modulation is highly anticipated because of the pressing need for more selective and targeted therapy for the management of severe anaphylaxis.
Collapse
|
60
|
Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor. PLoS One 2015; 10:e0120143. [PMID: 25803864 PMCID: PMC4372572 DOI: 10.1371/journal.pone.0120143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Background The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma (OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in OSCCs. Methods We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. Immunohistochemistry was performed to identify correlations between LPCAT1 expression levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the association between LPCAT1 expression and the platelet-activating factor (PAF) concentration and PAF-receptor (PAFR) expression. Results LPCAT1 mRNA and protein were up-regulated significantly (p<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. Immunohistochemistry showed significantly (p<0.05) elevated LPCAT1 expression in primary OSCCs compared with normal counterparts and a strong correlation between LPCAT1-positive OSCCs and tumoral size and regional lymph node metastasis. In LPCAT1 knockdown cells, cellular proliferation and invasiveness decreased significantly (p<0.05); cellular migration was inhibited compared with control cells. Down-regulation of LPCAT1 resulted in a decreased intercellular PAF concentration and PAFR expression. Conclusion LPCAT1 was overexpressed in OSCCs and correlated with cellular invasiveness and migration. LPCAT1 may contribute to tumoral growth and metastasis in oral cancer.
Collapse
Affiliation(s)
- Tomomi Shida-Sakazume
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Motoharu Unozawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chonji Fukumoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ken Shimada
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College, Saitama, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- * E-mail:
| |
Collapse
|
61
|
Lautenschläger I, Frerichs I, Dombrowsky H, Sarau J, Goldmann T, Zitta K, Albrecht M, Weiler N, Uhlig S. Quinidine, but not eicosanoid antagonists or dexamethasone, protect the gut from platelet activating factor-induced vasoconstriction, edema and paralysis. PLoS One 2015; 10:e0120802. [PMID: 25793535 PMCID: PMC4368623 DOI: 10.1371/journal.pone.0120802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
Intestinal circulatory disturbances, atony, edema and swelling are of great clinical relevance, but the related mechanisms and possible therapeutic options are poorly characterized, in part because of the difficulties to comprehensively analyze these conditions. To overcome these limitations we have developed a model of the isolated perfused rat small intestine where all of these symptoms can be studied simultaneously. Here we used this model to study the role of eicosanoids, steroids and quinidine in platelet-activating factor (PAF)-induced intestinal disorders. A vascular bolus of PAF (0.5 nmol) triggered release of thromboxane and peptidoleukotrienes into the vascular bed (peak concentration 35 nM and 0.8 nM) and reproduced all symptoms of intestinal failure: mesenteric vasoconstriction, translocation of fluid and macromolecules from the vasculature to the lumen and lymphatics, intestinal edema formation, loss of intestinal peristalsis and decreased galactose uptake. All effects of PAF were abolished by the PAF-receptor antagonist ABT491 (2.5 μM). The COX and LOX inhibitors ASA and AA861 (500 μM, 10 μM) did not exhibit barrier-protective effects and the eicosanoid antagonists SQ29548 and MK571 (10 μM, each) only moderately attenuated the loss of vascular fluid, the redistribution to the lumen and the transfer of FITC dextran to the lumen. The steroid dexamethasone (10 μM) showed no barrier-protective properties and failed to prevent edema formation. Quinidine (100 μM) inhibited the increase in arterial pressure, stabilized all the intestinal barriers, and reduced lymph production and the transfer of FITC dextran to the lymph. While quinidine by itself reduced peristalsis, it also obviated paralysis, preserved intestinal functions and prevented edema formation. We conclude that quinidine exerts multiple protective effects against vasoconstriction, edema formation and paralysis in the intestine. The therapeutic use of quinidine for intestinal ailments deserves further study.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- * E-mail:
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Heike Dombrowsky
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Jürgen Sarau
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- Division of Mucosal Immunology and Diagnostic, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
62
|
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6:82. [PMID: 25767472 PMCID: PMC4341565 DOI: 10.3389/fimmu.2015.00082] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.
Collapse
Affiliation(s)
| | - Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Adrien Chabert
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Institut National de la Transfusion Sanguine , Paris , France
| |
Collapse
|
63
|
Sun L, He Z, Ke J, Li S, Wu X, Lian L, He X, He X, Hu J, Zou Y, Wu X, Lan P. PAF receptor antagonist Ginkgolide B inhibits tumourigenesis and angiogenesis in colitis-associated cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:432-440. [PMID: 25755731 PMCID: PMC4348885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Platelet activating factor (PAF), a potent pro-inflammatory phospholipid, has been found to trigger tumor growth and angiogenesis through its G-protein coupled receptor (PAFR). This study was aimed to investigate the potential role of PAF in azoxymethane (AOM)/dextran sulfate sodium (DSS) induced colitis-associated cancer (CAC), using PAFR antagonist Ginkgolide B (GKB). We found GKB up-regulated serum level of PAF-AH activity. As assessed by disease activity index (DAI), histological injury scores, leukocytes infiltration, and expression of pro-inflammatory cytokines, GKB ameliorated colonic inflammation and decreased tumor number and load in mice. GKB also decreased expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) in tumor. These results suggest that PAFR antagonist might be a potential therapeutic strategy for CAC.
Collapse
|
64
|
Ono E, Dutile S, Kazani S, Wechsler ME, Yang J, Hammock BD, Douda DN, Tabet Y, Khaddaj-Mallat R, Sirois M, Sirois C, Rizcallah E, Rousseau E, Martin R, Sutherland ER, Castro M, Jarjour NN, Israel E, Levy BD. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am J Respir Crit Care Med 2014; 190:886-97. [PMID: 25162465 DOI: 10.1164/rccm.201403-0544oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Severe asthma is characterized by airway inflammatory responses associated with aberrant metabolism of arachidonic acid. Lipoxins (LX) are arachidonate-derived pro-resolving mediators that are decreased in severe asthma, yet mechanisms for defective LX biosynthesis and a means to increase LXs in severe asthma remain to be established. OBJECTIVES To determine if oxidative stress and soluble epoxide hydrolase (sEH) activity are linked to decreased LX biosynthesis in severe asthma. METHODS Aliquots of blood, sputum, and bronchoalveolar lavage fluid were obtained from asthma subjects for mediator determination. Select samples were exposed to t-butyl-hydroperoxide or sEH inhibitor (sEHI) before activation. Peripheral blood leukocyte-platelet aggregates were monitored by flow cytometry, and bronchial contraction was determined with cytokine-treated human lung sections. MEASUREMENTS AND MAIN RESULTS 8-Isoprostane levels in sputum supernatants were inversely related to LXA4 in severe asthma (r = -0.55; P = 0.03) and t-butyl-hydroperoxide decreased LXA4 and 15-epi-LXA4 biosynthesis by peripheral blood leukocytes. LXA4 and 15-epi-LXA4 levels were inversely related to sEH activity in sputum supernatants and sEHIs significantly increased 14,15-epoxy-eicosatrienoic acid and 15-epi-LXA4 generation by severe asthma whole blood and bronchoalveolar lavage fluid cells. The abundance of peripheral blood leukocyte-platelet aggregates was related to asthma severity. In a concentration-dependent manner, LXs significantly inhibited platelet-activating factor-induced increases in leukocyte-platelet aggregates (70.8% inhibition [LXA4 100 nM], 78.3% inhibition [15-epi-LXA4 100 nM]) and 15-epi-LXA4 markedly inhibited tumor necrosis factor-α-induced increases in bronchial contraction. CONCLUSIONS LX levels were decreased by oxidative stress and sEH activity. Inhibitors of sEH increased LXs that mediated antiphlogistic actions, suggesting a new therapeutic approach for severe asthma. Clinical trial registered with www.clinicaltrials.gov (NCT 00595114).
Collapse
Affiliation(s)
- Emiko Ono
- 1 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Shewchuk BM. Prostaglandins and n-3 polyunsaturated fatty acids in the regulation of the hypothalamic-pituitary axis. Prostaglandins Leukot Essent Fatty Acids 2014; 91:277-87. [PMID: 25287609 DOI: 10.1016/j.plefa.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/23/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
The hypothalamic-pituitary (H-P) axis integrates complex physiological and environmental signals and responds to these cues by modulating the synthesis and secretion of multiple pituitary hormones to regulate peripheral tissues. Prostaglandins are a component of this regulatory system, affecting multiple hormone synthesis and secretion pathways in the H-P axis. The implications of these actions are that physiological processes or disease states that alter prostaglandin levels in the hypothalamus or pituitary can impinge on H-P axis function. Considering the role of prostaglandins in mediating inflammation, the potential for neuroinflammation to affect H-P axis function in this manner may be significant. In addition, the mitigating effects of n-3 polyunsaturated fatty acids (n-3 PUFA) on the inflammation-associated synthesis of prostaglandins and their role as substrates for pro-resolving lipid mediators may also include effects in the H-P axis. One context in which neuroinflammation may play a role is in the etiology of diet-induced obesity, which also correlates with altered pituitary hormone levels. This review will survey evidence for the actions of prostaglandins and other lipid mediators in the H-P axis, and will address the potential for obesity-associated inflammation and n-3 PUFA to impinge on these mechanisms.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
66
|
Duan RD, Hindorf U, Cheng Y, Bergenzaun P, Hall M, Hertervig E, Nilsson Å. Changes of activity and isoforms of alkaline sphingomyelinase (nucleotide pyrophosphatase phosphodiesterase 7) in bile from patients undergoing endoscopic retrograde cholangiopancreatography. BMC Gastroenterol 2014; 14:138. [PMID: 25100243 PMCID: PMC4141583 DOI: 10.1186/1471-230x-14-138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background Alkaline sphingomyelinase (NPP7) is an ecto-enzyme expressed in intestinal mucosa, which hydrolyses sphingomyelin (SM) to ceramide and inactivates platelet activating factor. It is also expressed in human liver and released in the bile. The enzyme may have anti-tumour and anti-inflammatory effects in colon and its levels are decreased in patients with colon cancer and ulcerative colitis. Active NPP7 is translated from a transcript of 1.4 kb, whereas an inactive form from a 1.2 kb mRNA was found in colon and liver cancer cell lines. While the roles of NPP7 in colon cancer have been intensively studied, less is known about the function and implications of NPP7 in the bile. The present study examines the changes of NPP7 in bile of patients with various hepatobiliary diseases. Methods Bile samples were obtained at endoscopic retrograde cholangiopancreatography (ERCP) in 59 patients with gallstone, other benign disease, tumour, and primary sclerosing cholangitis (PSC). The NPP7 activity was determined. The appearance of the 1.4 and 1.2 kb products in the bile was examined by Western blot. The results were correlated to the diseases and also plasma bilirubin and alkaline phosphatase. Results NPP7 activity in the tumour group was significantly lower than in the gallstone group (p < 0.05). The activity in the tumour plus PSC group was also lower than in gallstone plus other benign disease group (p < 0.05). Within the tumour group NPP7 activity was lowest in cholangiocarcinoma patients, being only 19% of that in gallstone patients. Bilirubin correlated inversely to NPP7 and was higher in the tumour than in the gallstone group. Western blot identified both the 1.4 kb and the 1.2 kb products in most bile samples. The density ratio for the 1.4/1.2 kb products correlated to NPP7 activity significantly. Two patients (one PSC and one cholangiocarcinoma) lacking NPP7 activity had only the 1.2 kb form in bile. Conclusion NPP7 activity and the ratio of 1.4/1.2 kb products in bile are significantly decreased in malignancy, particularly in cholangiocarcinoma. The implications of the finding in diagnosis of cholangiocarcinoma and 1.2 kb product in hepatobiliary diseases require further investigation.
Collapse
Affiliation(s)
- Rui-Dong Duan
- Gastroenterology & Nutrition Laboratory, BMC, B11, Department of Clinical Sciences in Lund, University of Lund, S-22184 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
67
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
68
|
Platelet-activating factor synthesis and receptor-mediated signaling are downregulated in ovine newborn lungs: relevance in postnatal pulmonary adaptation and persistent pulmonary hypertension of the newborn. J Dev Orig Health Dis 2014; 4:458-69. [PMID: 24924225 DOI: 10.1017/s2040174413000366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Platelet-activating factor (PAF) is a phospholipid with a wide range of biological activities. We studied PAF metabolism and PAF receptor (PAFR) signaling in perinatal ovine lungs to understand PAF's role in transition of the perinatal pulmonary hemodynamics and pathophysiology of persistent pulmonary hypertension of the newborn. We hypothesized that downregulation of PAF synthesis with upregulation of PAF catabolism by acetylhydrolase (PAF-Ah) in the newborn lung is needed for fetus-to-newborn pulmonary adaptation. Studies were conducted on fetal and newborn lamb pulmonary arteries (PA), veins (PV) and smooth muscle cells (SMC). PAF metabolism, PAFR binding and cell proliferation were studied by cell culture; gene expression was studied by qPCR. Fetal lungs synthesized 60% more PAF than newborn lungs. Compared with the fetal PVs and SMCs, PAF-Ah activity in newborn was 40-60% greater. PAF-Ah mRNA expression in newborn vessels was different from the expression by fetal PA. PAF-Ah gene clone activity confirmed deletion of hypoxia-sensitive site. PAFR mRNA expression by the PVs and SMC-PV of the fetus and newborn was greater than by corresponding PAs and SMC-PA. Q-PCR study of PAFR expression by the SMC-PV of both groups was greater than SMC-PA. Fetal SMCs bound more PAF than the newborn SMCs. PAFR antagonist, CV-3988, inhibited PAFR binding and DNA synthesis by the fetal SMCs, but augmented binding and DNA synthesis by newborn cells. We show different PAF-PAFR mediated effects in perinatal lungs, suggesting both transcriptional and translational regulation of PAF-Ah and PAFR expression in the perinatal lamb lungs. These indicate that the downregulation of PAF-mediated effects postnatally protects against persistent pulmonary hypertension of the newborn.
Collapse
|
69
|
Kubanov AA, Chikin VV. The benefit of H2 receptors antagonist Rupatadine in treatment for urticaria. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-3-116-120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Second generation antihistamine drugs are mainly used for the therapy of patients suffering from urticaria; however, they are efficient in 45-60% of cases only. New drugs for treatment of urticaria need to be developed and implemented, and second generation antihistamine drug Rupatadine is one of them. At the same time, Rupatadine efficiently inhibits the inflammatory action of the platelet-activating factor. Due to its double action, Rupatadine used perorally in the dose of 10 mg once a day is an efficient drug for treatment of urticaria, and its safety was confirmed by clinical trials.
Collapse
|
70
|
Marathe GK, Pandit C, Lakshmikanth CL, Chaithra VH, Jacob SP, D'Souza CJM. To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 2014; 55:1847-54. [PMID: 24859738 DOI: 10.1194/jlr.r045492] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mounting ambiguity persists around the functional role of the plasma form of platelet-activating factor acetylhydrolase (PAF-AH). Because PAF-AH hydrolyzes PAF and related oxidized phospholipids, it is widely accepted as an anti-inflammatory enzyme. On the other hand, its actions can also generate lysophosphatidylcholine (lysoPC), a component of bioactive atherogenic oxidized LDL, thus allowing the enzyme to have proinflammatory capabilities. Presence of a canonical lysoPC receptor has been seriously questioned for a multitude of reasons. Animal models of inflammation show that elevating PAF-AH levels is beneficial and not deleterious and overexpression of PAF receptor (PAF-R) also augments inflammatory responses. Further, many Asian populations have a catalytically inert PAF-AH that appears to be a severity factor in a range of inflammatory disorders. Correlation found with elevated levels of PAF-AH and CVDs has led to the design of a specific PAF-AH inhibitor, darapladib. However, in a recently concluded phase III STABILITY clinical trial, use of darapladib did not yield promising results. Presence of structurally related multiple ligands for PAF-R with varied potency, existence of multi-molecular forms of PAF-AH, broad substrate specificity of the enzyme and continuous PAF production by the so called bi-cycle of PAF makes PAF more enigmatic. This review seeks to address the above concerns.
Collapse
Affiliation(s)
- Gopal Kedihitlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | - Chaitanya Pandit
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | | | | | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | | |
Collapse
|
71
|
Potential Therapeutic Strategies for Severe Anaphylaxis Targeting Platelet-Activating Factor and PAF Acetylhydrolase. CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0020-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
72
|
Perelman B, Adil A, Vadas P. Relationship between platelet activating factor acetylhydrolase activity and apolipoprotein B levels in patients with peanut allergy. Allergy Asthma Clin Immunol 2014; 10:20. [PMID: 24808915 PMCID: PMC4012516 DOI: 10.1186/1710-1492-10-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a highly potent phospholipid mediator responsible for the life-threatening manifestations of anaphylaxis. PAF acetylhydrolase (PAF-AH) inactivates PAF and protects against severe anaphylaxis whereas deficiency of PAF-AH predisposes to severe or fatal anaphylaxis. Determinants of PAF-AH activity have not been studied in patients with peanut allergy. Objectives To determine whether plasma PAF-AH activity in patients with peanut allergy is related to formation of circulating complexes with apolipoprotein B (apoB) the main surface protein on low density lipoprotein particles. Methods Plasma PAF-AH activity and apoB concentrations were measured in 63 peanut allergic patients (35 boys, 28 girls, ages 2 – 19 years). ApoB concentration was measured immunoturbidimetrically using goat anti-human apoB. The correlation between PAF-AH activity and apoB concentration was determined. Results A positive correlation was found between PAF-AH activity and apoB concentration (r2 = 0.59, P < 0.0001). Conclusion In peanut allergic patients, PAF-AH activity strongly correlates with apoB concentration, suggesting the presence of circulating PAF-AH- lipoprotein complexes.
Collapse
Affiliation(s)
- Boris Perelman
- Division of Allergy and Clinical Immunology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond St., M5B 1 W8 Toronto, ON, Canada
| | - Areej Adil
- Division of Allergy and Clinical Immunology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond St., M5B 1 W8 Toronto, ON, Canada
| | - Peter Vadas
- Division of Allergy and Clinical Immunology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond St., M5B 1 W8 Toronto, ON, Canada
| |
Collapse
|
73
|
Kim SJ, Back SH, Koh JM, Yoo HJ. Quantitative determination of major platelet activating factors from human plasma. Anal Bioanal Chem 2014; 406:3111-8. [PMID: 24682147 DOI: 10.1007/s00216-014-7736-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022]
Abstract
Platelet activating factor (PAF) is a potent lipid mediator that is involved in many important biological functions, including platelet aggregation and neuronal differentiation. Although an ELISA assay has been used to measure PAF levels, it cannot distinguish between its isoforms. To achieve this, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been used instead. However, isobaric lysophosphatidylcholine (lyso PC), which is often present in large amounts in complex biological samples and has similar retention times in many LC conditions, can affect the accurate measurement of PAF. The present study examined the fragmentation behavior of major PAF and lyso PC during various MS/MS conditions. Fragment ions at m/z 184 and at m/z 104 were abundantly observed from MS/MS of lyso PCs. PAF provided a dominant fragment ion at m/z 184, but a fragment ion at m/z 104 was almost never produced, regardless of the collision energy. Thus, the two fragment ions at m/z 184 and m/z 104 were used to accurately measure PAF levels. First, the fragment ion at m/z 184 and the retention time of PAF in LC-MS/MS were used to identify and quantitate PAF. However, if there were small retention time shifts, which are common in multiple sample runs, and lipid composition in a sample is very complicated, the fragment ion at m/z 104 was used to confirm whether the fragment ion at m/z 184 belonged to PAF. This novel method accurately determined the major PAF (C16:0 PAF, C18:0 PAF, and C18:1 PAF) levels in human plasma.
Collapse
Affiliation(s)
- Su Jung Kim
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, 138-736, Republic of Korea
| | | | | | | |
Collapse
|
74
|
Menezes-Garcia Z, Oliveira MC, Lima RL, Soriani FM, Cisalpino D, Botion LM, Teixeira MM, Souza DG, Ferreira AVM. Lack of platelet-activating factor receptor protects mice against diet-induced adipose inflammation and insulin-resistance despite fat pad expansion. Obesity (Silver Spring) 2014; 22:663-72. [PMID: 24339378 DOI: 10.1002/oby.20142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 10/22/2012] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The role of platelet-activating factor (PAF) on diet-induced inflammatory and metabolic dysfunction is unknown. The effects of diet-induced metabolic and inflammatory dysfunction in mice with deletion of the PAF receptor (PAFR(-/-) ) were evaluated in this study. METHODS Wild-type and PAFR(-/-) mice were fed chow (WT-C and PAFR(-/-) -C) or high-refined carbohydrate-containing diet (WT-HC and PAFR(-/-) -HC). PAFR(-/-) - RESULTS: HC mice gained more weight and adiposity than PAFR(-/-) -C and WT-HC mice. Lipogenesis increased and hormone-sensitive lipase expression decreased in PAFR(-/-) -HC compared to WT-HC mice. WT-HC mice had impaired glucose tolerance and insulin sensitivity compared to WT-C mice. In contrast, glucose tolerance and insulin sensitivity in PAFR(-/-) -HC mice were similar to that of lean littermates. PAFR(-/-) -HC mice expressed significantly more peroxisome proliferator-activator receptor gamma (PPARγ) than PAFR(-/-) -C and WT-C mice. Resistin increased in WT-HC mice compared to WT-C mice. However, the levels of resistin were 35% lower in PAFR(-/-) -HC mice than WT-HC mice. PAFR(-/-) presented with less HC diet-induced adipose tissue inflammation than WT mice. Adipocytes isolated from PAFR(-/-) mice incubated in media containing normal or high levels of glucose secreted less interleukin-6 and tumor necrosis factor alpha and presented lower rate of lipolysis than WT mice. CONCLUSION PAFR deficiency resulted in less inflammation in adipose tissue and improvement in glucose homeostasis when fed the HC diet. The higher adiposity observed in PAFR(-/-) mice fed HC diet could be owing to the maintenance of insulin sensitivity, decreased adipocyte lipolysis rate, high lipogenesis and PPARγ expression, and lower inflammatory milieu in adipose tissue.
Collapse
Affiliation(s)
- Zélia Menezes-Garcia
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ding X, Hu J, Wen C, Ding Z, Yao L, Fan Y. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus. PLoS One 2014; 9:e88223. [PMID: 24505438 PMCID: PMC3914949 DOI: 10.1371/journal.pone.0088223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/05/2014] [Indexed: 12/28/2022] Open
Abstract
Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.
Collapse
Affiliation(s)
- Xinghong Ding
- Analysis and Testing Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinbo Hu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail:
| |
Collapse
|
76
|
Pravettoni V, Piantanida M, Primavesi L, Forti S, Pastorello EA. Basal platelet-activating factor acetylhydrolase: prognostic marker of severe Hymenoptera venom anaphylaxis. J Allergy Clin Immunol 2013; 133:1218-20. [PMID: 24332861 DOI: 10.1016/j.jaci.2013.10.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/14/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Valerio Pravettoni
- Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Marta Piantanida
- Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Primavesi
- Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stella Forti
- Audiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
77
|
Young NM, Foote SJ, Wakarchuk WW. Review of phosphocholine substituents on bacterial pathogen glycans: Synthesis, structures and interactions with host proteins. Mol Immunol 2013; 56:563-73. [DOI: 10.1016/j.molimm.2013.05.237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022]
|
78
|
Ferrarini A, Rupérez FJ, Erazo M, Martínez MP, Villar-Álvarez F, Peces-Barba G, González-Mangado N, Troncoso MF, Ruiz-Cabello J, Barbas C. Fingerprinting-based metabolomic approach with LC-MS to sleep apnea and hypopnea syndrome: a pilot study. Electrophoresis 2013; 34:2873-81. [PMID: 23775633 DOI: 10.1002/elps.201300081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/19/2013] [Accepted: 05/04/2013] [Indexed: 11/05/2022]
Abstract
Sleep apnea and hypopnea syndrome (SAHS) is a multicomponent disorder, with associated cardiovascular and metabolic alterations, second in order of frequency among respiratory disorders. Sleep apnea is diagnosed with an overnight sleep test called a polysomnogram, which requires having the patient in hospital. In addition, a more clear classification of patients according to mild and severe presentations would be desirable. The aim of the present study was to assess the relative metabolic changes in SAHS to identify new potential biomarkers for diagnosis, able to evaluate disease severity to establish response to therapeutic interventions and outcomes. For this purpose, metabolic fingerprinting represents a valuable strategy to monitor, in a nontargeted manner, the changes that are at the base of the pathophysiological mechanism of SAHS. Plasma samples of 33 SAHS patients were collected after polysomnography and analyzed with LC coupled to MS (LC-QTOF-MS). After data treatment and statistical analysis, signals differentiating nonsevere and severe patients were detected. Putative identification of 14 statistically significant features was obtained and changes that can be related to the episodes of hypoxia/reoxygenation (inflammation) have been highlighted. Among them, the patterns of variation of platelet activating factor and lysophospholipids, together with some compounds related to differential activity of the gut microflora (bile pigments and pipecolic acid) open new lines of research that will benefit our understanding of the alterations, offering new possibilities for adequate monitoring of the stage of the disease.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Nankar SA, Bajaj P, Sravanthi R, Pande AH. Differential interaction of peptides derived from C-terminal domain of human apolipoprotein E with platelet activating factor analogs. Biochimie 2013; 95:1196-207. [DOI: 10.1016/j.biochi.2013.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/16/2013] [Indexed: 11/25/2022]
|
80
|
Abstract
In this issue of Blood, Zhi et al demonstrate an important role for Fc γreceptor IIa (FcγRIIa) in platelet functions dependent on integrin α(IIb)β(3) outside-in signals.
Collapse
|
81
|
D'Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the "cytokine storm" for therapeutic benefit. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:319-27. [PMID: 23283640 PMCID: PMC3592351 DOI: 10.1128/cvi.00636-12] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is the body's first line of defense against infection or injury, responding to challenges by activating innate and adaptive responses. Microbes have evolved a diverse range of strategies to avoid triggering inflammatory responses. However, some pathogens, such as the influenza virus and the Gram-negative bacterium Francisella tularensis, do trigger life-threatening "cytokine storms" in the host which can result in significant pathology and ultimately death. For these diseases, it has been proposed that downregulating inflammatory immune responses may improve outcome. We review some of the current candidates for treatment of cytokine storms which may prove useful in the clinic in the future and compare them to more traditional therapeutic candidates that target the pathogen rather than the host response.
Collapse
|
82
|
|
83
|
Jiang Z, Fehrenbach ML, Ravaioli G, Kokalari B, Redai IG, Sheardown SA, Wilson S, Macphee C, Haczku A. The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in Aspergillus fumigatus sensitized mice. Respir Res 2012; 13:100. [PMID: 23140447 PMCID: PMC3546878 DOI: 10.1186/1465-9921-13-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/06/2012] [Indexed: 12/05/2022] Open
Abstract
Background Lipoprotein-associated phospholipase A2 (Lp-PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF) may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models. Methods Lp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL) samples obtained from mice. Aspergillus fumigatus (Af)-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS) and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA) and cytokine (Luminex) profiles were compared between the wild type (WT) and Lp-PLA2-/- mice. Results PAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to equivalent levels. Wild type and Lp-PLA2-/- mice responded to passive or active allergic sensitization by significant IgE production, airway inflammation and hyperresponsiveness after Af challenge. BAL cell influx was not different between these strains while IL-4, IL-5, IL-6 and eotaxin release was attenuated in Lp-PLA2-/- mice. There were no differences in the amount of total IgE levels in the Af sensitized WT and Lp-PLA2-/- mice. Conclusions We conclude that Lp-PLA2 deficiency in C57BL/6 mice did not result in a heightened airway inflammation or hyperresponsiveness after PAF/LPS treatment or passive or active allergic sensitization and challenge.
Collapse
Affiliation(s)
- Zhilong Jiang
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Levels of high-density lipoprotein (HDL) cholesterol are generally inversely associated with the risk for the development of atherosclerosis. The mechanism by which HDL imparts protection from the initiation and progression of occlusive vascular disease is complex and multifactorial. The major anti-atherosclerotic effect of HDL is felt to be reverse cholesterol transport. HDL has been demonstrated to scavenge cholesterol from the peripheral vasculature with transport to the liver, where is it excreted in the biliary system. However, HDL exhibits multiple other physiologic effects that may play a role in the reduced risk for atherosclerosis. HDL has been demonstrated to exhibit beneficial effects on platelet function, endothelial function, coagulation parameters, inflammation, and interactions with triglyceride-rich lipoproteins. Increasing amounts of clinical and experimental data have shown that HDL cholesterol has significant antioxidant effect that may significantly contribute to protection from atherosclerosis.
Collapse
|
85
|
LEHR MATTHIAS. Inhibitors of Cytosolic Phospholipase A2 α as Anti-inflammatory Drugs. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arachidonic acid derivatives, like prostaglandins and leukotrienes, as well as the alkyl-ether phospholipid platelet-activating factor (PAF) are highly active substances with diverse biological actions. Elevated levels of these lipid mediators in response to a variety of stimuli have been implicated in the pathology of many inflammatory diseases. The rate-limiting step in the generation of prostaglandins, leukotrienes and PAF, respectively, is the cleavage of the sn-2-ester of membrane phospholipids by a phospholipase A2 (PLA2). Among the superfamily of PLA2 enzymes, cytosolic PLA2α (cPLA2α, also referred to as group IVA PLA2) is thought to play the primary role in this biochemical reaction. Therefore, inhibition of cPLA2α activity is an attractive approach to the control of inflammatory disorders.
In this chapter the main groups of cPLA2α inhibitors are described and the problems associated with the development of clinical active drug candidates are discussed. Furthermore, in-vivo data obtained with such compounds in pre-clinical animal models of inflammation will be presented.
Collapse
Affiliation(s)
- MATTHIAS LEHR
- Institute of Pharmaceutical and Medicinal Chemistry University of Münster Hittorfstrasse 58–62, 48149 Münster Germany
| |
Collapse
|
86
|
Liu M, Zhu H, Li J, Garcia CC, Feng W, Kirpotina LN, Hilmer J, Tavares LP, Layton AW, Quinn MT, Bothner B, Teixeira MM, Lei B. Group A Streptococcus secreted esterase hydrolyzes platelet-activating factor to impede neutrophil recruitment and facilitate innate immune evasion. PLoS Pathog 2012; 8:e1002624. [PMID: 22496650 PMCID: PMC3320582 DOI: 10.1371/journal.ppat.1002624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses. GAS is a major human pathogen causing a variety of infections, including pharyngitis and necrotizing fasciitis. GAS pathogenesis is mediated by a large array of secreted and cell-surface virulence factors. However, the functions of many GAS virulence factors are poorly understood. Recently, we reported that the esterase secreted by GAS (SsE) is a CovRS (the control of virulence two component regulatory system)-regulated protective antigen and is critical for spreading in the skin and systemic dissemination of GAS in a mouse model of necrotizing fasciitis. This report presents three major findings regarding the function and functional mechanism of SsE: 1) SsE contributes to GAS inhibition of neutrophil recruitment; 2) SsE is a potent PAF acetylhydrolase and the first secreted bacterial PAF acetylhydrolase identified so far; and 3) the PAF receptor significantly contributes to neutrophil recruitment in skin GAS infection. These findings support a novel mechanism for evasion of the innate immune system by GAS that may be relevant to other infections.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Hui Zhu
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- Department of Physiology, Harbin Medical University, Harbin, People's Republic of China
| | - Jinquan Li
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Cristiana C. Garcia
- Laboratory of Immunopharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Wenchao Feng
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Liliya N. Kirpotina
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Jonathan Hilmer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Luciana P. Tavares
- Laboratory of Immunopharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Arthur W. Layton
- Montana Veterinary Diagnostic Laboratory, Bozeman, Montana, United States of America
| | - Mark T. Quinn
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Mauro M. Teixeira
- Laboratory of Immunopharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Benfang Lei
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
87
|
Abstract
G protein-coupled receptors (GPCRs) play important roles in inflammation. Inflammatory cells such as polymorphonuclear leukocytes (PMN), monocytes and macrophages express a large number of GPCRs for classic chemoattractants and chemokines. These receptors are critical to the migration of phagocytes and their accumulation at sites of inflammation, where these cells can exacerbate inflammation but also contribute to its resolution. Besides chemoattractant GPCRs, protease activated receptors (PARs) such as PAR1 are involved in the regulation of vascular endothelial permeability. Prostaglandin receptors play different roles in inflammatory cell activation, and can mediate both proinflammatory and anti-inflammatory functions. Many GPCRs present in inflammatory cells also mediate transcription factor activation, resulting in the synthesis and secretion of inflammatory factors and, in some cases, molecules that suppress inflammation. An understanding of the signaling paradigms of GPCRs in inflammatory cells is likely to facilitate translational research and development of improved anti-inflammatory therapies.
Collapse
|
88
|
Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 2011; 91:207-15. [PMID: 22058421 DOI: 10.1189/jlb.0811402] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoattractants are pivotal mediators of host defense, orchestrating the recruitment of immune cells into sites of infection and inflammation. Chemoattractants display vast chemical diversity and include bioactive lipids, proteolytic fragments of serum proteins, and chemokines (chemotactic cytokines). All chemoattractants induce chemotaxis by activating seven-transmembrane-spanning GPCRs expressed on immune cells, establishing the concept that all chemoattractants are related in function. However, although chemoattractants have overlapping functions in vitro, recent in vivo data have revealed that they function, in many cases, nonredundantly in vivo. The chemically diverse nature of chemoattractants contributes to the fine control of leukocyte trafficking in vivo, with sequential chemoattractant use guiding immune cell recruitment into inflammatory sites. Lipid mediators frequently function as initiators of leukocyte recruitment, attracting the first immune cells into tissues. These initial responding immune cells produce cytokines locally, which in turn, induce the local release of chemokines. Local chemokine production then markedly amplifies subsequent waves of leukocyte recruitment. These new discoveries establish a paradigm for leukocyte recruitment in inflammation--described as lipid-cytokine-chemokine cascades--as a driving force in the effector phase of immune responses.
Collapse
Affiliation(s)
- Christian D Sadik
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the evolving understanding of the pathophysiology of anaphylaxis. RECENT FINDINGS Immunopathologic mechanisms of anaphylaxis have traditionally focused on the IgE-dependent and IgE-independent release of mediators from mast cells and basophils. There are accumulating data supporting the significance of alternative pathways of anaphylaxis. Increasing attention has also focused on the internal compensatory mechanisms activated in response to anaphylaxis. SUMMARY Recent advances will enhance understanding of the pathophysiology of anaphylaxis and might have future implications for diagnosis and management.
Collapse
|
90
|
Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2011; 34:5-30. [PMID: 21818701 DOI: 10.1007/s00281-011-0286-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/20/2011] [Indexed: 12/28/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases.
Collapse
Affiliation(s)
- Adriana Vieira-de-Abreu
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
91
|
Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis. Respir Res 2011; 12:104. [PMID: 21819560 PMCID: PMC3163543 DOI: 10.1186/1465-9921-12-104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/05/2011] [Indexed: 01/31/2023] Open
Abstract
Background ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, was shown to induce vascular hyperpermeability and thrombus formation in a murine model of pneumosepsis. In this study, we investigated the toxin ability to induce alterations in pulmonary fibrinolysis and the contribution of the platelet activating factor (PAF) in the ExoU-induced overexpression of plasminogen activator inhibitor-1 (PAI-1). Methods Mice were intratracheally instilled with the ExoU producing PA103 P. aeruginosa or its mutant with deletion of the exoU gene. After 24 h, animal bronchoalveolar lavage fluids (BALF) were analyzed and lung sections were submitted to fibrin and PAI-1 immunohistochemical localization. Supernatants from A549 airway epithelial cells and THP-1 macrophage cultures infected with both bacterial strains were also analyzed at 24 h post-infection. Results In PA103-infected mice, but not in control animals or in mice infected with the bacterial mutant, extensive fibrin deposition was detected in lung parenchyma and microvasculature whereas mice BALF exhibited elevated tissue factor-dependent procoagulant activity and PAI-1 concentration. ExoU-triggered PAI-1 overexpression was confirmed by immunohistochemistry. In in vitro assays, PA103-infected A549 cells exhibited overexpression of PAI-1 mRNA. Increased concentration of PAI-1 protein was detected in both A549 and THP-1 culture supernatants. Mice treatment with a PAF antagonist prior to PA103 infection reduced significantly PAI-1 concentrations in mice BALF. Similarly, A549 cell treatment with an antibody against PAF receptor significantly reduced PAI-1 mRNA expression and PAI-1 concentrations in cell supernatants, respectively. Conclusion ExoU was shown to induce disturbed fibrin turnover, secondary to enhanced procoagulant and antifibrinolytic activity during P. aeruginosa pneumosepsis, by a PAF-dependent mechanism. Besides its possible pathophysiological relevance, in vitro detection of exoU gene in bacterial clinical isolates warrants investigation as a predictor of outcome of patients with P. aeruginosa pneumonia/sepsis and as a marker to guide treatment strategies.
Collapse
|
92
|
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011; 51:267-88. [PMID: 20887196 DOI: 10.1146/annurev.pharmtox.010909.105812] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
93
|
Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2010; 7:75-7. [PMID: 21170021 DOI: 10.1038/nchembio.496] [Citation(s) in RCA: 547] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
The signaling mechanisms leading to the formation of neutrophil extracellular traps (NETs), relevant in infections, sepsis and autoimmune diseases, are poorly understood. Neutrophils are not amenable to studies with conventional genetic techniques. Using a new chemical genetic analysis we show that the Raf-MEK-ERK pathway is involved in NET formation through activation of NADPH oxidase and upregulation of antiapoptotic proteins. We identify potential targets for drugs addressing NET-associated diseases.
Collapse
Affiliation(s)
- Abdul Hakkim
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin
| | | | | | | | | | | | | |
Collapse
|
94
|
Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res 2010; 127:391-4. [PMID: 21074247 DOI: 10.1016/j.thromres.2010.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 12/31/2022]
Abstract
Systemic inflammatory responses are associated with high morbidity and mortality and represent a diverse and clinically challenging group of diseases. Platelets are increasingly linked to inflammation, in addition to their well-known roles in hemostasis and thrombosis. There is agreement that traditional functions of platelets, including adherence, aggregation, and secretion of preformed mediators, contribute to systemic inflammatory responses. However, emerging evidence indicates that platelets function in non-traditional ways. In this review, we focus on new functions of platelets that may be involved in the host response to infection.
Collapse
Affiliation(s)
- Tammy L Smith
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|