51
|
Xie L, Ding X, Budry R, Mao G. Layer-by-layer DNA films incorporating highly transfecting bioreducible poly(amido amine) and polyethylenimine for sequential gene delivery. Int J Nanomedicine 2018; 13:4943-4960. [PMID: 30214199 PMCID: PMC6124456 DOI: 10.2147/ijn.s162353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The layer-by-layer (LbL) assembly method offers a molecular level control of the amount and spatial distribution of bioactive molecules. However, successful clinical translation of LbL film technology will most certainly require a better understanding and control of not only the film assembly process, but also film disassembly kinetics in physiologic conditions. Purpose This work focuses on the understanding and control of degradation properties of LbL films for localized gene delivery. Methods Bioreducible poly(amido amine)s (PAAs) containing cystaminebisacrylamide (CBA), methylenebisacrylamide, and 5-amino-1-pentanol (APOL) were synthesized by Michael addition polymerization for the construction of bioreducible LbL films capable of sequential gene delivery. Results The synthesized PAAs were screened for desirable buffering capacity, cell transfection, and cytotoxicity characteristics together with 25 kDa branched polyethylenimine (PEI) and cross-linked 800 Da PEI. By screening the various polycations we were able to identify a copolymer of CBA and APOL for the subsequent construction of the LbL films. By incorporating a highly transfecting polycation and a nondiffusing polycation we were able to improve the overall transfection of HEK293 and MC3T3 cells from the bioreducible LbL films. We also demonstrated the dual-stage release and transfection of two different DNAs from the LbL films. Conclusion The results indicate that LbL films consisting of bioreducible PAAs and non-diffusing polyelectrolytes have excellent degradation properties for the development of LbL coating technology for localized gene delivery applications.
Collapse
Affiliation(s)
- Lingxiao Xie
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Xiong Ding
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Rachel Budry
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
52
|
Zhao Z, Kantamneni H, He S, Pelka S, Venkataraman AS, Kwon M, Libutti SK, Pierce M, Moghe PV, Ganapathy V, Tan MC. Surface-Modified Shortwave-Infrared-Emitting Nanophotonic Reporters for Gene-Therapy Applications. ACS Biomater Sci Eng 2018; 4:2305-2363. [PMID: 30417087 PMCID: PMC6226244 DOI: 10.1021/acsbiomaterials.8b00378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy is emerging as the next generation of therapeutic modality with United States Food and Drug Administration approved gene-engineered therapy for cancer and a rare eye-related disorder, but the challenge of real-time monitoring of on-target therapy response remains. In this study, we have designed a theranostic nanoparticle composed of shortwave-infrared-emitting rare-earth-doped nanoparticles (RENPs) capable of delivering genetic cargo and of real-time response monitoring. We showed that the cationic coating of RENPs with branched polyethylenimine (PEI) does not have a significant impact on cellular toxicity, which can be further reduced by selectively modifying the surface characteristics of the PEI coating using counter-ions and expanding their potential applications in photothermal therapy. We showed the tolerability and clearance of a bolus dose of RENPs@PEI in mice up to 7 days after particle injection in addition to the RENPs@PEI ability to distinctively discern lung tumor lesions in a breast cancer mouse model with an excellent signal-to-noise ratio. We also showed the availability of amine functional groups in the collapsed PEI chain conformation on RENPs, which facilitates the loading of genetic cargo that hybridizes with target gene in an in vitro cancer model. The real-time monitoring and delivery of gene therapy at on-target sites will enable the success of an increased number of gene- and cell-therapy products in clinical trials.
Collapse
Affiliation(s)
- Zhenghuan Zhao
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Harini Kantamneni
- Department of Chemical and Biochemical Engineering, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Sandra Pelka
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Aiyer Sandhya Venkataraman
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Mijung Kwon
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901, United States
| | - Steven K. Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901, United States
| | - Mark Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| |
Collapse
|
53
|
Onat B, Ozcubukcu S, Banerjee S, Erel-Goktepe I. Osteoconductive layer-by-layer films of Poly(4-hydroxy-L-proline ester) (PHPE) and Tannic acid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
54
|
Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A, O'Brien FJ. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release 2018; 283:20-31. [PMID: 29782946 DOI: 10.1016/j.jconrel.2018.05.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Gene-activated scaffolds have been shown to induce controlled, sustained release of functional transgene both in vitro and in vivo. Bone morphogenetic proteins (BMPs) are potent mediators of osteogenesis however we found that the delivery of plasmid BMP-2 (pBMP-2) alone was not sufficient to enhance bone formation. Therefore, the aim of this study was to assess if the use of a series of modified BMP-2 plasmids could enhance the functionality of a pBMP-2 gene-activated scaffold and ultimately improve bone regeneration when implanted into a critical sized bone defect in vivo. A multi-cistronic plasmid encoding both BMP-2 and BMP-7 (BMP-2/7) was employed as was a BMP-2-Advanced plasmid containing a highly truncated intron sequence. With both plasmids, the highly efficient cytomegalovirus (CMV) promoter sequence was used. However, as there have been reports that the elongated factor 1-α promoter is more efficient, particularly in stem cells, a BMP-2-Advanced plasmid containing the EF1α promoter was also tested. Chitosan nanoparticles (CS) were used to deliver each plasmid to MSCs and induced transient up-regulation of BMP-2 protein expression, in turn significantly enhancing MSC-mediated osteogenesis when compared to untreated controls (p < 0.001). When incorporated into a bone mimicking collagen-hydroxyapatite scaffold, the BMP-2-Advanced plasmid, under the control of the CMV promotor, induced MSCs to produce approximately 2500 μg of calcium per scaffold, significantly higher (p < 0.001) than all other groups. Just 4 weeks post-implantation in vivo, this cell-free gene-activated scaffold induced significantly more bone tissue formation compared to a pBMP-2 gene-activated scaffold (p < 0.001) as indicated by microCT and histomorphometry. Immunohistochemistry revealed that the BMP-2-Advanced plasmid accelerated differentiation of osteoprogenitor cells to mature osteoblasts, thus causing rapid healing of the bone defects. This study confirms that optimising the plasmid construct can enhance the functionality of gene-activated scaffolds and translate to accelerated bone formation in a critical sized defect.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Irene Mencía-Castaño
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Georg A Feichtinger
- Division of Oral Biology, School of Dentistry, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
55
|
Wang P, Kankala RK, Fan J, Long R, Liu Y, Wang S. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:68. [PMID: 29748879 DOI: 10.1007/s10856-018-6075-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Recently, the layer-by-layer (LbL) self-assembly technology has attracted the enormous interest of researchers in synthesizing various pharmaceutical dosage forms. Herewith, we designed a biocompatible drug delivery system containing the calcium carbonate microparticles (CaCO3 MPs) that coated with the alternatively charged polyelectrolytes, i.e., poly-L-ornithine (PLO)/fucoidan by LbL self-assembly process (LbL MPs). Upon coating with the polyelectrolytes, the mean particle size of MPs obtained from SEM observations increased from 1.91 to 2.03 μm, and the surface of LbL MPs was smoothened compared to naked CaCO3 MPs. In addition, the reversible zeta potential changes have confirmed the accomplishment of layer upon a layer assembly. To evaluate the efficiency of cancer therapeutics, we loaded doxorubicin (Dox) in the LbL MPs, which resulted in high (69.7%) drug encapsulation efficiency. The controlled release of Dox resulted in the significant antiproliferative efficiency in breast cancer cell line (MCF-7 cells), demonstrating the potential of applying this innovative drug delivery system in the biomedical field.
Collapse
Affiliation(s)
- Pei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China
| | - Jingqian Fan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China.
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, 361021, China.
| |
Collapse
|
56
|
Wei D, Qiao R, Dao J, Su J, Jiang C, Wang X, Gao M, Zhong J. Soybean Lecithin-Mediated Nanoporous PLGA Microspheres with Highly Entrapped and Controlled Released BMP-2 as a Stem Cell Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800063. [PMID: 29682876 DOI: 10.1002/smll.201800063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Injectable polymer microsphere-based stem cell delivery systems have a severe problem that they do not offer a desirable environment for stem cell adhesion, proliferation, and differentiation because it is difficult to entrap a large number of hydrophilic functional protein molecules into the core of hydrophobic polymer microspheres. In this work, soybean lecithin (SL) is applied to entrap hydrophilic bone morphogenic protein-2 (BMP-2) into nanoporous poly(lactide-co-glycolide) (PLGA)-based microspheres by a two-step method: SL/BMP-2 complexes preparation and PLGA/SL/BMP-2 microsphere preparation. The measurements of their physicochemical properties show that PLGA/SL/BMP-2 microspheres had significantly higher BMP-2 entrapment efficiency and controlled triphasic BMP-2 release behavior compared with PLGA/BMP-2 microspheres. Furthermore, the in vitro and in vivo stem cell behaviors on PLGA/SL/BMP-2 microspheres are analyzed. Compared with PLGA/BMP-2 microspheres, PLGA/SL/BMP-2 microspheres have significantly higher in vitro and in vivo stem cell attachment, proliferation, differentiation, and matrix mineralization abilities. Therefore, injectable nanoporous PLGA/SL/BMP-2 microspheres can be potentially used as a stem cell platform for bone tissue regeneration. In addition, SL can be potentially used to prepare hydrophilic protein-loaded hydrophobic polymer microspheres with highly entrapped and controlled release of proteins.
Collapse
Affiliation(s)
- Daixu Wei
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruirui Qiao
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinwei Dao
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200438, China
| | - Chengmin Jiang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Xichang Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Zhong
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
57
|
Guo S, Kwek MY, Toh ZQ, Pranantyo D, Kang ET, Loh XJ, Zhu X, Jańczewski D, Neoh KG. Tailoring Polyelectrolyte Architecture To Promote Cell Growth and Inhibit Bacterial Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7882-7891. [PMID: 29437375 DOI: 10.1021/acsami.8b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An important challenge facing the application of implanted biomaterials for tissue engineering is the need to facilitate desirable tissue interactions with the implant while simultaneously inhibiting bacterial colonization, which can lead to implant-associated infection. In this study, we explore the relevance of the physical parameters of polyelectrolyte multilayers, such as surface charge, wettability, and stiffness, in tissue cell/surface and bacteria/surface interactions, and investigate the tuning of the multilayer architecture to differentially control such interactions. Polyions with different side-chain chemical structures were paired with polyethylenimine to assemble multilayers with parallel control over surface charge and wettability under controlled conditions. The multilayers can be successfully cross-linked to yield stiffer (the apparent Young's modulus was increased more than three times its original value) and more stable films while maintaining parallel control over surface charge and wettability. The initial adhesion and proliferation of 3T3 fibroblast cells were found to be strongly affected by surface charge and wettability on the non-cross-linked multilayers. On the other hand, these cells adhered and proliferated in a manner similar to those on the cross-linked multilayers (apparent Young's modulus ∼2 MPa), regardless of surface charge and wettability. In contrast, Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) adhesion was primarily controlled by surface charge and wettability on both cross-linked and non-cross-linked multilayers. In both cases, negative charge and hydrophilicity inhibited their adhesion. Thus, a surface coating with a relatively high degree of stiffness from covalent cross-linking coupled with negative surface charge and high wettability can serve as an efficient strategy to enhance host cell growth while resisting bacterial colonization.
Collapse
Affiliation(s)
- Shanshan Guo
- NUS Graduate School for Integrative Science and Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| | - Min Yi Kwek
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Zi Qian Toh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way , 138634 , Singapore
- Department of Materials Science and Engineering , National University of Singapore , 9 Engineering Drive 1 , 117576 , Singapore
- Singapore Eye Research Institute , 11 Third Hospital Avenue , 168751 , Singapore
| | - Xiaoying Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
| | - Dominik Jańczewski
- Laboratory of Technological Processes, Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Science and Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 119260 , Singapore
| |
Collapse
|
58
|
Yang X, Zhao L, Zheng L, Xu M, Cai X. Polyglycerol grafting and RGD peptide conjugation on MnO nanoclusters for enhanced colloidal stability, selective cellular uptake and cytotoxicity. Colloids Surf B Biointerfaces 2018; 163:167-174. [DOI: 10.1016/j.colsurfb.2017.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
59
|
Herrera-González Ana AM, García-Serrano J, Caldera-Villalobos M. Synthesis and stabilization of Au nanoparticles in colloidal solution using macroelectrolytes with sulfonic acid groups. J Appl Polym Sci 2018. [DOI: 10.1002/app.45888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ana M. Herrera-González Ana
- Laboratorio de Polímeros. Instituto de Ciencias Básicas e Ingeniería. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5 Colonia Carboneras; Mineral de la Reforma, Hidalgo C.P. 42184 México
| | - J. García-Serrano
- Laboratorio de Polímeros. Instituto de Ciencias Básicas e Ingeniería. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5 Colonia Carboneras; Mineral de la Reforma, Hidalgo C.P. 42184 México
| | - M. Caldera-Villalobos
- Laboratorio de Polímeros. Instituto de Ciencias Básicas e Ingeniería. Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5 Colonia Carboneras; Mineral de la Reforma, Hidalgo C.P. 42184 México
| |
Collapse
|
60
|
Wang F, Pang JD, Huang LL, Wang R, Li D, Sun K, Wang LT, Zhang LM. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy. Int J Nanomedicine 2018; 13:857-875. [PMID: 29467575 PMCID: PMC5811182 DOI: 10.2147/ijn.s147747] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Nanomedicine, which is the application of nanotechnology in medicine to make medical diagnosis and treatment more accurate, has great potential for precision medicine. Despite some improvements in nanomedicine, the lack of efficient and low-toxic vectors remains a major obstacle. Objective The aim of this study was to prepare an efficient and low-toxic vector which could deliver astrocyte elevated gene-1 (AEG-1) small interfering RNA (siRNA; siAEG-1) into osteosarcoma cells effectively and silence the targeted gene both in vitro and in vivo. Materials and methods We prepared a novel polysaccharide derivative by click conjugation of azidized chitosan with propargyl focal point poly (L-lysine) dendrons (PLLD) and subsequent coupling with folic acid (FA; Cs-g-PLLD-FA). We confirmed the complexation of siAEG-1and Cs-g-PLLD or Cs-g-PLLD-FA by gel retardation assay. We examined the cell cytotoxicity, cell uptake, cell proliferation and invasion abilities of Cs-g-PLLD-FA/siAEG-1 in osteosarcoma cells. In osteosarcoma 143B cells tumor-bearing mice models, we established the therapeutic efficacy and safety of Cs-g-PLLD-FA/siAEG-1. Results Cs-g-PLLD-FA could completely encapsulate siAEG-1 and showed low cytotoxicity in osteosarcoma cells and tumour-bearing mice. The Cs-g-PLLD-FA/siAEG-1 nanocomplexes were capable of transferring siAEG-1 into osteosarcoma cells efficiently, and the knockdown of AEG-1 resulted in the inhibition of tumour cell proliferation and invasion. In addition, caudal vein injecting of Cs-g-PLLD-FA/siAEG-1 complexes inhibited tumor growth and lung metastasis in tumor-bearing mice by silencing AEG-1 and regulating MMP-2/9. Conclusion In summary, Cs-g-PLLD-FA nanoparticles are a promising system for the effective delivery of AEG-1 siRNA for treating osteosarcoma.
Collapse
Affiliation(s)
- Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University
| | - Jia-Dong Pang
- PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou
| | - Lei-Lei Huang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University
| | - Ran Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University
| | - Dan Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
| | - Kang Sun
- School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lian-Tang Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University
| | - Li-Ming Zhang
- PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou
| |
Collapse
|
61
|
Chen P, Liu Y, Zhao J, Pang X, Zhang P, Hou X, Chen P, He CY, Wang Z, Chen ZY. The synthesis of amphiphilic polyethyleneimine/calcium phosphate composites for bispecific T-cell engager based immunogene therapy. Biomater Sci 2018; 6:633-641. [DOI: 10.1039/c7bm01143a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bispecific T-cell engagers (BiTEs) are single chain variable fragments, which could connect the surface antigen on cancer cells and CD3 ligands on T cells, and then engage the T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Pingzhang Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| | - Yunhong Liu
- Department of Clinical Laboratory
- The People's Hospital of Longhua
- Shenzhen
- China
| | - Jing Zhao
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | | | - Peifa Zhang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Xiaohu Hou
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ping Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Cheng-yi He
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zhiyong Wang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- School of Materials Science and Engineering
- Sun Yat-sen University
| | - Zhi-ying Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| |
Collapse
|
62
|
Wang P, Yu N, Wang Y, Sun H, Yang Z, Zhou S. Co-delivery of PLK1-specific shRNA and doxorubicin via core-crosslinked pH-sensitive and redox ultra-sensitive micelles for glioma therapy. J Mater Chem B 2018; 6:112-124. [DOI: 10.1039/c7tb02160g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anticancer drug delivery encounters many biological barriers, including mucosal barriers, nonspecific uptake and intracellular drug resistance.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Nengwei Yu
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Huili Sun
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Zhenglin Yang
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| |
Collapse
|
63
|
Long Z, Zhang J, Shen Y, Zhou C, Liu M. Polyethyleneimine grafted short halloysite nanotubes for gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:224-235. [DOI: 10.1016/j.msec.2017.07.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/17/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
64
|
Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties. Colloids Surf B Biointerfaces 2017; 153:19-26. [DOI: 10.1016/j.colsurfb.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/23/2022]
|
65
|
Hernandez-Montelongo J, Lucchesi E, Nascimento V, França C, Gonzalez I, Macedo W, Machado D, Lancellotti M, Moraes A, Beppu M, Cotta M. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:718-724. [DOI: 10.1016/j.msec.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
66
|
Strawski M, Granicka LH, Szklarczyk M. Redox properties of polyelectrolyte multilayer modified electrodes: a significant effect of the interactions between the polyelectrolyte layers in the films. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
67
|
Bernal L, Alvarado-Vázquez A, Ferreira DW, Paige CA, Ulecia-Morón C, Hill B, Caesar M, Romero-Sandoval EA. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions. Immunobiology 2016; 222:399-408. [PMID: 27615510 DOI: 10.1016/j.imbio.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes.
Collapse
Affiliation(s)
- Laura Bernal
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Systems' Biology, School of Medicine, University of Alcala. Campus Universitario - C/ 19, Carretera Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Abigail Alvarado-Vázquez
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - David Wilson Ferreira
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Pharmacology, Ribeirao Preto Medical School-University of Sao Paulo, 3900 Bandeirantes Ave., Ribeirão Preto, SP, 14049-900, Brazil.
| | - Candler A Paige
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - Cristina Ulecia-Morón
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Physiology, Anatomy and Cellular Biology, University Pablo de Olavide de Sevilla, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| | - Bailey Hill
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - Marina Caesar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| |
Collapse
|
68
|
Xu X, Li Z, Zhao X, Keen L, Kong X. Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater 2016; 3:187-95. [PMID: 27252888 PMCID: PMC4881614 DOI: 10.1093/rb/rbw010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the enormous therapeutic potential of siRNA as a treatment strategy, the delivery is still a problem due to unfavorable biodistribution profiles and poor intracellular bioavailability. Calcium phosphate (CaP) co-precipitate has been used for nearly 40 years for in vitro transfection due to its non-toxic nature and simplicity of preparation. The surface charge of CaP will be tuned into positive by surface modification, which is important for siRNA loading and crossing cell membrane without enzymatic degradation. The new siRNA carrier system will also promote the siRNA escape from lysosome to achieve siRNA sustained delivery and high-efficiency silence. In this review, we focus on the current research activity in the development of CaP nanoparticles for siRNA delivery. These nanoparticles are mainly classified into lipid coated, polymer coated and various other types for discussion.
Collapse
Affiliation(s)
- Xiaochun Xu
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zehao Li
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xueqin Zhao
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lawrence Keen
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Biomaterials and Marine Biological Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
69
|
Patkowski J, Myśliwiec D, Chibowski S. Validation of a new method for spectrophotometric determination of polyethylenimine. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2016. [DOI: 10.1080/1023666x.2016.1168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
70
|
Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B Biointerfaces 2016; 146:188-97. [PMID: 27318964 DOI: 10.1016/j.colsurfb.2016.05.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023]
Abstract
Overexpression of signal transducer and activator of transcription 3 (STAT3) protein prevents apoptosis and enhances proliferation of melanocytes. The aim of this study was to investigate the feasibility of using layer-by-layer assembled gold nanoparticles (LbL-AuNP) as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. Chitosan coated AuNP (AuNP-CS) were prepared by direct reduction of HAuCl4 in the presence of chitosan. The AuNP-CS were then sequentially layered with siRNA and chitosan to form AuNP-CS/siRNA/CS. STAT3 siRNA replaced with scrambled siRNA or sodium alginate were used as controls. The average particle size and zeta-potential of the prepared LbL-AuNP were 150±10nm (PDI: 0.41±0.06) and 35±6mV, respectively. In vitro studies in B16F10 murine melanoma cells showed that AuNP-CS/siRNA/CS inhibited the cell growth by 49.0±0.6% and 66.0±0.2% at 0.25nM and 0.5nM STAT3 siRNA concentration, respectively. Fluorescence microscopy and flow cytometry studies showed a time dependent cell uptake of the LbL-AuNP up to 120min. Clathrin mediated endocytosis was found to be the predominant cell uptake mechanism for LbL-AuNP. STAT3 siRNA loaded LbL-AuNP reduced the STAT3 protein expression by 47.3% in B16F10 cells. Similarly, apoptosis assay showed 29% and 44% of early and late apoptotic events, respectively after treatment with STAT3 siRNA loaded LbL-AuNP. Confocal microscope and skin cryosections showed that application of 0.47mA/cm(2) of anodal iontophoresis enhanced the skin penetration of LbL-AuNP to reach viable epidermis. In conclusion, layer-by-layer chitosan coated AuNP can be developed as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma.
Collapse
|
71
|
Oliveira MB, Hatami J, Mano JF. Coating Strategies Using Layer-by-layer Deposition for Cell Encapsulation. Chem Asian J 2016; 11:1753-64. [PMID: 27213990 DOI: 10.1002/asia.201600145] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/19/2022]
Abstract
The layer-by-layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell-laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.
Collapse
Affiliation(s)
- Mariana B Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Javad Hatami
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
72
|
Pandiyaraj KN, Kumar AA, Ramkumar MC, Sachdev A, Gopinath P, Cools P, De Geyter N, Morent R, Deshmukh RR, Hegde P, Han C, Nadagouda MN. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:908-18. [PMID: 26952498 DOI: 10.1016/j.msec.2016.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability.
Collapse
Affiliation(s)
- K N Pandiyaraj
- Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T by pass, Chinniyam Palayam (post), Coimbatore 641062, India.
| | - A Arun Kumar
- Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T by pass, Chinniyam Palayam (post), Coimbatore 641062, India
| | - M C Ramkumar
- Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T by pass, Chinniyam Palayam (post), Coimbatore 641062, India
| | - A Sachdev
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P Gopinath
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent, Belgium
| | - N De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent, Belgium
| | - R Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent, Belgium
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - P Hegde
- William Mason High School, Mason 45040, USA
| | - C Han
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - M N Nadagouda
- Center for Nanoscale Multifunctional Materials, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
73
|
Franca E, Jao PF, Fang SP, Alagapan S, Pan L, Yoon JH, Yoon YK, Wheeler BC. Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion. IEEE Trans Nanobioscience 2016; 15:11-8. [PMID: 26829799 PMCID: PMC4791169 DOI: 10.1109/tnb.2016.2519505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI). Carbonized nanofibers were fabricated by electrospinning SU-8 and pyrolyzing the nanofiber depositions. Additional substrates tested were carbonized and SU-8 thin films and SU-8 nanofibers. Surfaces were O2-plasma treated, coated with varying concentrations of PEI, seeded with E18 rat cortical cells, and examined at 3, 4, and 7 days in vitro (DIV). Neural adhesion was examined at 4 DIV utilizing a parallel plate flow chamber. At 3 DIV, neural viability was lower on the nanofiber and thin film depositions treated with higher PEI concentrations which corresponded with significantly higher zeta potentials (surface charge); this significance was drastically higher on the nanofibers suggesting that the nanostructure may collect more PEI molecules, causing increased toxicity. At 7 DIV, significantly higher neurite outgrowth was observed on SU-8 nanofiber substrates with nanofibers a significant fraction of a neuron's size. No differences were detected for carbonized nanofibers or carbon nanotubes. Both carbonized and SU-8 nanofibers had significantly higher cellular adhesion post-flow in comparison to controls whereas the carbon nanotubes were statistically similar to control substrates. These data suggest a neural cell preference for larger-scale nanomaterials with specific surface treatments. These characteristics could be taken advantage of in the future design and fabrication of neural microelectrodes.
Collapse
|
74
|
Håti AG, Arnfinnsdottir NB, Østevold C, Sletmoen M, Etienne G, Amstad E, Stokke BT. Microarrays for the study of compartmentalized microorganisms in alginate microbeads and (W/O/W) double emulsions. RSC Adv 2016. [DOI: 10.1039/c6ra23945e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present two array platforms for small (50–100 μm) cell-containing 3D compartments prepared by droplet-based microfluidics.
Collapse
Affiliation(s)
- Armend G. Håti
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Nina Bjørk Arnfinnsdottir
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Camilla Østevold
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Marit Sletmoen
- Dept. of Biotechnology
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - Gianluca Etienne
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Esther Amstad
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Bjørn T. Stokke
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| |
Collapse
|
75
|
Rumschöttel J, Kosmella S, Prietzel C, Appelhans D, Koetz J. Change in size, morphology and stability of DNA polyplexes with hyperbranched poly(ethyleneimines) containing bulky maltose units. Colloids Surf B Biointerfaces 2015; 138:78-85. [PMID: 26674835 DOI: 10.1016/j.colsurfb.2015.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
Polyplexes between Salmon DNA and non-modified hyperbranched poly(ethyleneimines) of varying molar mass, i.e., PEI(5 k) with 5000 g/mol and PEI(25 k) with 25,000 g/mol, and modified PEI(5 k) with maltose units (PEI-Mal) were investigated in dependence on the molar N/P ratio by using dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (μ-DSC), scanning-transmission electron microscopy (STEM), and cryo-scanning electron microscopy (cryo-SEM). A reloading of the polyplexes can be observed by adding the unmodified PEI samples of different molar mass. In excess of PEI a morphological transition from core-shell particles (at N/P 8) to loosely packed onion-like polyplexes (at N/P 40) is observed. The shift of the DSC melting peak from 88 °C to 76 °C indicates a destabilization of the DNA double helix due to the complexation with the unmodified PEI. Experiments with the maltose-modified PEI show a reloading already at a lower N/P ratio. Due to the presence of the sugar units in the periphery of the polycation electrostatic interactions between DNA become weaker, but cooperative H-bonding forces are reinforced. The resulting less-toxic, more compact polyplexes in excess of the PEI-Mal with two melting points and well distributed DNA segments are of special interest for extended gene delivery experiments.
Collapse
Affiliation(s)
- Jens Rumschöttel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Sabine Kosmella
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Claudia Prietzel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Joachim Koetz
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
76
|
Naves AF, Motay M, Mérindol R, Davi CP, Felix O, Catalani LH, Decher G. Layer-by-Layer assembled growth factor reservoirs for steering the response of 3T3-cells. Colloids Surf B Biointerfaces 2015; 139:79-86. [PMID: 26700236 DOI: 10.1016/j.colsurfb.2015.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
Layer-by-Layer (LbL) assemblies of heparin (Hep) and chitosan (Chi) were prepared for use as reservoirs for acidic and basic fibroblast growth factors (aFGFs and bFGFs, respectively). The effects of the architecture and composition of the reservoirs on the viability and proliferation of NIH-3T3 fibroblast cells were studied under starvation conditions. The reservoir stability was monitored by ellipsometry. The aFGF and bFGF loadings were determined using a dissipation-enhanced quartz crystal microbalance (QCM-D). Stability and release assays were performed in a phosphate buffer at physiological conditions. The results demonstrated that the amount of aFGF and bFGF loaded into and released from LbL reservoirs composed of 3 and 6 layer pairs could be controlled. Cell culture assays in low serum culture medium (LSCM) demonstrated that incorporating very small amounts of aFGF and bFGF into the (Hep/Chi)n multilayers significantly improved the proliferation of the NIH-3T3 fibroblasts. The cells did not proliferate on (Hep/Chi)n assemblies prepared in the absence of FGF under identical conditions. The LbL reservoirs were highly effective for the long-term storage (up to 9 months) of aFGF and bFGF. This work demonstrates the potential of LbL reservoirs for use as biomaterial coatings.
Collapse
Affiliation(s)
- Alliny F Naves
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France.
| | - Marvin Motay
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France
| | - Rémi Mérindol
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France
| | - Christiane P Davi
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Centro de Ciências Naturais e Humanas CCNH, Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170, Santo André, Brazil
| | - Olivier Felix
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France
| | - Luiz H Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, 05513-970 São Paulo, Brazil
| | - Gero Decher
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France; International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, F-67083 Strasbourg, France.
| |
Collapse
|
77
|
Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 2015; 44:1526-60. [PMID: 25176175 DOI: 10.1039/c4cs00186a] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.
Collapse
Affiliation(s)
- Andreas Sedlmeier
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
78
|
Cheang TY, Xing ZH, Li ZL, Zhou HY, Wei JH, Zhou X, Xu AW, Lin Y, Wang SM. Delivery of AIB1 siRNA by Ca 2+/PEI/heparin composite nanoparticles effectively inhibits the growth of human breast cancer. J Mater Chem B 2015; 3:7623-7630. [PMID: 32262646 DOI: 10.1039/c5tb01490e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a novel carrier fabricated by the interaction of negatively charged heparin and positively charged PEI and Ca2+ was investigated to deliver AIB1 siRNA into breast cancer cells both in vitro and in vivo. Ca2+/PEI/heparin nanoparticles were prepared by simply mixing heparin, PEI and CaCl2 aqueous solution. Heparin in the Ca2+/PEI/heparin nanoparticles (40.9% heparin, w/w) decreased the cytotoxicity of PEI. According to the MTT assay, Ca2+/PEI/heparin NPs are superior to commercial Lipofectamine 2000 considering the safety. The Ca2+/PEI/heparin NPs are able to deliver siAIB1 into breast cancer cells as effectively as Lipofectamine 2000 both in vitro and in vivo. The in vivo experiment also indicated that the NF-κB/BCL-2 signal pathway might be the downstream signal pathway of AIB1 in regulating breast cancer proliferation and progression.
Collapse
Affiliation(s)
- T Y Cheang
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhang H, Feng S, Yan T, Zhi C, Gao XD, Hanagata N. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Int J Nanomedicine 2015; 10:5343-53. [PMID: 26346655 PMCID: PMC4554408 DOI: 10.2147/ijn.s88774] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CpG oligodeoxynucleotides (ODNs) stimulate innate and adaptive immune responses. Thus, these molecules are promising therapeutic agents and vaccine adjuvants against various diseases. In this study, we developed a novel CpG ODNs delivery system based on polyethyleneimine (PEI)-functionalized boron nitride nanospheres (BNNS). PEI was coated on the surface of BNNS via electrostatic interactions. The prepared BNNS–PEI complexes had positive zeta potential and exhibited enhanced dispersity and stability in aqueous solution. In vitro cytotoxicity assays revealed that the BNNS–PEI complexes with concentrations up to 100 μg/mL exhibited no obvious cytotoxicity. Furthermore, the positively charged surface of the BNNS–PEI complexes greatly improved the loading capacity and cellular uptake efficiency of CpG ODNs. Class B CpG ODNs loaded on the BNNS–PEI complexes enhanced the production of interleukin-6 and tumor necrosis factor-α from peripheral blood mononuclear cells compared with CpG ODNs directly loaded on BNNS. Contrary to the free CpG ODNs or CpG ODNs directly loaded on BNNS, class B CpG ODNs loaded on the BNNS–PEI complexes induced interferon-α simultaneously. PEI coating may have changed the physical form of class B CpG ODNs on BNNS, which further affected their interaction with Toll-like receptor 9 and induced interferon-α. Therefore, BNNS–PEI complexes can be used to enhance the immunostimulatory effect and therapeutic activity of CpG ODNs and the treatment of diseases requiring interleukin-6, tumor necrosis factor-α, and interferon-α.
Collapse
Affiliation(s)
- Huijie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Shini Feng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Ting Yan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Chunyi Zhi
- Department of Physics and Materials Science, City University of Hong Kong, Kowlong, Hong Kong SAR, People's Republic of China
| | - Xiao-Dong Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Nobutaka Hanagata
- Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan ; Nanotechnology Innovation Station, National Institute for Materials Science, Ibaraki, Japan
| |
Collapse
|
80
|
Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine. Macromol Res 2015. [DOI: 10.1007/s13233-015-3074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
81
|
Barros J, Dias A, Rodrigues MA, Pina-Vaz C, Lopes MA, Pina-Vaz I. Antibiofilm and Antimicrobial Activity of Polyethylenimine: An Interesting Compound for Endodontic Treatment. J Contemp Dent Pract 2015; 16:427-32. [PMID: 26323443 DOI: 10.5005/jp-journals-10024-1701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM Bacteria levels of necrotic teeth are greatly reduced after endodontic treatment procedures but the presence of persisting microorganisms leads to continuous efforts to develop materials with antimicrobial properties. The purpose of the study was to determine the antimicrobial activity of polyethylenimine (PEI) against common bacteria and yeasts, regarding planktonic cells and biofilm, and to clarify its antimicrobial mechanism of action through flow cytometry. MATERIALS AND METHODS The antibiofilm and antimicrobial effect of PEI was determined against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Candida albicans strains using reference protocols. The effect of PEI was evaluated regarding adhesion, biofilm formation and biofilm disaggregation. In order to understand PEI cellular effects flow cytometric analysis was performed with different fluorescent markers. RESULTS It was verified that minimal inhibitory concentrations (MIC) values and minimal lethal concentrations (MLC) obtained for PEI were similar and ranged between 50 and 400 mg/l, proving the microbicidal and fungicidal activity of this compound. Antibiofilm activity was also proved for all the microorganisms. Severe lesion of the membrane and cell depolarization was demonstrated. CONCLUSION Polyethylenimine showed antimicrobial and antibiofilm activity against microorganisms often associated with apical periodontitis. CLINICAL SIGNIFICANCE Theoretically, prolonging the antibacterial effects of materials used in endodontics may be interesting to help prevent reinfection and possibly to affect residual bacteria that survived the treatment procedures.
Collapse
Affiliation(s)
- Joana Barros
- Professor, Department of Endodontics, Faculty of Dental Medicine University of Porto, Porto, Portugal, Phone: +351 220 901 100, e-mail:
| | - Ana Dias
- Department of Microbiology, Faculty of Medicine, University of Porto, Porto; Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Miguel A Rodrigues
- Department of Metallurgical and Materials Engineering Faculty of Engineering, University of Porto, Porto; Centre for Mechanical Engineering of the University of Coimbra Portugal
| | - Cidália Pina-Vaz
- Department of Microbiology, Faculty of Medicine, University of Porto, Porto; Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Lopes
- Department of Metallurgical and Materials Engineering Faculty of Engineering, University of Porto, Porto; Centre for Mechanical Engineering of the University of Coimbra Portugal
| | - Irene Pina-Vaz
- Department of Endodontics, Faculty of Dental Medicine University of Porto, Porto, Portugal
| |
Collapse
|
82
|
Monge C, Almodóvar J, Boudou T, Picart C. Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Adv Healthc Mater 2015; 4:811-30. [PMID: 25627563 PMCID: PMC4540079 DOI: 10.1002/adhm.201400715] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Introduced in the '90s by Prof. Moehwald, Lvov, and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this Review, the aim is to highlight the recent progress in the field of LbL films for biomedical applications and to discuss the various ways to spatially and temporally control the biochemical and mechanical properties of multilayers. In particular, three major developments of LbL films are discussed: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices.
Collapse
Affiliation(s)
- Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016, Grenoble, France
| | | | | | | |
Collapse
|
83
|
Tang S, Huang L, Shi Z, He W. Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. J Mater Chem B 2015; 3:2842-2852. [DOI: 10.1039/c4tb01664e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple variation of reaction parameters can provide a library of cationic epoxy–amine hydrogel particles with a diverse collection of physical and chemical characteristics, temperature responsiveness, and cytocompatibility.
Collapse
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Lu Huang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Zengqian Shi
- Center for Renewable Carbon
- Department of Forestry
- Wildlife & Fisheries
- University of Tennessee
- Knoxville
| | - Wei He
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Mechanical
| |
Collapse
|
84
|
Idris NM, Jayakumar MKG, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 2015; 44:1449-1478. [DOI: 10.1039/c4cs00158c] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Upconversion nanoparticles enable use of near infrared light for spatially and temporally controlled activation of therapeutic compounds in deeper tissues.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
| | | | - Akshaya Bansal
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| |
Collapse
|
85
|
Lee IC, Liu YC, Tsai HA, Shen CN, Chang YC. Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20654-63. [PMID: 25243588 DOI: 10.1021/am503928u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, we designed and constructed a series of layer-by-layer polypeptide adsorbed supported lipid bilayer (SLB) films as a novel and label-free platform for the isolation and maintenance of rare populated stem cells. In particular, four alternative layers of anionic poly-l-glutamic acid and cationic poly-l-lysine were sequentially deposited on an anionic SLB. We found that the fetal liver stem/progenitor cells from the primary culture were selected and formed colonies on all layer-by-layer polypeptide adsorbed SLB surfaces, regardless of the number of alternative layers and the net charges on those layers. Interestingly, these isolated stem/progenitor cells formed colonies which were maintained for an 8 day observation period. Quartz crystal microbalance with dissipation measurements showed that all SLB-polypeptide films were protein resistant with serum levels significantly lower than those on the polypeptide multilayer films without an underlying SLB. We suggest the fluidic SLB promotes selective binding while minimizing the cell-surface interaction due to its nonfouling nature, thus limiting stem cell colonies from spreading.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University , Tao-yuan 333, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
86
|
Salem S, Müller M, Torger B, Janke A, Eichhorn KJ, Voit B, Appelhans D. Glycopolymer Polyelectrolyte Multilayers Composed of Heparin and Maltose-Modified Poly(ethylene imine) as a Strong/Weak Polyelectrolyte System for Future Drug Delivery Coatings: Influence of pH and Sugar Architecture on Growth of Multilayers and Multilaye. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Samaa Salem
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; D-01062 Dresden Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
| | - Bernhard Torger
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; D-01062 Dresden Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
| | - Klaus-Jochen Eichhorn
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; D-01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 D-01069 Dresden Germany
| |
Collapse
|
87
|
Panayotov IV, Collart-Dutilleul PY, Salehi H, Martin M, Végh A, Yachouh J, Vladimirov B, Sipos P, Szalontai B, Gergely C, Cuisinier FJG. Sprayed cells and polyelectrolyte films for biomaterial functionalization: the influence of physical PLL-PGA film treatments on dental pulp cell behavior. Macromol Biosci 2014; 14:1771-82. [PMID: 25212873 DOI: 10.1002/mabi.201400256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/07/2014] [Indexed: 02/05/2023]
Abstract
Further development of biomaterials is expected as advanced therapeutic products must be compliant to good manufacturing practice regulations. A spraying method for building-up polyelectrolyte films followed by the deposition of dental pulp cells by spraying is presented. Physical treatments of UV irradiation and a drying/wetting process are applied to the system. Structural changes and elasticity modifications of the obtained coatings are revealed by atomic force microscopy and by Raman spectroscopy. This procedure results in thicker, rougher and stiffer film. The initially ordered structure composed of mainly α helices is transformed into random/β-structures. The treatment enhanced dental pulp cell adhesion and proliferation, suggesting that this system is promising for medical applications.
Collapse
Affiliation(s)
- Ivan V Panayotov
- EA4203 Laboratoire de Bio-santé et Nano-science, Université Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Dördelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S, Epple M. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B 2014; 2:7250-7259. [DOI: 10.1039/c4tb00922c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
89
|
Pandiyaraj KN, Deshmukh R, Mahendiran R, Su PG, Yassitepe E, Shah I, Perni S, Prokopovich P, Nadagouda MN. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO2/PET film for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:309-19. [DOI: 10.1016/j.msec.2013.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 11/16/2022]
|
90
|
Burchardt M, Wittstock G. Micropatterned multienzyme devices with adjustable amounts of immobilized enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15090-15099. [PMID: 24200032 DOI: 10.1021/la402561g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multienzyme microstructures of glucose oxidase (GOx) and horseradish peroxidase (HRP) were prepared by layer-by-layer deposition inside microfluidic networks on glass substrates in order to allow both site-specific deposition and control of the amount of immobilized enzymes. The obtained microstructures were characterized by scanning force microscopy for the topography of the deposited layers. The local enzyme activity was characterized by the substrate-generation/tip-collection mode and the enzyme-mediated feedback mode of the scanning electrochemical microscope (SECM). These measurements provided quantitative information about the immobilized enzyme activity as a basis for adjusting enzyme loading for multienzyme structures that realize logical operations based on enzymatic conversions. Information about local HRP activity can also be obtained by optical readout using an Amplex UltraRed fluorgenic substrate and reading with a confocal laser scanning microscope with a much higher repetition rate for image acquisition. Using these principles, a layout with HRP and GOx microstructures was realized that showed the functionality of an OR Boolean logic switch.
Collapse
Affiliation(s)
- Malte Burchardt
- Carl von Ossietzky University of Oldenburg , School of Mathematics and Sciences, Center of Interface Science (CIS), Department of Chemistry, D-26111 Oldenburg, Germany
| | | |
Collapse
|
91
|
Ostrowski N, Lee B, Enick N, Carlson B, Kunjukunju S, Roy A, Kumta PN. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater 2013; 9:8704-13. [PMID: 23684762 DOI: 10.1016/j.actbio.2013.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation.
Collapse
|
92
|
Pang P, Wu C, Shen M, Gong F, Zhu K, Jiang Z, Guan S, Shan H, Shuai X. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells. PLoS One 2013; 8:e76612. [PMID: 24116127 PMCID: PMC3792021 DOI: 10.1371/journal.pone.0076612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/26/2013] [Indexed: 01/14/2023] Open
Abstract
The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2), to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively) (P<0.01). Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Pengfei Pang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun Wu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Shen
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Faming Gong
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kangshun Zhu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zaibo Jiang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouhai Guan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Shan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| |
Collapse
|
93
|
Qin B, Chen Z, Jin W, Cheng K. Development of cholesteryl peptide micelles for siRNA delivery. J Control Release 2013; 172:159-168. [PMID: 23968830 DOI: 10.1016/j.jconrel.2013.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/27/2022]
Abstract
Despite the rapid progress in the siRNA field, developing a safe and efficient delivery system of siRNA remains to be an obstacle in the therapeutical application of siRNA. The purpose of this study is to develop an efficient peptide-based siRNA delivery system for cancer therapy. To this end, cholesterol was conjugated to a series of peptides composed of lysine and histidine residues. The resultant cholesteryl peptides were characterized, and their potential for siRNA delivery was evaluated. Our results indicate that short peptides (11-21 mer) composed of various numbers of lysine and histidine residues alone are not sufficient to mediate efficient siRNA delivery. However, the amphiphilic cholesteryl peptides can self-assemble to form a micelle-like structure in aqueous solutions, which significantly promotes the siRNA condensation capability of the peptides. The cholesteryl peptides form stable complex with siRNA and effectively protect siRNA from degradation in rat serum up to three days. Furthermore, the cholesteryl peptides efficiently transfect siRNA into different cancer cells and trigger potent gene silencing effect, whereas peptides without cholesterol modification cannot deliver siRNA into the cells. In addition, one of the cholesteryl peptides Chol-H3K2s displays comparable cellular uptake and gene silencing effect but less cytotoxicity compared with branched polyethylenimine (bPEI) and Lipofectamine-2000. Our results reveal that the cholesteryl peptides possess great potential as an efficient siRNA delivery system.
Collapse
Affiliation(s)
- Bin Qin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhijin Chen
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
94
|
Lee J, Yang SH, Hong SP, Hong D, Lee H, Lee HY, Kim YG, Choi IS. Chemical Control of Yeast Cell Division by Cross-Linked Shells of Catechol-Grafted Polyelectrolyte Multilayers. Macromol Rapid Commun 2013; 34:1351-6. [DOI: 10.1002/marc.201300444] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Juno Lee
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| | - Sung Ho Yang
- Department of Chemistry Education; Korea National University of Education; Chungbuk Korea
| | - Seok-Pyo Hong
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| | - Daewha Hong
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| | - Haeshin Lee
- Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon Korea
| | - Hee-Yoon Lee
- Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon Korea
| | - Yang-Gyun Kim
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| |
Collapse
|
95
|
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013; 34:7158-67. [PMID: 23796578 DOI: 10.1016/j.biomaterials.2013.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE.
Collapse
Affiliation(s)
- Adarsha Koirala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
96
|
An improved integrative transformation system for Pichia pastoris with DNA-polyethylenimine-dextran sulfate nanoparticles. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
98
|
Amritha Rammohan B, Tayal L, Kumar A, Sivakumar S, Sharma A. Fabrication of polymer-modified monodisperse mesoporous carbon particles by template-based approach for drug delivery. RSC Adv 2013. [DOI: 10.1039/c2ra22261b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
99
|
Chernousova S, Klesing J, Soklakova N, Epple M. A genetically active nano-calcium phosphate paste for bone substitution, encoding the formation of BMP-7 and VEGF-A. RSC Adv 2013. [DOI: 10.1039/c3ra23450a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
100
|
Vu L, Ramos J, Potta T, Rege K. Generation of a focused poly(amino ether) library: polymer-mediated transgene delivery and gold-nanorod based theranostic systems. Am J Cancer Res 2012; 2:1160-73. [PMID: 23382773 PMCID: PMC3563149 DOI: 10.7150/thno.4492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
A focused library of twenty-one cationic poly(amino ethers) was synthesized following ring-opening polymerization of two diglycidyl ethers by different oligoamines. The polymers were screened in parallel for plasmid DNA (pDNA) delivery, and transgene expression efficacies of individual polymers were compared to those of 25 kDa polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression than PEI in pancreatic and prostate cancer cells lines were identified from the screen. All seven lead polymers showed highest transgene expression at a polymer:pDNA weight ratio of 5:1 in the MIA PaCa-2 pancreatic cancer cell line. Among the conditions studied, transgene expression efficacy correlated with minimal polymer cytotoxicity but not polyplex sizes. In addition, this study indicated that methylene spacing between amine centers in the monomers, amine content, and molecular weight of the polymers are all significant factors and should be considered when designing polymers for transgene delivery. A lead effective polymer was employed for coating gold nanorods, leading to theranostic nanoassemblies that possess combined transgene delivery and optical imaging capabilities, leading to potential theranostic systems.
Collapse
|