51
|
Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology 2013; 38:616-27. [PMID: 23169346 PMCID: PMC3572458 DOI: 10.1038/npp.2012.225] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 12/23/2022]
Abstract
Major depression is thought to originate from the interaction between susceptibility genes and adverse environmental events, in particular stress. The hypothalamus-pituitary-adrenal (HPA) axis is the major system involved in stress response and its dysregulation is an important element in the pathogenesis of depression. The stress response is therefore finely tuned through a series of mechanisms that control the trafficking of glucocorticoid receptors (GRs) to the nucleus, including binding to the chaperone protein FKBP5 and receptor phosphorylation, suggesting that these elements may also be affected under pathologic conditions. On these bases, we investigated FKBP5 and GR expression and phosphorylation in the hippocampus (ventral and dorsal) and in the prefrontal cortex of rats exposed to chronic mild stress (CMS) and we analyzed the effect of a concomitant antidepressant treatment. We found that animals exposed to CMS show increased expression of FKBP5 as well as enhanced cytoplasmic levels of GR, primarily in ventral hippocampus and prefrontal cortex. Chronic treatment with the antidepressant duloxetine is able to normalize such alterations, mainly in the prefrontal cortex. Moreover, we demonstrate that CMS-induced alterations of GR trafficking and transcription may be sustained by changes in receptor phosphorylation, which are also modulated by pharmacological intervention. In summary, while GR-related changes after CMS might be relevant for the depressive phenotype, the ability of antidepressant treatment to correct some of these alterations may contribute to the normalization of HPA axis dysfunctions associated with stress-related disorders.
Collapse
Affiliation(s)
- Gianluigi Guidotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Neurofarmacologia, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Neurofarmacologia, Università degli Studi di Milano, Milan, Italy
| | - Christoph Anacker
- Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, King's College London, Institute of Psychiatry, London, UK
| | - Giorgio Racagni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Neurofarmacologia, Università degli Studi di Milano, Milan, Italy
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Carmine M Pariante
- Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, King's College London, Institute of Psychiatry, London, UK
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Neurofarmacologia, Università degli Studi di Milano, Milan, Italy
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
52
|
Abstract
Depression is a leading cause of disability worldwide. Brain mechanisms underlying the clinical antidepressant efficacy of selective serotonin reuptake inhibitors (SSRI), currently the first-line treatment, remain poorly understood. Recent animal studies have implicated multiple serotonin receptor subtypes in SSRI response, opening new therapeutic perspectives.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
53
|
Abstract
A long-standing theory is that brain monoamine signalling is critically involved in the mechanisms of antidepressant drug treatment. Theories on the nature of these mechanisms commenced with ideas developed in the 1960s that the drugs act simply by increasing monoamine availability in the synapse. However, this thinking has advanced remarkably in the last decade to concepts which position that antidepressant drug action on monoamine signalling is just the starting point for a complex sequence of neuroadaptive molecular and cellular changes that bring about the therapeutic effect. These changes include activation of one or more programmes of gene expression that leads to the strengthening of synaptic efficacy and connectivity, and even switching neural networks into a more immature developmental state. It is thought that through this increase in plasticity, key neural circuits within the limbic system are more easily remodelled by incoming emotionally relevant stimuli. This article attempts to bring together previous and current knowledge of antidepressant drug action on monoamine signalling at molecular and cellular levels, and introduces current thinking that these changes interact with neuropsychological processes ultimately to elevate mood.
Collapse
Affiliation(s)
- Trevor Sharp
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
54
|
Abstract
BACKGROUND Mood disorders are expressed in many heterogeneous forms, varying from anxiety to severe major clinical depression. The disorders are expressed in individual variety through manifestations governed by co-morbidities, symptom frequency, severity, and duration, and the effects of genes on phenotypes. The underlying etiologies of mood disorders consist of complex interactive operations of genetic and environmental factors. The notion of endophenotypes, which encompasses the markers of several underlying liabilities to the disorders, may facilitate efforts to detect and define, through staging, the genetic risks inherent to the extreme complexity of disease state. AIMS This review evaluates the role of genetic biomarkers in assisting clinical diagnosis, identification of risk factors, and treatment of mood disorders. METHODS Through a systematic assessment of studies investigating the epigenetic basis for mood disorders, the present review examines the interaction of genes and environment underlying the pathophysiology of these disorders. RESULTS The majority of research findings suggest that the notion of endophenotypes, which encompasses the markers of several underlying liabilities to the disorders, may facilitate efforts to detect and define, through staging, the genetic risks inherent to the extreme complexity of the disease states. Several strategies under development and refinement show the propensity for derivation of essential elements in the etiopathogenesis of the disorders affecting drug-efficacy, drug metabolism, and drug adverse effects, e.g., with regard to selective serotonin reuptake inhibitors. These include: transporter gene expression and genes encoding receptor systems, hypothalamic-pituitary-adrenal axis factors, neurotrophic factors, and inflammatory factors affecting neuroimmune function. Nevertheless, procedural considerations of pharmacogenetics presume the parallel investment of policies and regulations to withstand eventual attempts at misuse, thereby ensuring patient integrity. CONCLUSIONS Identification of genetic biomarkers facilitates choice of treatment, prediction of response, and prognosis of outcome over a wide spectrum of symptoms associated with affective states, thereby optimizing clinical practice procedures. Epigenetic regulation of primary brain signaling, e.g., serotonin and hypothalamic-pituitary-adrenal function, and factors governing their metabolism are necessary considerations. The participation of neurotrophic factors remains indispensable for neurogenesis, survival, and functional maintenance of brain systems.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | | | | | | |
Collapse
|
55
|
Fernandes EV, Ramos SDP, Estanislau C, Venancio EJ. Efeitos comportamentais e imunológicos da fluoxetina em ratos submetidos ao nado forçado. PSICOLOGIA: TEORIA E PESQUISA 2012. [DOI: 10.1590/s0102-37722012000400008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
No presente trabalho, os efeitos comportamentais e imunomoduladores da fluoxetina foram avaliados num modelo animal de depressão, o nado forçado. Nesse, o comportamento de flutuar é sensível a antidepressivos e é usado como índice de desespero comportamental. Foram utilizados dois grupos experimentais, sendo um grupo controle tratado com salina e outro grupo teste tratado com a fluoxetina, ambos administrados por via intra-peritoneal. Os animais foram tratados três vezes ao dia por 12 dias. Adicionalmente, a resposta imune humoral a uma imunoestimulação (hemácias de carneiro) foi avaliada. A fluoxetina provocou aumento no tempo em flutuação, queda na massa corporal e menor produção total de anticorpos. Os resultados indicam uma modulação simultânea do comportamento e do sistema imunológico pela fluoxetina.
Collapse
|
56
|
Egeland M, Zhang X, Millan MJ, Mocaer E, Svenningsson P. Pharmacological or genetic blockade of the dopamine D3 receptor increases cell proliferation in the hippocampus of adult mice. J Neurochem 2012; 123:811-23. [PMID: 22957735 DOI: 10.1111/jnc.12011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 02/02/2023]
Abstract
Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki-67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5-bromo-2'-deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity-related molecule, delta-FosB, in the D3 receptor-rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild-type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Martin Egeland
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
57
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
58
|
Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N. Identification of the cortical neurons that mediate antidepressant responses. Cell 2012; 149:1152-63. [PMID: 22632977 DOI: 10.1016/j.cell.2012.03.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/17/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Our understanding of current treatments for depression, and the development of more specific therapies, is limited by the complexity of the circuits controlling mood and the distributed actions of antidepressants. Although the therapeutic efficacy of serotonin-specific reuptake inhibitors (SSRIs) is correlated with increases in cortical activity, the cell types crucial for their action remain unknown. Here we employ bacTRAP translational profiling to show that layer 5 corticostriatal pyramidal cells expressing p11 (S100a10) are strongly and specifically responsive to chronic antidepressant treatment. This response requires p11 and includes the specific induction of Htr4 expression. Cortex-specific deletion of p11 abolishes behavioral responses to SSRIs, but does not lead to increased depression-like behaviors. Our data identify corticostriatal projection neurons as critical for the response to antidepressants, and suggest that the regulation of serotonergic tone in this single cell type plays a pivotal role in antidepressant therapy.
Collapse
Affiliation(s)
- Eric F Schmidt
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
59
|
Zhu BG, Sun Y, Sun ZQ, Yang G, Zhou CH, Zhu RS. Optimal dosages of fluoxetine in the treatment of hypoxic brain injury induced by 3-nitropropionic acid: implications for the adjunctive treatment of patients after acute ischemic stroke. CNS Neurosci Ther 2012; 18:530-5. [PMID: 22515819 PMCID: PMC6493556 DOI: 10.1111/j.1755-5949.2012.00315.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/16/2012] [Accepted: 01/20/2012] [Indexed: 01/03/2023] Open
Abstract
AIM The serotonin selective reuptake inhibitor fluoxetine (Flx) has tried to treat patients suffered acute ischemic stroke because of its possible neuroprotective actions. However, besides the neuroprotective effect, Flx at high concentration also induces some actions in contradiction to neuroprotection in the brain. The purpose of this study was to investigate whether Flx presents neuroprotective effect against 3-nitropropionic acid (3-NP)-induced hypoxic brain injury, and what is the most suitable dosage of Flx. METHODS Mouse model was established by subacute systemic administration of 3-NP. Rotarod and pole tests were used to evaluate motor deficit. The oxidative stress and oxidative DNA damage were assessed respectively by measuring malondialdehyde and 8-hydroxydeoxyguanosine content in brain homogenates. RESULTS According to measurements in the rotarod test, 7 days pretreatment plus 5 days treatment of Flx at low (2.5 mg/kg/day) and, to a lesser degree, medium (5 mg/kg/day) doses exerted a rapid and strong protection against the neurotoxicity induced by 3-NP, whereas Flx at high dose (10mg/kg/day) showed a much late and light effect. Similarly, in the pole test, Flx at 2.5 mg/kg/day had the strongest protective effects. Again, only Flx administration at 2.5 mg/kg/day canceled out the enhancement of malondialdehyde and 8-hydroxydeoxyguanosine in striatum following 3-NP neurotoxication. CONCLUSIONS Flx attenuated the motor deficits induced by 3-NP in a dose-dependent manner. In contrary to the high dose, Flx at the lower doses had a more remarkable effect against 3-NP insult, similar to acute ischemic stroke.
Collapse
Affiliation(s)
- Bing-Gen Zhu
- Department of Physiology, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
60
|
Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol 2012; 15:669-79. [PMID: 21682946 DOI: 10.1017/s1461145711000940] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
P11 (S100A10) has been associated with the pathophysiology of depression both in human and rodent models. Different types of antidepressants have been shown to increase P11 levels in distinct brain regions and P11 gene therapy was recently proven effective in reversing depressive-like behaviours in mice. However, the molecular mechanisms that govern P11 gene expression in response to antidepressants still remain elusive. In this study we report decreased levels of P11, associated with higher DNA methylation in the promoter region, in the prefrontal cortex of the Flinders Sensitive Line (FSL) genetic rodent model of depression. This hypermethylated pattern was reversed to normal, as indicated by the control line, after chronic administration of escitalopram (a selective serotonin reuptake inhibitor; SSRI). The escitalopram-induced hypomethylation was associated with both an increase in P11 gene expression and a reduction in mRNA levels of two DNA methyltransferases that have been shown to maintain DNA methylation in adult forebrain neurons (Dnmt1 and Dnmt3a). In conclusion, our data further support a role for P11 in depression-like states and suggest that this gene is controlled by epigenetic mechanisms that can be affected by antidepressant treatment.
Collapse
|
61
|
Lane HY, Tsai GE, Lin E. Research Highlights. Per Med 2012. [DOI: 10.2217/pme.11.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Sunshine Psychiatric Hospital, Taichung, Taiwan
| | - Guochuan E Tsai
- Los Angeles Biomedical Research Institute & Department of Psychiatry, Harbor–UCLA Medical Center, Torrance, CA, USA
| | - Eugene Lin
- Vita Genomics, Inc., 7th Floor, Number 6, Section 1, Jung-Shing Road, Wugu Shiang, Taipei, Taiwan
| |
Collapse
|
62
|
Baudry A, Mouillet-Richard S, Launay JM, Kellermann O. New views on antidepressant action. Curr Opin Neurobiol 2011; 21:858-65. [DOI: 10.1016/j.conb.2011.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
63
|
Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry 2011; 1:e56. [PMID: 22833211 PMCID: PMC3309472 DOI: 10.1038/tp.2011.54] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022] Open
Abstract
Serotonin reuptake inhibitor (SRI) antidepressants such as fluoxetine (Prozac), promote hippocampal neurogenesis. They also increase the levels of the bcl-2 protein, whose overexpression in transgenic mice enhances adult hippocampal neurogenesis. However, the mechanisms underlying SRI-mediated neurogenesis are unclear. Recently, we identified the microRNA miR-16 as an important effector of SRI antidepressant action in serotonergic raphe and noradrenergic locus coeruleus (LC). We show here that miR-16 mediates adult neurogenesis in the mouse hippocampus. Fluoxetine, acting on serotonergic raphe neurons, decreases the amount of miR-16 in the hippocampus, which in turn increases the levels of the serotonin transporter (SERT), the target of SRI, and that of bcl-2 and the number of cells positive for Doublecortin, a marker of neuronal maturation. Neutralization of miR-16 in the hippocampus further exerts an antidepressant-like effect in behavioral tests. The fluoxetine-induced hippocampal response is relayed, in part, by the neurotrophic factor S100β, secreted by raphe and acting via the LC. Fluoxetine-exposed serotonergic neurons also secrete brain-derived neurotrophic factor, Wnt2 and 15-Deoxy-delta12,14-prostaglandin J2. These molecules are unable to mimic on their own the action of fluoxetine and we show that they act synergistically to regulate miR-16 at the hippocampus. Of note, these signaling molecules are increased in the cerebrospinal fluid of depressed patients upon fluoxetine treatment. Thus, our results demonstrate that miR-16 mediates the action of fluoxetine by acting as a micromanager of hippocampal neurogenesis. They further clarify the signals and the pathways involved in the hippocampal response to fluoxetine, which may help refine therapeutic strategies to alleviate depressive disorders.
Collapse
Affiliation(s)
- J M Launay
- AP-HP Service de Biochimie, Fondation FondaMental, Hôpital Lariboisière, Paris, France.
| | | | | | | | | |
Collapse
|
64
|
Zhang L, Li CT, Su TP, Hu XZ, Lanius RA, Webster MJ, Chung MY, Chen YS, Bai YM, Barker JL, Barrett JE, Li XX, Li H, Benedek DM, Ursano R. P11 expression and PET in bipolar disorders. J Psychiatr Res 2011; 45:1426-31. [PMID: 21722919 DOI: 10.1016/j.jpsychires.2011.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a common mental disorder, subdivided into BD-I and BD-II. Currently, few biomarkers differentiate BD-I from BD-II. However, it is suggested that peripheral blood mononuclear cell (PBMC) mRNA levels of p11 and positron emission tomography (PET) might be potential biomarkers for BD. METHODS Healthy controls (HCs), BD-I, and BD-II patients in remission (n = 20 in each group) underwent a resting PET study with the radiotracer [(18)F]-2-deoxy-2-fluoro-d-glucose ((18)F-FDG). PBMC p11 mRNA levels were determined by quantitative real-time PCR. RESULTS Comparing BD patients to HCs, normalized glucose metabolism (NGM) was higher in the hippocampus, parahippocampus, and amygdala, but lower in the anterior cingulate cortex (aCC), medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex (dlPFC), insula and thalamus. Compared to BD-II, BD-I had hypometabolism of glucose in the aCC, bilateral middle and inferior gyrus, insula and striatum, and hypermetabolism of glucose in the left parahippocampus. PBMC p11 mRNA was over-expressed in both BD-I and BD-II, although there was no significant difference in its expression levels between BD-I and B-II patients. Further, there were significant positive correlations between PBMC p11 mRNA and NGM in the mPFC, aCC, left insula, bilateral orbitofrontal cortex (OFC), and left middle, inferior and superior temporal gyri. Also, PBMC p11 mRNA was positively correlated to the number of depressive episodes in BD patients, especially in BD-I patients. DISCUSSION This study demonstrates that PBMC p11 mRNA expression is associated with neural activation in the brain of BD patients and warrants a larger translational study to determine its clinical utility.
Collapse
Affiliation(s)
- Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez De Fonseca F, Estivill-Torrús G, Santín LJ. Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA₁ receptor knockout mice. PLoS One 2011; 6:e25522. [PMID: 21980482 PMCID: PMC3183048 DOI: 10.1371/journal.pone.0025522] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. Conclusions/Significance These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Carolina Hoyo-Becerra
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Guillermo Estivill-Torrús
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
- * E-mail:
| |
Collapse
|
66
|
Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, Price J, Pariante CM. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 2011; 16:738-50. [PMID: 21483429 PMCID: PMC3121947 DOI: 10.1038/mp.2011.26] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 02/06/2023]
Abstract
Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3-10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, doublecortin (Dcx)-positive neuroblasts (+16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons (+26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 5'-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, (+14%) an effect which was also abolished by RU486. Furthermore, the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram, enhanced the effects of sertraline, whereas the protein kinase A (PKA)-inhibitor, H89, suppressed the effects of sertraline. Indeed, sertraline increased GR transactivation, modified GR phosphorylation and increased expression of the GR-regulated cyclin-dependent kinase-2 (CDK2) inhibitors, p27(Kip1) and p57(Kip2). In conclusion, our data suggest that the antidepressant, sertraline, increases human hippocampal neurogenesis via a GR-dependent mechanism that requires PKA signaling, GR phosphorylation and activation of a specific set of genes. Our data point toward an important role for the GR in the antidepressant-induced modulation of neurogenesis in humans.
Collapse
Affiliation(s)
- C Anacker
- King's College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK
- National Institute for Health Research ‘Biomedical Research Centre for Mental Health', Institute of Psychiatry and South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), London, UK
| | - P A Zunszain
- King's College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK
| | - A Cattaneo
- King's College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK
- Genetics Unit, IRCCS San Giovanni di Dio, Brescia, Italy
| | - L A Carvalho
- King's College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK
| | - M J Garabedian
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - S Thuret
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), London, UK
| | - J Price
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), London, UK
| | - C M Pariante
- King's College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK
- National Institute for Health Research ‘Biomedical Research Centre for Mental Health', Institute of Psychiatry and South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
67
|
Abstract
The neurogenesis hypothesis of depression was originally formed upon the demonstration that stress impacts levels of adult neurogenesis in the hippocampus. Since then much work has established that newborn neurons in the dentate gyrus are required for mediating some of the beneficial effects of antidepressant treatment. Recent studies combining behavioral, molecular and electrophysiological approaches have attempted to make sense of the role young neurons play in modulating mood by demonstrating a potential role in regulating the circuitry in the brain that underlies depression. Here we discuss the work that led to the neurogenesis hypothesis of depression, and the subsequent studies that have sought to test this hypothesis. We also discuss different animal models of depression that have been used to test the role of neurogenesis in mediating the antidepressant response.
Collapse
|
68
|
Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A 2011; 108:9262-7. [PMID: 21518864 DOI: 10.1073/pnas.1104836108] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antiinflammatory drugs achieve their therapeutic actions at least in part by regulation of cytokine formation. A "cytokine hypothesis" of depression is supported by the observation that depressed individuals have elevated plasma levels of certain cytokines compared with healthy controls. Here we investigated a possible interaction between antidepressant agents and antiinflammatory agents on antidepressant-induced behaviors and on p11, a biochemical marker of depressive-like states and antidepressant responses. We found that widely used antiinflammatory drugs antagonize both biochemical and behavioral responses to selective serotonin reuptake inhibitors (SSRIs). In contrast to the levels detected in serum, we found that frontal cortical levels of certain cytokines (e.g., TNFα and IFNγ) were increased by serotonergic antidepressants and that these effects were inhibited by antiinflammatory agents. The antagonistic effect of antiinflammatory agents on antidepressant-induced behaviors was confirmed by analysis of a dataset from a large-scale real-world human study, "sequenced treatment alternatives to relieve depression" (STAR*D), underscoring the clinical significance of our findings. Our data indicate that clinicians should carefully balance the therapeutic benefits of antiinflammatory agents versus the potentially negative consequences of antagonizing the therapeutic efficacy of antidepressant agents in patients suffering from depression.
Collapse
|
69
|
Björk K, Svenningsson P. Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 2011; 51:211-42. [PMID: 20887195 DOI: 10.1146/annurev-pharmtox-010510-100520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoamines and their cognate receptors are widespread in the central nervous system and are vital for normal brain function. Dysfunction in these systems underlies several psychiatric and neurological disease states, and consequently monoamines are targets of a host of pharmacotherapies. This review provides an overview on how monoamine receptors are regulated by adaptor proteins and lipid rafts with emphasis on interactions in nerve cells. Monoamine receptors have prominent intracellular loops that provide binding sites for adaptor proteins. Receptor function is further modulated by cholesterol and submembranous microdomains termed lipid rafts. These interactions determine several facets of G protein-coupled receptor (GPCR) function including trafficking, localization, and signaling. Possible roles of adaptor proteins and lipid rafts in disease states and in mediating actions of drugs and therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Karl Björk
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
70
|
Abstract
Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Collapse
|
71
|
Co-expression of serotonin 5-HT(1B) and 5-HT(4) receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology 2011; 61:442-50. [PMID: 21300076 DOI: 10.1016/j.neuropharm.2011.01.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 02/06/2023]
Abstract
p11 is an adaptor protein which binds to serotonin 5-HT(1B) receptors and 5-HT(4) receptors and regulates their localization at the cell surface. In the present study, we examined to what extent p11 containing neurons co-expressed 5-HT(1B)R and/or 5-HT(4)R in cerebral cortex, hippocampus, cerebellum and caudate-putamen. A triple-labeling immunohistochemical approach was taken using antibodies to detect native p11 and 5-HT(1B)R combined with visualization of EGFP driven under the 5-HT(4)R promoter in BAC-transgenic mice. In the caudate-putamen, the hippocampal pyramidal cell layer of CA1 and the hippocampal granule cell layer of dentate gyrus, most p11 containing cells co-expressed both 5-HT(1B)R and 5-HT(4)R. In the cingulate cortex, stratum radiatum/oriens of CA1, hilus of the dentate gyrus and cerebellar cortex, many cells co-expressed p11 and 5-HT(1B)R, but not 5-HT(4)R. In the studied brain regions, few cells solely expressed p11 without any significant expression of 5-HT(1B)R or 5-HT(4)R. It can be concluded that p11 is anatomically positioned to modulate serotonin neurotransmission, via 5-HT(1B)R and 5-HT(4)R, in brain regions important for emotionality, cognition and locomotion.
Collapse
|
72
|
Rebola N, Simões AP, Canas PM, Tomé AR, Andrade GM, Barry CE, Agostinho PM, Lynch MA, Cunha RA. Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 2011; 117:100-11. [PMID: 21235574 DOI: 10.1111/j.1471-4159.2011.07178.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blockade of adenosine A(2A) receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially because A2AR efficiently control peripheral inflammation. Thus, we tested if the intracerebroventricular injection of a selective A2AR antagonist (SCH58261) would attenuate the changes in the hippocampus triggered by intraperitoneal administration of lipopolysaccharide (LPS) that induces neuroinflammation through microglia activation. LPS administration triggers an increase in inflammatory mediators like interleukin-1β that causes biochemical changes (p38 and c-jun N-terminal kinase phosphorylation and caspase 3 activation) contributing to neuronal dysfunction typified by decreased long-term potentiation, a form of synaptic plasticity. Long-term potentiation, measured 30 min after the tetanus, was significantly lower in LPS-treated rats compared with control-treated rats, while SCH58261 attenuated the LPS-induced change. The LPS-induced increases in phosphorylation of c-jun N-terminal kinase and p38 and activation of caspase 3 were also prevented by SCH58261. Significantly, SCH58261 also prevented the LPS-induced recruitment of activated microglial cells and the increase in interleukin-1β concentration in the hippocampus, indicating that A2AR activation is a pivotal step in mediating the neuroinflammation triggered by LPS. These results indicate that A2AR antagonists prevent neuroinflammation and support the hypothesis that this mechanism might contribute for the ability of A2AR antagonists to control different neurodegenerative diseases known to involve neuroinflammation.
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Warner-Schmidt JL, Chen EY, Zhang X, Marshall JJ, Morozov A, Svenningsson P, Greengard P. A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol Psychiatry 2010; 68:528-35. [PMID: 20591415 PMCID: PMC2929288 DOI: 10.1016/j.biopsych.2010.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/19/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The protein p11 (also called S100A10) is downregulated in human and rodent depressive-like states. Considerable experimental evidence also implicates p11 in the mechanism of action of antidepressant drugs and electroconvulsive seizures, in part due to its interaction with specific serotonin receptors. Brain-derived neurotrophic factor (BDNF) has been linked to the therapeutic activity of antidepressants in rodent models and humans. In the current study, we investigated whether BDNF regulates p11 in vitro and in vivo. METHODS We utilized primary neuronal cultures, in vivo analyses of transgenic mice, and behavioral techniques to assess the effects of BDNF on p11. RESULTS Results indicate that BDNF stimulates p11 expression through tropomyosin-related kinase B (trkB) receptors and via the mitogen-activated protein kinase signaling pathway. Brain-derived neurotrophic factor-induced changes in p11 in vivo correlate with changes in ligand binding to the 5-hydroxytryptamine receptor 1B, the subcellular localization of which is known to be regulated by p11. Behavioral studies demonstrate that p11 knockout mice are insensitive to the antidepressant actions of BDNF. CONCLUSIONS Taken together, our data demonstrate that p11 levels are regulated by BDNF in vitro and in vivo and that the antidepressant-like effect of BDNF in two well-established behavioral models requires p11. These data support a role for p11 in the antidepressant activity of neurotrophins.
Collapse
Affiliation(s)
| | - Emily Y. Chen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY
| | - Xiaoqun Zhang
- Center for Molecular Medicine, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - John J. Marshall
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Maryland
| | - Per Svenningsson
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY,Center for Molecular Medicine, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY
| |
Collapse
|