51
|
Precise and rapid solvent-assisted geometric protein self-patterning with submicron spatial resolution for scalable fabrication of microelectronic biosensors. Biosens Bioelectron 2021; 177:112968. [PMID: 33450615 DOI: 10.1016/j.bios.2021.112968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 01/01/2021] [Indexed: 11/22/2022]
Abstract
Precise and high-resolution coupling of functional proteins with micro-transducers is critical for the manufacture of miniaturized bioelectronic devices. Moreover, electrochemistry on microelectrodes has had a major impact on electrochemical analysis and sensor technologies, since the small size of microelectrode affects the radial diffusion flux of the analyte to deliver enhanced mass transport and electrode kinetics. However, a large technology gap has existed between the process technology associated with such microelectronics and the conventional bio-conjugation techniques that are generally used. Here, we report on a high-resolution and rapid geometric protein self-patterning (GPS) method using solvent-assisted protein-micelle adsorption printing to couple biomolecules onto microelectrodes with a minimum feature size of 5 μm and a printing time of about a minute. The GPS method is versatile for micropatterning various biomolecules including enzymes, antibodies and avidin-biotinylated proteins, delivering good geometric alignment and preserving biological functionality. We further demonstrated that enzyme-coupled microelectrodes for glucose detection exhibited good electrochemical performance which benefited from the GPS method to maximize effective signal transduction at the bio-interface. These microelectrode arrays maintained fast convergent analyte diffusion displaying typical steady-state I-V characteristics, fast response times, good linear sensitivity (0.103 nA mm-2 mM-1, R2 = 0.995) and an ultra-wide linear dynamic range (2-100 mM). Our findings provide a new technical solution for the precise and accurate coupling of biomolecules to a microelectronic array with important implications for the scaleup and manufacture of diagnostics, biofuel cells and bioelectronic devices that could not be realized economically by other existing techniques.
Collapse
|
52
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
53
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
54
|
Lei L, Zhao C, Zhu X, Yuan S, Dong X, Zuo Y, Liu H. Nonenzymatic Electrochemical Sensor for Wearable Interstitial Fluid Glucose Monitoring. ELECTROANAL 2021. [DOI: 10.1002/elan.202060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiaofei Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Shuai Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| |
Collapse
|
55
|
Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1109. [PMID: 33562639 PMCID: PMC7915135 DOI: 10.3390/s21041109] [Citation(s) in RCA: 419] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Varnakavi. Naresh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
56
|
Grant D, Tomlinson D, Tsintzas K, Kolić P, Onambele-Pearson GL. The Effects of Displacing Sedentary Behavior With Two Distinct Patterns of Light Activity on Health Outcomes in Older Adults (Implications for COVID-19 Quarantine). Front Physiol 2021; 11:574595. [PMID: 33424618 PMCID: PMC7793876 DOI: 10.3389/fphys.2020.574595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: The COVID-19 pandemic is limiting outdoor and community-based activities, especially for older adults owing to the requirement for self-isolation, potentially increasing prolonged sedentary behavior (SB). Given a poor tolerance for intense exercise, SB displacement with light intensity physical activity (LIPA) is a promising health enhancing alternative. Therefore, the aims of this study were to investigate the effects of two different types of SB displacement on health outcomes in older adults and any differential impact of associated LIPA pattern. Method: 28 older women (age: 73 ± 5 years, height: 1.60 ± 0.07 m, weight: 67 ± 10 kg, and BMI: 26.1 ± 3.6 kg/m2) underwent overnight fasted dual energy x-ray absorptiometry (DEXA) imaging, blood sampling, and functional assessments before being randomly allocated to one of two groups: (1) single continuous bout of 45–50 min LIPA daily (n = 14); or (2) SB fragmentation (SBF; ~48 min LIPA daily, 2 min LIPA for every 30 min of SB; n = 14). Compliance was systematically monitored using tri-axial accelerometery. All measures were taken at weeks 0 and 8. Results: Physical behavior significantly altered (decreased SB/increased LIPA; p < 0.05) and to a similar extent in both groups. We observed a significant reduction in serum triglycerides [p = 0.045, effect size (ɳp2) = 0.15; SBF: −0.26 ± 0.77 mmol/L, LIPA: −0.26 ± 0.51 mmol/L], improved 30 s sit-to-stand (STS) count (p = 0.002, ɳp2 = 0.32, 2 ± 3 STS) and speed (p = 0.009, ɳp2 = 0.35, −10 ± 33%), as well as increased average handgrip strength (p = 0.001, ɳp2 = 0.45, 6 ± 12%), and gait speed (p = 0.005, ɳp2 = 0.27, 0.09 ± 0.16 m/s) in both groups. Interestingly, SBF caused a greater increase in peak handgrip strength (8 ± 14%), compared to LIPA (2 ± 10%; p = 0.04, ɳp2 = 0.38). Conclusion: SB displacement induced significant improvements in fasting triglycerides, gait speed, as-well as STS endurance/speed in older women. Frequent vs. continuous SB displacement also caused greater increases in handgrip strength. While both SB displacement protocols display promise as efficacious home-based interventions for self-isolating older adults, our results would suggest a physical functioning advantage of the SBF protocol for certain outcomes.
Collapse
Affiliation(s)
- Dale Grant
- Department of Sports and Exercise Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - David Tomlinson
- Department of Sports and Exercise Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Faculty of Medicine & Health Sciences, School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Petra Kolić
- Department of Sports and Exercise Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gladys Leopoldine Onambele-Pearson
- Department of Sports and Exercise Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
57
|
Zhang S, Mou X, Cui Z, Hou C, Yang W, Gao H, Luo X. Partial sulfidation for constructing Cu 2O–CuS heterostructures realizing enhanced electrochemical glucose sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj00298h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Cu2O–CuS heterostructure was constructed to elucidate the relationship between heterojunctions and electrochemical glucose sensing.
Collapse
Affiliation(s)
- Sai Zhang
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Xiaoming Mou
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Zhao Cui
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Changmin Hou
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Wenlong Yang
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Hongtao Gao
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Xiliang Luo
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| |
Collapse
|
58
|
Highly selective and rapid non-enzymatic glucose sensing at ultrathin layered Nb doped C3N4 for extended linearity range. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
60
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
61
|
Wang Y, Han C, Yu L, Wu J, Min Y, Tan J, Zhao Y, Zhang P. Etching-controlled suppression of fluorescence resonance energy transfer between nitrogen-doped carbon dots and Ag nanoprisms for glucose assay and diabetes diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118713. [PMID: 32759033 DOI: 10.1016/j.saa.2020.118713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Numerous methods have been developed for glucose detection, only few cases can be really applied in clinical diagnosis. Herein, we report a new approach to achieve the detection of glucose in clinical samples and distinguishing the diabetic patients with healthy ones. Specifically, a fluorescence resonance energy transfer (FRET) system is established first, where nitrogen-doped carbon dots (N-CDs) and Ag nanoprisms (AgNPRs) with good spectral overlap act as energy donor and acceptor, respectively. Then, the FRET can be inhibited through oxidative etching of the energy acceptor in the presence of glucose and glucose oxidase, where hydrogen peroxide is generated to transform AgNPRs into Ag+ ions. Based on the turn-on fluorescent signal versus glucose concentration, a new method for quantitative detection of glucose is developed. This etching-induced analytical method is simple, reliable, robust and cost-effective, which is promising to assist the doctors to clinically diagnose diabetes and other diseases related to metabolic disorders.
Collapse
Affiliation(s)
- Yi Wang
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Chaoqin Han
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Lan Yu
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yuanhong Min
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Juan Tan
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yannan Zhao
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Pu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
62
|
Jiao Y, Li J, Xiang J, Chen Z. Tungsten disulfide nanosheets-based colorimetric assay for glucose sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118706. [PMID: 32745935 DOI: 10.1016/j.saa.2020.118706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
We have developed a glucose oxidase (GOx)-mediated strategy for glucose detection, which is based on the intrinsic peroxidase-like activity of WS2 as a catalyst for the 3,3',5,5'-tetramethylbenzidine‑hydrogen peroxide (TMB-H2O2) reaction. The colorimetric assay involves two parts: generation of H2O2 from the oxidation of glucose catalyzed by GOx, and WS2 nanosheets that catalyze the reaction between TMB and H2O2. In this colorimetric assay, the enhancement of colorimetric signals depends directly on the increased H2O2 concentration, which, in turn, relies on the glucose concentration. The results show that the concentrations of the glucose were directly proportional to absorbance of the TMB solutions over a range of 1 nM-500 μM with a limit of detection of 0.1445 nM. In addition, this new colorimetric assay has been utilized for glucose detection in human serum with a satisfactory result.
Collapse
Affiliation(s)
- Yunfei Jiao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Justin Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Junyi Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
63
|
Lotfi Z, Gholivand MB, Shamsipur M. Non-enzymatic glucose sensor based on a g-C 3N 4/NiO/CuO nanocomposite. Anal Biochem 2020; 616:114062. [PMID: 33285122 DOI: 10.1016/j.ab.2020.114062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a non-enzymatic glucose sensor was developed based on a g-C3N4/NiO/CuO nanocomposite immobilized on a glassy carbon electrode (GCE). Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were utilized for the characterization of the synthesized g-C3N4/NiO/CuO nanocomposite. The electrocatalytic activity of the nanocomposite was investigated by cyclic voltammetry, and the amperometric technique was applied for monitoring glucose. The g-C3N4/NiO/CuO/GCE exhibited better electrocatalytic performance than g-C3N4/GCE, g-C3N4/CuO/GCE and g-C3N4/NiO/GCE. Under optimized conditions, the proposed sensor offered a linearity ranging from 0.4 μM to 8.5 mM with a detection limit of 0.1 μM and a sensitivity of 362.12 μA mM-1 cm-2. The constructed sensor displayed favorable reproducibility, outstanding selectivity, and long-term performance. These results reveal that the sensor is a promising candidate for blood glucose sensing.
Collapse
Affiliation(s)
- Z Lotfi
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - M B Gholivand
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - M Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
64
|
Siril PF, Türk M. Synthesis of Metal Nanostructures Using Supercritical Carbon Dioxide: A Green and Upscalable Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001972. [PMID: 33164289 DOI: 10.1002/smll.202001972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanostructures have numerous applications as industrial catalysts and sensing platforms. Supercritical carbon dioxide (scCO2 ) is a green medium for the scalable preparation of nanomaterials. Supercritical fluid reactive deposition (SFRD) and other allied techniques can be employed for the mass production of metal nanostructures for various applications. The present article reviews the recent reports on the scCO2 -assisted preparation of zero-valent metal nanomaterials and their applications. A brief description of the science of pure supercritical fluids, especially CO2 , and the basics of binary mixtures composed of scCO2 and a low volatile substance, e.g., an organometallic precursor are presented. The benefits of using scCO2 for preparing metal nanomaterials, especially as a green solvent, are also being highlighted. The experimental conditions that are useful for the tuning of particle properties are reviewed thoroughly. The range of modifications to the classical SFRD methods and the variety of metallic nanomaterials that can be synthesized are reviewed and presented. Finally, the broad ranges of applications that are reported for the metallic nanomaterials that are synthesized using scCO2 are reviewed. A brief summary along with perspectives about future research directions is also presented.
Collapse
Affiliation(s)
- Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi (IIT Mandi), Mandi, Himachal Pradesh, 175005, India
| | - Michael Türk
- Institut für Technische Thermodynamik and Kältetechnik, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131, Karlsruhe, Germany
| |
Collapse
|
65
|
Yu H, Chong Y, Zhang P, Ma J, Li D. A D-shaped fiber SPR sensor with a composite nanostructure of MoS 2-graphene for glucose detection. Talanta 2020; 219:121324. [PMID: 32887061 DOI: 10.1016/j.talanta.2020.121324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022]
Abstract
Fiber-based techniques make it possible to implant a miniaturized and flexible surface plasmon resonance (SPR) sensor into the human body for glucose detection. However, the miniaturization of fiber SPR sensors results in low sensitivity compared with traditional prism-type SPR sensors due to limited sensing area. In this paper, we proposed a D-shaped fiber SPR sensor with a composite nanostructure of molybdenum disulfide (MoS2)-graphene to improve the sensor sensitivity. Compared with the traditional cylindrical fiber, the planar sensing area on the side-polished fiber makes it easier to modify two-dimensional materials. Chemical vapor deposition (CVD) graphene and CVD MoS2 were modified on the sensor surface to obtain the MoS2-graphene composite nanostructure. π-π stacking interactions were used to modify pyrene-1-boronic acid (PBA) on the graphene. The excellent photoelectric properties of the MoS2-graphene composite nanostructure and the ability of PBA to specifically bind glucose molecules improved the glucose detection performance of the SPR sensor. The results show that specific detection of glucose was realized and that the highest sensitivity was achieved with three-layer MoS2 and monolayer graphene.
Collapse
Affiliation(s)
- Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, 300072, China
| | - Yang Chong
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, 300072, China
| | - Penghao Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China
| | - Jiaming Ma
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China.
| |
Collapse
|
66
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
67
|
A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. SENSORS 2020; 20:s20216013. [PMID: 33113948 PMCID: PMC7660208 DOI: 10.3390/s20216013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/17/2023]
Abstract
The research field of glucose biosensing has shown remarkable growth and development since the first reported enzyme electrode in 1962. Extensive research on various immobilization methods and the improvement of electron transfer efficiency between the enzyme and the electrode have led to the development of various sensing platforms that have been constantly evolving with the invention of advanced nanostructures and their nano-composites. Examples of such nanomaterials or composites include gold nanoparticles, carbon nanotubes, carbon/graphene quantum dots and chitosan hydrogel composites, all of which have been exploited due to their contributions as components of a biosensor either for improving the immobilization process or for their electrocatalytic activity towards glucose. This review aims to summarize the evolution of the biosensing aspect of these glucose sensors in terms of the various generations and recent trends based on the use of applied nanostructures for glucose detection in the presence and absence of the enzyme. We describe the history of these biosensors based on commercialized systems, improvements in the understanding of the surface science for enhanced electron transfer, the various sensing platforms developed in the presence of the nanomaterials and their performances.
Collapse
|
68
|
Xu J, Sun Y, Zhang J. Solvothermal synthesis of Fe 3O 4 nanospheres for high-performance electrochemical non-enzymatic glucose sensor. Sci Rep 2020; 10:16026. [PMID: 32994458 PMCID: PMC7524729 DOI: 10.1038/s41598-020-73090-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022] Open
Abstract
Ferroferric oxide (Fe3O4) nanospheres have been synthesized via a facile solvothermal procedure to serve as an electrode material for high performance non-enzymatic glucose sensor. The as-synthesized Fe3O4 nanospheres with a uniform size from 16 to 18 nm, which can increase the reaction contact area and the active sites in the process of glucose detection. Benefiting from the particular nanoscale structure, the Fe3O4 nanospheres obviously enhanced the activity of electrocatalytic oxidation towards glucose. When the Fe3O4 nanospheres material was used for non-enzymatic glucose sensor, several electrochemical properties including the high sensitivity 6560 μA mM-1 cm-2 (0.1-1.1 mM), limit of detection 33 μM (S/N = 3) and good long-term stability were well demonstrated. Furthermore, Fe3O4 nanospheres electrode confirmed the excellent performance of selectivity in glucose detection with the interfering substances existed such as urea, citric acid, ascorbic acid, and NaCl. Due to the excellent electrocatalytic activity in alkaline solution, the Fe3O4 nanospheres material can be considered as a promising candidate in blood glucose monitoring.
Collapse
Affiliation(s)
- Jiasheng Xu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, People's Republic of China
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Yuting Sun
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Jie Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, People's Republic of China.
| |
Collapse
|
69
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
70
|
Gwon K, Lee S, Nam H, Shin JH. Disposable Strip-Type Biosensors for Amperometric Determination of Galactose. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Metal-Organic-Framework FeBDC-Derived Fe 3O 4 for Non-Enzymatic Electrochemical Detection of Glucose. SENSORS 2020; 20:s20174891. [PMID: 32872490 PMCID: PMC7506652 DOI: 10.3390/s20174891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 µA mM−1.cm−2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 µM.
Collapse
|
72
|
Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Biosens Bioelectron 2020; 160:112220. [DOI: 10.1016/j.bios.2020.112220] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
|
74
|
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
This review summarizes the fundamentals of the phenomenon of electron transfer (ET) reactions occurring in redox enzymes that were widely employed for the development of electroanalytical devices, like biosensors, and enzymatic fuel cells (EFCs). A brief introduction on the ET observed in proteins/enzymes and its paradigms (e.g., classification of ET mechanisms, maximal distance at which is observed direct electron transfer, etc.) are given. Moreover, the theoretical aspects related to direct electron transfer (DET) are resumed as a guideline for newcomers to the field. Snapshots on the ET theory formulated by Rudolph A. Marcus and on the mathematical model used to calculate the ET rate constant formulated by Laviron are provided. Particular attention is devoted to the case of glucose oxidase (GOx) that has been erroneously classified as an enzyme able to transfer electrons directly. Thereafter, all tools available to investigate ET issues are reported addressing the discussions toward the development of new methodology to tackle ET issues. In conclusion, the trends toward upcoming practical applications are suggested as well as some directions in fundamental studies of bioelectrochemistry.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA;
| | | |
Collapse
|
75
|
Bagyalakshmi S, Sivakami A, Balamurugan K. A Zno nanorods based enzymatic glucose biosensor by immobilization of glucose oxidase on a chitosan film. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
76
|
Azharudeen AM, Karthiga R, Rajarajan M, Suganthi A. Fabrication, characterization of polyaniline intercalated NiO nanocomposites and application in the development of non-enzymatic glucose biosensor. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
77
|
Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M. MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Anal Chem 2020; 92:2452-2459. [PMID: 31976642 DOI: 10.1021/acs.analchem.9b03634] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition metal carbides, known as MXenes, are generated via the selective etching of "A" layers from their layered, ternary parent compounds, MAX phases, where M corresponds to early d-transition metal, A being a main group sp-element from either Group 13 or 14 and carbon or nitrogen being denoted by X. MXenes are being recognized as a new and uprising class of 2D materials with extraordinary physical and electrochemical properties. The huge specific surface area and outstanding electrical conductivity of MXenes, make them ideal candidates for sensing and energy applications. Herein, we demonstrated the successful incorporation of pristine MXene, Ti3C2 produced via HF etching and subsequent delamination with TBAOH, as a transducer platform toward the development of a second generation electrochemical glucose biosensor. Chronoamperometric studies demonstrate that the proposed biosensing system exhibits high selectivity and excellent electrocatalytic activity toward the detection of glucose, spanning over wide linear ranges of 50-27 750 μM and possess a low limit of detection of 23.0 μM. The findings reported in this study conceptually proves the probable applications of pristine MXenes toward the field of biosensors and pave ways for the future developments of highly selective and sensitive electrochemical biosensors for biomedical and food sampling applications.
Collapse
Affiliation(s)
- Hui Ling Chia
- NTU Institute for Health Technologies, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore.,Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Jesus J Gonzalez-Julian
- Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic.,Department of Medical Research, China Medical University Hospital , China Medical University , No. 91 Hsueh-Shih Road , Taichung , Taiwan.,Future Energy and Innovation Laboratory, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic.,Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro, Seodaemun-gu , Seoul 03722 , Korea
| |
Collapse
|
78
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
79
|
Sarafbidabad M, Jazi HK, Rafienia M. A Novel Non-enzymatic Biosensor Based on Ti-Metallic Glass Thin Film: The Blood Glucose Oxidation Approach. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:35-41. [PMID: 32166075 PMCID: PMC7038744 DOI: 10.4103/jmss.jmss_15_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/25/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Material selection is a key issue for the fabrication of non-enzymatic electrode in glucose biosensors. Metallic glass (MG) as an advanced innovative material can provides many basic structural requirements of electrodes. A novel non-enzymatic biosensor based on Ti57Cu28{Zr0.95-Hf0.05}XSi15-X MG (Ti-MG) thin film was introduced for glucose oxidation. METHODS The Ti-MG thin film was deposited on the carbon substrate of screen-printed carbon electrode (SPCE), and the Ti-MG modified SPCE was fabricated as Ti-MG/SPCE. The morphology and structure of the Ti-MG thin film were characterized by field emission scanning electron microscope and X-ray diffraction. Electrochemical evaluations were studied by electrochemical impedance spectroscopy and cyclic voltammetry. RESULTS The Ti-MG was sputtered on the carbon substrate in the form of a porous spongy thin film with 285 nm thickness and nanoparticles with average diameter size of 110 nm. The Ti-MG/SPCE showed low charge transfer resistance to the electron transfer and high electrocatalytic activity toward the oxidation of glucose in PBS (pH = 7.4) solution. This biosensor exhibited good analytical performance with a linear range from 2 to 8 mM glucose and sensitivity of 0.017 μA mM-1. CONCLUSION The experimental results indicate that Ti-MG thin film has a high ability to electron transfer and glucose oxidation for the development of non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Hamidreza Kaviani Jazi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
80
|
Tu T, Liang B, Cao Q, Fang L, Zhu Q, Cai Y, Ye X. Fully transient electrochemical testing strips for eco-friendly point of care testing. RSC Adv 2020; 10:7241-7250. [PMID: 35493906 PMCID: PMC9049791 DOI: 10.1039/c9ra09847j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/08/2020] [Indexed: 01/28/2023] Open
Abstract
Transient electrochemical strips with in-time degradability offer possibility for eco-friendly POCT detection.
Collapse
Affiliation(s)
- Tingting Tu
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Bo Liang
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Qingpeng Cao
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Lu Fang
- College of Automation
- Hangzhou Dianzi University
- Hangzhou 310018
- PR China
| | - Qin Zhu
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Yu Cai
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Xuesong Ye
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| |
Collapse
|
81
|
Clinical Evaluation of a Novel Micro-lancet (ML) for Minimizing Lancing Pain. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3411-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Carbon Nanotube-Based Electrochemical Biosensor for Label-Free Protein Detection. BIOSENSORS-BASEL 2019; 9:bios9040144. [PMID: 31861101 PMCID: PMC6956173 DOI: 10.3390/bios9040144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
There is a growing need for biosensors that are capable of efficiently and rapidly quantifying protein biomarkers, both in the biological research and clinical setting. While accurate methods for protein quantification exist, the current assays involve sophisticated techniques, take long to administer and often require highly trained personnel for execution and analysis. Herein, we explore the development of a label-free biosensor for the detection and quantification of a standard protein. The developed biosensors comprise carbon nanotubes (CNTs), a specific antibody and cellulose filtration paper. The change in electrical resistance of the CNT-based biosensor system was used to sense a standard protein, bovine serum albumin (BSA) as a proof-of-concept. The developed biosensors were found to have a limit of detection of 2.89 ng/mL, which is comparable to the performance of the typical ELISA method for BSA quantification. Additionally, the newly developed method takes no longer than 10 min to perform, greatly reducing the time of analysis compared to the traditional ELISA technique. Overall, we present a versatile, affordable, simplified and rapid biosensor device capable of providing great benefit to both biological research and clinical diagnostics.
Collapse
|
83
|
Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
84
|
Zhou X, Sveiven M, Hall DA. A CMOS Magnetoresistive Sensor Front-End With Mismatch-Tolerance and Sub-ppm Sensitivity for Magnetic Immunoassays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1254-1263. [PMID: 31670677 DOI: 10.1109/tbcas.2019.2949725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic biosensing is an emerging technique for ultra-sensitive point-of-care (PoC) biomolecular detection. However, the large baseline-to-signal ratio and sensor-to-sensor mismatch in magnetoresistive (MR) biosensors severely complicates the design of the analog front-end (AFE) due to the high dynamic range (DR) required. The proposed AFE addresses these issues through new architectural and circuit level techniques including fast settling duty-cycle resistors (DCRs) to reduce readout time and a high frequency interference rejection (HFIR) sampling technique embedded in the ADC to relax the DR requirement. The AFE achieves an input-referred noise of 46.4 nT/√Hz, an input-referred baseline of less than 0.235 mT, and a readout time of 11 ms while consuming just 1.39 mW. Implemented in a 0.18 μm CMOS process, this work has state-of-the-art performance with 22.7× faster readout time, >7.8× lower baseline, and 2.3× lower power than previously reported MR sensor AFEs.
Collapse
|
85
|
Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, reagentless aptamer biosensors, named aptasensors, have shown significant advancements. Particularly, electrochemical aptasensors could change the field of biosensors in this era, where digitalization seems to be a common goal of many fields. Biomedical devices are integrating electronic technologies for detecting pathogens, biomolecules, small molecules, and ions, and the physical-chemical properties of nucleic acid aptamers makes them very interesting for these devices. Aptamers can be easily synthesized and functionalized with functional groups for immobilization and with redox chemical groups that allow for the conversion of molecular interactions into electrical signals. Furthermore, non-labeled aptamers have also been utilized. This review presents the current challenges involved in aptasensor architectures based on gold electrodes as transducers.
Collapse
|
86
|
Venegas CJ, Gutierrez FA, Eguílaz M, Marco JF, Reeves-McLaren N, Rivas GA, Ruiz-León D, Bollo S. Co 2TiO 4/Reduced Graphene Oxide Nanohybrids for Electrochemical Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1611. [PMID: 31766234 PMCID: PMC6915725 DOI: 10.3390/nano9111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
Abstract
For the first time, the synthesis, characterization, and analytical application for hydrogen peroxide quantification of the hybrid materials of Co2TiO4 (CTO) and reduced graphene oxide (RGO) is reported, using in situ (CTO/RGO) and ex situ (CTO+RGO) preparations. This synthesis for obtaining nanostructured CTO is based on a one-step hydrothermal synthesis, with new precursors and low temperatures. The morphology, structure, and composition of the synthesized materials were examined using scanning electron microscopy, X-ray diffraction (XRD), neutron powder diffraction (NPD), and X-ray photoelectron spectroscopy (XPS). Rietveld refinements using neutron diffraction data were conducted to determine the cation distributions in CTO. Hybrid materials were also characterized by Brunauer-Emmett-Teller adsorption isotherms, Scanning Electron microscopy, and scanning electrochemical microscopy. From an analytical point of view, we evaluated the electrochemical reduction of hydrogen peroxide on glassy carbon electrodes modified with hybrid materials. The analytical detection of hydrogen peroxide using CTO/RGO showed 11 and 5 times greater sensitivity in the detection of hydrogen peroxide compared with that of pristine CTO and RGO, respectively, and a two-fold increase compared with that of the RGO+CTO modified electrode. These results demonstrate that there is a synergistic effect between CTO and RGO that is more significant when the hybrid is synthetized through in situ methodology.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Redox Processes Research Centre (CiPRex), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile;
- Laboratorio de Fisicoquímica y Electroquímica del estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins n° 3363, Santiago 9160000, Chile
| | - Fabiana A. Gutierrez
- INFIQC, Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (F.A.G.)
| | - Marcos Eguílaz
- INFIQC, Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (F.A.G.)
| | - José F. Marco
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, 28006 Madrid, Spain;
| | - Nik Reeves-McLaren
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK;
| | - Gustavo A. Rivas
- INFIQC, Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (F.A.G.)
| | - Domingo Ruiz-León
- Laboratorio de Fisicoquímica y Electroquímica del estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins n° 3363, Santiago 9160000, Chile
| | - Soledad Bollo
- Redox Processes Research Centre (CiPRex), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
87
|
Facile fabrication of biosensors based on Cu nanoparticles modified as-grown CVD graphene for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
88
|
|
89
|
Abstract
Microfluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy. In this chapter, we will first provide a background on microfluidic fundamentals, microfluidic fabrication technologies, microfluidic reactors, and microfluidic total-analysis-systems. Next, we will move into a discussion on the clinical applications of existing and emerging microfluidic platforms for blood analysis, and for diagnosis and monitoring of cancer and infectious disease. Together, this chapter should elucidate the potential that microfluidic systems have in the development of effective diagnostic technologies through a review of existing technologies and promising directions.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
90
|
Mohammadniaei M, Nguyen HV, Tieu MV, Lee MH. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices. MICROMACHINES 2019; 10:E662. [PMID: 31575012 PMCID: PMC6843145 DOI: 10.3390/mi10100662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| |
Collapse
|
91
|
Hu X, Wan J, Peng X, Zhao H, Shi D, Mai L, Yang H, Zhao Y, Yang X. Calorimetric lateral flow immunoassay detection platform based on the photothermal effect of gold nanocages with high sensitivity, specificity, and accuracy. Int J Nanomedicine 2019; 14:7695-7705. [PMID: 31571872 PMCID: PMC6759418 DOI: 10.2147/ijn.s218834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lateral flow assays (LFA) play an increasingly important role in the rapid detection of various pathogens, pollutants, and toxins. PURPOSE To overcome the drawbacks of low sensitivity and poor quantification in LFA, we developed a new calorimetric LFA (CLFA) using gold nanocages (GNCs) due to their high photothermal conversion efficiency, good stability of photophysical properties, and stronger penetrating ability of NIR light. METHODS Thiol-polyethylene glycol-succinyl imide ester (HS-PEG-NHS) was modified onto GNCs, and the complex was conjugated with an antibody. Subsequently, the antibody-conjugated GNCs were analyzed by UV/Vis spectrophotometer, transmission electron microscope, high-resolution transmission electron microscope with energy dispersive spectrometer, dynamic light scattering instrument, and Atom force microscope. The GNC-based CLFA of alpha-fetoprotein (AFP) and zearalenone (ZEN), a food toxin, required nitrocellulose strips, a NIR laser source, and an infrared camera. RESULTS The GNC-labeled CLFA platform technique exhibited detection sensitivity, qualitative specificity, and quantitative accuracy. The superior performance of the technique was evident both in sandwich format detection of biomacromolecules (eg, AFP protein) or competitive format detection of small molecules (eg, ZEN). After optimizing various test parameters, GNC-labeled CLFA provided ca. 5-6-fold enhanced sensitivity, higher correlativity (R 2>0.99), and more favorable recovery (82-115%) when compared with visual LFA. CONCLUSION GNC-labeled CLFA may be a promising detection platform with high sensitivity, specificity, and precision.
Collapse
Affiliation(s)
- Xiaoyan Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | - Jiangshan Wan
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Xiaole Peng
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Liyi Mai
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| |
Collapse
|
92
|
Cruz-Ramírez M, Ramírez-Delgado V, Rebolledo-Chávez JPF, Mendoza A, Reyes-Vidal Y, Rangel FJT, Ruiz-Azuara L, Ortiz-Frade L. Revisiting the role of π acceptor character of polypyridinc ligands in the redox behavior of tris and bis Fe(II) complexes and in the electron transfer with glucose oxidase. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
93
|
Chen K, Zhang R, Li Y, Jiang M, Wang W, Cui Z. Synthesis of Hollow Nanospherical Cuprous Oxide Supported by Nitrogen‐Doped Reduced Graphene Oxide and Its Application to Enzyme‐Free Glucose Sensing. ChemistrySelect 2019. [DOI: 10.1002/slct.201900596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kang Chen
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Rong Zhang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Yuehua Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Mengxiu Jiang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Wenyang Wang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Zixiang Cui
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| |
Collapse
|
94
|
Arlyapov VA, Kamanina OA, Kamanin SS, Reshetilov AN, Shvets VI. Monitoring of Biotechnological Processes by Enzyme Electrodes Modified with Carbon Nanotubes. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:951-956. [DOI: 10.1016/j.msec.2019.02.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
|
96
|
Dimitratos SD, Hommel AS, Konrad KD, Simpson LM, Wu-Woods JJ, Woods DF. Biosensors to Monitor Water Quality Utilizing Insect Odorant-Binding Proteins as Detector Elements. BIOSENSORS 2019; 9:E62. [PMID: 31091776 PMCID: PMC6627439 DOI: 10.3390/bios9020062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
In the developing world, the identification of clean, potable water continues to pose a pervasive challenge, and waterborne diseases due to fecal contamination of water supplies significantly threaten public health. The ability to efficiently monitor local water supplies is key to water safety, yet no low-cost, reliable method exists to detect contamination quickly. We developed an in vitro assay utilizing an odorant-binding protein (OBP), AgamOBP1, from the mosquito, Anopheles gambiae, to test for the presence of a characteristic metabolite, indole, from harmful coliform bacteria. We demonstrated that recombinantly expressed AgamOBP1 binds indole with high sensitivity. Our proof-of-concept assay is fluorescence-based and demonstrates the usefulness of insect OBPs as detector elements in novel biosensors that rapidly detect the presence of bacterial metabolic markers, and thus of coliform bacteria. We further demonstrated that rAgamOBP1 is suitable for use in portable, inexpensive "dipstick" biosensors that improve upon lateral flow technology since insect OBPs are robust, easily obtainable via recombinant expression, and resist detector "fouling." Moreover, due to their wide diversity and ligand selectivity, insect chemosensory proteins have other biosensor applications for various analytes. The techniques presented here therefore represent platform technologies applicable to various future devices.
Collapse
Affiliation(s)
- Spiros D Dimitratos
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
- Department of Biology, Natural Sciences Division, Fullerton College, Fullerton, CA 92832, USA.
| | | | | | | | | | - Daniel F Woods
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
| |
Collapse
|
97
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
98
|
A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish. Biosens Bioelectron 2019; 132:84-89. [DOI: 10.1016/j.bios.2019.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
|
99
|
Wu X, Bao C, Niu Q, Lu W. A novel method to construct a 3D FeWO 4 microsphere-array electrode as a non-enzymatic glucose sensor. NANOTECHNOLOGY 2019; 30:165501. [PMID: 30641504 DOI: 10.1088/1361-6528/aafe53] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the special sensor for glucose detection, a non-noble-metal nanoarray architecture is extremely attractive due to its easy accessibility to target molecules and more exposed surface area. In this communication, we report the first synthesis of FeWO4 microsphere-array on the three-dimensional (3D) Ni foam (FeWO4 microspheres/NF) as the mimetic electrode for efficient catalytic oxidation of glucose in an alkaline medium. When used as an artificial analog glucose sensor, the result of the present sensing system can also be calculated with a sensitivity of 2810 μA mM cm-2, a linear range from 0.04 mM to 2 mM and a detection limit up to 1.4 μM (S/N = 3). This glucose sensor with satisfactory stability and reproducibility can also be applied to the detection of glucose in human serum. As a promising sensing platform, this proposed 3D FeWO4 microspheres/NF may open a new strategy for pursuing electrochemical detection of biomolecules.
Collapse
Affiliation(s)
- Xiufeng Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | | | | | | |
Collapse
|
100
|
Jędrzak A, Rębiś T, Kuznowicz M, Jesionowski T. Bio-inspired magnetite/lignin/polydopamine-glucose oxidase biosensing nanoplatform. From synthesis, via sensing assays to comparison with others glucose testing techniques. Int J Biol Macromol 2019; 127:677-682. [DOI: 10.1016/j.ijbiomac.2019.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|