51
|
Shi Z, Pan S, Wang L, Li S. Oleanolic Acid Attenuates Morphine Withdrawal Symptoms in Rodents: Association with Regulation of Dopamine Function. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3685-3696. [PMID: 34465980 PMCID: PMC8402955 DOI: 10.2147/dddt.s326583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023]
Abstract
Introduction Oleanolic acid (OA) has been shown to be useful for the treatment of mental disorders. Methods In this study, we investigated the effects of OA in animal models of spontaneous withdrawal and naloxone-precipitated withdrawal and evaluated the effects of OA on the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP). Results OA significantly improved symptoms of withdrawal, and significantly reduced the acquisition and reinstatement of morphine-induced conditioned place preference. Moreover, OA significantly reduced the serum content of 5-hydroxy tryptamine (5-HT) and dopamine (DA) in a dose-dependent manner, and reduced norepinephrine (NE) and 5-HT content in the frontal cortex (PFC), while significantly increasing endorphin content in rats. OA also significantly reduced serum DA content in mice. Conclusion These results indicate that OA can improve the withdrawal symptoms of rats and mice by regulating the DA system and suggest that OA may be useful in treatment of morphine addiction.
Collapse
Affiliation(s)
- Zhiqi Shi
- School of Pharmacy, Changzhou Institute of Industry and Technology, Changzhou, Jiangsu, People's Republic of China.,Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Shugang Pan
- School of Pharmacy, Changzhou Institute of Technology, Changzhou, 213022, People's Republic of China.,Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Luolin Wang
- Department of Pharmacy, Guangdong Provincial Institute of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Sha Li
- Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
52
|
Powell A, Ireland C, Lewis SJG. Visual Hallucinations and the Role of Medications in Parkinson's Disease: Triggers, Pathophysiology, and Management. J Neuropsychiatry Clin Neurosci 2021; 32:334-343. [PMID: 32374649 DOI: 10.1176/appi.neuropsych.19110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visual hallucinations, which are part of the syndrome of Parkinson's disease (PD) psychosis, affect patients' quality of life and increase the likelihood of residential aged-care placement. The association between visual hallucinations and dopaminergic and other medications that are necessary for the symptomatic management of motor and other symptoms of PD is a common clinical dilemma. While dopaminergic medications have long been associated with PD psychosis, a clear causal link has not been established, and other neurotransmitter systems, particularly noradrenaline, serotonin, and acetylcholine, are implicated and important. A diverse range of demographic and disease-related risk factors, some being modifiable, highlight the complexity of potential underlying pathophysiological processes but also broaden practical options for prevention and treatment that can be multifaceted and individualized. The investigators reviewed the clinical features and epidemiology of visual hallucinations and PD, explored the pathological evidence for dysfunction of multiple neurotransmitter systems that may be relevant to these phenomena, and addressed the potential of medications commonly used in PD to either trigger or treat these symptoms.
Collapse
Affiliation(s)
- Alice Powell
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| | - Catriona Ireland
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre (Powell, Lewis), and Healthy Brain Ageing Program (Ireland), University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
53
|
Mei X, Wang L, Yang B, Li X. Sex differences in noradrenergic modulation of attention and impulsivity in rats. Psychopharmacology (Berl) 2021; 238:2167-2177. [PMID: 33834255 DOI: 10.1007/s00213-021-05841-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE Noradrenaline (NE) is closely related to attentive performance and impulsive control. However, the potential sex differences regarding attention and impulsivity under the noradrenergic modulation have been largely neglected. Therefore, our study aimed to investigate whether male and female rats exhibit differential responses to NE-related drugs during the five-choice serial reaction time task (5CSRT). METHODS Male and female rats were trained in 5CSRT and administered with different NE drugs after obtaining stable baseline performance: atipamezole, a highly selective α2 receptor antagonist; prazosin, an α1 receptor antagonist; and atomoxetine, a selective NE reuptake inhibitor. Later, prazosin was selected to co-administration with atomoxetine. RESULTS Male and female rats exhibited equal learning speed, and no significant baseline differences were found as measured by the 5CSRT. Atomoxetine decreased premature responses in both sexes, but the extent of this reduction was different, with the reduction greater in males. Besides, atomoxetine (1.8 mg/kg) increased the error of omissions in females. The high dose of prazosin (0.5 mg/kg) decreased the accuracy only in male rats, but this was ameliorated by the co-administration with atomoxetine. CONCLUSIONS Atomoxetine showed significant improvement in impulsivity, but atomoxetine had less beneficial effects on impulsive control in females than in males, and it even impaired attentional performance in female rats. The α1 receptors were mainly responsible for NE drug-related sex differences in attention rather than impulsivity. The results obtained in this study indicate that the sex differences exist in both attention and impulsivity by the modulation of noradrenaline and raise the concern to improve sex-specific treatments.
Collapse
Affiliation(s)
- Xiaolin Mei
- College of Psychology, Capital Normal University, Beijing, 100048, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lutong Wang
- College of Psychology, Capital Normal University, Beijing, 100048, China
| | - Bo Yang
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinwang Li
- College of Psychology, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
54
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
55
|
Palm D, Uzoni A, Simon F, Tucha O, Thome J, Faltraco F. Norepinephrine influences the circadian clock in human dermal fibroblasts from study participants with a diagnosis of attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2021; 128:1147-1157. [PMID: 34275002 PMCID: PMC8295072 DOI: 10.1007/s00702-021-02376-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is characterized by changes to the circadian process. Many medications used to treat the condition, influence norepinephrine levels. Several studies have, in addition, reported that norepinephrine itself has an effect on circadian function. The aim of this study was to investigate the circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after norepinephrine exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with an ADHD diagnosis. Circadian preference was evaluated with German Morningness–Eveningness Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different norepinephrine concentrations in HDF cultures, the rhythmicity of circadian gene expression was analyzed via qRT-PCR. The exposure of 1 µM norepinephrine to confluent cultures of human dermal fibroblasts from participants with a diagnosis of ADHD, was shown to dampen Per1 rhythmicity. The expression of Bmal1, Per1 and Per3 in control subjects was also influenced by incubation with 1 µM norepinephrine. Cultures from the ADHD group revealed no statistically significant overall differences in circadian gene expression, between cultures with and without norepinephrine incubation. Per3 expression showed a significant ZT × group interaction via mixed ANOVA. Per3 expression at ZT4 was significant higher in the group of control samples incubated with 1 µM norepinephrine, compared to the control group without norepinephrine. This effect was also shown in the control samples incubated with 1 µM norepinephrine and cultures from subjects with ADHD without norepinephrine incubation. Per3 expression differed between the healthy control group and the ADHD group without norepinephrine incubation at ZT28. The results of the present study illustrate that norepinephrine impacts on circadian function. In both groups, control group and cultures taken from subjects with ADHD, the expression of the periodic genes (Per1–3) was significantly influenced by incubation with norepinephrine.
Collapse
Affiliation(s)
- Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| |
Collapse
|
56
|
Norepinephrine May Oppose Other Neuromodulators to Impact Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147364. [PMID: 34298984 PMCID: PMC8304567 DOI: 10.3390/ijms22147364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
While much of biomedical research since the middle of the twentieth century has focused on molecular pathways inside the cell, there is increasing evidence that extracellular signaling pathways are also critically important in health and disease. The neuromodulators norepinephrine (NE), serotonin (5-hydroxytryptamine, 5HT), dopamine (DA), acetylcholine (ACH), and melatonin (MT) are extracellular signaling molecules that are distributed throughout the brain and modulate many disease processes. The effects of these five neuromodulators on Alzheimer's disease (AD) are briefly examined in this paper, and it is hypothesized that each of the five molecules has a u-shaped (or Janus-faced) dose-response curve, wherein too little or too much signaling is pathological in AD and possibly other diseases. In particular it is suggested that NE is largely functionally opposed to 5HT, ACH, MT, and possibly DA in AD. In this scenario, physiological "balance" between the noradrenergic tone and that of the other three or four modulators is most healthy. If NE is largely functionally opposed to other prominent neuromodulators in AD, this may suggest novel combinations of pharmacological agents to counteract this disease. It is also suggested that the majority of cases of AD and possibly other diseases involve an excess of noradrenergic tone and a collective deficit of the other four modulators.
Collapse
|
57
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
58
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
59
|
Abstract
Modulation of cognitive control by emotion and motivation has become a major topic in cognition research; however, characterizing the extent to which these influences may dissociate has proved challenging. Here, I examine recent advances in this literature, focusing on: (1) neuromodulator mechanisms underlying positive affect and reward motivation effects on cognitive control; (2) contingency and associative learning in interactions between affect/reward and cognitive control; (3) aspects of task design, unrelated to affect/reward, that may have acted as confounding influences on cognitive control in prior work. I suggest that positive affect and reward should not be considered singular in their effects on cognitive control, but instead varying on multiple parameters and interacting with task demands, to determine goal-directed, adaptive behavior.
Collapse
|
60
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
61
|
Ahmadirad N, Fathollahi Y, Janahmadi M, Ghasemi Z, Shojaei A, Rezaei M, Barkley V, Mirnajafi-Zadeh J. The role of α adrenergic receptors in mediating the inhibitory effect of electrical brain stimulation on epileptiform activity in rat hippocampal slices. Brain Res 2021; 1765:147492. [PMID: 33887250 DOI: 10.1016/j.brainres.2021.147492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
The Inhibitory effect of electrical low-frequency stimulation (LFS) on neuronal excitability and seizure occurrence has been indicated in experimental models, but the precise mechanism has not established. This investigation was intended to figure out the role of α1 and α2 adrenergic receptors in LFS' inhibitory effect on neuronal excitability. Epileptiform activity induced in an in vitro rat hippocampal slice preparation by high K+ ACSF and LFS (900 square wave pulses at 1 Hz) was administered at the beginning of epileptiform activity to the Schaffer collaterals. In CA1 pyramidal neurons, the electrophysiological properties were measured at the baseline, before high K+ ACSF washout, and at 15 min after high K+ ACSF washout using whole-cell, patch-clamp recording. Results indicated that after high K+ ACSF washout, prazosine (10 µM; α1 adrenergic receptor antagonist) and yohimbine (5 µM; α2 adrenergic receptor antagonist) suppressed the LFS' effect of reducing rheobase current and utilization time following depolarizing ramp current, the latency to the first spike following a depolarizing current and latency to the first rebound action potential following hyperpolarizing current pulses. Thus, it may be proposed that LFS' inhibitory action on the neuronal hyperexcitability, in some way, is mediated by α1 and α2 adrenergic receptors.
Collapse
Affiliation(s)
- Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
62
|
Costanzi M, Cianfanelli B, Santirocchi A, Lasaponara S, Spataro P, Rossi-Arnaud C, Cestari V. Forgetting Unwanted Memories: Active Forgetting and Implications for the Development of Psychological Disorders. J Pers Med 2021; 11:jpm11040241. [PMID: 33810436 PMCID: PMC8066077 DOI: 10.3390/jpm11040241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Intrusive memories are a common feature of many psychopathologies, and suppression-induced forgetting of unwanted memories appears as a critical ability to preserve mental health. In recent years, biological and cognitive studies converged in revealing that forgetting is due to active processes. Recent neurobiological studies provide evidence on the active role of main neurotransmitter systems in forgetting, suggesting that the brain actively works to suppress retrieval of unwanted memories. On the cognitive side, there is evidence that voluntary and involuntary processes (here termed "intentional" and "incidental" forgetting, respectively) contribute to active forgetting. In intentional forgetting, an inhibitory control mechanism suppresses awareness of unwanted memories at encoding or retrieval. In incidental forgetting, retrieval practice of some memories involuntarily suppresses the retrieval of other related memories. In this review we describe recent findings on deficits in active forgetting observed in psychopathologies, like post-traumatic stress disorder, depression, schizophrenia, and obsessive-compulsive disorder. Moreover, we report studies in which the role of neurotransmitter systems, known to be involved in the pathogenesis of mental disorders, has been investigated in active forgetting paradigms. The possibility that biological and cognitive mechanisms of active forgetting could be considered as hallmarks of the early onset of psychopathologies is also discussed.
Collapse
Affiliation(s)
- Marco Costanzi
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
- Correspondence:
| | - Beatrice Cianfanelli
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
| | - Alessandro Santirocchi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Stefano Lasaponara
- Department of Human Sciences, Lumsa University, 00193 Rome, Italy; (B.C.); (S.L.)
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Pietro Spataro
- Department of Economy, Universitas Mercatorum, 00100 Rome, Italy;
| | - Clelia Rossi-Arnaud
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| | - Vincenzo Cestari
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (A.S.); (C.R.-A.); (V.C.)
| |
Collapse
|
63
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
64
|
Wang P, Jing C, Yu P, Lu M, Xu X, Pei Q, Yan F. Profiling the structural determinants of aminoketone derivatives as hNET and hDAT reuptake inhibitors by field-based QSAR based on molecular docking. Technol Health Care 2021; 29:257-273. [PMID: 33682763 PMCID: PMC8150508 DOI: 10.3233/thc-218024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bupropion, one of the dual norepinephrine and dopamine reuptake inhibitors (NDRIs), is an aminoketone derivative performed effect in improving cognitive function for depression. However, its therapeutic effect is unsatisfactory due to poor clinical response, and there are only few derivatives in pre-clinical settings. OBJECTIVE This work attempted to elucidate the essential structural features for the activity and designed a series of novel derivatives with good inhibitive ability, pharmacokinetic and medicinal chemistry properties. METHODS The field-based QSAR of aminoketone derivatives of two targets were established based on docking poses, and the essential structural properties for designing novel compounds were supplied by comparing contour maps. RESULTS The selected two models performed good predictability and reliability with R2 of 0.8479 and 0.8040 for training set, Q2 of 0.7352 and 0.6266 for test set respectively, and the designed 29 novel derivatives performed no less than the highest active compound with good ADME/T pharmacokinetic properties and medicinal chemistry friendliness. CONCLUSIONS Bulky groups in R1, bulky groups with weak hydrophobicity in R3, and potent hydrophobic substituted group with electronegative in R2 from contour maps provided important insights for assessing and designing 29 novel NDRIs, which were considered as candidates for cognitive dysfunction with depression or other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Panpan Wang
- Corresponding author: Panpan Wang, College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China. Tel.: +86 396 2853411; Fax: +86 396 2853411; E-mail:
| | | | | | | | | | | | | |
Collapse
|
65
|
Xing B, Mack NR, Guo KM, Zhang YX, Ramirez B, Yang SS, Lin L, Wang DV, Li YC, Gao WJ. A Subpopulation of Prefrontal Cortical Neurons Is Required for Social Memory. Biol Psychiatry 2021; 89:521-531. [PMID: 33190846 PMCID: PMC7867585 DOI: 10.1016/j.biopsych.2020.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.
Collapse
Affiliation(s)
- Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kai-Ming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Xiang Zhang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Billy Ramirez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Dong V. Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
66
|
Cacabelos R, Carrera I, Martínez O, Naidoo V, Cacabelos N, Aliev G, Carril JC. Influence of dopamine, noradrenaline, and serotonin transporters on the pharmacogenetics of Atremorine in Parkinson's disease. Drug Dev Res 2021; 82:695-706. [PMID: 33458869 DOI: 10.1002/ddr.21784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
Atremorine is a potent dopamine (DA) enhancer obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine affects the neuronal dopaminergic system by acting as a neuroprotective agent against Parkinson's disease (PD). PD patients (N = 127) responded to a single dose of Atremorine (5 g, p.o.) 1 h after administration in a sex-, time-, dose-, and genotype-dependent fashion. Drug-free patients (N = 81) showed an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs (N = 46) showed an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effect of conventional anti-PD drugs. The variability in Atremorine-induced DA response is strongly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes influence the DA response to Atremorine. Genetic variation in the DA (SLC6A3; rs460000), noradrenaline (NA) (SLC6A2; rs12708954, rs3785143, rs5569), and serotonin (5-HT) transporter (SLC6A4; rs2020934, rs2020936, rs4251417, rs6354) genes exert a genotype-dependent Atremorine-induced DA response in PD, with potential impact on the DA-related pharmacogenetic outcome and minimum effects on NA and 5-HT levels.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Gjumrakch Aliev
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Research Institute of Human Morphology, Russian Academy of Medical Science, Moscow, Russian Federation.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russian Federation.,GALLY International Research Institute, San Antonio, Texas, USA
| | - Juan C Carril
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
67
|
Huang Y, Yu S, Wilson G, Park J, Cheng M, Kong X, Lu T, Kong J. Altered Extended Locus Coeruleus and Ventral Tegmental Area Networks in Boys with Autism Spectrum Disorders: A Resting-State Functional Connectivity Study. Neuropsychiatr Dis Treat 2021; 17:1207-1216. [PMID: 33911868 PMCID: PMC8075355 DOI: 10.2147/ndt.s301106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Previous studies have suggested that cerebral projections of the norepinephrine (NE) and dopamine (DA) systems have important etiology and treatment implications for autism spectrum disorder (ASD). METHODS We used functional magnetic resonance imaging to evaluate spontaneous resting state functional connectivity in boys aged 7-15 years with ASD (n=86) and age-, intelligence quotient-matched typically developing boys (TD, n=118). Specifically, we investigated functional connectivity of the locus coeruleus (LC) and ventral tegmental area (VTA), the main source projection of neurotransmitters NE and DA, respectively. RESULTS 1) Both the LC and VTA showed reduced connectivity with the postcentral gyrus (PoCG) in boys with ASD, reflecting the potential roles of NE and DA in modulating the function of the somatosensory cortex in boys with ASD. 2) The VTA had increased connectivity with bilateral thalamus in ASD; this alteration was correlated with repetitive and restrictive features. 3) Altered functional connectivity of both the LC and VTA with brain regions such as the angular gyrus (AG), middle temporal gyrus visual area (MT/V5), and occipital face area (OFA) in ASD group. DISCUSSION Our findings implicate the role of LC-NE and VTA-DA systems from the perspective of functional neuroimaging and may shed light on pharmacological studies targeting NE and DA for the treatment of autism in the future.
Collapse
Affiliation(s)
- Yiting Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Siyi Yu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming Cheng
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuejun Kong
- Martino Imaging Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Del Toro-Barbosa M, Hurtado-Romero A, Garcia-Amezquita LE, García-Cayuela T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients 2020; 12:E3896. [PMID: 33352789 PMCID: PMC7767237 DOI: 10.3390/nu12123896] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
The gut-brain-microbiota axis consists of a bilateral communication system that enables gut microbes to interact with the brain, and the latter with the gut. Gut bacteria influence behavior, and both depression and anxiety symptoms are directly associated with alterations in the microbiota. Psychobiotics are defined as probiotics that confer mental health benefits to the host when ingested in a particular quantity through interaction with commensal gut bacteria. The action mechanisms by which bacteria exert their psychobiotic potential has not been completely elucidated. However, it has been found that these bacteria provide their benefits mostly through the hypothalamic-pituitary-adrenal (HPA) axis, the immune response and inflammation, and through the production of neurohormones and neurotransmitters. This review aims to explore the different approaches to evaluate the psychobiotic potential of several bacterial strains and fermented products. The reviewed literature suggests that the consumption of psychobiotics could be considered as a viable option to both look after and restore mental health, without undesired secondary effects, and presenting a lower risk of allergies and less dependence compared to psychotropic drugs.
Collapse
Affiliation(s)
| | | | | | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico; (M.D.T.-B.); (A.H.-R.); (L.E.G.-A.)
| |
Collapse
|
69
|
Azizi SA. Monoamines: Dopamine, Norepinephrine, and Serotonin, Beyond Modulation, "Switches" That Alter the State of Target Networks. Neuroscientist 2020; 28:121-143. [PMID: 33292070 DOI: 10.1177/1073858420974336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
How do monoamines influence the perceptual and behavioral aspects of brain function? A library of information regarding the genetic, molecular, cellular, and function of monoamines in the nervous system and other organs has accumulated. We briefly review monoamines' anatomy and physiology and discuss their effects on the target neurons and circuits. Monoaminergic cells in the brain stem receive inputs from sensory, limbic, and prefrontal areas and project extensively to the forebrain and hindbrain. We review selected studies on molecular, cellular, and electrophysiological effects of monoamines on the brain's target areas. The idea is that monoamines, by reversibly modulating the "primary" information processing circuits, regulate and switch the functions of brain networks and can reversibly alter the "brain states," such as consciousness, emotions, and movements. Monoamines, as the drivers of normal motor and sensory brain operations, including housekeeping, play essential roles in pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sayed Ausim Azizi
- Department of Neurology, Global Neuroscience Institute, Chester, PA, USA
| |
Collapse
|
70
|
Lee M, Mueller A, Moore T. Differences in Noradrenaline Receptor Expression Across Different Neuronal Subtypes in Macaque Frontal Eye Field. Front Neuroanat 2020; 14:574130. [PMID: 33328901 PMCID: PMC7732642 DOI: 10.3389/fnana.2020.574130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive functions such as attention and working memory are modulated by noradrenaline receptors in the prefrontal cortex (PFC). The frontal eye field (FEF) has been shown to play an important role in visual spatial attention. However, little is known about the underlying circuitry. The aim of this study was to characterize the expression of noradrenaline receptors on different pyramidal neuron and inhibitory interneuron subtypes in macaque FEF. Using immunofluorescence, we found broad expression of noradrenaline receptors across all layers of the FEF. Differences in the expression of different noradrenaline receptors were observed across different inhibitory interneuron subtypes. No significant differences were observed in the expression of noradrenaline receptors across different pyramidal neuron subtypes. However, we found that putative long-range projecting pyramidal neurons expressed all noradrenaline receptor subtypes at a much higher proportion than any of the other neuronal subtypes. Nearly all long-range projecting pyramidal neurons expressed all types of noradrenaline receptor, suggesting that there is no receptor-specific machinery acting on these long-range projecting pyramidal neurons. This pattern of expression among long-range projecting pyramidal neurons suggests a mechanism by which noradrenergic modulation of FEF activity influences attention and working memory.
Collapse
Affiliation(s)
- Max Lee
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Adrienne Mueller
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
71
|
Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sci 2020; 10:brainsci10100715. [PMID: 33050115 PMCID: PMC7600375 DOI: 10.3390/brainsci10100715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants’ group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication.
Collapse
|
72
|
Devoto P, Sagheddu C, Santoni M, Flore G, Saba P, Pistis M, Gessa GL. Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex. Front Pharmacol 2020; 11:588160. [PMID: 33071798 PMCID: PMC7538903 DOI: 10.3389/fphar.2020.588160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities.
Collapse
Affiliation(s)
- Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,"Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Santoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gian Luigi Gessa
- "Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
73
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
74
|
Park JH, Son YD, Kim Y, Han DH. Brain Network Connectivity and Association with Catechol-O-Methyltransferase Gene Polymorphism in Korean Attention-Deficit Hyperactivity Disorder Children. Psychiatry Investig 2020; 17:925-933. [PMID: 32894926 PMCID: PMC7538244 DOI: 10.30773/pi.2020.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE We sought to determine if the links between and within the default mode network (DMN) and dorsal attention network (DAT) exhibited different conditions according to catechol-O-methyltransferase (COMT) gene polymorphism in relationship to attention-deficit hyperactivity disorder (ADHD) symptoms. METHODS Fifty-seven children with ADHD and 48 healthy controls (HCs) were administered an intelligence test, the Children's Depression Inventory, the Korean ADHD rating scale, and continuous performance test. Resting-state brain functional MRI scans were obtained, and COMT genotyping was performed to distinguish valine carriers and methionine homozygotes. RESULTS Compared to controls, children with ADHD showed increased ADHD scale scores, increased visual commission errors, and increased functional connectivity (FC) within the DMN and DAT. Compared to all children with ADHD, children with the methionine homozygote and those who were valine carriers showed increased FC within the DMN and DAT and decreased FC between the DMN and DAT. FC within the DMN was also increased in HC valine carriers compared to HC children with the methionine homozygote, and in children with ADHD who were valine carriers compared to HC valine carriers. CONCLUSION We observed increased brain connectivity within the DMN and DAT and altered brain connectivity within and between the DMN and DAT associated with COMT polymorphism in children with ADHD.
Collapse
Affiliation(s)
- Jeong Ha Park
- Department of Psychiatry, Woorisoa Children's Hospital, Seoul, Republic of Korea
| | - Young Don Son
- Department of Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
75
|
Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2020; 118:298-314. [PMID: 32768486 DOI: 10.1016/j.neubiorev.2020.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.
Collapse
Affiliation(s)
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Building 49, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Bjørknes College, Lovisenberggata 13, 0456 Oslo, Norway
| |
Collapse
|
76
|
Dipasquale O, Martins D, Sethi A, Veronese M, Hesse S, Rullmann M, Sabri O, Turkheimer F, Harrison NA, Mehta MA, Cercignani M. Unravelling the effects of methylphenidate on the dopaminergic and noradrenergic functional circuits. Neuropsychopharmacology 2020; 45:1482-1489. [PMID: 32473593 PMCID: PMC7360745 DOI: 10.1038/s41386-020-0724-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022]
Abstract
Functional magnetic resonance imaging (fMRI) can be combined with drugs to investigate the system-level functional responses in the brain to such challenges. However, most psychoactive agents act on multiple neurotransmitters, limiting the ability of fMRI to identify functional effects related to actions on discrete pharmacological targets. We recently introduced a multimodal approach, REACT (Receptor-Enriched Analysis of functional Connectivity by Targets), which offers the opportunity to disentangle effects of drugs on different neurotransmitters and clarify the biological mechanisms driving clinical efficacy and side effects of a compound. Here, we focus on methylphenidate (MPH), which binds to the dopamine transporter (DAT) and the norepinephrine transporter (NET), to unravel its effects on dopaminergic and noradrenergic functional circuits in the healthy brain at rest. We then explored the relationship between these target-enriched resting state functional connectivity (FC) maps and inter-individual variability in behavioural responses to a reinforcement-learning task encompassing a novelty manipulation to disentangle the molecular systems underlying specific cognitive/behavioural effects. Our main analysis showed a significant MPH-induced FC increase in sensorimotor areas in the functional circuit associated with DAT. In our exploratory analysis, we found that MPH-induced regional variations in the DAT and NET-enriched FC maps were significantly correlated with some of the inter-individual differences on key behavioural responses associated with the reinforcement-learning task. Our findings show that main MPH-related FC changes at rest can be understood through the distribution of DAT in the brain. Furthermore, they suggest that when compounds have mixed pharmacological profiles, REACT may be able to capture regional functional effects that are underpinned by the same cognitive mechanism but are related to engagement of distinct molecular targets.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arjun Sethi
- Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
77
|
Role of Prefrontal Cortex on Recognition Memory Deficits in Rats following 6-OHDA-Induced Locus Coeruleus Lesion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8324565. [PMID: 32733637 PMCID: PMC7369663 DOI: 10.1155/2020/8324565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Degeneration of the locus coeruleus (LC), the main source of cerebral noradrenaline (NA), has been reported in diverse neurodegenerative diseases, including Parkinson's diseases (PD). There is increasing evidence indicating the role of NA deficiency in the prefrontal cortex (PFC) and the development of early cognitive impairments in PD. Here, we evaluated whether a selective noradrenergic lesion of LC caused by 6-hydroxydopamine (6-OHDA) may induce memory deficits and neurochemical alterations in the PFC. Adult male Wistar rats received stereotaxic bilateral injections of 6-OHDA (5 μg/2 μl) into the LC, and two stainless-steel guide cannulas were implanted in the PFC. The SHAM group received just vehicle. To induce a selective noradrenergic lesion, animals received nomifensine (10 mg/kg), a dopamine transporter blocker, one hour before surgery. 6-OHDA-lesioned rats displayed impairments of the short- and long-term object recognition memory associated to reduced content of tyrosine hydroxylase in the LC. Neurochemical analysis revealed an altered mitochondrial membrane potential in LC. Regarding the PFC, an increased ROS production, cell membrane damage, and mitochondrial membrane potential disruption were observed. Remarkably, bilateral NA (1 μg/0.2 μl) infusion into the PFC restored the recognition memory deficits in LC-lesioned rats. These findings indicate that a selective noradrenergic LC lesion induced by 6-OHDA deregulates a noradrenergic network in the PFC, which could be involved in the early memory impairments observed in nondemented PD patients.
Collapse
|
78
|
Monaco SA, Matamoros AJ, Gao WJ. Conditional GSK3β deletion in parvalbumin-expressing interneurons potentiates excitatory synaptic function and learning in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109901. [PMID: 32113851 DOI: 10.1016/j.pnpbp.2020.109901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/03/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) has gained interest regarding its involvement in psychiatric and neurodegenerative disorders. Recently GSK3 inhibitors were highlighted as promising rescuers of cognitive impairments for a gamut of CNS disorders. Growing evidence supports that fast-spiking parvalbumin (PV) interneurons are critical regulators of cortical computation. Albeit, how excitatory receptors on PV interneurons are regulated and how this affects cognitive function remains unknown. To address these questions, we have generated a novel triple-transgenic conditional mouse with GSK3β genetically deleted from PV interneurons. PV-GSK3β-/- resulted in increased excitability and augmented excitatory synaptic strength in prefrontal PV interneurons. More importantly, these synaptic changes are correlated with accelerated learning with no changes in locomotion and sociability. Our study, for the first time, examined how GSK3β activity affects learning capability via regulation of PV interneurons. This study provides a novel insight into how GSK3β may contribute to disorders afflicted by cognitive deficits.
Collapse
Affiliation(s)
- Sarah A Monaco
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W School House Ln, Philadelphia, PA 19129, United States of America
| | - Andrew J Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America; Deparment of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104-4238, United States of America
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W School House Ln, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
79
|
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020; 9:cells9030727. [PMID: 32188010 PMCID: PMC7140610 DOI: 10.3390/cells9030727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3β inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3β is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants’ action. In this review, we discuss abnormalities in the activity of GSK3β and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3β in the pathogenesis of depression and the influence of anti-depressants on GSK3β activity are discussed.
Collapse
|
80
|
Neuro-physiological correlates of sluggish cognitive tempo (SCT) symptoms in school-aged children. Eur Child Adolesc Psychiatry 2020; 29:315-326. [PMID: 31134350 DOI: 10.1007/s00787-019-01353-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
This study was the first to examine the relationship between neurophysiological abnormalities and symptoms of sluggish cognitive tempo (SCT) in children. Thirty children aged 6-12 years were recruited. Their heart rate variability (HRV) was measured under resting and warning signal conditions. At rest, the children's SCT symptoms were found to be positively associated with their HRV (indicated by the standard deviation of the Poincaré plot along the line of identity in normalized units, SD2 nu). SCT symptoms were also positively associated with a change in SD2 nu between the resting and warning signal conditions. When controlling for symptoms of attention deficit hyperactivity disorder, the children's SCT symptoms were significantly predicted by their resting SD2 nu and by changes in SD2 nu and the percentage of successive RR intervals that differ by more than 50 ms (pNN50) between the resting and warning signal conditions. These findings suggest that the readiness and regulation of the autonomic nervous system may contribute to symptoms of SCT. Specifically, disturbances in the internal neurophysiological system may explain the difficulties experienced by children when exposed to environmental stimulation. These initial data support the hypothesis that SCT results from deficiencies in arousal.
Collapse
|
81
|
Bianco R, Ptasczynski LE, Omigie D. Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain Cogn 2020; 138:103621. [DOI: 10.1016/j.bandc.2019.103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
82
|
Ranjbar-Slamloo Y, Fazlali Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front Mol Neurosci 2020; 12:334. [PMID: 32038164 PMCID: PMC6986277 DOI: 10.3389/fnmol.2019.00334] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine and noradrenaline are crucial neuromodulators controlling brain states, vigilance, action, reward, learning, and memory processes. Ventral tegmental area (VTA) and Locus Coeruleus (LC) are canonically described as the main sources of dopamine (DA) and noradrenaline (NA) with dissociate functions. A comparison of diverse studies shows that these neuromodulators largely overlap in multiple domains such as shared biosynthetic pathway and co-release from the LC terminals, convergent innervations, non-specificity of receptors and transporters, and shared intracellular signaling pathways. DA–NA interactions are mainly studied in prefrontal cortex and hippocampus, yet it can be extended to the whole brain given the diversity of catecholamine innervations. LC can simultaneously broadcast both dopamine and noradrenaline across the brain. Here, we briefly review the molecular, cellular, and physiological overlaps between DA and NA systems and point to their functional implications. We suggest that DA and NA may function in parallel to facilitate learning and maintain the states required for normal cognitive processes. Various signaling modules of NA and DA have been targeted for developing of therapeutics. Understanding overlaps of the two systems is crucial for more effective interventions in a range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Zeinab Fazlali
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
83
|
Steenbergen L, Colzato LS, Maraver MJ. Vagal signaling and the somatic marker hypothesis: The effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood. Int J Psychophysiol 2019; 148:84-92. [PMID: 31734442 DOI: 10.1016/j.ijpsycho.2019.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/21/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023]
Abstract
Controlling impulsivity and delaying gratifications are key features of effective self-control. Delay Discounting (DD) indexes the ability to delay rewards and previous research has shown that discounting is influenced by affective states such as mood. According to the Somatic Marker Hypothesis (SMH), afferent somatic signals, such as mood, are carried by the vagus and can influence decision making. In the current study, we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that stimulates the auricular branch of the afferent vagus nerve (located in the outer ear), to assess its effects on decision impulsivity, while taking into account individuals' mood and resting-state HRV as a possible confounding factor. Employing a within-subjects cross-over design, 94 participants received active or sham tVNS while performing delay discounting in two separate sessions. As compared to sham, active tVNS increased discounting, but only for individuals reporting lower positive mood, regardless of the level of negative mood reported. We evidence that the effect of tVNS on reward discounting depends on the level of positive mood. This result suggests that positive mood state might be a proxy of task-relevant arousal, likely influencing the effectiveness of afferent vagal stimulation on self-control processes, as temporal discounting.
Collapse
Affiliation(s)
- Laura Steenbergen
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Lorenza S Colzato
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Institute for Sports and Sport Science, University of Kassel, Kassel, Germany; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - María J Maraver
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, the Netherlands; University of Lisbon, Faculty of Psychology & Research Center for Psychological Science, Lisbon, Portugal
| |
Collapse
|
84
|
Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS One 2019; 14:e0223019. [PMID: 31539420 PMCID: PMC6754158 DOI: 10.1371/journal.pone.0223019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide. While it has been suggested to cause nervous impairment, its neurophysiological basis remains unknown. Therefore, the aim of this study is to unravel the effects of NASH, through the interrelationship of liver, gut microbiota, and nervous system, on the brain and human behavior. To this end, 40 Sprague-Dawley rats were divided into a control group that received normal chow and a NASH group that received a high-fat, high-cholesterol diet. Our results show that 14 weeks of the high-fat, high-cholesterol diet induced clinical conditions such as NASH, including steatosis and increased levels of ammonia. Rats in the NASH group also demonstrated evidence of gut dysbiosis and decreased levels of short-chain fatty acids in the gut. This may explain the deficits in cognitive ability observed in the NASH group, including their depressive-like behavior and short-term memory impairment characterized in part by deficits in social recognition and prefrontal cortex-dependent spatial working memory. We also reported the impact of this NASH-like condition on metabolic and functional processes. Brain tissue demonstrated lower levels of metabolic brain activity in the prefrontal cortex, thalamus, hippocampus, amygdala, and mammillary bodies, accompanied by a decrease in dopamine levels in the prefrontal cortex and cerebellum and a decrease in noradrenalin in the striatum. In this article, we emphasize the important role of ammonia and gut-derived bacterial toxins in liver-gut-brain neurodegeneration and discuss the metabolic and functional brain regional deficits and behavioral impairments in NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Institute of Dairy Products of the Principality of Asturias (IPLA-CSIC), Asturias, Spain
| | - Eneritz Gómez-Lázaro
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, Basque Country, Spain
| | - Jorge L. Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Asturias, Spain
| | - Natalia Arias
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Asturias, Spain
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, United Kingdom
| |
Collapse
|
85
|
Li R, Wang L, Wang X, Zhang D, Zhang Y, Li Z, Fang M. Simultaneous Quantification of Seven Constituents from Zaoren Anshen Prescription and Four Endogenic Components in Rat Plasma by UHPLC-TSQ-MS/MS and the Application of the Correlation Study. Chem Pharm Bull (Tokyo) 2019; 67:855-863. [DOI: 10.1248/cpb.c19-00299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Lin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Xiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Dian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | | | - Zhuo Li
- Xi’an Institute for Food and Drug Control
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| |
Collapse
|
86
|
Ano Y, Kutsukake T, Sasaki T, Uchida S, Yamada K, Kondo K. Identification of a Novel Peptide from β-Casein That Enhances Spatial and Object Recognition Memory in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8160-8167. [PMID: 31241932 DOI: 10.1021/acs.jafc.9b02495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An increase in the aging population has spurred recent efforts to identify diet and lifestyle changes that help prevent cognitive decline. Several epidemiological investigations and clinical studies have indicated that consuming fermented dairy products prevents cognitive decline. Some peptides from whey including β-lactolin improve memory impairment; the intake of Camembert cheese has been shown to prevent Alzheimer's in mouse models. To elucidate the molecular mechanisms underlying these preventive effects, we screened peptides from digested casein protein for their ability to improve spatial memory in a scopolamine-induced amnesia mouse model. Administration of KEMPFPKYPVEP peptide from β-casein at 0.5 mg/kg (54.8 ± 2.5) and 2 mg/kg (57.9 ± 3.7) improved memory impairment in the amnesia mice in comparison with control (44.9 ± 3.4; p = 0.031 and p = 0.042, respectively) and increased dopamine (5.9 ± 3.8 [control] and 12.4 ± 6.2 [KEMPFPKYPVEP peptide]) and norepinephrine (7.7 ± 0.8 [control] and 9.9 ± 2.0 [KEMPFPKYPVEP peptide]) levels in the frontal cortex (p = 0.039 and p = 0.031, respectively). Collectively, our findings suggest that peptides in fermented dairy products prevent cognitive decline and support previously reported observations.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Toshiko Kutsukake
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Toshinori Sasaki
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Shinichi Uchida
- Central Nervous System Research Laboratories, CNS R&D Unit, R&D Division , Kyowa Hakko Kirin Co. Ltd. , Shizuoka , Japan
| | - Koji Yamada
- Central Nervous System Research Laboratories, CNS R&D Unit, R&D Division , Kyowa Hakko Kirin Co. Ltd. , Shizuoka , Japan
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| |
Collapse
|
87
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
88
|
Alcohol intake enhances glutamatergic transmission from D2 receptor-expressing afferents onto D1 receptor-expressing medium spiny neurons in the dorsomedial striatum. Neuropsychopharmacology 2019; 44:1123-1131. [PMID: 30733568 PMCID: PMC6461835 DOI: 10.1038/s41386-019-0332-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
Dopaminergic modulation of corticostriatal transmission is critically involved in reward-driven behaviors. This modulation is mainly mediated by dopamine D1 receptors (D1Rs) and D2Rs, which are highly expressed in medium spiny neurons (MSNs) of the dorsomedial striatum (DMS), a brain region essential for goal-directed behaviors and addiction. D1Rs and D2Rs are also present at presynaptic cortical terminals within the DMS. However, it is not known how addictive substances alter the glutamatergic strength of striatal synapses expressing presynaptic dopamine receptors. Using cell type-specific Cre mice in combination with optogenetic techniques, we measured glutamatergic transmission at D1R- or D2R-expressing afferents to DMS MSNs. We found larger excitatory postsynaptic currents at the synapses between the extra-striatal D2R-expressing afferents and D1R-expressing MSNs (D2→D1), as compared with those observed at the other tested synapses (D1→D1, D1→D2, and D2→D2). Additionally, excessive alcohol consumption induced a long-lasting potentiation of glutamatergic transmission at the corticostriatal D2→D1 synapse. Furthermore, we demonstrated that activation of postsynaptic, but not presynaptic, D2Rs inhibited corticostriatal transmission in an endocannabinoid-dependent manner. Taken together, these data provide detailed information on the mechanisms underlying dopamine receptor-mediated modulation of brain reward circuitry.
Collapse
|
89
|
Sampaio TB, Soares de Souza B, Roversi K, Schuh T, Poli A, Takahashi RN, Prediger RD. Temporal development of behavioral impairments in rats following locus coeruleus lesion induced by 6-hydroxydopamine: Involvement of β 3-adrenergic receptors. Neuropharmacology 2019; 151:98-111. [PMID: 30959019 DOI: 10.1016/j.neuropharm.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
Noradrenergic degeneration in the locus coeruleus (LC) seems a convergent neuropathological marker of different neurodegenerative diseases. Herein, we investigated the temporal development of apoptotic signaling activation in the LC, noradrenergic dysfunction and behavioral impairments in rats following the noradrenergic lesion of the LC. For this purpose, the dopamine reuptake inhibitor nomifensine was administered 1 h before the stereotaxic bilateral injections of 6-hydroxydopamine (6-OHDA; 5, 10 or 20 μg/hem) into the LC. The behavioral and neurochemical analyses were performed at 7, 21 and 42 days after 6-OHDA injections. All doses of 6-OHDA induced neuronal death in LC, but only the highest dose (20 μg/hem) disrupted the motor function. 6-OHDA (5 μg/hem) injection induced short-term memory deficits in all periods, olfactory discrimination and long-term memory impairments at 7 days, and depressive-like behaviors at 21 and 42 days after injection. Moreover, 6-OHDA infusion increased Bax/Bcl2 ratio and caspase 3 levels, and decreased the dopamine β-hydroxylase immunocontent in the LC. Noradrenergic neurotransmission dysfunction was observed in the LC, olfactory bulb, prefrontal cortex, hippocampus and striatum. The intranasal (i.n.) noradrenaline (NA) infusion restored the impairments in the olfactory discrimination, short-term memory and depressive-like behavior of 6-OHDA-lesioned rats. In addition, these effects were blocked by the prior i.n. infusion of the β3-adrenergic receptor antagonist SR59230A. These findings indicate that the 6-OHDA injection into the LC induced the apoptosis signaling activation, noradrenergic neurotransmission dysfunction and behavioral impairments that were restored via β3-adrenergic receptors activation mediated by the i.n. NA administration.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Bruna Soares de Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Katiane Roversi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Tayná Schuh
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Anicleto Poli
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Reinaldo Naoto Takahashi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil.
| |
Collapse
|
90
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
91
|
Bhatt RR, Zeltzer LK, Coloigner J, Wood JC, Coates TD, Labus JS. Patients with sickle-cell disease exhibit greater functional connectivity and centrality in the locus coeruleus compared to anemic controls. NEUROIMAGE-CLINICAL 2019; 21:101686. [PMID: 30690419 PMCID: PMC6356008 DOI: 10.1016/j.nicl.2019.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Patients with sickle-cell disease (SCD) have greater resting-state functional connectivity between the locus coeruleus (LC) and dorsolateral prefrontal cortex (dlPFC). Patients with SCD have greater resting state centrality of the LC SCD patients with chronic pain exhibited even greater functional connectivity between the LC and dlPFC. This study supports hyper-connectivity between the LC and PFC is a potential chronic pain generator.
Collapse
Affiliation(s)
- Ravi R Bhatt
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Lonnie K Zeltzer
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julie Coloigner
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - John C Wood
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - Tom D Coates
- Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles (CCCBD), Los Angeles, CA, USA
| | - Jennifer S Labus
- Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
92
|
González B, Torres OV, Jayanthi S, Gomez N, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:222-234. [PMID: 30056065 PMCID: PMC8424782 DOI: 10.1016/j.pnpbp.2018.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
METH use causes neuroadaptations that negatively impact the prefrontal cortex (PFC) leading to addiction and associated cognitive decline in animals and humans. In contrast, modafinil enhances cognition by increasing PFC function. Accumulated evidence indicates that psychostimulant drugs, including modafinil and METH, regulate gene expression via epigenetic modifications. In this study, we measured the effects of single-dose injections of modafinil and METH on the protein levels of acetylated histone H3 (H3ac) and H4ac, deacetylases HDAC1 and HDAC2, and of the NMDA subunit GluN1 in the medial PFC (mPFC) of mice euthanized 1 h after drug administration. To test if dopamine (DA) receptors (DRs) participate in the biochemical effects of the two drugs, we injected the D1Rs antagonist, SCH23390, or the D2Rs antagonist, raclopride, 30 min before administration of METH and modafinil. We evaluated each drug effect on glutamate synaptic transmission in D1R-expressing layer V pyramidal neurons. We also measured the enrichment of H3ac and H4ac at the promoters of several genes including DA, NE, orexin, histamine, and glutamate receptors, and their mRNA expression, since they are responsive to chronic modafinil and METH treatment. Acute modafinil and METH injections caused similar effects on total histone acetylation, increasing H3ac and decreasing H4ac, and they also increased HDAC1, HDAC2 and GluN1 protein levels in the mouse mPFC. In addition, the effects of the drugs were prevented by pre-treatment with D1Rs and D2Rs antagonists. Specifically, the changes in H4ac, HDAC2, and GluN1 were responsive to SCH23390, whereas those of H3ac and GluN1 were responsive to raclopride. Whole-cell patch clamp in transgenic BAC-Drd1a-tdTomato mice showed that METH, but not modafinil, induced paired-pulse facilitation of EPSCs, suggesting reduced presynaptic probability of glutamate release onto layer V pyramidal neurons. Analysis of histone 3/4 enrichment at specific promoters revealed: i) distinct effects of the drugs on histone 3 acetylation, with modafinil increasing H3ac at Drd1 and Adra1b promoters, but METH increasing H3ac at Adra1a; ii) distinct effects on histone 4 acetylation enrichment, with modafinil increasing H4ac at the Drd2 promoter and decreasing it at Hrh1, but METH increasing H4ac at Drd1; iii) comparable effects of both psychostimulants, increasing H3ac at Drd2, Hcrtr1, and Hrh1 promoters, decreasing H3ac at Hrh3, increasing H4ac at Hcrtr1, and decreasing H4ac at Hcrtr2, Hrh3, and Grin1 promoters. Interestingly, only METH altered mRNA levels of genes with altered histone acetylation status, inducing increased expression of Drd1a, Adra1a, Hcrtr1, and Hrh1, and decreasing Grin1. Our study suggests that although acute METH and modafinil can both increase DA neurotransmission in the mPFC, there are similar and contrasting epigenetic and transcriptional consequences that may account for their divergent clinical effects.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, California, United States
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Natalia Gomez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Máximo H Sosa
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edgar García-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jean-Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
93
|
Huang YF, Chiou HY, Chung CH, Chien WC, Chang HJ. Psychiatric Disorders After Attention-Deficit/Hyperactivity Disorder: A Nationwide Population-Based Study in Taiwan. J Nurs Scholarsh 2019; 51:138-146. [PMID: 30609223 DOI: 10.1111/jnu.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the risk for psychiatric disorders in patients newly diagnosed with attention deficit hyperactive disorder (ADHD) from two longitudinal groups of children with and without ADHD. STUDY DESIGN In total, 1,745 children newly diagnosed with ADHD and 6,980 participants without ADHD were identified from Taiwan's National Health Insurance Research Database in 2005 and followed until 2010. Risks for psychiatric disorders in the ADHD and non-ADHD groups were compared. RESULTS The ADHD group was 3.82 times more likely to develop psychiatric disorders than their counterparts. The ADHD group showed the highest risk for oppositional defiant disorder, followed by adult ADHD and autism spectrum disorder. Moreover, the time effects of psychiatric disorders in the ADHD group were significant. Patients with ADHD subtypes had a significant risk for psychiatric disorders compared to their counterparts. CONCLUSIONS A high risk for psychiatric disorders was revealed in this study among children with ADHD. Childhood ADHD, the duration after the ADHD diagnosis, and the ADHD subtype were associated with psychiatric disorders. CLINICAL RELEVANCE Various psychiatric disorders were observed in children after they had been newly diagnosed with ADHD, indicating a need for integrated care that includes medical practitioners, family members, social workers, and early intervention workers for patients newly diagnosed with ADHD to decrease the risk for comprehensive psychiatric disorders.
Collapse
Affiliation(s)
- Ya-Fang Huang
- PhD Candidate, School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- Distinguished Professor, School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Adjunct Assistant Professor, School of Public Health, National Defense Medical left, and Secretary General, Taiwanese Injury Prevention and Safety Promotion Association (TIPSPA), Taipei, Taiwan
| | - Wu-Chien Chien
- Associate Professor, School of Public Health, National Defense Medical left, and Associate Professor, Department of Medical Research, Tri-Service General Hospital, National Defense Medical left, Taipei, Taiwan
| | - Hsiu-Ju Chang
- Professor, Dean of Student Affairs, School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
94
|
Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal-prefrontal connectivity. Neuropsychopharmacology 2019; 44:334-343. [PMID: 29728647 PMCID: PMC6300561 DOI: 10.1038/s41386-018-0068-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023]
Abstract
Contextual memory driven by abused drugs such as opiates has a central role in maintenance and relapse of drug-taking behaviors. Although dopamine (DA) signaling favors memory storage and retrieval via regulation of hippocampal-prefrontal connectivity, its role in modulating opiate-associated contextual memory is largely unknown. Here, we report roles of DA signaling within the hippocampal-prefrontal circuit for opiate-related memories. Combining-conditioned place preference (CPP) with molecular analyses, we investigated the DA D1 receptor (D1R) and extracellular signal-regulated kinase (ERK)-cAMP-response element binding protein (CREB) signaling, as well as DA D2 receptor (D2R) and protein kinase B (PKB or Akt)/glycogen synthase kinase 3 (GSK3) signaling in the ventral hippocampus (vHip) and medial prefrontal cortex (mPFC) during the formation of opiate-related associative memories. Morphine-CPP acquisition increased the activity of the D1R-ERK-CREB pathway in both the vHip and mPFC. Morphine-CPP reinstatement was associated with the D2R-mediated hyperactive GSK3 via Akt inhibition in the vHip and PFC. Furthermore, integrated D1R-ERK-CREB and D2R-Akt-GSK3 pathways in the vHip-mPFC circuit are required for the acquisition and retrieval of the morphine contextual memory, respectively. Moreover, blockage of D1R or D2R signaling could alleviate normal Hip-dependent spatial memory. These results suggest that D1R and D2R signaling are differentially involved in the acquisition and retrieval of morphine contextual memory, and DA signaling in the vHip-mPFC connection contributes to morphine-associated and normal memory, largely depending on opiate exposure states.
Collapse
|
95
|
London J, Ndiaye FK, Bui LC, Souchet B, Daubigney F, Magnan C, Luquet S, Dairou J, Janel N, Rouch C. Alterations in the Serotonin and Dopamine Pathways by Cystathionine Beta Synthase Overexpression in Murine Brain. Mol Neurobiol 2018; 56:3958-3971. [DOI: 10.1007/s12035-018-1323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
|
96
|
Mathis V, Barbelivien A, Majchrzak M, Mathis C, Cassel JC, Lecourtier L. The Lateral Habenula as a Relay of Cortical Information to Process Working Memory. Cereb Cortex 2018; 27:5485-5495. [PMID: 28334072 DOI: 10.1093/cercor/bhw316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 11/14/2022] Open
Abstract
Working memory is a cognitive ability allowing the temporary storage of information to solve problems or adjust behavior. While working memory is known to mainly depend on the medial prefrontal cortex (mPFC), very few is known about how cortical information are relayed subcortically. By its connectivity, the lateral habenula (lHb) might act as a subcortical relay for cortical information. Indeed, the lHb receives inputs from several mPFC subregions, and recent findings suggest a role for the lHb in online processing of spatial information, a fundamental aspect of working memory. In rats, in a delayed non-matching to position paradigm, using focal microinjections of the GABAA agonist muscimol we showed that inactivation of the lHb (16 ng in 0.2 µL per side), as well as disconnection between the prelimbic region of the mPFC (mPFC/PrL, 32 ng in 0.4 µL in one hemisphere) and the lHb (16 ng in 0.2 µL in the lHb in the contralateral hemisphere) impaired working memory. The deficits were unlikely to result from motivational or motor deficits as muscimol did not affect reward collection or cue responding latencies, and did not increase the number of omissions. These results show for the first time the implication of the lHb in mPFC-dependent memory processes, likely as a relay of mPFC/PrL information. They also open new perspectives in the understanding of the top-down processing of high-level cognitive functions.
Collapse
Affiliation(s)
- Victor Mathis
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| | - Alexandra Barbelivien
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| | - Monique Majchrzak
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| | - Chantal Mathis
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, F-67000 Strasbourg, France.,LNCA, UMR 7364, CNRS, F-67000 Strasbourg, France
| |
Collapse
|
97
|
Spee B, Ishizu T, Leder H, Mikuni J, Kawabata H, Pelowski M. Neuropsychopharmacological aesthetics: A theoretical consideration of pharmacological approaches to causative brain study in aesthetics and art. PROGRESS IN BRAIN RESEARCH 2018; 237:343-372. [PMID: 29779743 DOI: 10.1016/bs.pbr.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in neuroaesthetics have heightened the need for causative approaches to more deeply understand the mechanism underlying perception, emotion, and aesthetic experiences. This has recently been the topic for empirical work, employing several causative methods for changing brain activity, as well as comparative assessments of individuals with brain damage or disease. However, one area of study with high potential, and indeed a long history of often nonscientific use in the area of aesthetics and art, employing psychopharmacological chemicals as means of changing brain function, has not been systematically utilized. This chapter reviews the literature on this topic, analyzing neuroendocrinological (neurochemical) approaches and mechanisms that might be used to causatively study the aesthetic brain. We focus on four relevant neuromodulatory systems potentially related to aesthetic experience: the dopaminergic, serotonergic, cannabinoid, and the opioidergic system. We build a bridge to psychopharmacological methods and review drug-induced behavioral and neurobiological consequences. We conclude with a discussion of hypotheses and suggestions for future research.
Collapse
Affiliation(s)
- Blanca Spee
- University of Vienna, Faculty of Psychology, Vienna, Austria
| | - Tomohiro Ishizu
- University of Vienna, Faculty of Psychology, Vienna, Austria
| | - Helmut Leder
- University of Vienna, Faculty of Psychology, Vienna, Austria
| | - Jan Mikuni
- Department of Psychology, Keio University, Tokyo, Japan
| | | | | |
Collapse
|
98
|
London J, Rouch C, Bui LC, Assayag E, Souchet B, Daubigney F, Medjaoui H, Luquet S, Magnan C, Delabar JM, Dairou J, Janel N. Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues. Mol Neurobiol 2018; 55:3822-3831. [PMID: 28540658 DOI: 10.1007/s12035-017-0591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
Trisomy 21 (T21) or Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and affects around 5 million persons worldwide. Neuroanatomical phenotypes associated with T21 include slight reduction of brain size and weight, abnormalities in several brain areas including spines dysgenesis, dendritic morphogenesis, and early neuroanatomical characteristics of Alzheimer's disease. Monoamine neurotransmitters are involved in dendrites development, functioning of synapses, memory consolidation, and their levels measured in the cerebrospinal fluid, blood, or brain areas that are modified in individuals with T21. DYRK1A is one of the recognized key genes that could explain some of the deficits present in individuals with T21. We investigated by high-performance liquid chromatography with electrochemical detection the contents and processing of monoamines neurotransmitters in four brain areas of female and male transgenic mice for the Dyrk1a gene (mBactgDyrk1a). DYRK1A overexpression induced dramatic deficits in the serotonin contents of the four brain areas tested and major deficits in dopamine and adrenaline contents especially in the hypothalamus. These results suggest that DYRK1A overexpression might be associated with the modification of monoamines content found in individuals with T21 and reinforce the interest to target the level of DYRK1A expression as a therapeutic approach for persons with T21.
Collapse
Affiliation(s)
- Jacqueline London
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France.
| | - Claude Rouch
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Linh Chi Bui
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Elodie Assayag
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Benoit Souchet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Fabrice Daubigney
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Hind Medjaoui
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Christophe Magnan
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Jean Maurice Delabar
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
- UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Julien Dairou
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 75270, Paris, France
| | - Nathalie Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|
99
|
Differential effects of sustained and transient effort triggered by reward - A combined EEG and pupillometry study. Neuropsychologia 2018; 123:116-130. [PMID: 29709582 DOI: 10.1016/j.neuropsychologia.2018.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
In instrumental task contexts, incentive manipulations such as posting reward on successful performance usually trigger increased effort, which is signified by effort markers like increased pupil size. Yet, it is not fully clear under which circumstances incentives really promote performance, and which role effort plays therein. In the present study, we compared two schemes of associating reward with a Flanker task, while simultaneously acquiring electroencephalography (EEG) and pupillometry data in order to explore the contribution of effort-related processes. In Experiment 1, reward was administered in a block-based fashion, with series of targets in pure reward and no-reward blocks. The results imply increased sustained effort in the reward blocks, as reflected in particular in sustained increased pupil size. Yet, this was not accompanied by a behavioral benefit, suggesting a failure of translating increased effort into a behavioral pay-off. In Experiment 2, we introduced trial-based cues in order to also promote transient preparatory effort application, which indeed led to a behavioral benefit. Again, we observed a sustained pupil-size increase, but also transient ones. Consistent with this, the EEG data of Experiment 2 indicated increased transient preparatory effort preceding target onset, as well as reward modulations of target processing that arose earlier than in Experiment 1. Jointly, our results indicate that incentive-triggered effort can operate on different time-scales, and that, at least for the current task, its transient (and largely preparatory) form is critical for achieving a behavioral benefit, which may relate to the temporal dynamics of the catecholaminergic systems.
Collapse
|
100
|
Radnikow G, Feldmeyer D. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 2018; 12:1. [PMID: 29440997 PMCID: PMC5797542 DOI: 10.3389/fnana.2018.00001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.
Collapse
Affiliation(s)
- Gabriele Radnikow
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany
| | - Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany
| |
Collapse
|