51
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
52
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
53
|
Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021; 9:1781. [PMID: 34944597 PMCID: PMC8698624 DOI: 10.3390/biomedicines9121781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Jeremy J. Ramsden
- Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, UK;
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| |
Collapse
|
54
|
Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions. Int J Mol Sci 2021; 22:12697. [PMID: 34884513 PMCID: PMC8657487 DOI: 10.3390/ijms222312697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy.
Collapse
Affiliation(s)
| | | | - Alonso Martinez-Canabal
- Cell Biology Department, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, ON M6A 2E1, Canada;
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
55
|
Nagata K, Bajo KI, Mitomo H, Fujita R, Uehara R, Ijiro K, Yurimoto H. Visualization of DNA Replication in Single Chromosome by Stable Isotope Labeling. Cell Struct Funct 2021; 46:95-101. [PMID: 34565768 PMCID: PMC10511050 DOI: 10.1247/csf.21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/11/2021] [Indexed: 11/11/2022] Open
Abstract
Among the inheritance of cellular components during cell division, deoxyribonucleic acid (DNA) and its condensate (chromosome) are conventionally visualized using chemical tag-labeled nucleotide analogs. However, associated mutagenesis with nucleotide analogs in the visualization of chromosomes is cause for concern. This study investigated the efficiency of using stable isotope labels in visualizing the replicating cultured human cell-chromosomes, in the absence of analog labels, at a high spatial resolution of 100 nm. The distinct carbon isotope ratio between sister chromatids reflected the semi-conservative replication of individual DNA strands through cell cycles and suggested the renewal of histone molecules in daughter chromosomes. Thus, this study provides a new, powerful approach to trace and visualize cellular components with stable isotope labeling.Key words: stable isotope, chromosome replication, semi-conservative replication, imaging, mass spectrometry.
Collapse
Affiliation(s)
- Kosuke Nagata
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-ichi Bajo
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Department of Bioresource Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | | |
Collapse
|
56
|
Glasauer SMK, Triemer T, Neef AB, Neuhauss SCF, Luedtke NW. DNA template strand segregation in developing zebrafish. Cell Chem Biol 2021; 28:1638-1647.e4. [PMID: 34592171 DOI: 10.1016/j.chembiol.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/26/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022]
Abstract
Asymmetric inheritance of sister chromatids has long been predicted to be linked to discordant fates of daughter cells and even hypothesized to minimize accumulation of mutations in stem cells. Here, we use (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU), bromodeoxyuridine (BrdU), and light sheet microscopy to track embryonic DNA in whole zebrafish. Larval development results in rapid depletion of older DNA template strands from stem cell niches in the retina, brain, and intestine. Prolonged label retention occurs in quiescent progenitors that resume replication in later development. High-resolution microscopy reveals no evidence of asymmetric template strand segregation in >100 daughter cell pairs, making it improbable that asymmetric DNA segregation prevents mutational burden according to the immortal strand hypothesis in developing zebrafish.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara CA 93106, USA
| | - Therese Triemer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anne B Neef
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
57
|
Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. J Biol Chem 2021; 297:101345. [PMID: 34717955 PMCID: PMC8592869 DOI: 10.1016/j.jbc.2021.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.
Collapse
|
58
|
Triarhou LC, Manto M. Postnatal Neurogenesis Beyond Rodents: the Groundbreaking Research of Joseph Altman and Gopal Das. THE CEREBELLUM 2021; 21:1-8. [PMID: 34704189 DOI: 10.1007/s12311-021-01314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integral component of neural ontogeny and plasticity is the ongoing generation of new neurons from precursor cells throughout the lifespan in virtually all animals with a nervous system. In mammals, postnatal neurogenesis has been documented in the cerebellum, olfactory bulb, hippocampus, striatum, substantia nigra, hypothalamus, and amygdala. Germinal centers of new neuron production in the adult brain have been identified in the neuroepithelium of the subventricular zone and the dentate gyrus. One of the earliest lines of evidence gathered came from studies on the production of cerebellar microneurons in the external germinal layer of rodents and carnivores in the 1960s and 1970s. The undeniable pioneer of that research was the insightful developmental neurobiologist Joseph Altman (1925-2016). This Cerebellar Classic is devoted to the groundbreaking work of Altman and his graduate student and, subsequently, fellow faculty member, Gopal Das (1933-1991), on postnatal neurogenesis using tritiated thymidine autoradiography to tag newly formed neurons in the cerebellum of cats. Perseverant to their ideas and patiently working in West Lafayette (Indiana), they were the founders of two fields that brought about paradigm shifts and led to an explosive growth in brain research: adult neurogenesis and neural tissue transplantation.
Collapse
Affiliation(s)
- Lazaros C Triarhou
- Laboratory of Theoretical and Applied Neuroscience, University of Macedonia, Egnatia 156, Bldg. Z-312, 54636, Thessaloniki, Greece.
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, CHU-Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
59
|
Mendez-David I, Schofield R, Tritschler L, Colle R, Guilloux JP, Gardier AM, Corruble E, Hen R, David DJ. Reviving through human hippocampal newborn neurons. Encephale 2021; 48:179-187. [PMID: 34649711 DOI: 10.1016/j.encep.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Recent contradictory data has renewed discussion regarding the existence of adult hippocampal neurogenesis (AHN) in humans, i.e., the continued production of new neurons in the brain after birth. The present review revisits the debate of AHN in humans from a historical point of view in the face of contradictory evidence, analyzing the methods employed to investigate this phenomenon. Thus, to date, of the 57 studies performed in humans that we reviewed, 84% (48) concluded in favor of the presence of newborn neurons in the human adult hippocampus. Besides quality of the tissue (such as postmortem intervals below 26hours as well as tissue conservation and fixation), considerations for assessing and quantify AHN in the human brain require the use of stereology and toxicological analyses of clinical data of the patient.
Collapse
Affiliation(s)
- I Mendez-David
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - R Schofield
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - L Tritschler
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - R Colle
- CESP, MOODS Team, Inserm, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie de Bicêtre, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - J-P Guilloux
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - A M Gardier
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - E Corruble
- CESP, MOODS Team, Inserm, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie de Bicêtre, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - R Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - D J David
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
60
|
Association of Caspase 3 Activation and H2AX γ Phosphorylation in the Aging Brain: Studies on Untreated and Irradiated Mice. Biomedicines 2021; 9:biomedicines9091166. [PMID: 34572352 PMCID: PMC8468010 DOI: 10.3390/biomedicines9091166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of H2AX is a response to DNA damage, but γH2AX also associates with mitosis and/or apoptosis. We examined the effects of X-rays on DNA integrity to shed more light on the significance of H2AX phosphorylation and its relationship with activation of caspase 3 (CASP3), the main apoptotic effector. After administration of the S phase marker BrdU, brains were collected from untreated and irradiated (10 Gray) 24-month-old mice surviving 15 or 30 min after irradiation. After paraffin embedding, brain sections were single- or double-stained with antibodies against γH2AX, p53-binding protein 1 (53BP1) (which is recruited during the DNA damage response (DDR)), active CASP3 (cCASP3), 5-Bromo-2-deoxyuridine (BrdU), and phosphorylated histone H3 (pHH3) (which labels proliferating cells). After statistical analysis, we demonstrated that irradiation not only induced a robust DDR with the appearance of γH2AX and upregulation of 53BP1 but also that cells with damaged DNA attempted to synthesize new genetic material from the rise in BrdU immunostaining, with increased expression of cCASP3. Association of γH2AX, 53BP1, and cCASP3 was also evident in normal nonirradiated mice, where DNA synthesis appeared to be linked to disturbances in DNA repair mechanisms rather than true mitotic activity.
Collapse
|
61
|
Sehara Y, Hayashi Y, Ohba K, Uchibori R, Urabe M, Inutsuka A, Shimazaki K, Kawai K, Mizukami H. Higher Transduction Efficiency of AAV5 to Neural Stem Cells and Immature Neurons in Gerbil Dentate Gyrus Compared to AAV2 and rh10. Hum Gene Ther 2021; 33:76-85. [PMID: 34348481 DOI: 10.1089/hum.2021.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The safety and high efficiency of adeno-associated virus (AAV) vectors has facilitated their wide scale use to deliver therapeutic genes for experimental and clinical purposes in diseases affecting the central nervous system (CNS). AAV1, 2, 5, 8, 9, and rh10 are the most commonly used serotypes for CNS applications. Most AAVs are known to transduce genes predominantly into neurons. However, the precise tropism of AAVs in the dentate gyrus (DG), the region where persistent neurogenesis occurs in the adult brain, is not fully understood. We stereotaxically injected 1.5 × 1010 viral genomes of AAV2, 5, or rh10 carrying green fluorescent protein (GFP) into the right side of gerbil hippocampus, and performed immunofluorescent analysis using differentiation stage-specific markers one week after injection. We found that AAV5 showed a significantly larger number of double positive cells for GFP and Sox2 in the DG, compared to the AAV2 and rh10 groups. On the other hand, AAVrh10 presented a substantially larger number of double positive cells for GFP and NeuN in the DG, compared to AAV2 and AAV5. Our findings indicated that AAV5 showed high transduction efficiency to neural stem cells and precursor cells, while AAVrh10 showed much higher efficiency to mature neurons in the DG.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan, 329-0498;
| | - Yuka Hayashi
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, Shimotsuke, Tochigi, Japan;
| | - Kenji Ohba
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, Shimotsuke, Tochigi, Japan;
| | - Ryosuke Uchibori
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, Shimotsuke, Tochigi, Japan;
| | - Masashi Urabe
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, Shimotsuke, Tochigi, Japan;
| | - Ayumu Inutsuka
- Jichi Medical University, 12838, Division of Brain and Neurophysiology, Department of Physiology, Shimotsuke, Tochigi, Japan;
| | - Kuniko Shimazaki
- Jichi Medical University, 12838, Department of Neurosurgery, Shimotsuke, Tochigi, Japan;
| | - Kensuke Kawai
- Jichi Medical University, 12838, Department of Neurosurgery, Shimotsuke, Tochigi, Japan;
| | - Hiroaki Mizukami
- Jichi Medical University, Division of Genetic Therapeutics, Center for Molecular Medicine, Shimotsuke, Tochigi, Japan;
| |
Collapse
|
62
|
Paulo SL, Ribeiro-Rodrigues L, Rodrigues RS, Mateus JM, Fonseca-Gomes J, Soares R, Diógenes MJ, Solá S, Sebastião AM, Ribeiro FF, Xapelli S. Sustained Hippocampal Neural Plasticity Questions the Reproducibility of an Amyloid-β-Induced Alzheimer's Disease Model. J Alzheimers Dis 2021; 82:1183-1202. [PMID: 34151790 DOI: 10.3233/jad-201567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The use of Alzheimer's disease (AD) models obtained by intracerebral infusion of amyloid-β (Aβ) has been increasingly reported in recent years. Nonetheless, these models may present important challenges. OBJECTIVE We have focused on canonical mechanisms of hippocampal-related neural plasticity to characterize a rat model obtained by an intracerebroventricular (icv) injection of soluble amyloid-β42 (Aβ42). METHODS Animal behavior was evaluated in the elevated plus maze, Y-Maze spontaneous or forced alternation, Morris water maze, and open field, starting 2 weeks post-Aβ42 infusion. Hippocampal neurogenesis was assessed 3 weeks after Aβ42 injection. Aβ deposition, tropomyosin receptor kinase B levels, and neuroinflammation were appraised at 3 and 14 days post-Aβ42 administration. RESULTS We found that immature neuronal dendritic morphology was abnormally enhanced, but proliferation and neuronal differentiation in the dentate gyrus was conserved one month after Aβ42 injection. Surprisingly, animal behavior did not reveal changes in cognitive performance nor in locomotor and anxious-related activity. Brain-derived neurotrophic factor related-signaling was also unchanged at 3 and 14 days post-Aβ icv injection. Likewise, astrocytic and microglial markers of neuroinflammation in the hippocampus were unaltered in these time points. CONCLUSION Taken together, our data emphasize a high variability and lack of behavioral reproducibility associated with these Aβ injection-based models, as well as the need for its further optimization, aiming at addressing the gap between preclinical AD models and the human disorder.
Collapse
Affiliation(s)
- Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
63
|
Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. Int J Mol Sci 2021; 22:ijms22147566. [PMID: 34299185 PMCID: PMC8304973 DOI: 10.3390/ijms22147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.
Collapse
|
64
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
65
|
Li C, Shi J, Sun J, Shi Y, Jia H. Cannabinoid receptor 2 deficiency enhances isoflurane-induced spatial cognitive impairment in adult mice by affecting neuroinflammation, neurogenesis and neuroplasticity. Exp Ther Med 2021; 22:908. [PMID: 34257720 PMCID: PMC8243338 DOI: 10.3892/etm.2021.10340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Isoflurane (Iso) is a commonly used inhalational anesthetic and is associated with the incidence of postoperative cognitive dysfunction (POCD). Cannabinoid receptor 2 (CB2R) was previously reported to have a promising neuroprotective function in cases of POCD, but the specific mechanisms have remained to be fully explored. The aim of the present study was to investigate the effect of CB2R deficiency on spatial cognitive performance in adult mice exposed to Iso. A total of 20 adult CB2R knockout (KO) and 20 wild-type (WT) mice were exposed to Iso (1.4% in oxygen for 4 h) or 100% oxygen. The Morris water maze (MWZ) test was performed 10 days after Iso exposure. Immunofluorescence staining and reverse transcription-quantitative PCR were performed to assess the expression of microglial marker ionized calcium-binding adaptor molecule-1 (Iba1) and the mRNA expression levels of microglial phenotype markers (M1: Interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase; M2: Chitinase-3 like protein) in the hippocampus. Changes in hippocampal neurogenesis and neuroplasticity were assessed by 5-bromodeoxyuridine (BrdU) immunostaining and Golgi staining. Compared with control mice, WT Iso-exposed mice had impaired spatial performance in the MWZ test. Furthermore, hippocampal Iba1 immunoreactivity and the number of microglial branches were notably increased in Iso-exposed WT mice. This was paralleled by significant upregulation of M1-associated markers and downregulation of M2-associated markers in the hippocampus. An obviously reduced number of BrdU+ neurons and decreased spine density were observed in WT Iso-exposed mice compared with control mice. Of note, CB2R deficiency exacerbated the spatial cognition impairment induced by Iso in the MWZ test. The alterations in the activation, morphology and M1 polarization of microglia, the number of BrdU+ neurons and spine density were more pronounced in CB2R-deficient Iso-exposed KO mice than in WT Iso-exposed mice. These results suggested that CB2R has a crucial role in Iso-induced cognitive impairment, which may be related to changes in hippocampal neuroinflammation, neurogenesis and neuroplasticity.
Collapse
Affiliation(s)
- Chao Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingpu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jiaguang Sun
- Department of Anesthesiology, Xingtai People's Hospital, Xintai, Hebei 054001, P.R. China
| | - Yuanyuan Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
66
|
Ermine CM, Chavez CA, Thompson LH. Histological characterization and quantification of newborn cells in the adult rodent brain. STAR Protoc 2021; 2:100614. [PMID: 34195672 PMCID: PMC8227830 DOI: 10.1016/j.xpro.2021.100614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This protocol describes the identification and characterization of newborn cells generated in the rodent brain after injury through birthdating with the thymidine analog 5-bromo-2′-deoxyuridine, followed by immunohistochemical labeling of fixed tissue sections. We also describe a software-assisted approach for automated detection and quantification of cells in large three-dimensional tissue volumes acquired using confocal microscopy. This approach facilitates the identification of low-frequency events that may be difficult to capture using manual counting methods, including stereology based on random sampling. For complete details on the use and execution of this protocol, please refer to Ermine et al. (2020). Newly generated cells can be immunolabeled using thymidine analogs such as BrdU High-quality 3D image capture allows for accurate software-based cell detection Automated cell detection quantifies immunolabeled cells in large tissue volumes Workflow to assist identification of low-frequency events in large cell populations
Collapse
Affiliation(s)
- Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, Melbourne, 3052 Australia
| | - Carolina A Chavez
- The Florey Institute of Neuroscience and Mental Health, Melbourne, 3052 Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, 3052 Australia
| |
Collapse
|
67
|
Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. ENVIRONMENTAL MICROBIOME 2021; 16:13. [PMID: 34158117 PMCID: PMC8218497 DOI: 10.1186/s40793-021-00382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/01/2021] [Indexed: 06/01/2023]
Abstract
Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
68
|
Martí-Clúa J. Incorporation of 5-Bromo-2'-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells 2021; 10:cells10061453. [PMID: 34200598 PMCID: PMC8229392 DOI: 10.3390/cells10061453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The synthetic halogenated pyrimidine analog, 5-bromo-2'-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2'-deoxyuridine to label dividing cells.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
69
|
Fuentes IM, Jones BM, Brake AD, Pierce AN, Eller OC, Supple RM, Wright DE, Christianson JA. Voluntary wheel running improves outcomes in an early life stress-induced model of urologic chronic pelvic pain syndrome in male mice. Pain 2021; 162:1681-1691. [PMID: 33399417 PMCID: PMC8119308 DOI: 10.1097/j.pain.0000000000002178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT Patients with a history of early life stress (ELS) exposure have an increased risk of developing chronic pain and mood disorders later in life. The severity of ELS in patients with urologic chronic pelvic pain syndrome (UCPPS) is directly correlated with symptom severity and increased comorbidity, and is inversely related to likelihood of improvement. Voluntary exercise improves chronic pain symptoms, and our group and others have shown that voluntary wheel running can improve outcomes in stress-induced UCPPS models, suggesting that exercise may negate some of the outcomes associated with ELS. Here, we provide further evidence that voluntary wheel running can attenuate increased perigenital mechanical sensitivity, bladder output, and mast cell degranulation in the bladder and prostate in male mice that underwent neonatal maternal separation (NMS). Sedentary male NMS mice had reduced serum corticosterone, which was not impacted by voluntary wheel running, although stress-related regulatory gene expression in the hypothalamus and hippocampus was significantly increased after exercise. Neurogenesis in the dentate gyrus of the hippocampus was diminished in sedentary NMS mice and significantly increased in both exercised naïve and NMS mice. Sucrose consumption increased in exercised naïve but not NMS mice, and anxiety behaviors measured on an elevated plus maze were increased after exercise. Together these data suggest that voluntary wheel running is sufficient to normalize many of the UCPPS-related outcomes resulting from NMS. Exercise also increased hippocampal neurogenesis and stress-related gene expression within the hypothalamic-pituitary-adrenal axis, further supporting exercise as a nonpharmacological intervention for attenuating outcomes related to ELS exposure.
Collapse
Affiliation(s)
- Isabella M. Fuentes
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Brittni M. Jones
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Aaron D. Brake
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Angela N. Pierce
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Olivia C. Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Rachel M. Supple
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Douglas E. Wright
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Anesthesiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Anesthesiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
70
|
Littlejohn EL, DeSana AJ, Williams HC, Chapman RT, Joseph B, Juras JA, Saatman KE. IGF1-Stimulated Posttraumatic Hippocampal Remodeling Is Not Dependent on mTOR. Front Cell Dev Biol 2021; 9:663456. [PMID: 34095131 PMCID: PMC8174097 DOI: 10.3389/fcell.2021.663456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023] Open
Abstract
Adult hippocampal neurogenesis is stimulated acutely following traumatic brain injury (TBI). However, many hippocampal neurons born after injury develop abnormally and the number that survive long-term is debated. In experimental TBI, insulin-like growth factor-1 (IGF1) promotes hippocampal neuronal differentiation, improves immature neuron dendritic arbor morphology, increases long-term survival of neurons born after TBI, and improves cognitive function. One potential downstream mediator of the neurogenic effects of IGF1 is mammalian target of rapamycin (mTOR), which regulates proliferation as well as axonal and dendritic growth in the CNS. Excessive mTOR activation is posited to contribute to aberrant plasticity related to posttraumatic epilepsy, spurring preclinical studies of mTOR inhibitors as therapeutics for TBI. The degree to which pro-neurogenic effects of IGF1 depend upon upregulation of mTOR activity is currently unknown. Using immunostaining for phosphorylated ribosomal protein S6, a commonly used surrogate for mTOR activation, we show that controlled cortical impact TBI triggers mTOR activation in the dentate gyrus in a time-, region-, and injury severity-dependent manner. Posttraumatic mTOR activation in the granule cell layer (GCL) and dentate hilus was amplified in mice with conditional overexpression of IGF1. In contrast, delayed astrocytic activation of mTOR signaling within the dentate gyrus molecular layer, closely associated with proliferation, was not affected by IGF1 overexpression. To determine whether mTOR activation is necessary for IGF1-mediated stimulation of posttraumatic hippocampal neurogenesis, wildtype and IGF1 transgenic mice received the mTOR inhibitor rapamycin daily beginning at 3 days after TBI, following pulse labeling with bromodeoxyuridine. Compared to wildtype mice, IGF1 overexpressing mice exhibited increased posttraumatic neurogenesis, with a higher density of posttrauma-born GCL neurons at 10 days after injury. Inhibition of mTOR did not abrogate IGF1-stimulated enhancement of posttraumatic neurogenesis. Rather, rapamycin treatment in IGF1 transgenic mice, but not in WT mice, increased numbers of cells labeled with BrdU at 3 days after injury that survived to 10 days, and enhanced the proportion of posttrauma-born cells that differentiated into neurons. Because beneficial effects of IGF1 on hippocampal neurogenesis were maintained or even enhanced with delayed inhibition of mTOR, combination therapy approaches may hold promise for TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
71
|
Wang Y, Cottle WT, Wang H, Feng XA, Mallon J, Gavrilov M, Bailey S, Ha T. Genome oligopaint via local denaturation fluorescence in situ hybridization. Mol Cell 2021; 81:1566-1577.e8. [PMID: 33657402 PMCID: PMC8026568 DOI: 10.1016/j.molcel.2021.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Cas9 in complex with a programmable guide RNA targets specific double-stranded DNA for cleavage. By harnessing Cas9 as a programmable loader of superhelicase to genomic DNA, we report a physiological-temperature DNA fluorescence in situ hybridization (FISH) method termed genome oligopaint via local denaturation (GOLD) FISH. Instead of global denaturation as in conventional DNA FISH, loading a superhelicase at a Cas9-generated nick allows for local DNA denaturation, reducing nonspecific binding of probes and avoiding harsh treatments such as heat denaturation. GOLD FISH relies on Cas9 cleaving target DNA sequences and avoids the high nuclear background associated with other genome labeling methods that rely on Cas9 binding. The excellent signal brightness and specificity enable us to image nonrepetitive genomic DNA loci and analyze the conformational differences between active and inactive X chromosomes. Finally, GOLD FISH could be used for rapid identification of HER2 gene amplification in patient tissue.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wayne Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haobo Wang
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu Ashlee Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John Mallon
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Momcilo Gavrilov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott Bailey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
72
|
Li Q, Lou J, Yang T, Wei Z, Li S, Zhang F. Ischemic Preconditioning Induces Oligodendrogenesis in Mouse Brain: Effects of Nrf2 Deficiency. Cell Mol Neurobiol 2021; 42:1859-1873. [PMID: 33666795 DOI: 10.1007/s10571-021-01068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Ischemic preconditioning (IPC) is an approach of protection against cerebral ischemia by inducing endogenous cytoprotective machinery. However, few studies in neurogenesis and oligodendrogenesis after IPC have been reported, especially the latter. The purpose of this study is to test our hypothesis that IPC may also induce cell proliferation and oligodendrogenesis in the subventricular zone and striatum, as well as to investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) on oligodendrogenesis. IPC was induced in mice by 12-min ischemia through the occlusion of the middle cerebral artery. Newly generated cells were labeled with 5-bromo-2'-deoxyuridine. Our findings demonstrated that IPC stimulated the proliferation of neural stem cells in the subventricular zone, promoted the generation of oligodendrocyte precursor cells in the striatum and corpus callosum/external capsule (CC/EC), and stimulated oligodendrocyte precursor cells differentiation into oligodendrocytes in the striatum and the CC/EC. Furthermore, we describe a crucial role for Nrf2 in IPC-induced oligodendrogenesis in the subventricular zone, striatum, and CC/EC and show for the first time that Nrf2 promoted the migration and differentiation of oligodendrocyte precursor cells into oligodendrocytes in the striatum and CC/EC. Our data imply that IPC stimulates the oligodendrogenesis in the brain and that Nrf2 signaling may contribute to the oligodendrogenesis.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiyu Lou
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Senmiao Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
73
|
Arshad MN, Aaron GB, Naegele JR. Optogenetic Interrogation of ChR2-Expressing GABAergic Interneurons After Transplantation into the Mouse Brain. Methods Mol Biol 2021; 2191:235-259. [PMID: 32865749 DOI: 10.1007/978-1-0716-0830-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper describes research methods to investigate the development of synaptic connections between transplanted GABAergic interneurons and endogenous neurons in the adult mouse hippocampus. Our protocol highlights methods for retroviral labeling adult-born GCs, one of the few cell types in the adult brain to be continuously renewed throughout life. By precise targeting of the retrovirus, labeling of adult-born GCs can be combined with optogenetic stimulation of the transplanted cells and electrophysiology in brain slices, to test whether the GABAergic interneurons integrate and establish inhibitory synaptic connections with host brain neurons. Modifications to adult neurogenesis are an important contributing factor in the development and severity of TLE and seizures. When combined with retroviral labeling, the approaches we describe in this chapter can be used to determine whether transplantation modifies the process of adult neurogenesis or other properties of the hippocampus. These approaches are helping to define parameters for potential cell replacement therapies to be used in patients with intractable seizure disorders.
Collapse
Affiliation(s)
- Muhammad N Arshad
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Room 257, Hall-Atwater Laboratory, Middletown, CT, USA
| | - Gloster B Aaron
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Room 257, Hall-Atwater Laboratory, Middletown, CT, USA
| | - Janice R Naegele
- Department of Biology, Program in Neuroscience and Behavior, Wesleyan University, Room 257, Hall-Atwater Laboratory, Middletown, CT, USA.
| |
Collapse
|
74
|
Yang X, Song D, Chen L, Xiao H, Ma X, Jiang Q, Cheng O. Curcumin promotes neurogenesis of hippocampal dentate gyrus via Wnt/β-catenin signal pathway following cerebral ischemia in mice. Brain Res 2020; 1751:147197. [PMID: 33160958 DOI: 10.1016/j.brainres.2020.147197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To investigate whether curcumin promotes hippocampal neurogenesis in the cerebral ischemia (CI) mice via Wnt/β-catenin signaling pathway. METHODS Male C57BL/6 mice were randomly divided into groups: sham operation group (Sham), cerebral ischemic group (CI), curcumin treatment group (50, 100 mg/kg/d, i.p.) and curcumin (100 mg/kg/d) + DKK1 (a blocker of Wnt receptor, 200 ng/d, icv) group. CI was induced by bilateral common carotid arteries occlusion (BCCAO) for 20 min. The Morris water maze test was conducted to detect spatial learning and memory. Immunofluorescence staining was used to examine the proliferation and differentiation of immature neurons in the hippocampal dentate gyrus. The proteins involved in neurogenesis and Wnt signaling pathway were examined using Western blot assay. RESULTS Curcumin significantly alleviated cognitive deficits induced by CI. Curcumin dose-dependently increased the proliferation of neural stem cells and promoted the differentiation and maturation of newly generated neural cells into neurons. Curcumin also increased the expression of proteins involved in neurogenesis (including Ngn2, Pax6 and NeuroD 1) and the Wnt/β-catenin signaling pathway. Moreover, the forenamed effects of curcumin were abolished by pretreatment with DKK1, a blocker of Wnt receptor. CONCLUSION Curcumin promotes hippocampal neurogenesis by activating Wnt/β-catenin signaling pathway to ameliorate cognitive deficits after acute CI.
Collapse
Affiliation(s)
- Xuemei Yang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Dan Song
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lili Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Xiao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xiaojiao Ma
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
75
|
Kubikova L, Polomova J, Mikulaskova V, Lukacova K. Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. BIOLOGY 2020; 9:biology9110356. [PMID: 33113793 PMCID: PMC7694046 DOI: 10.3390/biology9110356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The present study compared the effectivity of two cell proliferation markers, BrdU and EdU, in the brain neurogenic zone of the songbird zebra finch. It shows their saturation doses, that BrdU labels more cells than the equimolar dose of EdU, and that both markers can be reliably detected in the same brain. Abstract There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.
Collapse
Affiliation(s)
- Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Correspondence:
| | - Justina Polomova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| | - Viktoria Mikulaskova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| |
Collapse
|
76
|
Park TIH, Schweder P, Lee K, Dieriks BV, Jung Y, Smyth L, Rustenhoven J, Mee E, Heppner P, Turner C, Curtis MA, Faull RLM, Montgomery JM, Dragunow M. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun 2020; 2:fcaa171. [PMID: 33215086 PMCID: PMC7660143 DOI: 10.1093/braincomms/fcaa171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to characterize and study primary neurons isolated directly from the adult human brain would greatly advance neuroscience research. However, significant challenges such as accessibility of human brain tissue and the lack of a robust neuronal cell culture protocol have hampered its progress. Here, we describe a simple and reproducible method for the isolation and culture of functional adult human neurons from neurosurgical brain specimens. In vitro, adult human neurons form a dense network and express a plethora of mature neuronal and synaptic markers. Most importantly, for the first time, we demonstrate the re-establishment of mature neurophysiological properties in vitro, such as repetitive fast-spiking action potentials, and spontaneous and evoked synaptic activity. Together, our dissociated and slice culture systems enable studies of adult human neurophysiology and gene expression under normal and pathological conditions and provide a high-throughput platform for drug testing on brain cells directly isolated from the adult human brain.
Collapse
Affiliation(s)
- Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon Smyth
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Edward Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
77
|
Zhu H, Qin N, Xu X, Sun X, Chen X, Zhao J, Xu R, Mishra B. Synergistic inhibition of csal1 and csal3 in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical development†. Biol Reprod 2020; 101:986-1000. [PMID: 31350846 PMCID: PMC6877779 DOI: 10.1093/biolre/ioz137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
SALL1 and SALL3 are transcription factors that play an essential role in regulating developmental processes and organogenesis in many species. However, the functional role of SALL1 and SALL3 in chicken prehierarchical follicle development is unknown. This study aimed to explore the potential role and mechanism of csal1 and csal3 in granulosa cell proliferation, differentiation, and follicle selection within the prehierarchical follicles of hen ovary. Our data demonstrated that the csal1 and csal3 transcriptions were highly expressed in granulosa cells of prehierarchical follicles, and their proteins were mainly localized in the cytoplasm of granulosa cells and oocytes as well as in the ovarian stroma and epithelium. It initially revealed that both csal1 and csal3 may be involved in chicken prehierarchical follicle development via a translocation mechanism. Furthermore, our results showed an abundance of CCND1, Bcat, StAR, CYP11A1, and FSHR mRNA in granulosa cells, and the proliferation levels of granulosa cells from the prehierarchical follicles were significantly increased by siRNA-mediated knockdown of csal1 or/and csal3. Conversely, the overexpression of csal1 or/and csal3 in the granulosa cells led to a remarkably decreased of them. Moreover, csal1 and csal3 together exert a much stronger effect on the regulation than any of csal1 or csal3. These results indicated that csal1 and csal3 play synergistic inhibitory roles on granulosa cell proliferation, differentiation, and steroidogenesis during prehierarchical follicle development in vitro. The current data provide a basis of molecular mechanisms of csal1 and csal3 in controlling the prehierarchical follicle development and growth of hen ovary in vivo.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxing Xu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
78
|
Rodríguez-Vázquez L, Martí J. Administration of 5-bromo-2'-deoxyuridine interferes with neuroblast proliferation and promotes apoptotic cell death in the rat cerebellar neuroepithelium. J Comp Neurol 2020; 529:1081-1096. [PMID: 32785933 DOI: 10.1002/cne.25005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
The current study was conducted to assess whether a single administration of 5-bromo-2'-deoxyuridine (BrdU) interferes with cell proliferation and leads to the activation of apoptotic cellular events in the prenatal cerebellum. BrdU effects across a wide range of doses (25-300 μg/g b.w.) were analyzed using immunohistochemical and ultrastructural procedures. The pregnant rats were injected with BrdU at embryonic day 13, and their fetuses were sacrificed from 5 to 35 hr after exposure. The quantification of several parameters such as the density of mitotic figures, and BrdU and proliferating cell nuclear antigen (PCNA)-reactive cells showed that, in comparison with the saline injected rats, the administration of BrdU impairs the proliferative behavior of neuroepithelial cells. The above-mentioned parameters were significantly reduced in rats injected with 100 μg/g b.w. of BrdU. The reduction was more evident using 200 μg/g b.w. The most severe effects were found with 300 μg/g b.w. of BrdU. The present findings also revealed that high doses of BrdU lead to the activation of apoptotic cellular events as evidenced by both terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and immunohistochemistry for active caspase-3. In comparison with saline rats, many apoptotic cells were found in rats injected with 100 μg/g b.w. of BrdU. The number of dying cells increased with 200 μg/g b.w. The most important number of apoptotic cells were observed in animals injected with 300 μg/g b.w. of BrdU. Ultrastructural studies confirmed the presence of neuroblasts at different stages of apoptosis.
Collapse
Affiliation(s)
- Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
79
|
Zhao X, van Praag H. Steps towards standardized quantification of adult neurogenesis. Nat Commun 2020; 11:4275. [PMID: 32848155 PMCID: PMC7450090 DOI: 10.1038/s41467-020-18046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
New neurons are generated in adult mammals. Adult hippocampal neurogenesis is considered to play an important role in cognition and mental health. The number and properties of newly born neurons are regulatable by a broad range of physiological and pathological conditions. To begin to understand the underlying cellular mechanisms and functional relevance of adult neurogenesis, many studies rely on quantification of adult-born neurons. However, lack of standardized methods to quantify new neurons is impeding research reproducibility across laboratories. Here, we review the importance of stereology, and propose why and how it should be applied to the study of adult neurogenesis.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center and University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Henriette van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
80
|
Sritawan N, Prajit R, Chaisawang P, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother 2020; 131:110651. [PMID: 32841896 DOI: 10.1016/j.biopha.2020.110651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Methotrexate (MTX) is a chemotherapeutic drug commonly used to treat cancers that has an adverse effect on patients' cognition. Metformin is a primary treatment for type 2 diabetes mellitus that can pass through the blood-brain barrier. Metformin has neuroprotective actions, which can improve memory. In the present study, we examined the ability of metformin in MTX chemotherapy-generated cognitive and hippocampal neurogenesis alterations. Male Sprague-Dawley rats were allocated into control, MTX, metformin, preventive, and throughout groups. MTX (75 mg/kg/day) was given intravenously on days 7 and 14 of the study. Metformin (200 mg/kg/day) was injected intraperitoneally for 14 days. Some of the MTX-treated rats received co-treatment with metformin once a day for either 14 (preventive) or 28 days (throughout). After treatment, memory ability was evaluated using novel object location and novel object recognition tests. Ki67 (proliferating cells), BrdU (survival cells), and doublecortin (immature neurons, DCX) positive cells in the subgranular zone (SGZ) of the hippocampal dentate gyrus were quantified. We found that reductions of cognition, the number of proliferating and survival cells and immature neurons in the SGZ were ameliorated in the co-treatment groups, which suggests that metformin can prevent memory and hippocampal neurogenesis impairments induced by MTX in adult rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
81
|
Lange Canhos L, Chen M, Falk S, Popper B, Straub T, Götz M, Sirko S. Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 2020; 69:165-181. [PMID: 32744730 DOI: 10.1002/glia.23893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Unlike microglia and NG2 glia, astrocytes are incapable of migrating to sites of injury in the posttraumatic cerebral cortex, instead relying on proliferation to replenish their numbers and distribution in the affected region. However, neither the spectrum of their proliferative repertoire nor their postinjury distribution has been examined in vivo. Using a combination of different thymidine analogs and clonal analysis in a model of repetitive traumatic brain injury, we show for the first time that astrocytes that are quiescent following an initial injury can be coerced to proliferate after a repeated insult in the cerebral cortex grey matter. Interestingly, this process is promoted by invasion of monocytes to the injury site, as their genetic ablation (using CCR2-/- mice) increased the number of repetitively dividing astrocytes at the expense of newly proliferating astrocytes in repeatedly injured parenchyma. These differences profoundly affected both the distribution of astrocytes and recovery period for posttraumatic behavior deficits suggesting key roles of astrocyte self-renewal in brain repair after injury.
Collapse
Affiliation(s)
- Luisa Lange Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Graduate School of Systemic Neurosciences (GSN-LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Muxin Chen
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Excellence Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
82
|
Ledesma-Terrón M, Peralta-Cañadas N, Míguez DG. FGF2 modulates simultaneously the mode, the rate of division and the growth fraction in cultures of radial glia. Development 2020; 147:147/14/dev189712. [PMID: 32709691 PMCID: PMC7390635 DOI: 10.1242/dev.189712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023]
Abstract
Radial glial progenitors in the mammalian developing neocortex have been shown to follow a deterministic differentiation program restricted to an asymmetric-only mode of division. This feature seems incompatible with their well-known ability to increase in number when cultured in vitro, driven by fibroblast growth factor 2 and other mitogenic signals. The changes in their differentiation dynamics that allow this transition from in vivo asymmetric-only division mode to an in vitro self-renewing culture have not been fully characterized. Here, we combine experiments of radial glia cultures with numerical models and a branching process theoretical formalism to show that fibroblast growth factor 2 has a triple effect by simultaneously increasing the growth fraction, promoting symmetric divisions and shortening the length of the cell cycle. These combined effects partner to establish and sustain a pool of rapidly proliferating radial glial progenitors in vitro. We also show that, in conditions of variable proliferation dynamics, the branching process tool outperforms other commonly used methods based on thymidine analogs, such as BrdU and EdU, in terms of accuracy and reliability. Highlighted Article: When mode and/or rate of division are changing, a branching process, rather than a thymidine analog method, provides temporal resolution, it is more robust and does not interfere with cell homeostasis.
Collapse
Affiliation(s)
- Mario Ledesma-Terrón
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| | - Nuria Peralta-Cañadas
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| | - David G Míguez
- Departamento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada, IFIMAC, Instituto Nicolas Cabrera, INC, Centro de Biología Molecular Severo Ochoa, CBMSO, Universidad Autónoma de Madrid, Madrid 28012, Spain
| |
Collapse
|
83
|
Piermartiri TCB, Dos Santos B, Barros-Aragão FGQ, Prediger RD, Tasca CI. Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice. Mol Neurobiol 2020; 57:3814-3826. [PMID: 32592125 DOI: 10.1007/s12035-020-01977-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.
Collapse
Affiliation(s)
- Tetsade C B Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | | | - Rui D Prediger
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.,Departamento de Farmacologia, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
84
|
Nickle TR, Stanley EM, Middlemas DS. Corticosterone Induces Depressive-Like Behavior in Female Peri-Pubescent Rats, but Not in Pre-Pubescent Rats. CHRONIC STRESS 2020; 4:2470547020923711. [PMID: 32518888 PMCID: PMC7254596 DOI: 10.1177/2470547020923711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
Background There are no data on the effect of exogenous corticosterone on depressive-like behavior in juvenile rats. Furthermore, it has not been tested whether the effects of corticosterone in female rats is different before or after puberty. Objective We tested the effect of corticosterone treatment on female pre- and peri-pubescent juvenile rats on depressive-like behavior. Methods Female juvenile rats were divided into pre-pubescent (post-natal day 7–27) or peri-pubescent (post-natal day 28–48) groups and administered daily corticosterone (40 mg kg−1 day−1) for 21 days. Depressive-like behavior was assessed using a modified forced swim test and the sucrose preference test. After behavioral assessment, brains were analyzed to determine if there were changes in cell proliferation and newborn neuron survival in the dentate gyrus of the dorsal hippocampus. Results Chronic corticosterone treatment did not affect behavior or neurogenesis in female pre-pubescent juvenile rats. However, female peri-pubescent rats injected with corticosterone showed increased depressive-like behavior as well as a decrease in cell proliferation in the subgranular zone. Furthermore, there was an inverse correlation between time spent immobile in the forced swim test and cell proliferation in the granule cell layer in peri-pubescent rats. Conclusions Corticosterone induces depressive-like behavior in peri-pubescent, but not in pre-pubescent female rats. Finally, our results suggest that depressive-like behavior may be associated with a decrease in hippocampal cell proliferation in female peri-pubescent rats.
Collapse
Affiliation(s)
- Tyler R Nickle
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Erica M Stanley
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - David S Middlemas
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA
| |
Collapse
|
85
|
Prajit R, Sritawan N, Suwannakot K, Naewla S, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Chrysin Protects against Memory and Hippocampal Neurogenesis Depletion in D-Galactose-Induced Aging in Rats. Nutrients 2020; 12:nu12041100. [PMID: 32316121 PMCID: PMC7230764 DOI: 10.3390/nu12041100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
The interruption of hippocampal neurogenesis due to aging impairs memory. The accumulation of D-galactose (D-gal), a monosaccharide, induces brain aging by causing oxidative stress and inflammation, resulting in neuronal cell damage and memory loss. Chrysin, an extracted flavonoid, has neuroprotective effects on memory. The present study aimed to investigate the effect of chrysin on memory and hippocampal neurogenesis in brains aged using D-gal. Male Sprague-Dawley rats received either D-gal (50 mg/kg) by i.p. injection, chrysin (10 or 30 mg/kg) by oral gavage, or D-gal (50 mg/kg) and chrysin (10 or 30 mg/kg) for 8 weeks. Memory was evaluated using novel object location (NOL) and novel object recognition (NOR) tests. Hippocampal neurogenesis was evaluated using Ki-67, 5-bromo-2′-deoxyuridine (BrdU), and doublecortin (DCX) immunofluorescence staining to determine cell proliferation, cell survival, and number of immature neurons, respectively. We found that D-gal administration resulted in memory impairment as measured by NOL and NOR tests and in depletions in cell proliferation, cell survival, and immature neurons. However, co-treatment with chrysin (10 or 30 mg/kg) attenuated these impairments. These results suggest that chrysin could potentially minimize memory and hippocampal neurogenesis depletions brought on by aging.
Collapse
Affiliation(s)
- Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Kornrawee Suwannakot
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen’s Medical Centre, The University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (R.P.); (N.S.); (K.S.); (S.N.); (A.A.); (A.S.); (W.P.)
- Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-84-667-6105
| |
Collapse
|
86
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
87
|
Rewarding deep brain stimulation at the medial forebrain bundle favours avoidance conditioned response in a remote memory test, hinders extinction and increases neurogenesis. Behav Brain Res 2020; 378:112308. [PMID: 31629001 DOI: 10.1016/j.bbr.2019.112308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Intracranial Self-Stimulation (ICSS) at the medial forebrain bundle consistently facilitates learning and memory in rats when administered post-training or when administered non-concurrent to training, but its scope regarding remote memory has not yet been studied. The present work aims to test whether the combination of these two forms of ICSS administration can cause a greater persistence of the facilitating effect on remote retention and affect neurogenesis in the dentate gyrus (DG) of the hippocampus. Rats were trained in active avoidance conditioning and tested in two retention sessions (10 and 90 days) and later extinction. Subjects received an ICSS session after each of the five avoidance acquisition sessions (post-training treatment) and half of them also received ten additional ICSS sessions during the rest period between retention tests (non-concurrent treatment). All the stimulated groups showed a higher performance in acquisition and retention sessions, but only the rats receiving both ICSS treatments showed greater resistance to extinction. Remarkably, at seven months, rats receiving the non-concurrent ICSS treatment had a greater number of DCX-positive cells in the DG as well as a higher amount of new-born cells within the granular layer compared to rats that did not receive this additional ICSS treatment. Our present findings significantly extend the temporal window of the facilitating effect of ICSS on active avoidance and demonstrate a neurogenic effect of rewarding medial forebrain bundle stimulation.
Collapse
|
88
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
89
|
Chang EI, Rozance PJ, Wesolowski SR, Nguyen LM, Shaw SC, Sclafani RA, Bjorkman KK, Peter AK, Hay WW, Brown LD. Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep. J Endocrinol 2019; 244:339-352. [PMID: 31751294 PMCID: PMC7192794 DOI: 10.1530/joe-19-0273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Intrauterine growth-restricted (IUGR) fetuses are born with reduced skeletal muscle mass. We hypothesized that reduced rates of myogenesis would contribute to fewer and smaller myofibers in IUGR fetal hindlimb muscle compared to the normally growing fetus. We tested this hypothesis in IUGR fetal sheep with progressive placental insufficiency produced by exposing pregnant ewes to elevated ambient temperatures from 38 to 116 days gestation (dGA; term = 147 dGA). Surgically catheterized control (CON, n = 8) and IUGR (n = 13) fetal sheep were injected with intravenous 5-bromo-2′-deoxyuridine (BrdU) prior to muscle collection (134 dGA). Rates of myogenesis, defined as the combined processes of myoblast proliferation, differentiation, and fusion into myofibers, were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. Total myofiber number was determined for the entire cross-section of the FDS muscle. In IUGR fetuses, the number of BrdU+ myonuclei per myofiber cross-section was lower in BF, TA, and FDS (P < 0.05), total myonuclear number per myofiber cross-section was lower in BF and FDS (P < 0.05), and total myofiber number was lower in FDS (P < 0.005) compared to CON. mRNA expression levels of cyclins, cyclin-dependent protein kinases, and myogenic regulatory factors were lower (P < 0.05), and inhibitors of the cell cycle were higher (P < 0.05) in IUGR BF compared to CON. Markers of apoptosis were not different in IUGR BF muscle. These results show that in IUGR fetuses, reduced rates of myogenesis produce fewer numbers of myonuclei, which may limit hypertrophic myofiber growth. Fewer myofibers of smaller size contribute to smaller muscle mass in the IUGR fetus.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Leanna M. Nguyen
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Steven C. Shaw
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Robert A. Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen K. Bjorkman
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angela K. Peter
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - William W. Hay
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| |
Collapse
|
90
|
Chen L, Song D, Chen B, Yang X, Cheng O. Activation of liver X receptor promotes hippocampal neurogenesis and improves long-term cognitive function recovery in acute cerebral ischemia-reperfusion mice. J Neurochem 2019; 154:205-217. [PMID: 31602646 DOI: 10.1111/jnc.14890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia (CI) leads to cognitive dysfunction due to the loss of hippocampal neurons. Liver X receptors (LXRs), including the LXRα and LXRβ isoforms, are critical for neurogenesis, synaptic plasticity, neurodegeneration, and cholesterol metabolism. However, the potential role of LXRs in the pathogenesis of CI-induced cognitive impairment is unclear. Therefore, we investigated the effects of LXR activation on hippocampal neurogenesis and cognitive function in mice with CI. C57 mice were randomized into four groups that included a sham group and three treatment groups with CI [Vehicle, TO901317 (TO90, an agonist of LXRs) and GSK2033 (an antagonist of LXRs)]. Mice were subjected to bilateral common carotid artery occlusion for 20 min to induce transient CI. The Morris water maze test was executed to detect spatial learning and memory. Proliferation, differentiation, and immature neurons in the subgranular zone (SGZ) were examined using Immunofluorescence. Western blot assay was used to detect the expression of the Wnt/β-catenin signaling pathway-associated protein. TO90 significantly improved spatial learning and memory deficits induced by CI on 28 days. It enhanced the proliferation of neural stem cells, the number of immature neurons and the differentiation from nascent cells to neurons. The expression of the Wnt/β-catenin signaling pathway-associated protein level was totally increased. The forenamed effects of TO90 were decreased in GSK2033 group. Thus, our findings suggest that LXRs activation can improve long-term cognitive dysfunction caused by CI by increasing neurogenesis, and LXRs may serve as a potential therapeutic target for cerebral ischemia. Cover Image for this issue: doi: 10.1111/jnc.14753.
Collapse
Affiliation(s)
- Lili Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Laboratory Research Center, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Song
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Laboratory Research Center, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Beibei Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Laboratory Research Center, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Neurology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Xuemei Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
91
|
Guan F, Huang T, Wang X, Xing Q, Gumpper K, Li P, Song J, Tan T, Yang GL, Zang X, Zhang J, Wang Y, Yang Y, Liu Y, Zhang Y, Yang B, Ma J, Ma S. The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury. Stem Cell Res Ther 2019; 10:352. [PMID: 31779687 PMCID: PMC6883632 DOI: 10.1186/s13287-019-1433-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common neurotrauma leading to brain dysfunction and death. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold promise in the treatment of TBI. However, their efficacy is modest due to low survival and differentiation under the harsh microenvironment of the injured brain. MG53, a member of TRIM family protein, plays a vital role in cell and tissue damage repair. The present study aims to test whether MG53 preserves hUC-MSCs against oxidative stress and enhances stem cell survival and efficacy in TBI treatment. Methods In this study, we performed a series of in vitro and in vivo experiments in hUC-MSCs and mice to define the function of MG53 enhancing survival, neurogenesis, and therapeutic efficacy of stem cells in murine traumatic brain injury. Results We found that recombinant human MG53 (rhMG53) protein protected hUC-MSCs against H2O2-induced oxidative damage and stimulated hUC-MSC proliferation and migration. In a mouse model of contusion-induced TBI, intravenous administration of MG53 protein preserved the survival of transplanted hUC-MSCs, mitigated brain edema, reduced neurological deficits, and relieved anxiety and depressive-like behaviors. Co-treatment of MG53 and hUC-MSCs enhanced neurogenesis by reducing apoptosis and improving PI3K/Akt-GSK3β signaling. Conclusion MG53 enhances the efficacy of hUC-MSCs in the recovery of TBI, indicating that such adjunctive therapy may provide a novel strategy to lessen damage and optimize recovery for brain injury.
Collapse
Affiliation(s)
- Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xinxin Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kristyn Gumpper
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jishi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Jiewen Zhang
- Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yuming Wang
- Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yunlei Yang
- Department of Medicine and Neuroscience, Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yashi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
92
|
Qiu W, Gobinath AR, Wen Y, Austin J, Galea LAM. Folic acid, but not folate, regulates different stages of neurogenesis in the ventral hippocampus of adult female rats. J Neuroendocrinol 2019; 31:e12787. [PMID: 31478270 DOI: 10.1111/jne.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Folate is an important regulator of hippocampal neurogenesis, and folic acid is needed prenatally to reduce the risk of neural tube defects. Both high levels of folic acid and low levels of folate can be harmful to health because low levels of folate have been linked to several diseases while high folic acid supplements can mask a vitamin B12 deficiency. Depressed patients exhibit folate deficiencies, lower levels of hippocampal neurogenesis, elevated levels of homocysteine and elevated levels of the stress hormone, cortisol, which may be inter-related. In the present study, we were interested in whether different doses of natural folate or synthetic folic acid diets can influence neurogenesis in the hippocampus, levels of plasma homocysteine and serum corticosterone in adult female rats. Adult female Sprague-Dawley rats underwent dietary interventions for 29 days. Animals were randomly assigned to six different dietary groups: folate deficient + succinylsulphathiazole (SST), low 5-methyltetrahydrofolate (5-MTHF), low 5-MTHF + (SST), high 5-MTHF + SST, low folic acid and high folic acid. SST was added to a subset of the 5-MTHF diets to eliminate folic acid production in the gut. Before and after dietary treatment, blood samples were collected for corticosterone and homocysteine analysis, and brain tissue was collected for neurogenesis analysis. High folic acid and low 5-MTHF without SST increased the number of immature neurones (doublecortin-expressing cells) within the ventral hippocampus compared to folate deficient controls. Low 5-MTHF without SST significantly increased the number of immature neurones compared to low and high 5-MTHF + SST, indicating that SST interfered with elevations in neurogenesis. Low folic acid and high 5-MTHF + SST reduced plasma homocysteine levels compared to controls, although there was no significant effect of diet on serum corticosterone levels. In addition, low folic acid and high 5-MTHF + SST reduced the number of mature new neurones in the ventral hippocampus (bromodeoxyuridine/NeuN-positive cells) compared to folate deficient controls. Overall, folic acid dose-dependently influenced neurogenesis with low levels decreasing but high levels increasing neurogenesis in the ventral hippocampus, suggesting that this region, which is important for regulating stress, is particularly sensitive to folic acid in diets. Furthermore, the addition of SST negated the effects of 5-MTHF to increase neurogenesis in the ventral hippocampus.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
93
|
Segabinazi E, Spindler C, Meireles ALFD, Piazza FV, Mega F, Salvalaggio GDS, Achaval M, Marcuzzo S. Effects of Maternal Physical Exercise on Global DNA Methylation and Hippocampal Plasticity of Rat Male Offspring. Neuroscience 2019; 418:218-230. [PMID: 31473277 DOI: 10.1016/j.neuroscience.2019.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Intrauterine exposure to exercise is beneficial to cognition of the offspring. Although it is advisable to start practicing physical exercise during pregnancy, it is probable that practitioners or sedentary women keep their previous habits during gestation. This study was designed to evaluate the effects of maternal aerobic exercise initiated before and maintained during gestation, or performed in these isolated periods, on cognition and plasticity in the hippocampus of offspring. Groups of male pups were categorized by the exposure of their mothers to: treadmill off (sedentary, SS), pregestational exercise (ES), gestational exercise (SE) or combined protocols (EE). Between postnatal day 20 (P20) and P23 the offspring received one daily 5-bromo-2'-deoxiuridine (BrdU) injection and, from P47 to P51, were evaluated by the Morris water maze task. At P53, hippocampal global DNA methylation, survival of progenitor cells (BrdU), Brain-derived Neurotrophic Factor (BDNF) and reelin levels were measured. The offspring from ES, SE and EE mothers demonstrated improved spatial learning compared to SS, but hippocampal DNA methylation was significantly modified only in the offspring from ES mothers. The offspring from ES and SE mothers presented higher number of BrdU+ and reelin+ hippocampal cells than EE and SS. No differences were observed in the BDNF levels among the groups. The maternal pregestational and gestational isolated exercise protocols showed similar effects for offspring plasticity and spatial cognitive ability, while the combined protocol simply improved their spatial learning. Interestingly, only pregestational exercise was able to induce plasticity in the offspring hippocampus associated with modulation of global DNA methylation.
Collapse
Affiliation(s)
- Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - André Luís Ferreira de Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Gabriela Dos Santos Salvalaggio
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
94
|
Quintanilla LJ, Yeh CY, Bao H, Catavero C, Song J. Assaying Circuit Specific Regulation of Adult Hippocampal Neural Precursor Cells. J Vis Exp 2019. [PMID: 31403615 DOI: 10.3791/59237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Adult neurogenesis is a dynamic process by which newly activated neural stem cells (NSCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate new neurons, which integrate into an existing neural circuit and contribute to specific hippocampal functions. Importantly, adult neurogenesis is highly susceptible to environmental stimuli, which allows for activity-dependent regulation of various cognitive functions. A vast range of neural circuits from various brain regions orchestrates these complex cognitive functions. It is therefore important to understand how specific neural circuits regulate adult neurogenesis. Here, we describe a protocol to manipulate neural circuit activity using designer receptor exclusively activated by designer drugs (DREADDs) technology that regulates NSCs and newborn progeny in rodents. This comprehensive protocol includes stereotaxic injection of viral particles, chemogenetic stimulation of specific neural circuits, thymidine analog administration, tissue processing, immunofluorescence labeling, confocal imaging, and imaging analysis of various stages of neural precursor cells. This protocol provides detailed instructions on antigen retrieval techniques used to visualize NSCs and their progeny and describes a simple, yet effective way to modulate brain circuits using clozapine N-oxide (CNO) or CNO-containing drinking water and DREADDs-expressing viruses. The strength of this protocol lies in its adaptability to study a diverse range of neural circuits that influence adult neurogenesis derived from NSCs.
Collapse
Affiliation(s)
- Luis J Quintanilla
- Department of Pharmacology, University of North Carolina Chapel Hill; Neuroscience Center, University of North Carolina Chapel Hill; Neuroscience Curriculum, University of North Carolina Chapel Hill
| | - Chia-Yu Yeh
- Department of Pharmacology, University of North Carolina Chapel Hill; Neuroscience Center, University of North Carolina Chapel Hill
| | - Hechen Bao
- Department of Pharmacology, University of North Carolina Chapel Hill; Neuroscience Center, University of North Carolina Chapel Hill
| | - Christina Catavero
- Department of Pharmacology, University of North Carolina Chapel Hill; Neuroscience Center, University of North Carolina Chapel Hill; Neuroscience Curriculum, University of North Carolina Chapel Hill
| | - Juan Song
- Department of Pharmacology, University of North Carolina Chapel Hill; Neuroscience Center, University of North Carolina Chapel Hill; Neuroscience Curriculum, University of North Carolina Chapel Hill;
| |
Collapse
|
95
|
Platel JC, Angelova A, Bugeon S, Wallace J, Ganay T, Chudotvorova I, Deloulme JC, Béclin C, Tiveron MC, Coré N, Murthy VN, Cremer H. Neuronal integration in the adult mouse olfactory bulb is a non-selective addition process. eLife 2019; 8:44830. [PMID: 31294694 PMCID: PMC6634973 DOI: 10.7554/elife.44830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/07/2019] [Indexed: 12/25/2022] Open
Abstract
Adult neurogenesis in the olfactory bulb (OB) is considered as a competition in which neurons scramble during a critical selection period for integration and survival. Moreover, newborn neurons are thought to replace pre-existing ones that die. Despite indirect evidence supporting this model, systematic in vivo observations are still scarce. We used two-photon in vivo imaging to study neuronal integration and survival. We show that loss of new neurons in the OB after arrival at terminal positions occurs only at low levels. Moreover, long-term observations showed that no substantial cell death occurred at later stages. Neuronal death was induced by standard doses of thymidine analogs, but disappeared when low doses were used. Finally, we demonstrate that the OB grows throughout life. This shows that neuronal selection during OB-neurogenesis does not occur after neurons reached stable positions. Moreover, this suggests that OB neurogenesis does not represent neuronal turnover but lifelong neuronal addition.
Collapse
Affiliation(s)
| | | | - Stephane Bugeon
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Jenelle Wallace
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, United States
| | - Thibault Ganay
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | | | | | - Nathalie Coré
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, United States
| | - Harold Cremer
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
96
|
Maternal n-3 PUFAs deficiency during pregnancy inhibits neural progenitor cell proliferation in fetal rat cerebral cortex. Int J Dev Neurosci 2019; 76:72-79. [PMID: 31299388 DOI: 10.1016/j.ijdevneu.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the in vivo impacts of maternal n-3 polyunsaturated fatty acids (PUFAs) deficiency during pregnancy on the proliferation of neural progenitor cells (NPCs) in the developing cerebral cortex of fetal rats. Our results showed that about 5 weeks of maternal dietary n-3 PUFAs deprivation resulted in a substantial n-3 PUFA deficiency in fetal rat cerebral cortex. Importantly, by two survival schemes and two quantitative methods, we found that maternal intake of n-3 PUFAs deficient diet during the gestation significantly inhibited the proliferation of NPCs in fetal rat cerebral cortex. Moreover, the decreased cortical NPCs proliferation induced by nutritional n-3 PUFAs restriction did not originate from the increased NPCs apoptosis. Finally, our observations indicated that the down-regulation of cyclin E protein might be involved in the inhibitory effects of maternal n-3 PUFAs deficient diet on the proliferation of cortical NPCs. These findings highlight the importance of maternal intake of appropriate n-3 PUFAs and deepen our understanding of the exact effects of n-3 PUFAs on mammalian brain development.
Collapse
|
97
|
Remaud S, Demeneix B. [Thyroid hormones regulate neural stem cell fate]. Biol Aujourdhui 2019; 213:7-16. [PMID: 31274098 DOI: 10.1051/jbio/2019007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Thyroid hormones (THs) are vital for vertebrate brain function throughout life, from early development to ageing. Epidemiological studies show an adequate supply of maternal TH during pregnancy to be necessary for normal brain development, and this from the first trimester of onwards. Maternal TH deficiency irreversibly affects fetal brain development, increasing the risk of offspring cognitive disorders and IQ loss. Mammalian and non-mammalian (zebrafish, xenopus, chicken) models are useful to dissect TH-dependent cellular and molecular mechanisms governing embryonic and fetal brain development: a complex process including cell proliferation, survival, determination, migration, differentiation and maturation of neural stem cells (NSCs). Notably, rodent models have strongly contributed to understand the key neurogenic roles of TH still at work in adult life. Neurogenesis continues in two main areas, the sub-ventricular zone lining the lateral ventricles (essential for olfaction) and the sub-granular zone in the dentate gyrus of the hippocampus (involved in memory, learning and mood control). In both niches, THs tightly regulate the balance between neurogenesis and oligodendrogenesis under physiological and pathological contexts. Understanding how THs modulate NSCs determination toward a neuronal or a glial fate throughout life is a crucial question in neural stem cell biology. Providing answers to this question can offer therapeutic strategies for brain repair, notably in neurodegenerative diseases, demyelinating diseases or stroke where new neurons and/or oligodendrocytes are required. The review focuses on TH regulation of NSC fate in mammals and humans both during development and in the adult.
Collapse
Affiliation(s)
- Sylvie Remaud
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| | - Barbara Demeneix
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| |
Collapse
|
98
|
A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 2019; 224:2281-2295. [PMID: 31278571 DOI: 10.1007/s00429-019-01917-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.
Collapse
|
99
|
Lee W, Cho JH, Lee Y, Lee S, Kim DH, Ha S, Kondo Y, Ishigami A, Chung HY, Lee J. Dibutyl phthalate impairs neural progenitor cell proliferation and hippocampal neurogenesis. Food Chem Toxicol 2019; 129:239-248. [DOI: 10.1016/j.fct.2019.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
|
100
|
Cooperrider J, Chan HH, Gale JT, Park HJ, Baker KB, Machado AG. BrdU-induced hyperlocomotion in the stroked rat. Neurosci Lett 2019; 703:96-98. [PMID: 30853407 PMCID: PMC6525031 DOI: 10.1016/j.neulet.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
5-bromo-2'-dexoyuridine (BrdU) is often used in neuroscience research as a marker of newly-divided cells. However, several studies suggest that BrdU can produce unwanted side effects, including changes in animal behavior and cellular function. In this study, we investigated the effect of BrdU injections on locomotor behavior in a rodent model of ischemic stroke. Ischemic strokes were induced in adult rats, and 50 mg/kg BrdU was intraperitoneally injected over 5 days beginning 2 weeks post-stroke, while control animals received vehicle. Locomotor activity was evaluated by videotaping the rats in their home cages for 30 min, beginning one hour after BrdU injection. BrdU-injected rats showed a nearly three-fold increase in locomotor activity compared to control animals. These findings suggest that BrdU induces a hyperlocomotor effect in rats following brain injury, pointing to the need for caution when interpreting behavioral results in such studies.
Collapse
Affiliation(s)
- Jessica Cooperrider
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - John T Gale
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Neurological Restoration, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Hyun-Joo Park
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Neurological Restoration, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Neurological Restoration, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|