51
|
Leffa DT, Grevet EH, Bau CHD, Schneider M, Ferrazza CP, da Silva RF, Miranda MS, Picon F, Teche SP, Sanches P, Pereira D, Rubia K, Brunoni AR, Camprodon JA, Caumo W, Rohde LA. Transcranial Direct Current Stimulation vs Sham for the Treatment of Inattention in Adults With Attention-Deficit/Hyperactivity Disorder: The TUNED Randomized Clinical Trial. JAMA Psychiatry 2022; 79:847-856. [PMID: 35921102 PMCID: PMC9350846 DOI: 10.1001/jamapsychiatry.2022.2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Transcranial direct current stimulation (tDCS) may improve symptoms of inattention in adults with attention-deficit/hyperactivity disorder (ADHD). However, previous trials are characterized by small sample sizes, heterogeneous methodologies, and short treatment periods using clinic-based tDCS. OBJECTIVE To determine the efficacy and safety of home-based tDCS in treating inattention symptoms in adult patients with ADHD. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, parallel, sham-controlled clinical trial (tDCS for the Treatment of Inattention Symptoms in Adult Patients With ADHD [TUNED]), conducted from July 2019 through July 2021 in a single-center outpatient academic setting. Of 277 potential participants screened by phone, 150 were assessed for eligibility on site, and 64 were included. Participants were adults with ADHD, inattentive or combined subtype. Exclusion criteria included current stimulant drug treatment, current moderate to severe symptoms of depression or anxiety, diagnosis of bipolar disorder with a manic or depressive episode in the last year, diagnosis of schizophrenia or another psychotic disorder, and diagnosis of autism spectrum disorder; 55 of participants completed follow-up after 4 weeks. INTERVENTIONS Thirty-minute daily sessions of home-based tDCS for 4 weeks, 2 mA anodal-right and cathodal-left prefrontal stimulation with 35-cm2 carbon electrodes. MAIN OUTCOMES AND MEASURES Inattentive scores in the clinician-administered version of the Adult ADHD Self-report Scale version 1.1 (CASRS-I). RESULTS Included in this trial were 64 participants with ADHD (31 [48%] inattentive presentation and 33 [52%] combined presentation), with a mean (SD) age of 38.3 (9.6) years. Thirty participants (47%) were women and 34 (53%) were men. Fifty-five finished the trial. At week 4, the mean (SD) inattention score, as measured with CASRS-I, was 18.88 (5.79) in the active tDCS group and 23.63 (3.97) in the sham tDCS group. Linear mixed-effects models revealed a statistically significant treatment by time interaction for CASRS-I (βinteraction = -3.18; 95% CI, -4.60 to -1.75; P < .001), showing decreased symptoms of inattention in the active tDCS group over the 3 assessments compared to the sham tDCS group. Mild adverse events were more frequent in the active tDCS group, particularly skin redness, headache, and scalp burn. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, daily treatment with a home-based tDCS device over 4 weeks improved attention in adult patients with ADHD who were not taking stimulant medication. Home-based tDCS could be a nonpharmacological alternative for patients with ADHD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04003740.
Collapse
Affiliation(s)
- Douglas Teixeira Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maitê Schneider
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Prietto Ferrazza
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Francieli da Silva
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Silva Miranda
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Picon
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania Pigatto Teche
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Sanches
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Danton Pereira
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joan A. Camprodon
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wolnei Caumo
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| |
Collapse
|
52
|
Fusco G, Cristiano A, Perazzini A, Aglioti SM. Neuromodulating the performance monitoring network during conflict and error processing in healthy populations: Insights from transcranial electric stimulation studies. Front Integr Neurosci 2022; 16:953928. [PMID: 35965598 PMCID: PMC9368590 DOI: 10.3389/fnint.2022.953928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
The performance monitoring system is fundamentally important for adapting one’s own behavior in conflicting and error-prone, highly demanding circumstances. Flexible behavior requires that neuronal populations optimize information processing through efficient multi-scale communication. Non-invasive brain stimulation (NIBS) studies using transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) fields to alter the cortical activity promise to illuminate the neurophysiological mechanisms that underpin neuro-cognitive and behavioral processing and their causal relationship. Here, we focus on the transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) that have been increasingly used in cognitive neuroscience for modulating superficial neural networks in a polarity (tDCS) and frequency/phase (tACS) fashion. Specifically, we discuss recent evidence showing how tDCS and tACS modulate the performance monitoring network in neurotypical samples. Emphasis is given to studies using behavioral tasks tapping conflict and error processing such as the Stroop, the Flanker, and the Simon tasks. The crucial role of mid-frontal brain regions (such as the medial frontal cortex, MFC; and the dorsal anterior cingulate cortex, dACC) and of theta synchronization in monitoring conflict and error is highlighted. We also discuss current technological limitations (e.g., spatial resolution) and the specific methodological strategies needed to properly modulate the cortical and subcortical regions.
Collapse
Affiliation(s)
- Gabriele Fusco
- “Sapienza” University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
- *Correspondence: Gabriele Fusco,
| | - Azzurra Cristiano
- “Sapienza” University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Anna Perazzini
- “Sapienza” University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Salvatore Maria Aglioti
- “Sapienza” University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
53
|
Zhao R, He ZY, Cheng C, Tian QQ, Cui YP, Chang MY, Wang FM, Kong Y, Deng H, Yang XJ, Sun JB. Assessing the Effect of Simultaneous Combining of Transcranial Direct Current Stimulation and Transcutaneous Auricular Vagus Nerve Stimulation on the Improvement of Working Memory Performance in Healthy Individuals. Front Neurosci 2022; 16:947236. [PMID: 35928012 PMCID: PMC9344917 DOI: 10.3389/fnins.2022.947236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
A previous study found that combining transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) could evoke significantly larger activation on a range of cortical and subcortical brain regions than the numerical summation of tDCS and taVNS effects. In this study, two within-subject experiments were employed to investigate its effects on working memory (WM). In experiment 1, the WM modulatory effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC), taVNS, and simultaneous joint simulation of tDCS over the left DLPFC and taVNS (SJS-L) were compared among 60 healthy subjects. They received these three interventions between the baseline test and post-test in a random manner three times. In spatial 3-back task, there was a significant interaction between time and stimulations in the accuracy rate of matching trials (mACC, p=0.018). MACCs were significantly improved by SJS (p = 0.001) and taVNS (p = 0.045), but not by tDCS (p = 0.495). Moreover, 41 subjects in the SJS group showed improvement, which was significantly larger than that in the taVNS group (29 subjects) and tDCS group (26 subjects). To further investigate the generalization effects of SJS, 72 students were recruited in experiment 2. They received tDCS over the right DLPFC, taVNS, simultaneous joint simulation of tDCS over the right DLPFC and taVNS (SJS-R), and sham stimulation in a random manner four times. No significant results were found, but there was a tendency similar to experiment 1 in the spatial 3-back task. In conclusion, combining tDCS and taVNS might be a potential non-invasive neuromodulation technique which is worthy of study in future.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhao-Yang He
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Chen Cheng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Qian-Qian Tian
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ya-Peng Cui
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Meng-Ying Chang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Yao Kong
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Hui Deng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Jin-Bo Sun
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
- *Correspondence: Jin-Bo Sun
| |
Collapse
|
54
|
Nissim NR, Harvey DY, Haslam C, Friedman L, Bharne P, Litz G, Phillips JS, Cousins KAQ, Xie SX, Grossman M, Hamilton RH. Through Thick and Thin: Baseline Cortical Volume and Thickness Predict Performance and Response to Transcranial Direct Current Stimulation in Primary Progressive Aphasia. Front Hum Neurosci 2022; 16:907425. [PMID: 35874157 PMCID: PMC9302040 DOI: 10.3389/fnhum.2022.907425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives We hypothesized that measures of cortical thickness and volume in language areas would correlate with response to treatment with high-definition transcranial direct current stimulation (HD-tDCS) in persons with primary progressive aphasia (PPA). Materials and Methods In a blinded, within-group crossover study, PPA patients (N = 12) underwent a 2-week intervention HD-tDCS paired with constraint-induced language therapy (CILT). Multi-level linear regression (backward-fitted models) were performed to assess cortical measures as predictors of tDCS-induced naming improvements, measured by the Western Aphasia Battery-naming subtest, from baseline to immediately after and 6 weeks post-intervention. Results Greater baseline thickness of the pars opercularis significantly predicted naming gains (p = 0.03) immediately following intervention, while greater thickness of the middle temporal gyrus (MTG) and lower thickness of the superior temporal gyrus (STG) significantly predicted 6-week naming gains (p's < 0.02). Thickness did not predict naming gains in sham. Volume did not predict immediate gains for active stimulation. Greater volume of the pars triangularis and MTG, but lower STG volume significantly predicted 6-week naming gains in active stimulation. Greater pars orbitalis and MTG volume, and lower STG volume predicted immediate naming gains in sham (p's < 0.05). Volume did not predict 6-week naming gains in sham. Conclusion Cortical thickness and volume were predictive of tDCS-induced naming improvement in PPA patients. The finding that frontal thickness predicted immediate active tDCS-induced naming gains while temporal areas predicted naming changes at 6-week suggests that a broader network of regions may be important for long-term maintenance of treatment gains. The finding that volume predicted immediate naming performance in the sham condition may reflect the benefits of behavioral speech language therapy and neural correlates of its short-lived treatment gains. Collectively, thickness and volume were predictive of treatment gains in the active condition but not sham, suggesting that pairing HD-tDCS with CILT may be important for maintaining treatment effects.
Collapse
Affiliation(s)
- Nicole R. Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| | - Denise Y. Harvey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher Haslam
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Leah Friedman
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Pandurang Bharne
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Geneva Litz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey S. Phillips
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A. Q. Cousins
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharon X. Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy H. Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
55
|
Transcranial Direct Current Stimulation Enhances Cognitive Function in Patients with Mild Cognitive Impairment and Early/Mid Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:brainsci12050562. [PMID: 35624949 PMCID: PMC9138792 DOI: 10.3390/brainsci12050562] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) i a non-invasive brain stimulation which is considered to have the potential to improve cognitive impairment in patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). However, previous studies have been controversial on the therapeutic effect of tDCS. This meta-analysis aimed to evaluate the effects of tDCS on cognitive impairment in patients with MCI and mild-to-moderate AD. Five databases, namely PubMed, EMBASE, MEDLINE, Web of Science and The Cochrane Library, were searched with relative terms to extract the cognitive function changes measured by an objective cognitive scale in the included studies. The meta-analysis results showed that, compared with sham tDCS treatment, the overall cognitive function of patients with AD and MCI was significantly improved (weighted mean difference = 0.99; 95% confidence interval, 0.32 to 1.66; p = 0.004) after tDCS treatment, but the behavioral symptoms, recognition memory function, attention and executive function were not significantly improved. The subgroup analysis showed that the treatment would be more efficacious if the temporal-lobe-related brain areas were stimulated, the number of stimulations was greater than or equal to 10 and the current density was 2.5 mA/cm2. Among them, AD patients benefited more than MCI patients. No cognitive improvement was observed in patients with MCI or AD at different follow-up times after treatment. Our meta-analysis provided important evidence for the cognitive enhancement of tDCS in patients with MCI and mild-to-moderate AD and discussed its underlying mechanisms.
Collapse
|
56
|
Lee KT, Wang WL, Lin WC, Yang YC, Tsai CL. The Effects of a Magic Intervention Program on Cognitive Function and Neurocognitive Performance in Elderly Individuals With Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:854984. [PMID: 35493940 PMCID: PMC9045409 DOI: 10.3389/fnagi.2022.854984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Cognitive training is one of the management options for elderly individuals who suffer from mild cognitive impairment (MCI) and an effective way to improve executive function. This study aimed to evaluate the effectiveness of a magic intervention program as a method of cognitive training in improving cognitive function and neurocognitive performance in this group. Methods Twenty-four participants aged 60-80 years with MCI were recruited and randomly assigned to a magic intervention group or a control group. The magic intervention group received a 6-week magic intervention program. The primary endpoints were the scores for the cognitive assessment tests [e.g., Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)] for general cognitive function. The secondary endpoints were the behavioral [e.g., accuracy and reaction times] and the electroencephalographic [e.g., event-related potential (ERP) P3 amplitudes] performance during the Flanker task to assess attention and inhibitory control. All variables were measured before and after the magic intervention. Results The results showed that the 6-week magic intervention significantly improved the MoCA scores in the cognitive assessment tests although no significant pre-post intervention difference was observed in the MMSE scores. In terms of neurocognitive performance, the magic intervention had significantly positive effects on the accuracy, reaction times, and P3 amplitudes when performing the Flanker task. Conclusion The results of the present study showed that the 6-week magic intervention had beneficial effects on the cognitive and electrophysiological performance in the elderly subjects with MCI. For such a group, lifestyle intervention programs that encourage participation such as the magic practice and performance may be a viable suggestion to prevent the progression of MCI to Alzheimer's disease.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Li Wang
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Chin Lin
- Department of Family Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
57
|
Rodrigues GM, de Oliveira BRR, Jesus Abreu MA, Gomes F, Machado S, Monteiro W, Lattari E. Anodal Transcranial Direct Current Stimulation Does Not Affect Velocity Loss During a Typical Resistance Exercise Session. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022:1-10. [PMID: 35412452 DOI: 10.1080/02701367.2021.2005235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Purpose: This study investigated the effects of transcranial direct current stimulation (tDCS) on velocity loss in a typical resistance exercise session. Methods: Twelve recreationally resistance-trained males (age = 24.8 ± 3.0 years, body mass = 78.9 ± 13.6 kg, and height = 174.3 ± 7.3 cm) completed two experimental trials in a counterbalanced crossover design: anodal tDCS and sham conditions. The stimuli were applied over the left dorsolateral prefrontal cortex for 20 minutes, using a 2 mA current intensity in anodal tDCS and a 1-minute active stimulus in the sham condition. After stimulation, subjects performed three sets of the bench press at a 70% of 1 maximum repetition intensity and 1 min of inter-set rest. The velocity loss was calculated as the relative difference between the fastest repetition velocity (usually first) and the velocity of the last repetition of each set and averaged over all three sets. Results: The results found no interaction between conditions and sets (P = .122), and no effect for conditions (P = .323) or sets (P = .364) for the velocity loss in each set. Also, no differences were found between the average velocity loss of the three sets in the anodal tDCS (-25.0 ± 4.7%) and sham condition (-23.3 ± 6.4%; P = .323). Conclusion: Anodal tDCS does not affect movement velocity in a typical strength training protocol in recreationally trained subjects.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Machado
- Federal University of Santa Maria
- Neurodiversity Institute
| | - Walace Monteiro
- Salgado de Oliveira University (UNIVERSO)
- University of Rio de Janeiro State
| | | |
Collapse
|
58
|
Fayaz Feyzi Y, Vahed N, Sadeghamal Nikraftar N, Arezoomandan R. Synergistic effect of combined transcranial direct current stimulation and Matrix Model on the reduction of methamphetamine craving and improvement of cognitive functioning: a randomized sham-controlled study. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:311-320. [PMID: 35404725 DOI: 10.1080/00952990.2021.2015771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Addiction is associated with decreased activity of the prefrontal networks, especially dorsolateral prefrontal cortex (DLPFC). OBJECTIVE This study examined the effectiveness of transcranial direct current stimulation (tDCS) over DLPFC in combination with Matrix Model psychotherapy in the alleviation of craving and cognitive improvement of participants with methamphetamine use disorder. METHODS In a randomized and sham-controlled trial, 60 male participants were assigned to Matrix psychotherapy only, sham tDCS plus Matrix, or active tDCS plus Matrix. Sixteen sessions of 20-min anodal (2 mA over F3 for targeting the left DLPFC) or sham tDCS along were administered in the outpatient setting. Pre- and post-intervention craving, executive functioning, and working memory were assessed using the Obsessive-Compulsive Drug Use Scale, Wisconsin Card Sorting Test, and Wechsler Memory Scale, respectively. One month following the interventions relapse was investigated by urine drug screen or interview. RESULTS In comparison with sham tDCS (n = 12) and Matrix psychotherapy only group (n = 13), the active tDCS group (n = 15) showed more reduction in craving (p<.05, η2 = .21). Auditory and visual memory (Wechsler) and true answers and false answers (WCST) significantly improved in the active tDCS group (η2 = .18, η2 = 12, η2 = 03, η2 = .02, respectively) but not in the other groups. Relapse rates did not significantly differ between groups (p = .17). A significant correlation was found between craving reduction and cognitive functioning in the active tDCS group. CONCLUSION The combination of Matrix Model psychotherapy and tDCS may an effective therapy for cognitive improvement and craving in participants with methamphetamine use disorder. CLINICAL TRIALS REGISTRY This study was registered at the Iranian Registry of Clinical Trials (IRCT20161026030510N3).
Collapse
Affiliation(s)
- Yasha Fayaz Feyzi
- Department of Addiction, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Neda Vahed
- Department of Addiction, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | | | - Reza Arezoomandan
- Department of Addiction, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Hua H, Zhang B, Wang X, He Y, Lai M, Chen N, Liu J. Diffusion Tensor Imaging Observation of Frontal Lobe Multidirectional Transcranial Direct Current Stimulation in Stroke Patients with Memory Impairment. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2545762. [PMID: 35378940 PMCID: PMC8976647 DOI: 10.1155/2022/2545762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Stroke is a group of diseases caused by the sudden rupture or blockage of blood vessels in the brain that prevent blood from flowing into the brain, resulting in brain tissue damage and dysfunction. Stroke has the characteristics of high morbidity, high disability, and high mortality. To investigate the effect of multidirectional transcranial direct current stimulation (tDCS) of the prefrontal lobe in stroke memory disorder. We evaluated 60 patients with poststroke memory impairment who underwent magnetic resonance diffusion tensor imaging (DTI) during their admission to our hospital between January 2018 and December 2020. The patients were divided into the prefrontal group (n = 15), dorsolateral group (n = 15), prefrontal + dorsolateral group (n = 15), and pseudostimulation group (n = 15). Assessments using the Rivermead Behavioral Memory Test (RBMT), Montreal Cognitive Assessment Scale (MoCA), Lovingston Occupational Therapy Cognitive Scale (LOTCA), and frontal lobe fractional anisotropy (FA) were performed before and after treatment. The RBMT, MoCA, and LOTCA scores in the prefrontal + dorsolateral group were significantly higher than those in the dorsolateral, prefrontal, and sham groups (all P < 0.05). The posttreatment FA value of the frontal lobe was significantly higher in the prefrontal + dorsolateral group than in the dorsolateral, prefrontal, and sham stimulation groups (all P < 0.05). The FA value of the frontal lobe was significantly lower in patients with severe memory impairment than in patients with mild-moderate memory impairment (P < 0.05). The area under the receiver operating characteristic curve was 0.801 (95% CI: 0.678-0.925, P < 0.05), and the optimal cut-off value was 0.34, with a sensitivity and specificity of 81.60% and 72.70%, respectively. Prefrontal lobe + dorsolateral tDCS is beneficial in the treatment of post-stroke memory impairment. The DTI FA value can be useful in determining the degree of memory impairment.
Collapse
Affiliation(s)
- Hualiu Hua
- Department of Rehabilitation, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Baixiang Zhang
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| | - Xiuling Wang
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| | - Yixian He
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| | - Mengting Lai
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| | - Ninghua Chen
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| | - Juan Liu
- Department of Rehabilitation, Longyan First Hospital, Longyan 364000, China
| |
Collapse
|
60
|
Neto EDM, da Silva EA, Nunes HRDC, Bazan R, de Souza LAPS, Luvizutto GJ. Effect of transcranial direct current stimulation in addition to visuomotor training on choice reaction time and cognition function in amateur soccer players (FAST trial): A randomized control trial. Neurosci Lett 2022; 766:136346. [PMID: 34785310 DOI: 10.1016/j.neulet.2021.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) in addition to visuomotor training (VMT) on choice reaction time (CRT) and cognitive function in amateur soccer players. DESIGN Single-center, randomized, placebo-controlled, double-blind, parallel-group study. SETTING Neuroscience and Motor Control Laboratory. PARTICIPANTS Thirty Brazilian male amateur soccer players, aged 18-30 years. MAIN OUTCOME MEASURES Participants were allocated to the intervention or control groups. Both groups performed VMT, but the intervention group additionally underwent anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC; F3). The cathodal electrode was positioned in the right supraorbital region (Fp2). The tDCS was applied at 2 mA for 20 min for five consecutive sessions (24 h intervals). The VMT protocol was delivered during the application of tDCS and was composed of kicking a ball for 10 min (between the fifth and fifteenth minutes of the 20 min of tDCS application). The primary outcome was assessed based on changes in CRT during reaching (non-trained limb) and kicking (trained limb) tasks. Secondary outcomes were overall cognitive function measured by the Trail Making Test part A (TMT-A) and part B (TMT-B), and Digit Span Test forward (DSF) and backward (DSB) scores. All outcomes were evaluated before and after the intervention. RESULTS In the primary outcomes, compared with the control group, the anodal tDCS combined with VMT group had greater reduction in CRT for the rectus femoris (p = 0.007) adjusted for age and baseline performance (F (1,26) = 22,23; p < 0,001) and for the triceps (p = 0.039) adjusted for training frequency (days/week) and baseline performance (F (1,26) = 5,70; p = 0,016). No differences were observed in the CRT of other muscles (anterior deltoid [p = 0.181], brachial biceps [p = 0.130], and vastus medialis [p = 0.074]). And, there were no differences between the groups in terms of cognitive function (TMT-A [p = 0.062]; TMT-B [p = 0.320]; DSF [p = 0.102]; DSB [p = 0.345]). CONCLUSION Anodal tDCS over the left DLPFC in addition to visuomotor training of a functional task can be an efficient tool for athletes to decrease the CRT of the rectus femoris (trained limb) and triceps (non-trained limb); however, there were no differences between the groups in the others muscles (anterior deltoid, brachial biceps, and vastus medialis), and in terms of cognitive function.
Collapse
Affiliation(s)
- Eduardo de Moura Neto
- Master Student of Physical Education, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Edilaine Aparecida da Silva
- Master Student of Physical Education, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
61
|
Molero-Chamizo A, Nitsche MA, Gutiérrez Lérida C, Salas Sánchez Á, Martín Riquel R, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches. BIOLOGY 2021; 10:1230. [PMID: 34943145 PMCID: PMC8698402 DOI: 10.3390/biology10121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | | | - Ángeles Salas Sánchez
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Raquel Martín Riquel
- Department of Psychology, University of Córdoba, 14071 Córdoba, Spain; (C.G.L.); (R.M.R.)
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - José Ramón Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
62
|
Sharma M, Farahani F, Bikson M, Parra LC. Weak DCS causes a relatively strong cumulative boost of synaptic plasticity with spaced learning. Brain Stimul 2021; 15:57-62. [PMID: 34749007 PMCID: PMC8816825 DOI: 10.1016/j.brs.2021.10.552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Electric fields generated during direct current stimulation (DCS) are known to modulate activity-dependent synaptic plasticity in-vitro. This provides a mechanistic explanation for the lasting behavioral effects observed with transcranial direct current stimulation (tDCS) in human learning experiments. However, previous in-vitro synaptic plasticity experiments show relatively small effects despite using strong fields compared to what is expected with conventional tDCS in humans (20 V/m vs. 1 V/m). There is therefore a need to improve the effectiveness of tDCS at realistic field intensities. Here we leverage the observation that effects of learning are known to accumulate over multiple bouts of learning, known as spaced learning. Hypothesis: We propose that effects of DCS on synaptic long-term potentiation (LTP) accumulate over time in a spaced learning paradigm, thus revealing effects at more realistic field intensities. Methods: We leverage a standard model for spaced learning by inducing LTP with repeated bouts of theta burst stimulation (TBS) in hippocampal slice preparations. We studied the cumulative effects of DCS paired with TBS at various intensities applied during the induction of LTP in the CA1 region of rat hippocampal slices. Results: As predicted, DCS applied during repeated bouts of theta burst stimulation (TBS) resulted in an increase of LTP. This spaced learning effect is saturated quickly with strong TBS protocols and stronger fields. In contrast, weaker TBS and the weakest electric fields of 2.5 V/m resulted in the strongest relative efficacies (12% boost in LTP per 1 V/m applied). Conclusions: Weak DCS causes a relatively strong cumulative effect of spaced learning on synaptic plasticity. Staturarion may have masked stronger effects sizes in previous in-vitro studies. Relative effect sizes of DCS are now closer in line with human tDCS experiments.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| |
Collapse
|
63
|
Mendes AJ, Pacheco-Barrios K, Lema A, Gonçalves ÓF, Fregni F, Leite J, Carvalho S. Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:894-907. [PMID: 34742723 DOI: 10.1016/j.neubiorev.2021.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been widely used to modulate cognition and behavior. However, only a few studies have been probing the brain mechanism underlying the effects of tDCS on cognitive processing, especially throughout electrophysiological markers, such as the P3. This meta-analysis assessed the effects of tDCS in P3 amplitude and latency during an oddball, n-back, and Go/No-Go tasks, as well as during emotional processing. A total of 36 studies were identified, but only 23 were included in the quantitative analysis. The results show that the parietal P3 amplitude increased during oddball and n-back tasks, mostly after anodal stimulation over the left dorsolateral prefrontal cortex (p = 0.018, SMD = 0.4) and right inferior frontal gyrus (p < 0.001, SMD = 0.669) respectively. These findings suggest the potential usefulness of the parietal P3 ERP as a marker of tDCS-induced effects during task performance. Nonetheless, this study had a low number of studies and the presence of considerable risk of bias, highlighting issues to be addressed in the future.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Óscar F Gonçalves
- Proaction Laboratory - CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jorge Leite
- INPP, Portucalense University, Porto, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
64
|
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Sci Rep 2021; 11:21512. [PMID: 34728684 PMCID: PMC8563927 DOI: 10.1038/s41598-021-00933-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10–17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.
Collapse
|
65
|
Avvaru S, Provenza NR, Widge AS, Parhi KK. Spectral Features Based Decoding of Task Engagement: The Role of Theta and High Gamma Bands in Cognitive Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6062-6065. [PMID: 34892499 DOI: 10.1109/embc46164.2021.9630923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper analyzes local field potentials (LFP) from 10 human subjects to discover frequency-dependent biomarkers of cognitive conflict. We utilize cortical and sub-cortical LFP recordings from the subjects during a cognitive task known as the Multi-Source Interference Task (MSIT). We decode the task engagement and discover biomarkers that may facilitate closed-loop neuromodulation to enhance cognitive control. First, we show that spectral power features in predefined frequency bands can be used to classify task and non-task segments with a median accuracy of 88.1%. Here the features are first ranked using the Bayes Factor and then used as inputs to subject-specific linear support vector machine classifiers. Second, we show that theta (4-8 Hz) band, and high gamma (65-200 Hz) band oscillations are modulated during the task performance. Third, by isolating time-series from specific brain regions of interest, we observe that a subset of the dorsolateral prefrontal cortex features is sufficient to decode the task states. The paper shows that cognitive control evokes robust neurological signatures, especially in the prefrontal cortex (PFC).
Collapse
|
66
|
Wang A, Nikolin S, Moffa AH, Loo CK, Martin DM. A novel approach for targeting the left dorsolateral prefrontal cortex for transcranial magnetic stimulation using a cognitive task. Exp Brain Res 2021; 240:71-80. [PMID: 34625838 DOI: 10.1007/s00221-021-06233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has the potential to be developed as a novel treatment for cognitive dysfunction. However, current methods of targeting rTMS for cognition fail to consider inter-individual functional variability. This study explored the use of a cognitive task to individualise the target site for rTMS administered to the left dorsolateral prefrontal cortex (L-DLPFC). Twenty-five healthy participants were enrolled in a sham-controlled, crossover study. Participants performed a random letter generation task under the following conditions: no stimulation, sham and active 'online' rTMS applied to F3 (International 10-20 System) and four standardised surrounding sites. Across all sites combined, active 'online' rTMS was associated with significantly reduced performance compared to sham rTMS for unique trigrams (p = 0.012), but not for unique digrams (p > 0.05). Using a novel localisation methodology based on performance outcomes from both measures, a single optimal individualised site was identified for 92% [n = 23] of participants. At the individualised site, performance was significantly poorer compared to a common standard site (F3) and both control conditions (ps < 0.01). The current results suggest that this localisation methodology using a cognitive task could be used to individualise the rTMS target site at the L-DLPFC for modulating and potentially enhancing cognitive functioning.
Collapse
Affiliation(s)
- Ashley Wang
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia
| | - Adriano H Moffa
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia.,St George Hospital, Sydney, NSW, Australia
| | - Donel M Martin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia. .,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia.
| |
Collapse
|
67
|
Karagiorgis AT, Chalas N, Karagianni M, Papadelis G, Vivas AB, Bamidis P, Paraskevopoulos E. Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults. Front Hum Neurosci 2021; 15:742607. [PMID: 34566611 PMCID: PMC8461100 DOI: 10.3389/fnhum.2021.742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.
Collapse
Affiliation(s)
- Alexandros T Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana B Vivas
- Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
68
|
Csifcsák G, Bjørkøy J, Kuyateh S, Reithe H, Mittner M. Transcranial Direct Current Stimulation above the Medial Prefrontal Cortex Facilitates Decision-Making following Periods of Low Outcome Controllability. eNeuro 2021; 8:ENEURO.0041-21.2021. [PMID: 34433576 PMCID: PMC8425969 DOI: 10.1523/eneuro.0041-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that choice behavior in reinforcement learning tasks is shaped by the level of outcome controllability. In particular, Pavlovian bias (PB) seems to be enhanced under low levels of control, manifesting in approach tendencies toward rewards and response inhibition when facing potential losses. The medial prefrontal cortex (mPFC) has been implicated both in evaluating outcome controllability and in the recruitment of cognitive control (CC) to suppress maladaptive PB during reinforcement learning. The current study tested whether high-definition transcranial direct current stimulation (HD-tDCS) above the mPFC of healthy humans can influence PB, and counteract the previously documented, deleterious behavioral effects of low outcome controllability on decision-making. In a preregistered, between-group, double-blind study (N = 103 adults, both sexes), we tested the interaction between controllability and HD-tDCS on parameters of choice behavior in a Go/NoGo task. Relative to sham stimulation, HD-tDCS resulted in more robust performance improvement following reduced control, an effect that was more pronounced in appetitive trials. In addition, we found evidence for weaker PB when HD-tDCS was administered during low controllability over outcomes. Computational modeling revealed that parameter estimates of learning rate and choice randomness were modulated by controllability, HD-tDCS and their interaction. Overall, these results highlight the potential of our HD-tDCS protocol for interfering with choice arbitration under low levels of control, resulting in more adaptive behavior.
Collapse
Affiliation(s)
- Gábor Csifcsák
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jorunn Bjørkøy
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Sarjo Kuyateh
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Haakon Reithe
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Matthias Mittner
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
69
|
Kurtin DL, Violante IR, Zimmerman K, Leech R, Hampshire A, Patel MC, Carmichael DW, Sharp DJ, Li LM. Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimul 2021; 14:1261-1270. [PMID: 34438046 PMCID: PMC8460997 DOI: 10.1016/j.brs.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure. Objectives In this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity. Methods We applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n = 22) and TBI participants (n = 34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure. Results We find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional - in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region. Conclusions Our results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation. We replicated the brain state and polarity dependent effects of tDCS. White matter structure influences tDCS's state-dependent changes in neural activity The parameters of tDCS may operate under a hierarchy of influence.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom.
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Karl Zimmerman
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London, United Kingdom
| | - Adam Hampshire
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Maneesh C Patel
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - David W Carmichael
- Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - David J Sharp
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom
| | - Lucia M Li
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom.
| |
Collapse
|
70
|
Avvaru S, Peled N, Provenza NR, Widge AS, Parhi KK. Region-Level Functional and Effective Network Analysis of Human Brain During Cognitive Task Engagement. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1651-1660. [PMID: 34398758 PMCID: PMC8428572 DOI: 10.1109/tnsre.2021.3105432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mental disorders are a major source of disability, with few effective treatments. It has recently been argued that these diseases might be effectively treated by focusing on decision-making, and specifically remediating decision-making deficits that act as "ingredients" in these disorders. Prior work showed that direct electrical brain stimulation can enhance human cognitive control, and consequently decision-making. This raises a challenge of detecting cognitive control lapses directly from electrical brain activity. Here, we demonstrate approaches to overcome that challenge. We propose a novel method, referred to as maximal variance node merging (MVNM), that merges nodes within a brain region to construct informative inter-region brain networks. We employ this method to estimate functional (correlational) and effective (causal) networks using local field potentials (LFP) during a cognitive behavioral task. The effective networks computed using convergent cross mapping differentiate task engagement from background neural activity with 85% median classification accuracy. We also derive task engagement networks (TENs): networks that constitute the most discriminative inter-region connections. Subsequent graph analysis illustrates the crucial role of the dorsolateral prefrontal cortex (dlPFC) in task engagement, consistent with a widely accepted model for cognition. We also show that task engagement is linked to prefrontal cortex theta (4-8 Hz) oscillations. We, therefore, identify objective biomarkers associated with task engagement. These approaches may generalize to other cognitive functions, forming the basis of a network-based approach to detecting and rectifying decision deficits.
Collapse
|
71
|
He F, Li Y, Li C, Fan L, Liu T, Wang J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS One 2021; 16:e0256100. [PMID: 34388179 PMCID: PMC8363005 DOI: 10.1371/journal.pone.0256100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| |
Collapse
|
72
|
Transcranial direct current stimulation (tDCS) effects on attention enhancement: A preliminary event related potential (ERP) study. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Yao J, Li X, Zhang W, Lin X, Lyu X, Lou W, Peng W. Analgesia induced by anodal tDCS and high-frequency tRNS over the motor cortex: Immediate and sustained effects on pain perception. Brain Stimul 2021; 14:1174-1183. [PMID: 34371209 DOI: 10.1016/j.brs.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Many studies have shown effects of anodal transcranial direct current stimulation (a-tDCS) and high-frequency transcranial random noise stimulation (tRNS) on elevating cortical excitability. Moreover, tRNS with a direct current (DC)-offset is more likely to lead to increases in cortical excitability than solely tRNS. While a-tDCS over primary motor cortex (M1) has been shown to attenuate pain perception, tRNS + DC-offset may prove as an effective means for pain relief. OBJECTIVE This study aimed to examine effects of a-tDCS and high-frequency tRNS + DC-offset over M1 on pain expectation and perception, and assess whether these effects could be influenced by the certainty of pain expectation. METHODS Using a double-blinded and sham-controlled design, 150 healthy participants were recruited to receive a single-session a-tDCS, high-frequency tRNS + DC-offset, or sham stimulation over M1. The expectation and perception of electrical stimulation in certain and uncertain contexts were assessed at baseline, immediately after, and 30 min after stimulation. RESULTS Compared with sham stimulation, a-tDCS induced immediate analgesic effects that were greater when the stimulation outcome was expected with uncertainty; tRNS induced immediate and sustained analgesic effects that were mediated by decreasing pain expectation. Nevertheless, we found no strong evidence for tRNS being more effective for attenuating pain than a-tDCS. CONCLUSIONS The analgesic effects of a-tDCS and tRNS showed different temporal courses, which could be related to the more sustained effectiveness of high-frequency tRNS + DC-offset in elevating cortical excitability. Moreover, expectations of pain intensity should be taken into consideration to maximize the benefits of neuromodulation.
Collapse
Affiliation(s)
- Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaohan Lyu
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
74
|
Letkiewicz AM, Funkhouser CJ, Shankman SA. Childhood maltreatment predicts poorer executive functioning in adulthood beyond symptoms of internalizing psychopathology. CHILD ABUSE & NEGLECT 2021; 118:105140. [PMID: 34098377 PMCID: PMC8292220 DOI: 10.1016/j.chiabu.2021.105140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND A history of childhood maltreatment predicts poorer functioning in several domains during childhood, including executive function (EF). While there is also evidence of poorer EF in adults with a history of childhood trauma, results are mixed. Notable limitations of previous research are (a) the use of single indicators of EF, and/or (b) not consistently assessing whether childhood maltreatment predicts poorer EF beyond internalizing psychopathology. OBJECTIVE We sought to overcome limitations of prior work by examining relationships between childhood maltreatment and EF in adulthood by using a latent factor of EF derived from multiple indicators and including psychopathology covariates in our analyses. PARTICIPANTS AND SETTING The present study included a large sample of community adults (n = 489) who were oversampled for internalizing psychopathology symptoms. METHODS Primary analyses examined whether childhood maltreatment (cumulative and subtypes) predicted EF using a latent factor approach and linear mixed effects models. Follow-up analyses assessed the impact of childhood maltreatment on EF beyond internalizing psychopathology symptoms and assessed whether gender moderated relationships between EF and childhood maltreatment. RESULTS Greater cumulative maltreatment predicted poorer EF (B = -0.15), and emotional neglect emerged as a unique predictor of EF (B = -0.18). These results remained after controlling for psychopathology symptoms. Gender moderated the relationship between physical abuse and EF, with physical abuse predicting poorer EF among males (B = 0.30), but not females (B = -0.04). CONCLUSIONS Overall, results indicate that general EF deficits are related to a history of childhood maltreatment, which is not accounted for by internalizing psychopathology symptoms. Potential implications and future directions are discussed.
Collapse
Affiliation(s)
- Allison M Letkiewicz
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA.
| | - Carter J Funkhouser
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
75
|
Suárez-García DMA, Birba A, Zimerman M, Diazgranados JA, Lopes da Cunha P, Ibáñez A, Grisales-Cárdenas JS, Cardona JF, García AM. Rekindling Action Language: A Neuromodulatory Study on Parkinson's Disease Patients. Brain Sci 2021; 11:887. [PMID: 34356122 PMCID: PMC8301982 DOI: 10.3390/brainsci11070887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Impairments of action semantics (a cognitive domain that critically engages motor brain networks) are pervasive in early Parkinson's disease (PD). However, no study has examined whether action semantic skills in persons with this disease can be influenced by non-invasive neuromodulation. Here, we recruited 22 PD patients and performed a five-day randomized, blinded, sham-controlled study to assess whether anodal transcranial direct current stimulation (atDCS) over the primary motor cortex, combined with cognitive training, can boost action-concept processing. On day 1, participants completed a picture-word association (PWA) task involving action-verb and object-noun conditions. They were then randomly assigned to either an atDCS (n = 11, 2 mA for 20 m) or a sham tDCS (n = 11, 2 mA for 30 s) group and performed an online PWA practice over three days. On day 5, they repeated the initial protocol. Relative to sham tDCS, the atDCS group exhibited faster reaction times for action (as opposed to object) concepts in the post-stimulation test. This result was exclusive to the atDCS group and held irrespective of the subjects' cognitive, executive, and motor skills, further attesting to its specificity. Our findings suggest that action-concept deficits in PD are distinctively grounded in motor networks and might be countered by direct neuromodulation of such circuits. Moreover, they provide new evidence for neurosemantic models and inform a thriving agenda in the embodied cognition framework.
Collapse
Affiliation(s)
- Diana M. A. Suárez-García
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Máximo Zimerman
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
| | - Jesús A. Diazgranados
- Centro Médico de Atención Neurológica “Neurólogos de Occidente”, Santiago de Cali 76001, Colombia;
| | - Pamela Lopes da Cunha
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires C1425FQD, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago 8320000, Chile
| | - Johan S. Grisales-Cárdenas
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Adolfo M. García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza M5502GKA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9170020, Chile
| |
Collapse
|
76
|
Gholami M, Nami M, Shamsi F, Jaberi KR, Kateb B, Rahimi Jaberi A. Effects of transcranial direct current stimulation on cognitive dysfunction in multiple sclerosis. Neurophysiol Clin 2021; 51:319-328. [PMID: 34088588 DOI: 10.1016/j.neucli.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Around 40%-70% of patients with multiple sclerosis (MS) may experience cognitive impairments during the course of their disease with detrimental effects on social and occupational activities. Transcranial direct current stimulation (tDCS has been investigated in pain, fatigue, and mood disorders related to MS, but to date, few studies have examined effects of tDCS on cognitive performance in MS. OBJECTIVE The current study aimed to investigate the effects of a multi-session tDCS protocol on cognitive performance and resting-state brain electrical activities in patients with MS. METHODS Twenty-four eligible MS patients were randomly assigned to real (anodal) or sham tDCS groups. Before and after 8 consecutive daily tDCS sessions over the left dorsolateral prefrontal cortex (DLPFC), patients' cognitive performance was assessed using the Cambridge Brain Sciences-Cognitive Platform (CBS-CP). Cortical electrical activity was also evaluated using quantitative electroencephalography (QEEG) analysis at baseline and after the intervention. RESULTS Compared to the sham condition, significant improvement in reasoning and executive functions of the patients in the real tDCS group was observed. Attention was also improved considerably but not statistically significantly following real tDCS. However, no significant changes in resting-state brain activities were observed after stimulation in either group. CONCLUSION Anodal tDCS over the left DLPFC appears to be a promising therapeutic option for cognitive dysfunction in patients with MS. Larger studies are required to confirm these findings and to investigate underlying neuronal mechanisms.
Collapse
Affiliation(s)
- Mohsen Gholami
- Department of Neurology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neurology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama; Visiting Scientist, Society for Brain Mapping and Therapeutics and Brain Mapping Foundation, Los Angeles, CA, USA
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Students Research Committee, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Kateb
- National Center for NanoBioElectoronics, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Brain Mapping Foundation, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; Neuroscience20-G20 Summit, Los Angeles, CA, USA
| | - Abbas Rahimi Jaberi
- Department of Neurology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
77
|
Chen X, Watanabe T, Kubo N, Yunoki K, Matsumoto T, Kuwabara T, Sunagawa T, Date S, Mima T, Kirimoto H. Transient Modulation of Working Memory Performance and Event-Related Potentials by Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex. Brain Sci 2021; 11:brainsci11060739. [PMID: 34199505 PMCID: PMC8228367 DOI: 10.3390/brainsci11060739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Transcranial static magnetic field stimulation (tSMS) can modulate human cortical excitability and behavior. To better understand the neuromodulatory effect of tSMS, this study investigates whether tSMS applied over the left dorsolateral prefrontal cortex (DLPFC) modulates working memory (WM) performance and its associated event-related potentials (ERPs). Thirteen healthy participants received tSMS or sham stimulation over the left DLPFC for 26 min on different days. The participants performed a 2-back version of the n-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after the stimulation. We examine reaction time for correct responses, d-prime reflecting WM performance, and the N2 and P3 components of ERPs. Our results show that there was no effect of tSMS on reaction time. The d-prime was reduced, and the N2 latency was prolonged immediately after tSMS. These findings indicate that tSMS over the left DLPFC affects WM performance and its associated electrophysiological signals, which can be considered an important step toward a greater understanding of tSMS and its use in studies of higher-order cognitive processes.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
- Correspondence:
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| | - Toru Sunagawa
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (T.S.); (S.D.)
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (T.S.); (S.D.)
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto 603-8577, Japan;
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (X.C.); (N.K.); (K.Y.); (T.M.); (T.K.); (H.K.)
| |
Collapse
|
78
|
Boissonnault È, Higgins J, LaGarde G, Barthélemy D, Lamarre C, H Dagher J. Brain stimulation in attention deficits after traumatic brain injury: a literature review and feasibility study. Pilot Feasibility Stud 2021; 7:115. [PMID: 34059152 PMCID: PMC8165970 DOI: 10.1186/s40814-021-00859-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After a traumatic brain injury, disturbances in the attentional processes have a direct negative effect on functional recovery and on return to complex activities. To date, there is no good attention remediation treatment available. The primary objective of this review and pilot study is to provide an overview of the research evidence and to evaluate the feasibility of implementing a tDCS protocol to improve attention disorders in patients with mild complicated to severe subacute TBI, hospitalized in an inpatient rehabilitation facility. Our secondary objective is to extract preliminary data and observational information on participants' response to treatment. METHODS Participants were recruited from a consecutive series of patients admitted to the TBI unit of a subspecialized regional rehabilitation center. They received a 20-min tDCS stimulation 3 times a week for 3 weeks. A neuropsychological evaluation was performed before and after the intervention. We collected participants' sociodemographic and clinical characteristics as well as information about satisfaction, tolerability, and adverse effects. RESULTS One hundred sixty-four patients were admitted between September 2018 and January 2020. One hundred fifty-eight were excluded, and 6 patients with presumed attentional deficits were enrolled. None completed the protocol as intended. No major side effects occurred. CONCLUSION Non-invasive brain neurostimulation is promising to enhance attention deficits in patients with TBI. Implementation of a tDCS protocol to fulfill this purpose in an intensive inpatient rehabilitation center has its limitations. We made recommendations to facilitate the implementation of similar projects in the future. TRIAL REGISTRATION ISRCTN, ISRCTN55243064 . Registered 14 October 2020-retrospectively registered.
Collapse
Affiliation(s)
- Ève Boissonnault
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada. .,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.
| | - Johanne Higgins
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Geneviève LaGarde
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Dorothy Barthélemy
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Céline Lamarre
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada.,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Jehane H Dagher
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada.,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
79
|
Prefrontal high definition cathodal tDCS modulates executive functions only when coupled with moderate aerobic exercise in healthy persons. Sci Rep 2021; 11:8457. [PMID: 33875729 PMCID: PMC8055664 DOI: 10.1038/s41598-021-87914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool to enhance cognitive performance. However, its effectiveness has not yet been unequivocally shown. Thus, here we tested whether coupling tDCS with a bout of aerobic exercise (AE) is more effective in modulating cognitive functions than tDCS or AE alone. One hundred twenty-two healthy participants were assigned to five randomized controlled crossover experiments. Two multimodal target experiments (EXP-4: anodal vs. sham tDCS during AE; EXP-5: cathodal vs. sham tDCS during AE) investigated whether anodal (a-tDCS) or cathodal tDCS (c-tDCS) applied during AE over the left dorsolateral prefrontal cortex (left DLPFC) affects executive functioning (inhibition ability). In three unimodal control experiments, the participants were either stimulated (EXP-1: anodal vs. sham tDCS, EXP-2: cathodal vs. sham tDCS) or did AE (EXP-3: AE vs. active control). Participants performed an Eriksen flanker task during ergometer cycling at moderate intensity (in EXP. 3-5). Only c-tDCS during AE had a significant adverse effect on the inhibition task, with decreased accuracy. This outcome provides preliminary evidence that c-tDCS during AE over the left DLPFC might effectively modulate inhibition performance compared to c-tDCS alone. However, more systematic research is needed in the future.
Collapse
|
80
|
Wolkenstein L, Rombold-Bruehl F, Bingmann T, Sommer A, Kanske P, Plewnia C. Challenging control over emotions in borderline personality disorder - a tDCS study. Neuropsychologia 2021; 156:107850. [PMID: 33812945 DOI: 10.1016/j.neuropsychologia.2021.107850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Deficient cognitive control (CC) over emotional distraction is a central characteristic of borderline personality disorder (BPD). Reduced activation of the left dorsolateral prefrontal cortex (dlPFC) has been linked to this deficit. This study investigates whether it is possible to ameliorate CC deficits via anodal tDCS over the left dlPFC in BPD. Furthermore, we investigate whether the extent of CC impairment influences how well one responds to tDCS. METHODS The effect of a single-session tDCS (1 mA for 20 min, reference electrode on the contralateral mastoid bone) to the left dlPFC (F3) on the CC of patients with BPD (N = 20) and healthy control participants (HCs, N = 20) was examined in a double-blinded, balanced randomized, sham-controlled crossover trial. A delayed response working memory task with negative, neutral and positive pictures presented during the delay period was conducted to assess CC. Stimulation was applied simultaneously with the task. RESULTS Negative pictures caused prolonged response times as compared to a control condition in patients with BPD and HCs. Anodal tDCS to the left dlPFC did not significantly reduce this interference effect in the overall sample. Further analyses showed, however, that participants with impaired CC profited the most from anodal tDCS. In the subgroup of participants who actually showed an interference effect we found the expected significant amelioration of CC under tDCS. CONCLUSIONS The present study demonstrates that anodal tDCS applied to the left dlPFC improves deficient CC. Thereby, base-level performance moderates tDCS effects. Hence, tDCS might be suitable to support behavioral trainings to enhance CC specifically in people whose impairments in CC are comparably high.
Collapse
Affiliation(s)
- Larissa Wolkenstein
- Department of Psychology, Clinical Psychology and Psychotherapy, Ludwig-Maximilians-Universität München, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Tübingen, Germany.
| | - Felicitas Rombold-Bruehl
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Tübingen, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Campus Benjamin Franklin, Germany
| | - Tiffany Bingmann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Tübingen, Germany
| | - Anja Sommer
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Tübingen, Germany; Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Germany
| | - Philipp Kanske
- Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany; Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Germany
| |
Collapse
|
81
|
Yang D, Shin YI, Hong KS. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front Neurosci 2021; 15:629323. [PMID: 33841079 PMCID: PMC8032955 DOI: 10.3389/fnins.2021.629323] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Brain disorders are gradually becoming the leading cause of death worldwide. However, the lack of knowledge of brain disease’s underlying mechanisms and ineffective neuropharmacological therapy have led to further exploration of optimal treatments and brain monitoring techniques. Objective This study aims to review the current state of brain disorders, which utilize transcranial electrical stimulation (tES) and daily usable noninvasive neuroimaging techniques. Furthermore, the second goal of this study is to highlight available gaps and provide a comprehensive guideline for further investigation. Method A systematic search was conducted of the PubMed and Web of Science databases from January 2000 to October 2020 using relevant keywords. Electroencephalography (EEG) and functional near-infrared spectroscopy were selected as noninvasive neuroimaging modalities. Nine brain disorders were investigated in this study, including Alzheimer’s disease, depression, autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, Parkinson’s disease, stroke, schizophrenia, and traumatic brain injury. Results Sixty-seven studies (1,385 participants) were included for quantitative analysis. Most of the articles (82.6%) employed transcranial direct current stimulation as an intervention method with modulation parameters of 1 mA intensity (47.2%) for 16–20 min (69.0%) duration of stimulation in a single session (36.8%). The frontal cortex (46.4%) and the cerebral cortex (47.8%) were used as a neuroimaging modality, with the power spectrum (45.7%) commonly extracted as a quantitative EEG feature. Conclusion An appropriate stimulation protocol applying tES as a therapy could be an effective treatment for cognitive and neurological brain disorders. However, the optimal tES criteria have not been defined; they vary across persons and disease types. Therefore, future work needs to investigate a closed-loop tES with monitoring by neuroimaging techniques to achieve personalized therapy for brain disorders.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Keum-Shik Hong
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|
82
|
Lu H, Gong Y, Huang P, Zhang Y, Guo Z, Zhu X, You X. Effect of Repeated Anodal HD-tDCS on Executive Functions: Evidence From a Pilot and Single-Blinded fNIRS Study. Front Hum Neurosci 2021; 14:583730. [PMID: 33536886 PMCID: PMC7847848 DOI: 10.3389/fnhum.2020.583730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022] Open
Abstract
Executive functions are of vital importance in the process of active cognition, which is thought to be associated with the dorsolateral prefrontal cortex (DLPFC). As a valid brain stimulation technology, high-definition transcranial direct current stimulation (HD-tDCS) has been used to optimize cognitive function in healthy adults. Substantial evidence indicates that short-term or single anodal tDCS sessions over the left DLPFC will enhance the performance of executive functions. However, the changes in performance and cortical activation of executive functions after modulation by repeated anodal HD-tDCS is as yet unexplored. This study aims to examine changes in three core components of executive functions (inhibitory control, working memory, and cognitive flexibility) produced by nine HD-tDCS sessions (1.5 mA, over left DLPFC, 20 min per session), and to use functional near-infrared spectroscopy (fNIRS) to bilaterally record DLPFC neural activity. A total of 43 participants were divided randomly into two study groups (anodal group vs. sham group) to complete nine interventions. Our results demonstrate that the enhancement of cognitive flexibility in the anodal group was significantly better than that in the sham group. Additionally, a Stroop effect-related decrease in oxygenated hemoglobin (HbO) concentration in the DLPFC was observed in the anodal group but not the sham group. In conclusion, our study found that repeated anodal HD-tDCS sessions can significantly promote cognitive flexibility, one of the core components of executive function, and that alterations in DLPFC activation can enhance our understanding of the neuroplastic modifications modulated by HD-tDCS.
Collapse
Affiliation(s)
- Hongliang Lu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Peng Huang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yajuan Zhang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Zhihua Guo
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
83
|
Impact of COMT val158met on tDCS-induced cognitive enhancement in older adults. Behav Brain Res 2021; 401:113081. [PMID: 33359367 DOI: 10.1016/j.bbr.2020.113081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies suggest that genetic polymorphisms and aging modulate inter-individual variability in brain stimulation-induced plasticity. However, the relationship between genetic polymorphisms and behavioral modulation through transcranial direct current stimulation (tDCS) in older adults remains poorly understood. OBJECTIVE Link individual tDCS responsiveness, operationalized as performance difference between tDCS and sham condition, to common genetic polymorphisms in healthy older adults. METHODS 106 healthy older participants from five tDCS-studies were re-invited to donate blood for genotyping of apoliproprotein E (APOE: ε4 carriers and ε4 non-carriers), catechol-O-methyltransferase (COMT: val/val, val/met, met/met), brain-derived neurotrophic factor (BDNF: val/val, val/met, met/met) and KIdney/BRAin encoding gene (KIBRA: C/C, C/T, T/T). Studies had assessed cognitive performance during tDCS and sham in cross-over designs. We now asked whether the tDCS responsiveness was related to the four genotypes using a linear regression models. RESULTS We found that tDCS responsiveness was significantly associated with COMT polymorphism; i.e., COMT val carriers (compared to met/met) showed higher tDCS responsiveness. No other significant associations emerged. CONCLUSION Using data from five brain stimulation studies conducted in our group, we showed that only individual variation of COMT genotypes modulated behavioral response to tDCS. These findings contribute to the understanding of inherent factors that explain inter-individual variability in functional tDCS effects in older adults, and might help to better stratify participants for future clinical trials.
Collapse
|
84
|
Dubreuil-Vall L, Gomez-Bernal F, Villegas AC, Cirillo P, Surman C, Ruffini G, Widge AS, Camprodon JA. Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex Improves Cognitive Control in Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Behavioral and Neurophysiological Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:439-448. [PMID: 33549516 DOI: 10.1016/j.bpsc.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with significant morbidity and mortality that may affect over 5% of children and approximately 2.8% of adults worldwide. Pharmacological and behavioral therapies for ADHD exist, but critical symptoms such as dysexecutive deficits remain unaffected. In a randomized, sham-controlled, double-blind, crossover mechanistic study, we assessed the cognitive and physiological effects of transcranial direct current stimulation (tDCS) in 40 adult patients with ADHD in order to identify diagnostic (cross-sectional) and treatment biomarkers (targets). METHODS Patients performed three experimental sessions in which they received 30 minutes of 2 mA anodal tDCS targeting the left dorsolateral prefrontal cortex, 30 minutes of 2 mA anodal tDCS targeting the right dorsolateral prefrontal cortex, and 30 minutes of sham. Before and after each session, half the patients completed the Eriksen flanker task and the other half completed the stop signal task while we assessed behavior (reaction time, accuracy) and neurophysiology (event-related potentials). RESULTS Anodal tDCS to the left dorsolateral prefrontal cortex modulated cognitive (reaction time) and physiological (P300 amplitude) measures in the Eriksen flanker task in a state-dependent manner, but no effects were found in the stop signal reaction time of the stop signal task. CONCLUSIONS These findings show procognitive effects in ADHD associated with the modulation of event-related potential signatures of cognitive control, linking target engagement with cognitive benefit, proving the value of event-related potentials as cross-sectional biomarkers of executive performance, and mechanistically supporting the state-dependent nature of tDCS. We interpret these results as an improvement in cognitive control but not action cancellation, supporting the existence of different impulsivity constructs with overlapping but distinct anatomical substrates, and highlighting the implications for the development of individualized therapeutics.
Collapse
Affiliation(s)
- Laura Dubreuil-Vall
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona, Barcelona, Spain; Neuroelectrics Corporation, Barcelona, Spain.
| | - Federico Gomez-Bernal
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana C Villegas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patricia Cirillo
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig Surman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
85
|
Dedoncker J, Baeken C, De Raedt R, Vanderhasselt MA. Combined transcranial direct current stimulation and psychological interventions: State of the art and promising perspectives for clinical psychology. Biol Psychol 2020; 158:107991. [PMID: 33232800 DOI: 10.1016/j.biopsycho.2020.107991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Recent literature shows great heterogeneity in the reported efficacy of transcranial direct current stimulation (tDCS) as a stand-alone psychiatric treatment. Aiming to increase its efficacy, tDCS has been combined with psychological interventions. Our state-of-the-art overview of such combined treatment trials indicates, however, that these usually do not elicit synergistic clinical effects. We therefore explored more basic mechanisms related to the brain state-dependency of tDCS. Importantly, based on our overview, the efficacy of combined interventions may depend on whether individual patients present with endophenotypes that are implicated in the development and maintenance of psychopathology, such as prefrontal-mediated cognitive dysfunction. We discuss how future studies may contribute to the development of personally-tailored dual active treatments by adhering to the Research Domain Criteria (RDoC) framework. RDoC-based mechanistic research may reveal alternative neural circuits that should be functionally targeted by both tDCS and psychological interventions, with promising avenues for clinical psychological science and practice.
Collapse
Affiliation(s)
- Josefien Dedoncker
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Chris Baeken
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
86
|
tDCS as a treatment for anxiety and related cognitive deficits. Int J Psychophysiol 2020; 158:172-177. [PMID: 33129848 DOI: 10.1016/j.ijpsycho.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Anxiety is characterized by psychological, physiological, and cognitive complaints. Current treatments have significant limitations, and often overlook any potential benefits to common cognitive symptoms, notably attention and executive function issues. The current study aimed to investigate the use of transcranial direct current stimulation (tDCS) on both common anxiety symptoms and executive function abilities in a college aged sample. METHOD As this is one of the first large scale anxiety studies utilizing tDCS, participants were given a single session of tDCS (anodal, cathodal, or sham) for 20 min at 2 mA over the left dorsolateral prefrontal cortex (lDLPFC). Participants also completed a series of self-reported anxiety measures and measures of executive functioning (Rey-O Copy and Wisconsin Card Sorting Task). RESULTS While there were no differences in anxiety between tDCS groups, a trend was noted demonstrating better performance on Rey-O Copy for the cathodal group. Anxiety increased pre to post for all groups. CONCLUSION Overall, results suggest that while anodal stimulation of the lDLPFC may benefit cognitive abilities for this population, targeting psychological symptoms of anxiety likely requires stimulation over other cortex, possibly right DLPFC. Further, the use of tDCS, whether active or sham, may be distressing to patients.
Collapse
|
87
|
Pihlaja M, Failla L, Peräkylä J, Hartikainen KM. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation-More Efficient Cognitive Control? Front Hum Neurosci 2020; 14:561780. [PMID: 33132877 PMCID: PMC7573492 DOI: 10.3389/fnhum.2020.561780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously shown invasive vagus nerve stimulation to improve attention and working memory and alter emotion-attention interaction in patients with refractory epilepsy, suggesting that VNS might be useful in the treatment of cognitive impairment. The current research focuses on whether non-invasive, transcutaneous vagus nerve stimulation (tVNS) has similar effects to VNS. Furthermore, we aimed to assess whether tVNS has an impact on cognitive control in general or on underlying brain physiology in a task that mimics everyday life demands where multiple executive functions are engaged while encountering intervening emotional stimuli. Event-related potentials (ERP) evoked in such a task, specifically centro-parietal P3 and frontal N2 were used as biomarkers for attention allocation and cognitive control required to carry out the task. A single-blinded, sham-controlled, within-subject study on healthy subjects (n = 25) was conducted using Executive Reaction Time Test (RT-test), a Go/NoGo task engaging multiple executive functions along with intervening threat-related distractors while EEG was recorded. tVNS at the left tragus and sham stimulation at the left ear lobe was alternately delivered throughout the task. To assess the impact of tVNS on neural activity underlying attention and cognitive control, centro-parietal P3 and frontal N2 peak amplitudes were measured in Go and NoGo conditions. Task performance was assessed with RTs and different error types reflecting cognitive control in general and distinct executive functions, such as working memory and response inhibition.No significant effects due to tVNS on performance in the Executive RT-test were observed. For N2 there was a main effect of stimulator status and a significant interaction of trial type (Go, NoGo) and stimulator status. Post hoc analysis revealed that tVNS resulted in a significant reduction of frontal N2 only in the NoGo condition. No significant effects were observed for P3 nor were there any effects of emotion. Diminished NoGo-N2 potential along with unaltered task performance during tVNS suggests fewer cognitive control resources were required to successfully withhold a prepotent response. Though caution is warranted, we suggest that tVNS may lead to more efficient neural processing with fewer resources needed for successful cognitive control, providing promise for its potential use in cognitive enhancement.
Collapse
Affiliation(s)
- Mia Pihlaja
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Failla
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
88
|
Rocha K, Marinho V, Magalhães F, Carvalho V, Fernandes T, Ayres M, Crespo E, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta DS, Teixeira S. Unskilled shooters improve both accuracy and grouping shot having as reference skilled shooters cortical area: An EEG and tDCS study. Physiol Behav 2020; 224:113036. [PMID: 32598941 DOI: 10.1016/j.physbeh.2020.113036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as a non-invasive method for enhanced motor and cognitive abilities. However, no previous study has investigated if the tDCS application in unskilled shooters on cortical sites, selected based on the cortical activity of skilled shooters, improves the accuracy and shot grouping. Sixty participants were selected, which included 10 skilled shooters and 50 unskilled shooters. After we identified the right dorsolateral prefrontal cortex (DLPFC) as the area with the highest activity in skilled shooters, we applied anodal tDCS over the right DLPFC in the unskilled shooters under two conditions: sham-tDCS (placebo) and real-tDCS (anodal tDCS). We also analyzed electroencephalography. Our results indicated that anodal tDCS application enhanced the shot accuracy (p = 0.001). Furthermore, the beta power in the EEG recording was higher in the left DLPFC, left and right parietal cortex (p = 0,001) after applying anodal tDCS, while the low-gamma power was higher in the right DLPFC in sham-tDCS (p = 0.001) and right parietal cortex after anodal-tDCS (p = 0.001). Our findings indicate that anodal tDCS can improve accuracy and shot grouping when applied over the unskilled shooters' right DLPFC. Furthermore, beta and low-gamma bands are influenced by anodal tDCS over the right DLPFC, which may be predictive of skill improvement.
Collapse
Affiliation(s)
- Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Thayaná Fernandes
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil
| | - Marcos Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Eric Crespo
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Daya S Gupta
- Department of Biology, Camden County College, Blackwood, NJ, United States
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
89
|
Verveer I, Remmerswaal D, van der Veen FM, Franken IH. Long-term tDCS effects on neurophysiological measures of cognitive control in tobacco smokers. Biol Psychol 2020; 156:107962. [DOI: 10.1016/j.biopsycho.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
|
90
|
Pisano F, Caltagirone C, Satriano F, Perri R, Fadda L, Marangolo P. Can Alzheimer's Disease Be Prevented? First Evidence from Spinal Stimulation Efficacy on Executive Functions. J Alzheimers Dis 2020; 77:1755-1764. [PMID: 32925066 DOI: 10.3233/jad-200695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recently, a growing body of evidence has shown that, from the early stage of impairment, Alzheimer's patients (AD) present difficulties on a variety of tasks mostly relying on executive functions. These strongly impact their daily life activities causing a severe loss of independency and autonomy. OBJECTIVE To evaluate the efficacy of transpinal direct current stimulation (tsDCS) combined with cognitive trainings for improving attentional and executive function abilities in a group of AD patients. METHODS In a randomized-double blind design, sixteen AD patients underwent different cognitive trainings combined with tsDCS. During the treatment, each subject received tsDCS (20 min, 2 mA) over the thoracic vertebrae (IX-X vertebrae) in two different conditions: 1) anodal, and 2) sham while performing three computerized tasks: alertness, selective attention, and executive functions. Each experimental condition was run in ten consecutive daily sessions over two weeks. RESULTS After anodal tsDCS, a greater improvement in executive functions compared to sham condition was found. More importantly, the follow-up testing revealed that these effects lasted over 1 month after the intervention and generalized to the different neuropsychological tests administered before, after the treatment and at one month after the end of the intervention. This generalization was present also in the attentional domain. CONCLUSION This evidence emphasizes, for the first time, that tsDCS combined with cognitive training results efficacious for AD patients. We hypothesize that enhancing activity into the spinal sensorimotor pathways through stimulation improved cognitive abilities which rely on premotor activity, such as attention and executive functions.
Collapse
Affiliation(s)
- Francesca Pisano
- Department of Humanities studies - University Federico II, Naples, Italy
| | | | | | | | | | - Paola Marangolo
- Department of Humanities studies - University Federico II, Naples, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
91
|
Thomas F, Pixa NH, Berger A, Cheng MY, Doppelmayr M, Steinberg F. Neither Cathodal nor Anodal Transcranial Direct Current Stimulation on the Left Dorsolateral Prefrontal Cortex alone or Applied During Moderate Aerobic Exercise Modulates Executive Function. Neuroscience 2020; 443:71-83. [PMID: 32682826 DOI: 10.1016/j.neuroscience.2020.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
There is converging evidence that both aerobic exercise (AE) and transcranial direct current stimulation (tDCS) can acutely modulate executive functions (EF). In addition, recent studies have proposed the beneficial effects of applying tDCS during AE on physical performance. This study aimed to investigate whether tDCS applied during an AE session additionally or differently effects EF. Therefore, five experiments were conducted in a counterbalanced pre-post-retention crossover design to explore the acute effects of tDCS and AE on EF (inhibition and updating) once in isolation (i.e., either cathodal, anodal tDCS or AE alone as controls) and once in a combined application (i.e., anodal and cathodal tDCS during AE versus sham tDCS during AE). No differences were found in any experiment in the cognitive test parameters. However, in the case of anodal tDCS vs. sham during AE, heart rate was significantly affected. For cathodal tDCS vs. sham during AE, a significant Anova interaction indicated that cathodal tDCS during AE slightly reduced ratings of perceived exertion. The nonsignificant effects of tDCS on EFs are in contrast to previous studies, as no replication of existing observations could be achieved. Thus, the protocol applied in this study does not provide any strong evidence that a combination of AE and tDCS has any effects on EFs, but indicates effects on physiological parameters and subjective exhaustion ratings. Further research should consider changes in AE and tDCS parameters (e.g., intensity or exercise mode) and sequence of applications (online vs. offline).
Collapse
Affiliation(s)
- F Thomas
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - N H Pixa
- Institute of Sport and Exercise Sciences, Department for Neuromotor Behavior and Training, Westfälische Wilhelms University Münster, Germany
| | - A Berger
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - M-Y Cheng
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany; School of Psychology, Shanghai University of Sport, China
| | - M Doppelmayr
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - F Steinberg
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany; School of Kinesiology, Louisiana State University, Baton Rouge, USA.
| |
Collapse
|
92
|
Beppi C, Violante IR, Hampshire A, Grossman N, Sandrone S. Patterns of Focal- and Large-Scale Synchronization in Cognitive Control and Inhibition: A Review. Front Hum Neurosci 2020; 14:196. [PMID: 32670035 PMCID: PMC7330107 DOI: 10.3389/fnhum.2020.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
Neural synchronization patterns are involved in several complex cognitive functions and constitute a growing trend in neuroscience research. While synchrony patterns in working memory have been extensively discussed, a complete understanding of their role in cognitive control and inhibition is still elusive. Here, we provide an up-to-date review on synchronization patterns underlying behavioral inhibition, extrapolating common grounds, and dissociating features with other inhibitory functions. Moreover, we suggest a schematic conceptual framework and highlight existing gaps in the literature, current methodological challenges, and compelling research questions for future studies.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zürich (ZNZ), University of Zürich (UZH) and Swiss Federal Institute of Technology in Zürich (ETH), Zurich, Switzerland
- Department of Neurology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Ines R. Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Adam Hampshire
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
93
|
Dormal V, Lannoy S, Bollen Z, D'Hondt F, Maurage P. Can we boost attention and inhibition in binge drinking? Electrophysiological impact of neurocognitive stimulation. Psychopharmacology (Berl) 2020; 237:1493-1505. [PMID: 32036388 DOI: 10.1007/s00213-020-05475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Binge drinking (i.e. excessive episodic alcohol consumption) among young adults has been associated with deleterious consequences, notably at the cognitive and brain levels. These behavioural impairments and brain alterations have a direct impact on psychological and interpersonal functioning, but they might also be involved in the transition towards severe alcohol use disorders. Development of effective rehabilitation programs to reduce these negative effects as they emerge thus constitutes a priority in subclinical populations. OBJECTIVES The present study tested the behavioural and electrophysiological impact of neurocognitive stimulation (i.e. transcranial direct current stimulation (tDCS) applied during a cognitive task) to improve attention and inhibition abilities in young binge drinkers. METHODS Two groups (20 binge drinkers and 20 non-binge drinkers) performed two sessions in a counterbalanced order. Each session consisted of an inhibition task (i.e. Neutral Go/No-Go) while participants received left frontal tDCS or sham stimulation, immediately followed by an Alcohol-related Go/No-Go task, while both behavioural and electrophysiological measures were recorded. RESULTS No significant differences were observed between groups or sessions (tDCS versus sham stimulation) at the behavioural level. However, electrophysiological measurements during the alcohol-related inhibition task revealed a specific effect of tDCS on attentional resource mobilization (indexed by the N2 component) in binge drinkers, whereas later inhibition processes (indexed by the P3 component) remained unchanged in this population. CONCLUSIONS The present findings indicate that tDCS can modify the electrophysiological correlates of cognitive processes in binge drinking. While the impact of such brain modifications on actual neuropsychological functioning and alcohol consumption behaviours remains to be determined, these results underline the potential interest of developing neurocognitive stimulation approaches in this population.
Collapse
Affiliation(s)
- Valérie Dormal
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Séverine Lannoy
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Zoé Bollen
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Fabien D'Hondt
- CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, University Lille, 59000, Lille, France.,Clinique de Psychiatrie, CURE, CHU Lille, 59000, Lille, France
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
94
|
Widge AS, Heilbronner SR, Hayden BY. Prefrontal cortex and cognitive control: new insights from human electrophysiology. F1000Res 2019; 8:F1000 Faculty Rev-1696. [PMID: 31602292 PMCID: PMC6768099 DOI: 10.12688/f1000research.20044.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cognitive control, the ability to regulate one's cognition and actions on the basis of over-riding goals, is impaired in many psychiatric conditions. Although control requires the coordinated function of several prefrontal cortical regions, it has been challenging to determine how they work together, in part because doing so requires simultaneous recordings from multiple regions. Here, we provide a précis of cognitive control and describe the beneficial consequences of recent advances in neurosurgical practice that make large-scale prefrontal cortical network recordings possible in humans. Such recordings implicate inter-regional theta (5-8 Hz) local field potential (LFP) synchrony as a key element in cognitive control. Major open questions include how theta might influence other oscillations within these networks, the precise timing of information flow between these regions, and how perturbations such as brain stimulation might demonstrate the causal role of LFP phenomena. We propose that an increased focus on human electrophysiology is essential for an understanding of the neural basis of cognitive control.
Collapse
Affiliation(s)
- Alik S. Widge
- Department of Psychiatry, University of Minnesota, 3001 6th St SE, Minneapolis, MN, 55455, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA
| | - Benjamin Y. Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA
| |
Collapse
|