51
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
52
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
53
|
Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021; 18:44. [PMID: 34565396 PMCID: PMC8474841 DOI: 10.1186/s12987-021-00278-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Destruction of blood-brain barrier (BBB) is one of the main mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Frizzled-7 is a key protein expressed on the surface of endothelial cells that controls vascular permeability through the Wnt-canonical pathway involving WNT1-inducible signaling pathway protein 1 (WISPI). This study aimed to investigate the role of Frizzled-7 signaling in BBB preservation after ICH in mice. METHODS Adult CD1 mice were subjected to sham surgery or collagenase-induced ICH. Frizzled-7 activation or knockdown was performed by administration of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) by intracerebroventricular injection at 48 h before ICH induction. WISP1 activation or WISP1 knockdown was performed to evaluate the underlying signaling pathway. Post-ICH assessments included neurobehavior, brain edema, BBB permeability, hemoglobin level, western blot and immunofluorescence. RESULTS The brain expressions of Frizzled-7 and WISP1 significantly increased post-ICH. Frizzled-7 was expressed in endothelial cells, astrocytes, and neurons after ICH. Activation of Frizzled-7 significantly improved neurological function, reduced brain water content and attenuated BBB permeability to large molecular weight substances after ICH. Whereas, knockdown of Frizzled-7 worsened neurological function and brain edema after ICH. Activation of Frizzled-7 significantly increased the expressions of Dvl, β-Catenin, WISP1, VE-Cadherin, Claudin-5, ZO-1 and reduced the expression of phospho-β-Catenin. WISP1 knockdown abolished the effects of Frizzled-7 activation on the expressions of VE-Cadherin, Claudin-5 and ZO-1 at 24 h after ICH. CONCLUSIONS Frizzled-7 activation potentially attenuated BBB permeability and improved neurological deficits after ICH through Dvl/β-Catenin/WISP1 pathway. Frizzled-7 may be a potential target for the development of ICH therapeutic drugs.
Collapse
|
54
|
Santiago FS, Li Y, Khachigian LM. Serine 26 in Early Growth Response-1 Is Critical for Endothelial Proliferation, Migration, and Network Formation. J Am Heart Assoc 2021; 10:e020521. [PMID: 34476983 PMCID: PMC8649526 DOI: 10.1161/jaha.120.020521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Vascular endothelial cell proliferation, migration, and network formation are key proangiogenic processes involving the prototypic immediate early gene product, Egr‐1 (early growth response‐1). Egr‐1 undergoes phosphorylation at a conserved Ser26 but its function is completely unknown in endothelial cells or any other cell type. Methods and Results A CRISPR/Cas9 strategy was used to introduce a homozygous Ser26>Ala mutation into endogenous Egr‐1 in human microvascular endothelial cells. In the course of generating mutant cells, we produced cells with homozygous deletion in Egr‐1 caused by frameshift and premature termination. We found that Ser26 mutation in Egr‐1, or Egr‐1 deletion, perturbed endothelial cell proliferation in models of cell counting or real‐time growth using the xCELLigence System. We found that Ser26 mutation or Egr‐1 deletion ameliorated endothelial cell migration toward VEGF‐A165 (vascular endothelial growth factor‐A) in a dual‐chamber model. On solubilized basement membrane preparations, Ser26 mutation or Egr‐1 deletion prevented endothelial network (or tubule) formation, an in vitro model of angiogenesis. Flow cytometry further revealed that Ser26 mutation or Egr‐1 deletion elevated early and late apoptosis. Finally, we demonstrated that Ser26 mutation or Egr‐1 deletion increased VE‐cadherin (vascular endothelial cadherin) expression, a regulator of endothelial adhesion and signaling, permeability, and angiogenesis. Conclusions These findings not only indicate that Egr‐1 is essential for endothelial cell proliferation, migration, and network formation, but also show that point mutation in Ser26 is sufficient to impair each of these processes and trigger apoptosis as effectively as the absence of Egr‐1. This highlights the importance of Ser26 in Egr‐1 for a range of proangiogenic processes.
Collapse
Affiliation(s)
- Fernando S Santiago
- Vascular Biology and Translational Research School of Medical Sciences UNSW Medicine and HealthUniversity of New South Wales Sydney NSW Australia
| | - Yue Li
- Vascular Biology and Translational Research School of Medical Sciences UNSW Medicine and HealthUniversity of New South Wales Sydney NSW Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research School of Medical Sciences UNSW Medicine and HealthUniversity of New South Wales Sydney NSW Australia
| |
Collapse
|
55
|
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. BIOMICROFLUIDICS 2021; 15:054102. [PMID: 34548891 PMCID: PMC8443302 DOI: 10.1063/5.0061997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 05/08/2023]
Abstract
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Collapse
Affiliation(s)
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
56
|
Engineering a Vascularized Hypoxic Tumor Model for Therapeutic Assessment. Cells 2021; 10:cells10092201. [PMID: 34571851 PMCID: PMC8468635 DOI: 10.3390/cells10092201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023] Open
Abstract
Solid tumors in advanced cancer often feature a structurally and functionally abnormal vasculature through tumor angiogenesis, which contributes to cancer progression, metastasis, and therapeutic resistances. Hypoxia is considered a major driver of angiogenesis in tumor microenvironments. However, there remains a lack of in vitro models that recapitulate both the vasculature and hypoxia in the same model with physiological resemblance to the tumor microenvironment, while allowing for high-content spatiotemporal analyses for mechanistic studies and therapeutic evaluations. We have previously constructed a hypoxia microdevice that utilizes the metabolism of cancer cells to generate an oxygen gradient in the cancer cell layer as seen in solid tumor sections. Here, we have engineered a new composite microdevice-microfluidics platform that recapitulates a vascularized hypoxic tumor. Endothelial cells were seeded in a collagen channel formed by viscous fingering, to generate a rounded vascular lumen surrounding a hypoxic tumor section composed of cancer cells embedded in a 3-D hydrogel extracellular matrix. We demonstrated that the new device can be used with microscopy-based high-content analyses to track the vascular phenotypes, morphology, and sprouting into the hypoxic tumor section over a 7-day culture, as well as the response to different cancer/stromal cells. We further evaluated the integrity/leakiness of the vascular lumen in molecular delivery, and the potential of the platform to study the movement/trafficking of therapeutic immune cells. Therefore, our new platform can be used as a model for understanding tumor angiogenesis and therapeutic delivery/efficacy in vascularized hypoxic tumors.
Collapse
|
57
|
Herrera M, Molina P, Souza-Smith FM. Ethanol-induced lymphatic endothelial cell permeability via MAP-kinase regulation. Am J Physiol Cell Physiol 2021; 321:C104-C116. [PMID: 33909502 PMCID: PMC8321794 DOI: 10.1152/ajpcell.00039.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Chronic alcohol alters the immune system enhancing the susceptibility to inflammation, bacterial, and viral infections in alcohol users. We have shown that alcohol causes increased permeability of mesenteric lymphatic vessels in alcohol-fed rats. The mechanisms of alcohol-induced lymphatic leakage are unknown. Endothelial cell monolayer permeability is controlled by junctional proteins complexes called tight junctions (TJ) and adherens junctions (AJ), and each can be regulated by MAPK activation. We hypothesize that ethanol induces lymphatic endothelial cell (LEC) permeability via disruption of LEC TJ through MAPK activation. An in vitro model of rat LECs was used. Ethanol-supplemented medium was added at concentrations of 0, 25, and 50 mM to confluent cells. Resistance-based barrier function, transwell permeability, cell viability, TJ, AJ, and MAPK protein activity, TJ and AJ gene expressions, and the role of p38 MAPK in barrier function regulation were measured. Ethanol increased the permeability of LECs compared to controls that was not associated with decreased cell viability. LECs treated with 50 mM ethanol showed an increase in phosphorylated levels of p38. No significant changes in TJ and AJ gene or protein expressions were observed after ethanol treatment. p38 inhibition prevented ethanol-induced increases in permeability. These findings suggest that p38 may play a role in the regulation of ethanol-induced LEC permeability, but altered permeability may not be associated with decreased TJ or AJ protein expression. Further investigation into junctional protein localization is needed to better understand the effects of ethanol on lymphatic endothelial cell-to-cell contacts and hyperpermeability.
Collapse
Affiliation(s)
- Matthew Herrera
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia Molina
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Flavia M Souza-Smith
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
58
|
Bazhenov DO, Khokhlova EV, Viazmina LP, Furaeva KN, Mikhailova VA, Kostin NA, Selkov SA, Sokolov DI. Characteristics of Natural Killer Cell Interaction with Trophoblast Cells During Pregnancy. Curr Mol Med 2021; 20:202-219. [PMID: 31393246 DOI: 10.2174/1566524019666190808103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maternal natural killer cells (NK cells) are a prevailing leukocyte population in the uteroplacental bed. Current descriptions of the effect of cytokines from the placental microenvironment on the expression of receptors by trophoblast and NK cells are inadequate and contradictory. There is insufficient information about the ability of NK cells to migrate through trophoblast cells. OBJECTIVE To assess the impact of conditioned media obtained during culturing of placentas from the first and the third trimesters of healthy pregnancies on the phenotype of trophoblast and NK cells and impact on adhesion and transmigration of NK cells through trophoblast cell layer. RESULTS We established that conditioned media obtained from both first and third trimester placentas increased the intensity of CD106, CD49e, CD49a, CD31, CD51/61, and integrin β6 expression by trophoblast cells. Conditioned media obtained from first trimester placentas increased the intensity of CD11a, CD29, CD49d, CD58, CD29 expression by NK cells. The presence of conditioned media from third trimester placentas resulted in more intense CD29, CD49d, CD11a, CD29, CD49d, and CD58 expression by NK cells. Migration of NK cells through trophoblast cells in the presence of conditioned media from first trimester placentas was increased compared with the migration level in the presence of conditioned media from third trimester placentas. This may be associated with increased expression of CD18 by NK cells. CONCLUSION First trimester placental secretory products increase adhesion receptor expression by both trophoblast and NK cells. Under these conditions, trophoblast is capable of ensuring NK cell adhesion and transmigration.
Collapse
Affiliation(s)
- Dmitry Olegovich Bazhenov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation.,Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Russian Federation
| | - Evgeniya Valerevna Khokhlova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Larisa Pavlovna Viazmina
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Kseniya Nikolaevna Furaeva
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Valentina Anatolievna Mikhailova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Nikolay Anatolievich Kostin
- Resource Centre for the Molecular and Cell Technologies Development, Saint Petersburg State University, Saint- Petersburg, Russian Federation
| | - Sergey Alekseevich Selkov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Dmitry Igorevich Sokolov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation.,Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Russian Federation
| |
Collapse
|
59
|
Lenart-Migdalska A, Drabik L, Kaźnica-Wiatr M, Tomkiewicz-Pająk L, Podolec P, Olszowska M. Increased Levels of Platelets and Endothelial-Derived Microparticles in Patients With Non-Valvular Atrial Fibrillation During Rivaroxaban Therapy. Clin Appl Thromb Hemost 2021; 27:10760296211019465. [PMID: 34032122 PMCID: PMC8155766 DOI: 10.1177/10760296211019465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is known that atrial fibrillation (AF) is associated with the procoagulant
state. Several studies have reported an increase of circulating microparticles
in AF, which may be linked to a hypercoagulable state, atrial thrombosis and
thromboembolism. We evaluated in our study alterations in both platelet (PMP,
CD42b) and endothelial-derived (EMP, CD144) microparticle levels on
anticoagulant therapy with rivaroxaban in nonvalvular AF. After administration
of rivaroxaban, PMP levels were increased (median, [IQR] 35.7 [28.8-47.3] vs.
48.4 [30.9-82.8] cells/µL; P = 0.012), along with an increase
in EMP levels (14.6 [10.0-18.6] vs. 18.3 [12.9-37.1] cells/µL,
P < 0.001). In the multivariable regression analysis,
the independent predictor of post-dose change in PMPs was statin therapy (HR
−0.43; 95% CI −0.75,−0.10, P = 0.011). The post-dose change in
EMPs was also predicted by statin therapy (HR −0.34; 95% CI −0.69, −0.01,
P = 0.046). This study showed an increase in both EMPs and
PMPs at the peak plasma concentration of rivaroxaban. Statins have promising
potential in the prevention of rivaroxaban-related PMP and EMP release. The
pro-thrombotic role of PMPs and EMPs during rivaroxaban therapy requires further
study.
Collapse
Affiliation(s)
- Aleksandra Lenart-Migdalska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Leszek Drabik
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland.,Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Kaźnica-Wiatr
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Lidia Tomkiewicz-Pająk
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Institute of Cardiology, John Paul II Hospital, Kraków, Poland
| |
Collapse
|
60
|
Lopes-Coelho F, Martins F, Hipólito A, Mendes C, Sequeira CO, Pires RF, Almeida AM, Bonifácio VDB, Pereira SA, Serpa J. The Activation of Endothelial Cells Relies on a Ferroptosis-Like Mechanism: Novel Perspectives in Management of Angiogenesis and Cancer Therapy. Front Oncol 2021; 11:656229. [PMID: 34041026 PMCID: PMC8141735 DOI: 10.3389/fonc.2021.656229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Filipa Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Hipólito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cindy Mendes
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M Almeida
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,Hematology, Hospital da Luz, Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Jacinta Serpa
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
61
|
Xie J, Li X, Zhang Y, Tang T, Chen G, Mao H, Gu Z, Yang J. VE-cadherin-based matrix promoting the self-reconstruction of pro-vascularization microenvironments and endothelial differentiation of human mesenchymal stem cells. J Mater Chem B 2021; 9:3357-3370. [PMID: 33881442 DOI: 10.1039/d1tb00017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulating the secretion and endothelial differentiation of human mesenchymal stem cells (hMSCs) plays an important role in the vascularization in tissue engineering and regenerative medicine. In this study, a recombinant cadherin fusion protein consisting of a human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) was developed as a bioartificial matrix for modulating hMSCs. The hVE-cad-Fc matrix significantly enhanced the secretion of angiogenic factors, activated the VE-cadherin-VEGFR2/FAK-AKT/PI3K signaling pathway in hMSCs, and promoted the endothelial differentiation of hMSCs even without extra VEGF. Furthermore, the hVE-cad-Fc matrix was applied for the surface modification of a poly (lactic-co-glycolic acid) (PLGA) porous scaffold, which significantly improved the hemocompatibility and vascularization of the PLGA scaffold in vivo. These results revealed that the hVE-cad-Fc matrix should be a superior bioartificial ECM for remodeling the pro-vascularization extracellular microenvironment by regulating the secretion of hMSCs, and showed great potential for the vascularization in tissue engineering.
Collapse
Affiliation(s)
- Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Wei Y, Bai S, Yao Y, Hou W, Zhu J, Fang H, Du Y, He W, Shen B, Du J. Orai-vascular endothelial-cadherin signaling complex regulates high-glucose exposure-induced increased permeability of mouse aortic endothelial cells. BMJ Open Diabetes Res Care 2021; 9:9/1/e002085. [PMID: 33888544 PMCID: PMC8070857 DOI: 10.1136/bmjdrc-2020-002085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Diabetes-associated endothelial barrier function impairment might be linked to disturbances in Ca2+ homeostasis. To study the role and molecular mechanism of Orais-vascular endothelial (VE)-cadherin signaling complex and its downstream signaling pathway in diabetic endothelial injury using mouse aortic endothelial cells (MAECs). RESEARCH DESIGN AND METHODS The activity of store-operated Ca2+ entry (SOCE) was detected by calcium imaging after 7 days of high-glucose (HG) or normal-glucose (NG) exposure, the expression levels of Orais after HG treatment was detected by western blot analysis. The effect of HG exposure on the expression of phosphorylated (p)-VE-cadherin and VE-cadherin on cell membrane was observed by immunofluorescence assay. HG-induced transendothelial electrical resistance was examined in vitro after MAECs were cultured in HG medium. FD-20 permeability was tested in monolayer aortic endothelial cells through transwell permeability assay. The interactions between Orais and VE-cadherin were detected by co-immunoprecipitation and immunofluorescence technologies. Immunohistochemical experiment was used to detect the expression changes of Orais, VE-cadherin and p-VE-cadherin in aortic endothelium of mice with diabetes. RESULTS (1) The expression levels of Orais and activity of SOCE were significantly increased in MAECs cultured in HG for 7 days. (2) In MAECs cultured in HG for 7 days, the ratio of p-VE-cadherin to VE-cadherin expressed on the cell membrane and the FD-20 permeability in monolayer endothelial cells increased, indicating that intercellular permeability increased. (3) Orais and VE-cadherin can interact and enhance the interaction ratio through HG stimulation. (4) In MAECs cultured with HG, the SOCE activator ATP enhanced the expression level of p-VE-cadherin, and the SOCE inhibitor BTP2 decreased the expression level of p-VE-cadherin. (5) Significantly increased expression of p-VE-cadherin and Orais in the aortic endothelium of mice with diabetes. CONCLUSION HG exposure stimulated increased expression of Orais in endothelial cells, and increased VE-cadherin phosphorylation through Orais-VE-cadherin complex and a series of downstream signaling pathways, resulting in disruption of endothelial cell junctions and initiation of atherosclerosis.
Collapse
Affiliation(s)
- Yuan Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - YanHeng Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenxuan Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Junwei Zhu
- Otolaryngology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Jiangsu, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
63
|
Leeten K, Ditkowski B, Jashari R, Mela P, Jones EAV, Heying R. An In Vitro Model to Study Endothelialization of Cardiac Graft Tissues Under Flow. Tissue Eng Part C Methods 2021; 27:233-241. [PMID: 33544046 DOI: 10.1089/ten.tec.2020.0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary valve replacement is performed with excellent resultant hemodynamics in patients that have underlying congenital or acquired heart valve defects. Despite recent advancements in right ventricular outflow tract reconstruction, an increased risk of developing infective endocarditis remains, which has a more common occurrence for conduits of bovine jugular vein (BJV) origin compared with cryopreserved homografts. The reason for this is unclear although it is hypothesized to be associated with an aberrant phenotypic state of cells that reendothelialize the graft tissue postimplantation. The aim of this study was to develop an in vitro model that enables the analysis of endothelial cell (EC) attachment to cardiac graft tissues under flow. In the experiments, EC attachment was optimized on bovine pericardium (BP) patch using human umbilical vein ECs. Different biological coatings, namely gelatin, fibronectin, plasma, or a combination of fibronectin and plasma were tested. After cell adaptation, graft tissues were exposed to laminar flow in a parallel-plate flow chamber. Cell retention to the tissue was analyzed after nuclear staining with YO-PRO-1 and a membranous localization of VE-cadherin. Experiments showed that combined coating with fibronectin and blood plasma together with a two-phased shear pattern resulted in a relevant cell monolayer on BP patch and cryopreserved homograft. For BJV tissue, no adherent cells under both static and shear conditions were initially observed. In conclusion, having established the new flow chamber system we could obtain EC layers on the surface of BP patch and cryopreserved pulmonary homograft tissues. The presented in vitro system can serve as a competent model to study cell phenotypes on cardiac grafts in the close-to-physiologic environment. Moreover, this approach allows broad applications and enables further development by testing more complex conditions.
Collapse
Affiliation(s)
- Kirsten Leeten
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| | - Bartosz Ditkowski
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| | - Ramadan Jashari
- Saint Jean Clinique, European Homograft Bank, Brussels, Belgium
| | - Petra Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Medical Materials and Implants, Technical University Munich, Munich, Germany
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruth Heying
- Department of Cardiovascular Sciences, KU Leuven Center for Molecular and Vascular Biology, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven Cardiovascular Developmental Biology, Leuven, Belgium
| |
Collapse
|
64
|
Dömer P, Kayal J, Janssen-Bienhold U, Kewitz B, Kretschmer T, Heinen C. Rapid and efficient immunomagnetic isolation of endothelial cells from human peripheral nerves. Sci Rep 2021; 11:1951. [PMID: 33479384 PMCID: PMC7820485 DOI: 10.1038/s41598-021-81361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells (ECs) have gained an increased scientific focus since they were reported to provide guidance for Schwann cells and subsequently following axons after nerve injuries. However, previous protocols for the isolation of nerve-derived ECs from human nerves are ineffective regarding time and yield. Therefore, we established a novel and efficient protocol for the isolation of ECs from human peripheral nerves by means of immunomagnetic CD31-antibody conjugated Dynabeads and assessed the purity of the isolated cells. The easy-to-follow and time-effective isolation method allows the isolation of > 95% pure ECs. The isolated ECs were shown to express highly specific EC marker proteins and revealed functional properties by formation of CD31 and VE-cadherin positive adherens junctions, as well as ZO-1 positive tight-junctions. Moreover, the formation of capillary EC-tubes was observed in-vitro. The novel protocol for the isolation of human nerve-derived ECs allows and simplifies the usage of ECs in research of the human blood-nerve-barrier and peripheral nerve regeneration. Additionally, a potential experimental application of patient-derived nerve ECs in the in-vitro vascularization of artificial nerve grafts is feasible.
Collapse
Affiliation(s)
- Patrick Dömer
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany.
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Janine Kayal
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Kewitz
- Department of Neuroscience, Carl Von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Kretschmer
- Department of Neurosurgery and Neurorestauration, Klinikum Klagenfurt Am Wörthersee, Klagenfurt, Austria
| | - Christian Heinen
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
65
|
Li L, Liu Q, Shang T, Song W, Xu D, Allen TD, Wang X, Jeong J, Lobe CG, Liu J. Aberrant Activation of Notch1 Signaling in Glomerular Endothelium Induces Albuminuria. Circ Res 2021; 128:602-618. [PMID: 33435713 DOI: 10.1161/circresaha.120.316970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Glomerular capillaries are lined with a highly specialized fenestrated endothelium and contribute to the glomerular filtration barrier. The Notch signaling pathway is involved in regulation of glomerular filtration barrier, but its role in glomerular endothelium has not been investigated due to the embryonic lethality of animal models with genetic modification of Notch pathway components in the endothelium. OBJECTIVE To determine the effects of aberrant activation of the Notch signaling in glomerular endothelium and the underlying molecular mechanisms. METHODS AND RESULTS We established the ZEG-NICD1 (notch1 intracellular domain)/Tie2-tTA/Tet-O-Cre transgenic mouse model to constitutively activate Notch1 signaling in endothelial cells of adult mice. The triple transgenic mice developed severe albuminuria with significantly decreased VE-cadherin (vascular endothelial cadherin) expression in the glomerular endothelium. In vitro studies showed that either NICD1 (Notch1 intracellular domain) lentiviral infection or treatment with Notch ligand DLL4 (delta-like ligand 4) markedly reduced VE-cadherin expression and increased monolayer permeability of human renal glomerular endothelial cells. In addition, Notch1 activation or gene knockdown of VE-cadherin reduced the glomerular endothelial glycocalyx. Further investigation demonstrated that activated Notch1 suppression of VE-cadherin was through the transcription factors SNAI1 (snail family transcriptional repressor 1) and ERG (Ets related gene), which bind to the -373 E-box and the -134/-118 ETS (E26 transformation-specific) element of the VE-cadherin promoter, respectively. CONCLUSIONS Our results reveal novel regulatory mechanisms whereby endothelial Notch1 signaling dictates the level of VE-cadherin through the transcription factors SNAI1 and ERG, leading to dysfunction of glomerular filtration barrier and induction of albuminuria. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Liqun Li
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tongyao Shang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Wei Song
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Dongmei Xu
- Department of Nephrology (D.X.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Thaddeus D Allen
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada.,Tradewind BioScience, Daly City, California (T.D.A.)
| | - Xia Wang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - James Jeong
- General Internal Medicine, Markham Stouffville Hospital, Toronto, Ontario, Canada (J.J.)
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
66
|
Suppressive Effects of the Gynura bicolor Ether Extract on Endothelial Permeability and Leukocyte Transmigration in Human Endothelial Cells Induced by TNF- α. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:9413724. [PMID: 33425001 PMCID: PMC7772037 DOI: 10.1155/2020/9413724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 11/25/2022]
Abstract
Gynura bicolor (Roxb. and Willd.) DC (G. bicolor) is generally used as a dietary vegetable and traditional herb in Taiwan and the Far East. G. bicolor exerts antioxidant and anti-inflammatory effects and regulates blood lipids and cholesterol. However, the effects of G. bicolor on endothelial transmigration and atherosclerosis are not clear. The present study investigated the effects of G. bicolor on endothelial permeability and transmigration in human endothelial cells. We prepared G. bicolor ether extract (GBEE) for use as the experimental material. Under TNF-α stimulation, HL-60 cell adherence to EA.hy926 cells, the shape of EA.hy926 cells, and the expression of adhesion molecules and transmigration-related regulatory molecules were analysed after pretreatment with GBEE for 24 h. GBEE inhibited leukocyte adhesion to endothelial cells, reduced intercellular adhesion molecule-1 (ICAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) expressions, and decreased endothelial monolayer permeability. GBEE also reduced paracellular transmigration by reducing the levels of reactive oxygen species (ROS), Src phosphorylation, and vascular endothelial-cadherin (VE-cadherin) phosphorylation. GBEE reduced transcellular migration via inhibition of Ras homolog family member A (RhoA) and Rho-associated protein kinase (ROCK) expression and phosphorylation of the ezrin-radixin-moesin (ERM) protein. Incubation of EA.hy926 cells with GBEE for 8 h and stimulation with TNF-α for 3 h reduced the phosphorylation of the inhibitor of kappa B (IĸB) and DNA-binding activity of nuclear factor-ĸB (NF-ĸB). These results suggest that GBEE has a protective effect against endothelial dysfunction via suppression of leukocyte-endothelium adhesion and transmigration.
Collapse
|
67
|
An X, Ogawa-Wong A, Carmody C, Ambrosio R, Cicatiello AG, Luongo C, Salvatore D, Handy DE, Larsen PR, Wajner SM, Dentice M, Zavacki AM. A Type 2 Deiodinase-Dependent Increase in Vegfa Mediates Myoblast-Endothelial Cell Crosstalk During Skeletal Muscle Regeneration. Thyroid 2021; 31:115-127. [PMID: 32787533 PMCID: PMC7840309 DOI: 10.1089/thy.2020.0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: The type 2 deiodinase (DIO2) converts thyroxine to 3,3',5-triiodothyronine (T3), modulating intracellular T3. An increase in DIO2 within muscle stem cells during skeletal muscle regeneration leads to T3-dependent potentiation of differentiation. The muscle stem cell niche comprises numerous cell types, which coordinate the regeneration process. For example, muscle stem cells provide secretory signals stimulating endothelial cell-mediated vascular repair, and, in turn, endothelial cells promote muscle stem differentiation. We hypothesized that Dio2 loss in muscle stem cells directly impairs muscle stem cell-endothelial cell communication, leading to downstream disruption of endothelial cell function. Methods: We assessed the production of proangiogenic factors in differentiated C2C12 cells and in a C2C12 cell line without Dio2 (D2KO C2C12) by real-time quantitative-polymerase chain reaction and enzyme-linked immunosorbent assay. Conditioned medium (CM) was collected daily in parallel to evaluate its effects on human umbilical vein endothelial cell (HUVEC) proliferation, migration and chemotaxis, and vascular network formation. The effects of T3-treatment on vascular endothelial growth factor (Vegfa) mRNA expression in C2C12 cells and mouse muscle were assessed. Chromatin immunoprecipitation (ChIP) identified thyroid hormone receptor (TR) binding to the Vegfa gene. Using mice with a targeted disruption of Dio2 (D2KO mice), we determined endothelial cell number by immunohistochemistry/flow cytometry and evaluated related gene expression in both uninjured and injured skeletal muscle. Results: In differentiated D2KO C2C12 cells, Vegfa expression was 46% of wildtype (WT) C2C12 cells, while secreted VEGF was 45%. D2KO C2C12 CM exhibited significantly less proangiogenic effects on HUVECs. In vitro and in vivo T3 treatment of C2C12 cells and WT mice, and ChIP using antibodies against TRα, indicated that Vegfa is a direct genomic T3 target. In uninjured D2KO soleus muscle, Vegfa expression was decreased by 28% compared with WT mice, while endothelial cell numbers were decreased by 48%. Seven days after skeletal muscle injury, D2KO mice had 36% fewer endothelial cells, coinciding with an 83% decrease in Vegfa expression in fluorescence-activated cell sorting purified muscle stem cells. Conclusion:Dio2 loss in the muscle stem cell impairs muscle stem cell-endothelial cell crosstalk via changes in the T3-responsive gene Vegfa, leading to downstream impairment of endothelial cell function both in vitro and in vivo.
Collapse
Affiliation(s)
- Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ashley Ogawa-Wong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Colleen Carmody
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - P. Reed Larsen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Simone Magagnin Wajner
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica Dentice
- Department of Clinical Medicine and Surgery and University of Naples “Federico II,” Naples, Italy
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
68
|
Gap Junctions between Endothelial Cells Are Disrupted by Circulating Extracellular Vesicles from Sickle Cell Patients with Acute Chest Syndrome. Int J Mol Sci 2020; 21:ijms21238884. [PMID: 33255173 PMCID: PMC7727676 DOI: 10.3390/ijms21238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.
Collapse
|
69
|
Weber V, Olzscha H, Längrich T, Hartmann C, Jung M, Hofmann B, Horstkorte R, Bork K. Glycation Increases the Risk of Microbial Traversal through an Endothelial Model of the Human Blood-Brain Barrier after Use of Anesthetics. J Clin Med 2020; 9:jcm9113672. [PMID: 33207595 PMCID: PMC7698006 DOI: 10.3390/jcm9113672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
The function of the human blood–brain barrier (BBB), consisting mainly of the basement membrane and microvascular endothelial cells, is to protect the brain and regulate its metabolism. Dysfunction of the BBB can lead to increased permeability, which can be linked with several pathologies, including meningitis, sepsis, and postoperative delirium. Advanced glycation end products (AGE) are non-enzymatic, posttranslational modifications of proteins, which can affect their function. Increased AGE levels are strongly associated with ageing and degenerative diseases including diabetes. Several studies demonstrated that the formation of AGE interfere with the function of the BBB and may change its permeability for soluble compounds. However, it is still unclear whether AGE can facilitate microbial traversal through the BBB and how small compounds including anesthetics modulate this process. Therefore, we developed a cellular model, which allows for the convenient testing of different factors and compounds with a direct correlation to bacterial traversal through the BBB. Our results demonstrate that both glycation and anesthetics interfere with the function of the BBB and promote microbial traversal. Importantly, we also show that the essential nutrient and antioxidant ascorbic acid, commonly known as vitamin C, can reduce the microbial traversal through the BBB and partly reverse the effects of AGE.
Collapse
Affiliation(s)
- Veronika Weber
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Heidi Olzscha
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
- Correspondence: ; Tel.: +49-345-557-3847
| | - Timo Längrich
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Carla Hartmann
- Klinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg, Julius-Kühn-Str. 7, 06112 Halle (Saale), Germany; (C.H.); (M.J.)
| | - Matthias Jung
- Klinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg, Julius-Kühn-Str. 7, 06112 Halle (Saale), Germany; (C.H.); (M.J.)
| | - Britt Hofmann
- Klinik und Poliklinik für Herzchirurgie, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 20, 06120 Halle (Saale), Germany;
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Kaya Bork
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| |
Collapse
|
70
|
RAC1 nitration at Y 32 IS involved in the endothelial barrier disruption associated with lipopolysaccharide-mediated acute lung injury. Redox Biol 2020; 38:101794. [PMID: 33248422 PMCID: PMC7664366 DOI: 10.1016/j.redox.2020.101794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI), a devastating illness induced by systemic inflammation e.g., sepsis or local lung inflammation e.g., COVID-19 mediated severe pneumonia, has an unacceptably high mortality and has no effective therapy. ALI is associated with increased pulmonary microvascular hyperpermeability and alveolar flooding. The small Rho GTPases, RhoA and Rac1 are central regulators of vascular permeability through cytoskeleton rearrangements. RhoA and Rac1 have opposing functional outcome: RhoA induces an endothelial contractile phenotype and barrier disruption, while Rac1 stabilizes endothelial junctions and increases barrier integrity. In ALI, RhoA activity is increased while Rac1 activity is reduced. We have shown that the activation of RhoA in lipopolysaccharide (LPS)-mediated ALI, is dependent, at least in part, on a single nitration event at tyrosine (Y)34. Thus, the purpose of this study was to determine if the inhibition of Rac1 is also dependent on its nitration. Our data show that Rac1 inhibition by LPS is associated with its nitration that mass spectrometry identified as Y32, within the switch I region adjacent to the nucleotide-binding site. Using a molecular modeling approach, we designed a nitration shielding peptide for Rac1, designated NipR2 (nitration inhibitor peptide for the Rho GTPases 2), which attenuated the LPS-induced nitration of Rac1 at Y32, preserves Rac1 activity and attenuates the LPS-mediated disruption of the endothelial barrier in human lung microvascular endothelial cells (HLMVEC). Using a murine model of ALI induced by intratracheal installation of LPS we found that NipR2 successfully prevented Rac1 nitration and Rac1 inhibition, and more importantly attenuated pulmonary inflammation, reduced lung injury and prevented the loss of lung function. Together, our data identify a new post-translational mechanism of Rac1 inhibition through its nitration at Y32. As NipR2 also reduces sepsis induced ALI in the mouse lung, we conclude that Rac1 nitration is a therapeutic target in ALI. Endotoxin exposure induces site specific nitration of Rac1 at Y32 via peroxynitrite stress. Rac1 nitration at Y32 leads to persistent Rac GTPase inhibition and endothelial barrier disruption. Novel Rac1 nitration shielding peptide, NipR2 blocks Rac1 nitration and rescues endotoxin induced lung inflammation. NipR2 is potentially an effective therapy for sepsis induced lung injury by targeting Rac1 Y32 nitration.
Collapse
|
71
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
72
|
Yu Y, Su X, Qin Q, Hou Y, Zhang X, Zhang H, Jia M, Chen Y. Yes-associated protein and transcriptional coactivator with PDZ-binding motif as new targets in cardiovascular diseases. Pharmacol Res 2020; 159:105009. [DOI: 10.1016/j.phrs.2020.105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
73
|
Yang C, Eleftheriadou M, Kelaini S, Morrison T, González MV, Caines R, Edwards N, Yacoub A, Edgar K, Moez A, Ivetic A, Zampetaki A, Zeng L, Wilkinson FL, Lois N, Stitt AW, Grieve DJ, Margariti A. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun 2020; 11:3812. [PMID: 32732889 PMCID: PMC7393072 DOI: 10.1038/s41467-020-17468-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Chunbo Yang
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | | | - Sophia Kelaini
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Thomas Morrison
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Marta Vilà González
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Rachel Caines
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Nicola Edwards
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Andrew Yacoub
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Kevin Edgar
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Arya Moez
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Anna Zampetaki
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Fiona L Wilkinson
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Noemi Lois
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Alan W Stitt
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Andriana Margariti
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK.
| |
Collapse
|
74
|
Bi J, Zhang J, Ren Y, Du Z, Zhang Y, Liu C, Wang Y, Zhang L, Shi Z, Wu Z, Lv Y, Wu R. Exercise hormone irisin mitigates endothelial barrier dysfunction and microvascular leakage-related diseases. JCI Insight 2020; 5:136277. [PMID: 32516137 DOI: 10.1172/jci.insight.136277] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
Increased microvascular leakage is a cardinal feature of many critical diseases. Regular exercise is associated with improved endothelial function and reduced risk of cardiovascular disease. Irisin, secreted during exercise, contributes to many health benefits of exercise. However, the effects of irisin on endothelial function and microvascular leakage remain unknown. In this study, we found that irisin remarkably strengthened endothelial junctions and barrier function via binding to integrin αVβ5 receptor in LPS-treated endothelial cells. The beneficial effect of irisin was associated with suppression of the Src-MLCK-β-catenin pathway, activation of the AMPK-Cdc42/Rac1 pathway, and improvement of mitochondrial function. In preclinical models of microvascular leakage, exogenous irisin improved pulmonary function, decreased lung edema and injury, suppressed inflammation, and increased survival. In ARDS patients, serum irisin levels were decreased and inversely correlated with disease severity and mortality. In conclusion, irisin enhances endothelial barrier function and mitigates microvascular leakage-related diseases.
Collapse
Affiliation(s)
- Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering.,Department of Hepatobiliary Surgery
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering.,Department of Hepatobiliary Surgery
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering.,Department of Hepatobiliary Surgery
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering.,Department of Hepatobiliary Surgery
| | | | | | - Yawen Wang
- Biobank.,Department of Laboratory Medicine, and
| | - Lin Zhang
- Department of Laboratory Medicine, and
| | - Zhihong Shi
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering.,Department of Hepatobiliary Surgery
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering
| |
Collapse
|
75
|
Kong L, Xiao F, Wang L, Li M, Wang D, Feng Z, Huang L, Wei Y, Li H, Liu F, Kang Y, Liao X, Zhang W. Intermedin promotes vessel fusion by inducing VE-cadherin accumulation at potential fusion sites and to achieve a dynamic balance between VE-cadherin-complex dissociation/reconstitution. MedComm (Beijing) 2020; 1:84-102. [PMID: 34766111 PMCID: PMC8489673 DOI: 10.1002/mco2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
To create a closed vascular system, angiogenic sprouts must meet and connect in a process called vessel fusion, which is a prerequisite for establishment of proper blood flow in nascent vessels. However, the molecular machinery underlying this process remains largely unknown. Herein, we report that intermedin (IMD), a calcitonin family member, promotes vessel fusion by inducing endothelial cells (ECs) to enter a "ready-to-anchor" state. IMD promotes vascular endothelial cadherin (VEC) accumulation at the potential fusion site to facilitate anchoring of approaching vessels to each other. Simultaneously, IMD fine-tunes VEC activity to achieve a dynamic balance between VEC complex dissociation and reconstitution in order to widen the anastomotic point. IMD induces persistent VEC phosphorylation. Internalized phospho-VEC preferentially binds to Rab4 and Rab11, which facilitate VEC vesicle recycling back to the cell-cell contact for reconstruction of the VEC complex. This novel mechanism may explain how neovessels contact and fuse to adjacent vessels to create a closed vascular system.
Collapse
Affiliation(s)
- Lingmiao Kong
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics West China Second University Hospital Sichuan University Chengdu China
| | - Lijun Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Min Li
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Denian Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Zhongxue Feng
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Luping Huang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Yong'gang Wei
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Hongyu Li
- Liver Transplantation Center Beijing Friendship Hospital Capital Medical University Chengdu China
| | - Fei Liu
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Yan Kang
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Xuelian Liao
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Wei Zhang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| |
Collapse
|
76
|
Peroutka RJ, Buzza MS, Mukhopadhyay S, Johnson TA, Driesbaugh KH, Antalis TM. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS One 2020; 15:e0234407. [PMID: 32511276 PMCID: PMC7279603 DOI: 10.1371/journal.pone.0234407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/24/2020] [Indexed: 01/06/2023] Open
Abstract
Testisin (encoded by PRSS21) is a membrane anchored serine protease, which is tethered to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor. While testisin is found in abundance in spermatozoa, it is also expressed in microvascular endothelial cells where its function is unknown. Here we identify testisin as a novel regulator of physiological hormone-induced angiogenesis and microvascular endothelial permeability. Using a murine model of rapid physiological angiogenesis during corpus luteal development in the ovary, we found that mice genetically deficient in testisin (Prss21-/-) show a substantially increased incidence of hemorrhages which are significantly more severe than in littermate control Prss21+/+ mice. This phenotype was associated with increased vascular leakiness, demonstrated by a greater accumulation of extravasated Evans blue dye in Prss21-/- ovaries. Live cell imaging of in vitro cultured microvascular endothelial cells depleted of testisin by siRNA knockdown revealed that loss of testisin markedly impaired reorganization and tubule-like formation on Matrigel basement membranes. Moreover testisin siRNA knockdown increased the paracellular permeability to FITC-albumin across endothelial cell monolayers, which was associated with decreased expression of the adherens junction protein VE-cadherin and increased levels of phospho(Tyr658)-VE-cadherin, without affecting the levels of the tight junction proteins occludin and claudin-5, or ZO-1. Decreased expression of VE-cadherin in the neovasculature of Prss21-/- ovaries was also observed without marked differences in endothelial cell content, vascular claudin-5 expression or pericyte recruitment. Together, these data identify testisin as a novel regulator of VE-cadherin adhesions during angiogenesis and indicate a potential new target for regulating neovascular integrity and associated pathologies.
Collapse
Affiliation(s)
- Raymond J. Peroutka
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Marguerite S. Buzza
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Subhradip Mukhopadhyay
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Tierra A. Johnson
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
| | - Kathryn H. Driesbaugh
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| | - Toni M. Antalis
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- VA Maryland Health Care System, Baltimore, Maryland, United Sates of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United Sates of America
| |
Collapse
|
77
|
Chen YY, Syed AM, MacMillan P, Rocheleau JV, Chan WCW. Flow Rate Affects Nanoparticle Uptake into Endothelial Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906274. [PMID: 32383233 DOI: 10.1002/adma.201906274] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 05/12/2023]
Abstract
Nanoparticles are commonly administered through systemic injection, which exposes them to the dynamic environment of the bloodstream. Injected nanoparticles travel within the blood and experience a wide range of flow velocities that induce varying shear rates to the blood vessels. Endothelial cells line these vessels, and have been shown to uptake nanoparticles during circulation, but it is difficult to characterize the flow-dependence of this interaction in vivo. Here, a microfluidic system is developed to control the flow rates of nanoparticles as they interact with endothelial cells. Gold nanoparticle uptake into endothelial cells is quantified at varying flow rates, and it is found that increased flow rates lead to decreased nanoparticle uptake. Endothelial cells respond to increased flow shear with decreased ability to uptake the nanoparticles. If cells are sheared the same way, nanoparticle uptake decreases as their flow velocity increases. Modifying nanoparticle surfaces with endothelial-cell-binding ligands partially restores uptake to nonflow levels, suggesting that functionalizing nanoparticles to bind to endothelial cells enables nanoparticles to resist flow effects. In the future, this microfluidic system can be used to test other nanoparticle-endothelial cell interactions under flow. The results of these studies can guide the engineering of nanoparticles for in vivo medical applications.
Collapse
Affiliation(s)
- Yih Yang Chen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Abdullah Muhammad Syed
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Presley MacMillan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan V Rocheleau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
78
|
hnRNPA2/B1 Ameliorates LPS-Induced Endothelial Injury through NF- κB Pathway and VE-Cadherin/ β-Catenin Signaling Modulation In Vitro. Mediators Inflamm 2020; 2020:6458791. [PMID: 32565727 PMCID: PMC7277030 DOI: 10.1155/2020/6458791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a protein involved in the regulation of RNA processing, cell metabolism, migration, proliferation, and apoptosis. However, the effect of hnRNPA2/B1 on injured endothelial cells (ECs) remains unclear. We investigated the effect of hnRNPA2/B1 on lipopolysaccharide- (LPS-) induced vascular endothelial injury in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. LPS was used to induce EC injury, and the roles of hnRNPA2/B1 in EC barrier dysfunction and inflammatory responses were measured by testing endothelial permeability and the expression of inflammatory factors after the suppression and overexpression of hnRNPA2/B1. To explore the underlying mechanism by which hnRNPA2/B1 regulates endothelial injury, we studied the VE-cadherin/β-catenin pathway and NF-κB activation in HUVECs. The results showed that hnRNPA2/B1 was elevated in LPS-stimulated HUVECs. Moreover, knockdown of hnRNPA2/B1 aggravated endothelial injury by increasing EC permeability and promoting the secretion of the inflammatory cytokines TNF-α, IL-1β, and IL-6. Overexpression of hnRNPA2/B1 can reduce the permeability and inflammatory response of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin and β-catenin. Furthermore, the suppression of hnRNPA2/B1 increased the LPS-induced NF-κB activation and reduced the VE-cadherin/β-catenin pathway. Taken together, these results suggest that hnRNPA2/B1 can regulate LPS-induced EC damage through regulating the NF-κB and VE-cadherin/β-catenin pathways.
Collapse
|
79
|
Abstract
Two BβN-domains of fibrinogen are formed by the N-terminal portions of its two Bβ chains including amino acid residues Bβ1-65. Although their folding status is not well understood and the recombinant disulfide-linked (Bβ1-66)2 fragment corresponding to a pair of these domains was found to be unfolded, some data suggest that these domains may be folded in the parent molecule. In contrast, their major functional properties are well established. Removal of fibrinopeptides B (amino acid residues Bβ1-14) from these domains upon fibrinogen to fibrin conversion results in the exposure of multiple binding sites in fibrin βN-domains (residues β15-65). These sites provide interactions of the βN-domains with different proteins and cells and their participation in various physiological and pathological processes including fibrin assembly, fibrin-dependent angiogenesis, and fibrin-dependent leukocyte transmigration and thereby inflammation. The major goal of the present review is to summarize current view on the structure and function of these domains in fibrinogen and fibrin and their role in the above-mentioned processes.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | - Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
80
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
81
|
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J, Tang ZY. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:20. [PMID: 31973767 PMCID: PMC6979009 DOI: 10.1186/s13046-020-1529-9] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Background Exosomes play crucial roles in regulating the crosstalk between normal and cancer cells in the tumor microenvironment, and in regulating cancer proliferation, migration and invasion through their cargo molecules. Methods We analyzed the pro-invasiveness of exosomal circRNA-100,338 in HCC using the transwell invasion assay. The co-culture of human umbilical vein endothelial cells (HUVEC) and exosomes derived from HCC cell lines were used to evaluate the impact of HCC derived exosomes on HUVEC. Nude mice models were used to validate the findings in vitro. Clinically, quantitative RT-PCR was used to quantify the expression of serum exosomal circRNA-100,338 in HCC patients at both pre-surgery within one week and post-surgery within three weeks. Results We aim to investigate the pro-invasive role of exosomal circRNA-100,338 in HCC metastasis. We for the first time demonstrated that circRNA-100,338 was highly expressed in both highly metastatic HCC cells and their secreted exosomes. The transwell invasion assay showed that the overexpression or knockdown of exosomal circRNA-100,338 significantly enhanced or reduced the invasive abilities of HCC cells. Subsequently, in vitro and in vivo assays showed that exosomal circRNA-100,338 affected the cell proliferation, angiogenesis, permeability, and vasculogenic mimicry (VM) formation ability of human umbilical vein endothelial cells (HUVEC), and tumor metastasis. Furthermore, we also observed that the persistent high expression of exosomal circRNA-100,338 in serum of HCC patients who underwent curative hepatectomy may be a risk indicator of pulmonary metastasis and poor survival. Conclusions Our findings indicated that metastatic ability of HCC cells could be enhanced by transferring exosomal circRNA-100,338 to recipient HUVECs, which could affect proangiogenic activity by regulating angiogenesis.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, People's Republic of China.
| | - Zi-Li Huang
- Department of Radiology, Xuhui District Central Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Jin Huang
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Bin Xu
- Department of General Surgery, the Tenth People's Hospital of Tongji University, Shanghai, 200072, People's Republic of China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, People's Republic of China
| | - Yong-Hua Xu
- Department of Radiology, Xuhui District Central Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Jian Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
82
|
Marmonti E, Savage H, Zhang A, Bedoya CAF, Morrell MG, Harden A, Buzbee M, Schadler K. Modulating sphingosine-1-phosphate receptors to improve chemotherapy efficacy against Ewing sarcoma. Int J Cancer 2020; 147:1206-1214. [PMID: 31922252 DOI: 10.1002/ijc.32862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
Tumor vasculature is innately dysfunctional. Poorly functional tumor vessels inefficiently deliver chemotherapy to tumor cells; vessel hyper-permeability promotes chemotherapy delivery primarily to a tumor's periphery. Here, we identify a method for enhancing chemotherapy efficacy in Ewing sarcoma (ES) in mice by modulating tumor vessel permeability. Vessel permeability is partially controlled by the G protein-coupled Sphinosine-1-phosphate receptors 1 and 2 (S1PR1 and S1PR2) on endothelial cells. S1PR1 promotes endothelial cell junction integrity while S1PR2 destabilizes it. We hypothesize that an imbalance of S1PR1:S1PR2 is partially responsible for the dysfunctional vascular phenotype characteristic of ES and that by altering the balance in favor of S1PR1, ES vessel hyper-permeability can be reversed. In our study, we demonstrate that pharmacologic activation of S1PR1 by SEW2871 or inhibition of S1PR2 by JTE-013 caused more organized, mature and functional tumor vessels. Importantly, S1PR1 activation or S1PR2 inhibition improved antitumor efficacy. Our data suggests that pharmacologic targeting of S1PR1 and S1PR2 may be a useful adjuvant to standard chemotherapy for ES patients.
Collapse
Affiliation(s)
- Enrica Marmonti
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX
| | - Hannah Savage
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX
| | - Aiqian Zhang
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX.,Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Claudia A F Bedoya
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX
| | - Miriam G Morrell
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX
| | - Avis Harden
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX
| | - Meridith Buzbee
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX
| | - Keri Schadler
- Department of Pediatric Research, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
83
|
Rap1 is Involved in Angiopoietin-1-Induced Cell-Cell Junction Stabilization and Endothelial Cell Sprouting. Cells 2020; 9:cells9010155. [PMID: 31936361 PMCID: PMC7016689 DOI: 10.3390/cells9010155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/02/2022] Open
Abstract
Angiopoietin-1 (Ang-1) is an important proangiogenic factor also involved in the maintenance of endothelial-barrier integrity. The small GTPase Rap1 is involved in the regulation of adherens junctions through VE-cadherin-mediated adhesion, and in endothelial permeability. While many studies established that Rap1 activation is critical for endothelial cell–cell adhesions, its roles in the antipermeability effects of Ang-1 are ill-defined. Thus, we determined the contribution of Rap1 to Ang-1-stimulated angiogenic effects on endothelial cells (ECs). We found that Rap1 is activated following Ang-1 stimulation and is required for the antipermeability effects of Ang-1 on EC monolayers. Our results also revealed that Rap1 is necessary for EC sprouting stimulated by Ang-1 but had no significant effect on Ang-1-induced EC migration and adhesion. In contrast, downregulation of VE-cadherin markedly increased the adhesiveness of ECs to the substratum, which resulted in inhibition of Ang-1-stimulated migration. These results revealed that Rap1 is central to the effects of Ang-1 at intercellular junctions of ECs, whereas VE-cadherin is also involved in the adhesion of ECs to the extracellular matrix.
Collapse
|
84
|
Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings FT, Verdin E, Auwerx J, Harrison DG, Dikalov SI. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res 2019; 126:439-452. [PMID: 31852393 DOI: 10.1161/circresaha.119.315767] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RATIONALE Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level. OBJECTIVE We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension. METHODS AND RESULTS To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects. CONCLUSIONS We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Anna E Dikalova
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Arvind Pandey
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Liang Xiao
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Liaisan Arslanbaeva
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Tatiana Sidorova
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Marcos G Lopez
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Frederic T Billings
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA (E.V.)
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
| | - David G Harrison
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| | - Sergey I Dikalov
- From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.)
| |
Collapse
|
85
|
Zamorano P, Koning T, Oyanadel C, Mardones GA, Ehrenfeld P, Boric MP, González A, Soza A, Sánchez FA. Galectin-8 induces endothelial hyperpermeability through the eNOS pathway involving S-nitrosylation-mediated adherens junction disassembly. Carcinogenesis 2019; 40:313-323. [PMID: 30624618 DOI: 10.1093/carcin/bgz002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination. Galectin-8 (Gal-8) is overexpressed in several carcinomas and has a variety of cellular effects that can contribute to tumor pathogenicity, including angiogenesis. Here we explored whether Gal-8 has also a role in endothelial permeability. We show that recombinant Gal-8 activates eNOS, induces S-nitrosylation of p120-catenin (p120) and dissociation of adherens junction, leading to hyperpermeability of the human endothelial cell line EAhy926. This pathway involves focal-adhesion kinase (FAK) activation downstream of eNOS as a requirement for eNOS-mediated p120 S-nitrosylation. This suggests a reciprocal, yet little understood, regulation of phosphorylation and S-nitrosylation events acting upon adherens junction permeability. In addition, glutathione S-transferase (GST)-Gal-8 pull-down experiments and function-blocking β1-integrin antibodies point to β1-integrins as cell surface components involved in Gal-8-induced hyperpermeability. Endogenous Gal-8 secreted from the breast cancer cell line MCF-7 has similar hyperpermeability and signaling effects. Furthermore, the mouse cremaster model system showed that Gal-8 also activates eNOS, induces S-nitrosylation of adherens junction components and is an effective hyperpermeability agent in vivo. These results add endothelial permeability regulation by S-nitrosylation as a new function of Gal-8 that can potentially contribute to the pathogenicity of tumors overexpressing this lectin.
Collapse
Affiliation(s)
- Patricia Zamorano
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Tania Koning
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Gonzalo A Mardones
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Instituto de Fisiología, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| | - Pamela Ehrenfeld
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile.,Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | | | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida. Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| |
Collapse
|
86
|
Role of Resveratrol on Indoxyl Sulfate-Induced Endothelial Hyperpermeability via Aryl Hydrocarbon Receptor (AHR)/Src-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5847040. [PMID: 31885805 PMCID: PMC6900952 DOI: 10.1155/2019/5847040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023]
Abstract
Resveratrol (RES), a dietary polyphenol compound, has been shown to possess health benefits due to its anti-inflammatory, antioxidative, and antiatherosclerosis properties. Tryptophan metabolite-derived indoxyl sulfate (IS) is identified as one of the uremic toxins and physiological endogenous ligand/activator of aryl hydrocarbon receptor (AHR), associated with atherosclerosis in chronic kidney disease (CKD) patients. Studies have shown that a high serum level of IS causes deleterious effects on health primarily by inducing oxidative stress and endothelial dysfunction. However, the precise mechanisms are still unclear. Here, we investigated the underlying mechanism of IS effect on endothelial permeability and the role of RES on IS-induced endothelial hyperpermeability via the AHR/Src-dependent pathway. Bovine aorta endothelial cells (BAECs) were cultured and incubated with IS in the presence or absence of RES, and transendothelial electrical resistance (TEER) and permeability of cells were measured. Alongside, AHR, Src kinase, and Vascular Endothelial Cadherin (VE-Cadherin) activation were examined. Our data showed that IS reduced TEER of cells resulting in increased permeability. VE-Cadherin, a vital regulator of endothelial permeability, was also significantly activated in response to IS, which appeared to be associated with changes of endothelial permeability and AHR/Src kinase. Interestingly, in this setting, RES reversed the effect of IS and inhibited the increased activation of Src induced by IS-activated AHR and modulated VE-Cadherin and permeability. CH223191, an inhibitor of AHR, significantly inhibits IS-induced endothelial hyperpermeability. Further analysis with treatment of PP2, an inhibitor of Src abolishing Src activation, suggests downstream factors. All our data indicated that IS upregulated the AHR/Src kinase pathway, and increased endothelial permeability and phosphorylation of VE-Cadherin may be represented and provide new strategies for addressing protective properties of RES against Src kinase involved in AHR-mediated endothelial hyperpermeability. The findings may be crucial for managing diseases in which endothelial permeability is compromised, and the dietary polyphenols are involved.
Collapse
|
87
|
Kachamakova-Trojanowska N, Stepniewski J, Dulak J. Human iPSCs-Derived Endothelial Cells with Mutation in HNF1A as a Model of Maturity-Onset Diabetes of the Young. Cells 2019; 8:cells8111440. [PMID: 31739614 PMCID: PMC6912300 DOI: 10.3390/cells8111440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Patients with HNF1A-maturity-onset diabetes of the young (MODY) often develop endothelial dysfunction and related microvascular complications, like retinopathy. As the clinical phenotype of HNF1A-MODY diabetes varies considerably, we used human induced pluripotent stem cells (hiPSCs) from two healthy individuals (control) to generate isogenic lines with mutation in HNF1A gene. Subsequently, control hiPSCs and their respective HNF1A clones were differentiated toward endothelial cells (hiPSC-ECs) and different markers/functions were compared. Human iPSC-ECs from all cell lines showed similar expression of CD31 and Tie-2. VE-cadherin expression was lower in HNF1A-mutated isogenic lines, but only in clones derived from one control hiPSCs. In the other isogenic set and cells derived from HNF1A-MODY patients, no difference in VE-cadherin expression was observed, suggesting the impact of the genetic background on this endothelial marker. All tested hiPSC-ECs showed an expected angiogenic response regardless of the mutation introduced. Isogenic hiPSC-ECs responded similarly to stimulation with pro-inflammatory cytokine TNF-α with the increase in ICAM-1 and permeability, however, HNF1A mutated hiPSC-ECs showed higher permeability in comparison to the control cells. Summarizing, both mono- and biallelic mutations of HNF1A in hiPSC-ECs lead to increased permeability in response to TNF-α in normal glycemic conditions, which may have relevance to HNF1A-MODY microvascular complications.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48126646412
| | - Jacek Stepniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Jozef Dulak
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
- Kardio-Med Silesia, 41-800 Zabrze, Poland
| |
Collapse
|
88
|
Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J Clin Med 2019; 8:jcm8101602. [PMID: 31623330 PMCID: PMC6832897 DOI: 10.3390/jcm8101602] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The repair of bone defects caused by trauma, infection or tumor resection is a major clinical orthopedic challenge. The application of bone grafts in orthopedic procedures is associated with a problem of inadequate vascularization in the initial phase after implantation. Meanwhile, the survival of cells within the implanted graft and its integration with the host tissue is strongly dependent on nutrient and gaseous exchange, as well as waste product removal, which are effectuated by blood microcirculation. In the bone tissue, the vasculature also delivers the calcium and phosphate indispensable for the mineralization process. The critical role of vascularization for bone healing and function, led the researchers to the idea of generating a capillary-like network within the bone graft in vitro, which could allow increasing the cell survival and graft integration with a host tissue. New strategies for engineering pre-vascularized bone grafts, that apply the co-culture of endothelial and bone-forming cells, have recently gained interest. However, engineering of metabolically active graft, containing two types of cells requires deep understanding of the underlying mechanisms of interaction between these cells. The present review focuses on the best-characterized endothelial cells-human umbilical vein endothelial cells (HUVECs)-attempting to estimate whether the co-culture approach, using these cells, could bring us closer to development and possible clinical application of prevascularized bone grafts.
Collapse
|
89
|
Klotz BJ, Oosterhoff LA, Utomo L, Lim KS, Vallmajo-Martin Q, Clevers H, Woodfield TBF, Rosenberg AJWP, Malda J, Ehrbar M, Spee B, Gawlitta D. A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Adv Healthc Mater 2019; 8:e1900979. [PMID: 31402634 PMCID: PMC7116179 DOI: 10.1002/adhm.201900979] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 01/14/2023]
Abstract
For creating functional tissue analogues in tissue engineering, stem cells require very specific 3D microenvironments to thrive and mature. Demanding (stem) cell types that are used nowadays can find such an environment in a heterogeneous protein mixture with the trade name Matrigel. Several variations of synthetic hydrogel platforms composed of poly(ethylene glycol) (PEG), which are spiked with peptides, have been recently developed and shown equivalence to Matrigel for stem cell differentiation. Here a clinically relevant hydrogel platform, based on PEG and gelatin, which even outperforms Matrigel when targeting 3D prevascularized bone and liver organoid tissue engineering models is presented. The hybrid hydrogel with natural and synthetic components stimulates efficient cell differentiation, superior to Matrigel models. Furthermore, the strength of this hydrogel lies in the option to covalently incorporate unmodified proteins. These results demonstrate how a hybrid hydrogel platform with intermediate biological complexity, when compared to existing biological materials and synthetic PEG-peptide approaches, can efficiently support tissue development from human primary cells.
Collapse
Affiliation(s)
- Barbara J. Klotz
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht,
the Netherlands
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of
Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Lizette Utomo
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University 3508 GA Utrecht,
the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht, the
Netherlands
| | - Khoon S. Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine,
Centre for Bioengineering and Nanomedicine, University of Otago,
Christchurch 8011, New Zealand
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zurich, University of
Zurich, 8091 Zurich, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences,
University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Tim B. F. Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine,
Centre for Bioengineering and Nanomedicine, University of Otago,
Christchurch 8011, New Zealand
| | - Antoine J. W. P. Rosenberg
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Utrecht, 3584 CT Utrecht, the Netherlands;
Department of Orthopaedics, University Medical Center Utrecht, Utrecht
University, 3508 TC Utrecht, the Netherlands; Department of Equine Sciences,
Faculty of Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University
of Zurich, 8091 Zurich, Switzerland
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of
Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht,
the Netherlands
| |
Collapse
|
90
|
Permeability of Epithelial/Endothelial Barriers in Transwells and Microfluidic Bilayer Devices. MICROMACHINES 2019; 10:mi10080533. [PMID: 31412604 PMCID: PMC6722679 DOI: 10.3390/mi10080533] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
Lung-on-a-chip (LoC) models hold the potential to rapidly change the landscape for pulmonary drug screening and therapy, giving patients more advanced and less invasive treatment options. Understanding the drug absorption in these microphysiological systems, modeling the lung-blood barrier is essential for increasing the role of the organ-on-a-chip technology in drug development. In this work, epithelial/endothelial barrier tissue interfaces were established in microfluidic bilayer devices and transwells, with porous membranes, for permeability characterization. The effect of shear stress on the molecular transport was assessed using known paracellular and transcellular biomarkers. The permeability of porous membranes without cells, in both models, is inversely proportional to the molecular size due to its diffusivity. Paracellular transport, between epithelial/endothelial cell junctions, of large molecules such as transferrin, as well as transcellular transport, through cell lacking required active transporters, of molecules such as dextrans, is negligible. When subjected to shear stress, paracellular transport of intermediate-size molecules such as dextran was enhanced in microfluidic devices when compared to transwells. Similarly, shear stress enhances paracellular transport of small molecules such as Lucifer yellow, but its effect on transcellular transport is not clear. The results highlight the important role that LoC can play in drug absorption studies to accelerate pulmonary drug development.
Collapse
|
91
|
Abstract
The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.
Collapse
Affiliation(s)
- Sophie Payne
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom
| | - Sarah De Val
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| | - Alice Neal
- Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| |
Collapse
|
92
|
Wen T, Yang A, Piao L, Hao S, Du L, Meng J, Liu J, Xu H. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int J Nanomedicine 2019; 14:4475-4489. [PMID: 31354270 PMCID: PMC6590628 DOI: 10.2147/ijn.s208225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Effects of different nanoparticles (NPs) exposure at acutely non-cytotoxic concentrations are particularly worthy to figure out, compare, and elucidate. Objective To investigate and compare the effect of a small library of NPs at non-cytotoxic concentration on the adherens junction of human umbilical vein endothelial cells (HUVECs), obtaining new insights of NPs safety evaluation. Materials and methods The HUVECs layer was exposed to NPs including gold (Au), platinum (Pt), silica (SiO2), titanium dioxide (TiO2), ferric oxide (Fe2O3), oxidized multi-walled carbon nanotubes, with different surface chemistry and size distribution. Cellular uptake of NPs was observed by transmission electron microscopy. and the cytotoxicity was determined by Cell Counting Kit-8 assay. The NP-induced variation of intracellular reactive oxygen species (ROS) and catalase (CAT) activity was measured using the probe of 2'7'-dichlorodihydr fluorescein diacetate and a CAT analysis kit, respectively. The level of VE-cadherin of HUVECs was analyzed by Western blot, and the loss of adherens junction was observed with laser confocal microscopy. Results The acutely non-cytotoxic concentrations of different NPs were determined and applied to HUVECs. The NPs increased the level of intracellular ROS and the activity of CAT to different degrees, depending on the characteristics. At the same time, the HUVECs lost their adherens junction protein VE-cadherin and gaps were formed between the cells. The NP-induced oxidative stress and gap formation could be rescued by the supplementary N-acetylcysteine in the incubation. Conclusion The increase of intracellular ROS and CAT activity was one common effect of NPs, even at the non-cytotoxic concentration, and the degree was dependent on the composition, surface chemistry, and size distribution of the NP. The effect led to the gap formation between the cells, while could be rescued by the antioxidant. Therefore, the variation of adherens junction between endothelial cells was suggested to evaluate for NPs when used as therapeutics and diagnostics.
Collapse
Affiliation(s)
- Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Aiyun Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Lingyu Piao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Suisui Hao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Lifan Du
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
93
|
Chen J, Sun L, Ding GB, Chen L, Jiang L, Wang J, Wu J. Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability Via VE-Cadherin Internalization: Roles of RhoA/ROCK2. J Mol Neurosci 2019; 69:49-59. [PMID: 31187440 DOI: 10.1007/s12031-019-01326-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The destruction of the blood-brain barrier (BBB) contributes to a spectrum of neurological diseases such as stroke, and the hyperpermeability of endothelial cells is one of the characters of stroke, which is possibly exacerbated after reperfusion. However, the underlying mechanisms involving hyperpermeability after reperfusion between the endothelial cells remain poorly understood. Therefore, in the present study, the human microvascular endothelial cells (HBMECs) were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic ischemic stroke condition in vitro with the aim to investigate the potential mechanisms induced by OGD/R. The permeability of cultured HBMECs was measured using FITC-labeled dextran in a Transwell system and transendothelial electrical resistance (TEER), while the RhoA activity was detected by pull-down assay. In addition, the phosphorylation of MYPT1, which reflects the activation of ROCK and the internalization of VE-cadherin, was detected by Western blot. It showed that OGD/R treatment significantly increased the permeability of HBMEC monolayers and facilitated the internalization of VE-cadherin in HBMEC monolayers. Pull-down assay showed that RhoA activation was obviously enhanced after OGD/R treatment, while RhoA and ROCK inhibitor significantly reversed OGD/R-induced HBMEC monolayers hyperpermeability and the internalization of VE-cadherin. Meanwhile, the knockdown assay showed that RhoA small interfering RNA (siRNA) led to similar effects. The inactivation of the downstream effector protein ROCK was also examined. Intriguingly, ROCK2 rather than ROCK1 exerted its adverse effects on HBMEC monolayer integrity, since ROCK2 knockdown markedly reverses the injury of OGD/R in HBMEC monolayers. In conclusion, the present study provides evidence that OGD/R may induce HBMEC monolayer hyperpermeability via RhoA/ROCK2-mediated VE-cadherin internalization, which may provide an impetus for the development of therapeutics targeting BBB damage in ischemic stroke.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Bing Ding
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- The Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jin Wu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
94
|
Chen S, Wang Y, Zhang H, Chen R, Lv F, Li Z, Jiang T, Lin D, Zhang H, Yang L, Kong X. The Antioxidant MitoQ Protects Against CSE-Induced Endothelial Barrier Injury and Inflammation by Inhibiting ROS and Autophagy in Human Umbilical Vein Endothelial Cells. Int J Biol Sci 2019; 15:1440-1451. [PMID: 31337974 PMCID: PMC6643142 DOI: 10.7150/ijbs.30193] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease characterized by persistent airflow limitation. Pulmonary vascular endothelial barrier injury and inflammation are increasingly considered to be important pathophysiological processes in cigarette smoke extract (CSE)-induced COPD, but the mechanism remains unclear. To identify the cellular mechanism of endothelial barrier injury and inflammation in CSE-treated human umbilical vein endothelial cells (HUVECs), we investigated the effect of the mitochondrion-targeting antioxidant mitoquinone (MitoQ) on endothelial barrier injury and inflammation. We demonstrated that MitoQ restored endothelial barrier integrity by preventing VE-cadherin disassembly and actin cytoskeleton remodeling, as well as decreased inflammation by the NF-κB and NLRP3 inflammasome pathways in endothelial cells. In addition, MitoQ also maintained mitochondrial function by reducing the production of ROS and excess autophagy. Inhibition of autophagy by 3-MA protected against cytotoxicity that was induced by CSE in HUVECs. Overall, our study indicated that mitochondrial damage is a key promoter in the induction of endothelial barrier dysfunction and inflammation by CSE. The protective effect of MitoQ is related to the inhibition of ROS and excess autophagy in CSE-induced HUVEC injury.
Collapse
Affiliation(s)
- Sha Chen
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yu Wang
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hailin Zhang
- Department of Children's Respiration, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Ran Chen
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Fangfang Lv
- Department of Children's Respiration, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Zhengmao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ting Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Daopeng Lin
- Department of Children's Respiration, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Li Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| |
Collapse
|
95
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
96
|
Schaaf MB, Houbaert D, Meçe O, To SK, Ganne M, Maes H, Agostinis P. Lysosomal Pathways and Autophagy Distinctively Control Endothelial Cell Behavior to Affect Tumor Vasculature. Front Oncol 2019; 9:171. [PMID: 30949450 PMCID: PMC6435524 DOI: 10.3389/fonc.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Cancer cell-stromal cell crosstalk is orchestrated by a plethora of ligand-receptor interactions generating a tumor microenvironment (TME) which favors tumor growth. The high pro-angiogenic nature of the TME perpetuates the chaotic network of structurally immature, low pericyte-covered vessels characteristic of the tumor vasculature. We previously demonstrated that chloroquine (CQ) -a lysosomotropic agent used as first-generation autophagy blocker in clinical trials- induced tumor vessel normalization and reduced tumor hypoxia. CQ improved both vessel structure and maturation, whereas the conditional knockout of the crucial autophagy gene Atg5 in endothelial cells (ECs) did not, thus highlighting a potential differential role for EC-associated autophagy and the lysosomes in pathological tumor angiogenesis. However, how CQ or ATG5-deficiency in ECs affect angiogenic signals regulating EC-pericyte interface and therefore vessel maturation, remains unknown. Here, we show that in ECs CQ constrained VEGF-A-mediated VEGF receptor (VEGFR)2 phosphorylation, a driver of angiogenic signaling. In the presence of CQ we observed increased expression of the decoy receptor VEGFR1 and of a lower molecular weight form of VEGFR2, suggesting receptor cleavage. Consequently, VEGF-A-driven EC spheroid sprouting was reduced by CQ treatment. Furthermore, CQ significantly affected the transcription and secretion of platelet-derived growth factor (PDGF)-AB/BB (upregulated) and Endothelin-1 (EDN1, downregulated), both modulators of perivascular cell (PC) behavior. In contrast, silencing of ATG5 in ECs had no effect on VEGFR2 to VEGFR1 ratio nor on PDGFB and EDN1 expression. Accordingly, mice harboring B16F10 melanoma tumors treated with CQ, displayed both an increased number of αSMA+ PCs covering tumor vessels and co-expressed PDGF receptor-β, enabling PDGF ligand dependent recruitment. Moreover, upon CQ treatment the tumoral expression of angiopoietin-1 (Angpt1), which retains mural cells, and induces vessel stabilization by binding to the EC-localized cognate receptor (TIE2), was increased thus supporting the vessel normalization function of CQ. These features associated with improved tumor vasculature were not phenocopied by the specific deletion of Atg5 in ECs. In conclusion, this study further unravels endothelial cell autonomous and non-autonomous mechanisms by which CQ “normalizes” the intercellular communication in the tumor vasculature independent of autophagy.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - San Kit To
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
97
|
Usuba R, Pauty J, Soncin F, Matsunaga YT. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 2019; 197:305-316. [PMID: 30684886 DOI: 10.1016/j.biomaterials.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/28/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. We focused on epidermal growth factor-like domain 7 (EGFL7) which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. We developed an EGFL7-knockdown in vitro microvessel model and investigated the effect of EGFL7 at a tissue level. We found EGFL7 knockdown suppressed VEGF-A-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. We also observed impaired barrier function which reflected an inflammatory condition. Furthermore, our results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed. In conclusion, by using a 3D microvessel model we identified novel roles for EGFL7 in endothelial function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Ryo Usuba
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Joris Pauty
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fabrice Soncin
- LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France; Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, F-59000 Lille, France.
| | - Yukiko T Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
| |
Collapse
|
98
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
99
|
Kaushik G, Gil DA, Torr E, Berge ES, Soref C, Uhl P, Fontana G, Antosiewicz-Bourget J, Edington C, Schwartz MP, Griffith LG, Thomson JA, Skala MC, Daly WT, Murphy WL. Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels. Adv Healthc Mater 2019; 8:e1801186. [PMID: 30565891 PMCID: PMC6601624 DOI: 10.1002/adhm.201801186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Vascularization is an important strategy to overcome diffusion limits and enable the formation of complex, physiologically relevant engineered tissues and organoids. Self-assembly is a technique to generate in vitro vascular networks, but engineering the necessary network morphology and function remains challenging. Here, autofluorescence multiphoton microscopy (aMPM), a label-free imaging technique, is used to quantitatively evaluate in vitro vascular network morphology. Vascular networks are generated using human embryonic stem cell-derived endothelial cells and primary human pericytes encapsulated in synthetic poly(ethylene glycol)-based hydrogels. Two custom-built bioreactors are used to generate distinct fluid flow patterns during vascular network formation: recirculating flow or continuous flow. aMPM is used to image these 3D vascular networks without the need for fixation, labels, or dyes. Image processing and analysis algorithms are developed to extract quantitative morphological parameters from these label-free images. It is observed with aMPM that both bioreactors promote formation of vascular networks with lower network anisotropy compared to static conditions, and the continuous flow bioreactor induces more branch points compared to static conditions. Importantly, these results agree with trends observed with immunocytochemistry. These studies demonstrate that aMPM allows label-free monitoring of vascular network morphology to streamline optimization of growth conditions and provide quality control of engineered tissues.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Daniel A Gil
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Elizabeth Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Elizabeth S Berge
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Cheryl Soref
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Peyton Uhl
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Jessica Antosiewicz-Bourget
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James A Thomson
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William T Daly
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|
100
|
Sapoznikov A, Gal Y, Falach R, Sagi I, Ehrlich S, Lerer E, Makovitzki A, Aloshin A, Kronman C, Sabo T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins. Am J Physiol Lung Cell Mol Physiol 2019; 316:L255-L268. [DOI: 10.1152/ajplung.00300.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irrespective of its diverse etiologies, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) leads to increased permeability of the alveolar-capillary barrier, which in turn promotes edema formation and respiratory failure. We investigated the mechanism of ALI/ARDS lung hyperpermeability triggered by pulmonary exposure of mice to the highly toxic plant-derived toxin ricin. One prominent hallmark of ricin-mediated pulmonary intoxication is the rapid and massive influx of neutrophils to the lungs, where they contribute to the developing inflammation yet may also cause tissue damage, thereby promoting ricin-mediated morbidity. Here we show that pulmonary exposure of mice to ricin results in the rapid diminution of the junction proteins VE-cadherin, claudin 5, and connexin 43, belonging, respectively, to the adherens, tight, and gap junction protein families. Depletion of neutrophils in ricin-intoxicated mice attenuated the damage caused to these junction proteins, alleviated pulmonary edema, and significantly postponed the time to death of the intoxicated mice. Inhibition of matrix metalloproteinase (MMP) activity recapitulated the response to neutrophil depletion observed in ricin-intoxicated mice and was associated with decreased insult to the junction proteins and alveolar-capillary barrier. However, neutrophil-mediated MMP activity was not the sole mechanism responsible for pulmonary hyperpermeability, as exemplified by the ricin-mediated disruption of claudin 18, via a neutrophil-independent mechanism involving tyrosine phosphorylation. This in-depth study of the early stage mechanisms governing pulmonary tissue integrity during ALI/ARDS is expected to facilitate the tailoring of novel therapeutic approaches for the treatment of these diseases.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|