51
|
Kerloch T, Farrugia F, Bouit L, Maître M, Terral G, Koehl M, Mortessagne P, Heng JIT, Blanchard M, Doat H, Leste-Lasserre T, Goron A, Gonzales D, Perrais D, Guillemot F, Abrous DN, Pacary E. The atypical Rho GTPase Rnd2 is critical for dentate granule neuron development and anxiety-like behavior during adult but not neonatal neurogenesis. Mol Psychiatry 2021; 26:7280-7295. [PMID: 34561615 PMCID: PMC8872985 DOI: 10.1038/s41380-021-01301-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Despite the central role of Rho GTPases in neuronal development, their functions in adult hippocampal neurogenesis remain poorly explored. Here, by using a retrovirus-based loss-of-function approach in vivo, we show that the atypical Rho GTPase Rnd2 is crucial for survival, positioning, somatodendritic morphogenesis, and functional maturation of adult-born dentate granule neurons. Interestingly, most of these functions are specific to granule neurons generated during adulthood since the deletion of Rnd2 in neonatally-born granule neurons only affects dendritogenesis. In addition, suppression of Rnd2 in adult-born dentate granule neurons increases anxiety-like behavior whereas its deletion in pups has no such effect, a finding supporting the adult neurogenesis hypothesis of anxiety disorders. Thus, our results are in line with the view that adult neurogenesis is not a simple continuation of earlier processes from development, and establish a causal relationship between Rnd2 expression and anxiety.
Collapse
Affiliation(s)
- Thomas Kerloch
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Fanny Farrugia
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Lou Bouit
- grid.462202.00000 0004 0382 7329Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Marlène Maître
- grid.412041.20000 0001 2106 639XLaser microdissection Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Geoffrey Terral
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Pierre Mortessagne
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Julian Ik-Tsen Heng
- grid.1032.00000 0004 0375 4078Curtin Health Innovation Research Institute, Curtin University, 6102 Bentley, WA Australia
| | - Mylène Blanchard
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Hélène Doat
- grid.412041.20000 0001 2106 639XLaser microdissection Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France ,grid.412041.20000 0001 2106 639XTranscriptome Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Thierry Leste-Lasserre
- grid.412041.20000 0001 2106 639XTranscriptome Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Adeline Goron
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Delphine Gonzales
- grid.412041.20000 0001 2106 639XGenotyping Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - David Perrais
- grid.462202.00000 0004 0382 7329Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - François Guillemot
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Djoher Nora Abrous
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Emilie Pacary
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France.
| |
Collapse
|
52
|
Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell'Orco M, Lozano E, Hartley BJ, Alural B, Lalonde J, Chander P, Webster MJ, Perlis RH, Brennand KJ, Haggarty SJ, Weick J, Perrone-Bizzozero N, Brigman JL, Mellios N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry 2020; 25:2712-2727. [PMID: 31988434 PMCID: PMC7577899 DOI: 10.1038/s41380-020-0653-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alexander K Hafez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA
| | - Brian A Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Evelyn Lozano
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Begüm Alural
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmin Lalonde
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Roy H Perlis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J Haggarty
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
53
|
Evaluation of NDEL1 oligopeptidase activity in blood and brain in an animal model of schizophrenia: effects of psychostimulants and antipsychotics. Sci Rep 2020; 10:18513. [PMID: 33116174 PMCID: PMC7595172 DOI: 10.1038/s41598-020-75616-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology.
Collapse
|
54
|
Bonafina A, Trinchero MF, Ríos AS, Bekinschtein P, Schinder AF, Paratcha G, Ledda F. GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons. Cell Rep 2020; 29:4308-4319.e4. [PMID: 31875542 DOI: 10.1016/j.celrep.2019.11.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is required for the survival and differentiation of diverse neuronal populations during nervous system development. Despite the high expression of GDNF and its receptor GFRα1 in the adult hippocampus, the functional role of this system remains unknown. Here, we show that GDNF, acting through its GFRα1 receptor, controls dendritic structure and spine density of adult-born granule cells, which reveals that GFRα1 is required for their integration into preexisting circuits. Moreover, conditional mutant mice for GFRα1 show deficits in behavioral pattern separation, a task in which adult neurogenesis is known to play a critical role. We also find that running increases GDNF in the dentate gyrus and promotes GFRα1-dependent CREB (cAMP response element-binding protein) activation and dendrite maturation. Together, these findings indicate that GDNF/GFRα1 signaling plays an essential role in the plasticity of adult circuits, controlling the integration of newly generated neurons.
Collapse
Affiliation(s)
- Antonela Bonafina
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mariela Fernanda Trinchero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Antonella Soledad Ríos
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| | - Alejandro Fabián Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Fernanda Ledda
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
55
|
Heppt J, Wittmann MT, Schäffner I, Billmann C, Zhang J, Vogt-Weisenhorn D, Prakash N, Wurst W, Taketo MM, Lie DC. β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 2020; 39:e104472. [PMID: 32929771 PMCID: PMC7604596 DOI: 10.15252/embj.2020104472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult‐born neurons. We investigated the role of canonical Wnt/β‐catenin signaling in dendritogenesis of adult‐born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β‐catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle‐aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β‐catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β‐catenin signaling are essential for the correct functional integration of adult‐born neurons and suggest Wnt/β‐catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
Collapse
Affiliation(s)
- Jana Heppt
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Billmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
| | - Daniela Vogt-Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
56
|
Jiang M, Vanan S, Tu HT, Zhang W, Zhang ZW, Chia SY, Jang SE, Zeng XX, Yu WP, Xu J, Guo KH, Zeng L. Amyloid precursor protein intracellular domain-dependent regulation of FOXO3a inhibits adult hippocampal neurogenesis. Neurobiol Aging 2020; 95:250-263. [PMID: 32866886 DOI: 10.1016/j.neurobiolaging.2020.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The amyloid precursor protein (APP) intracellular domain (AICD) is a metabolic by-product of APP produced through sequential proteolytic cleavage by α-, β-, and γ-secretases. The interaction between AICD and Fe65 has been reported to impair adult neurogenesis in vivo. However, the exact role of AICD in mediating neural stem cell fate remains unclear. To identify the role of AICD in neuronal proliferation and differentiation, as well as to clarify the molecular mechanisms underlying the role of AICD in neurogenesis, we first generated a mouse model expressing the Rosa26-based AICD transgene. AICD overexpression did not alter the spatiotemporal expression pattern of full-length APP or accumulation of its metabolites. In addition, AICD decreased the newly generated neural progenitor cell (NPC) pool, inhibited the proliferation and differentiation efficiency of NPCs, and increased cell death both in vitro and in vivo. Given that abnormal neurogenesis is often associated with depression-like behavior in adult mice, we conducted a forced swim test and tail suspension test with AICD mice and found a depression-like behavioral phenotype in AICD transgenic mice. Moreover, AICD stimulated FOXO3a transcriptional activation, which in turn negatively regulated AICD. In addition, functional loss of FOXO3a in NPCs derived from the hippocampal dentate gyrus of adult AICD transgenic mice rescued neurogenesis defects. AICD also increased the mRNA expression of FOXO3a target genes related to neurogenesis and cell death. These results suggest that FOXO3a is the functional target of AICD in neurogenesis regulation. Our study reveals the role of AICD in mediating neural stem cell fate to maintain homeostasis during brain development via interaction with FOXO3a.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China; Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Hai-Tao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Xiao-Xia Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological resource Centre, A∗STAR, Singapore; Institute of Molecular and Cell Biology, A∗STAR, Proteos, Singapore
| | - Jie Xu
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China.
| | - Kai-Hua Guo
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore; Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore.
| |
Collapse
|
57
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
58
|
Murray KD, Liu XB, King AN, Luu JD, Cheng HJ. Age-Related Changes in Synaptic Plasticity Associated with Mossy Fiber Terminal Integration during Adult Neurogenesis. eNeuro 2020; 7:ENEURO.0030-20.2020. [PMID: 32332082 PMCID: PMC7240290 DOI: 10.1523/eneuro.0030-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
Mouse hippocampus retains the capacity for neurogenesis throughout lifetime, but such plasticity decreases with age. Adult hippocampal neurogenesis (AHN) involves the birth, maturation, and synaptic integration of newborn granule cells (GCs) into preexisting hippocampal circuitry. While functional integration onto adult-born GCs has been extensively studied, maturation of efferent projections onto CA3 pyramidal cells is less understood, particularly in aged brain. Here, using combined light and reconstructive electron microscopy (EM), we describe the maturation of mossy fiber bouton (MFB) connectivity with CA3 pyramidal cells in young adult and aged mouse brain. We found mature synaptic contacts of newborn GCs were formed in both young and aged brains. However, the dynamics of their spatiotemporal development and the cellular process by which these cells functionally integrated over time were different. In young brain newborn GCs either formed independent nascent MFB synaptic contacts or replaced preexisting MFBs, but these contacts were pruned over time to a mature state. In aged brain only replacement of preexisting MFBs was observed and new contacts were without evidence of pruning. These data illustrate that functional synaptic integration of AHN occurs in young adult and aged brain, but with distinct dynamics. They suggest elimination of preexisting connectivity is required for the integration of adult-born GCs in aged brain.
Collapse
Affiliation(s)
- Karl D Murray
- Center for Neuroscience
- Department of Psychiatry and Behavioral Neuroscience
| | | | | | | | - Hwai-Jong Cheng
- Center for Neuroscience
- Department of Neurobiology, Physiology and behavior
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95618
| |
Collapse
|
59
|
Tibbo AJ, Baillie GS. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020; 9:cells9051254. [PMID: 32438615 PMCID: PMC7291338 DOI: 10.3390/cells9051254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Phosphodiesterases (PDEs) are the only superfamily of enzymes that have the ability to break down cyclic nucleotides and, as such, they have a pivotal role in neurological disease and brain development. PDEs have a modular structure that allows targeting of individual isoforms to discrete brain locations and it is often the location of a PDE that shapes its cellular function. Many of the eleven different families of PDEs have been associated with specific diseases. However, we evaluate the evidence, which suggests the activity from a sub-family of the PDE4 family, namely PDE4B, underpins a range of important functions in the brain that positions the PDE4B enzymes as a therapeutic target for a diverse collection of indications, such as, schizophrenia, neuroinflammation, and cognitive function.
Collapse
|
60
|
Pérez-Brangulí F, Buchsbaum IY, Pozner T, Regensburger M, Fan W, Schray A, Börstler T, Mishra H, Gräf D, Kohl Z, Winkler J, Berninger B, Cappello S, Winner B. Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Hum Mol Genet 2020; 28:961-971. [PMID: 30476097 PMCID: PMC6400051 DOI: 10.1093/hmg/ddy397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients’ iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appeared smaller than controls and had larger ventricles as well as thinner germinal wall. Premature neurogenesis and organoid size were rescued by GSK3 inhibititors including the Food and Drug Administration-approved tideglusib. These findings shed light on the neurodevelopmental mechanisms underlying disease pathology.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Y Buchsbaum
- Max-Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Planegg/Martinsried, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenqiang Fan
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annika Schray
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tom Börstler
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Himanshu Mishra
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniela Gräf
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Berninger
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | - Beate Winner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
61
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
62
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
63
|
Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, Kiseleva MV, Kaprin AD, Pudova EA, Kudryavtseva AV. Novel Genes Associated with the Development of Carotid Paragangliomas. Mol Biol 2019. [DOI: 10.1134/s0026893319040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Kang E, Song J, Lin Y, Park J, Lee JH, Hussani Q, Gu Y, Ge S, Li W, Hsu KS, Berninger B, Christian KM, Song H, Ming GL. Interplay between a Mental Disorder Risk Gene and Developmental Polarity Switch of GABA Action Leads to Excitation-Inhibition Imbalance. Cell Rep 2019; 28:1419-1428.e3. [PMID: 31390557 PMCID: PMC6690484 DOI: 10.1016/j.celrep.2019.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Excitation-inhibition (E-I) imbalance is considered a hallmark of various neurodevelopmental disorders, including schizophrenia and autism. How genetic risk factors disrupt coordinated glutamatergic and GABAergic synapse formation to cause an E-I imbalance is not well understood. Here, we show that knockdown of Disrupted-in-schizophrenia 1 (DISC1), a risk gene for major mental disorders, leads to E-I imbalance in mature dentate granule neurons. We found that excessive GABAergic inputs from parvalbumin-, but not somatostatin-, expressing interneurons enhance the formation of both glutamatergic and GABAergic synapses in immature mutant neurons. Following the switch in GABAergic signaling polarity from depolarizing to hyperpolarizing during neuronal maturation, heightened inhibition from excessive parvalbumin+ GABAergic inputs causes loss of excitatory glutamatergic synapses in mature mutant neurons, resulting in an E-I imbalance. Our findings provide insights into the developmental role of depolarizing GABA in establishing E-I balance and how it can be influenced by genetic risk factors for mental disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Jaesuk Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer H Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qassim Hussani
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Gu
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Weidong Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Benedikt Berninger
- Center for Developmental Neurobiology, King's College London, London SE1UL, UK
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
65
|
Lateral dispersion is required for circuit integration of newly generated dentate granule cells. Nat Commun 2019; 10:3324. [PMID: 31346164 PMCID: PMC6658520 DOI: 10.1038/s41467-019-11206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/28/2019] [Indexed: 11/08/2022] Open
Abstract
The process of circuit integration of newly-generated dentate granule cells of the hippocampus has been presumed to be a dynamic process. In fact, little is known regarding the initial development of newly generated neurons prior to circuit integration and the significance of this stage for circuit integration. Here, using advanced live imaging methods, we systematically analyze the dynamic dispersion of newly generated neurons in the neurogenic zone and observe that cells that are physically adjacent coordinate their lateral dispersion. Whole-cell recordings of adjacent newly generated neurons reveal that they are coupled via gap junctions. The dispersion of newly generated cells in the neurogenic zone is restricted when this coupling is disrupted, which severely impairs their subsequent integration into the hippocampal circuit. The results of this study reveal that the dynamic dispersion of newly generated dentate granule cells in the neurogenic zone is a required developmental stage for circuit integration.
Collapse
|
66
|
Johnstone M, Hillary RF, St Clair D. Stem Cells to Inform the Neurobiology of Mental Illness. Curr Top Behav Neurosci 2019; 40:13-43. [PMID: 30030769 DOI: 10.1007/7854_2018_57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inception of human-induced pluripotent stem cell (hiPSCs) technology has provided an exciting platform upon which the modelling and treatment of human neurodevelopmental and neuropsychiatric disorders may be expedited. Although the genetic architecture of these disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Animal models of neurodevelopmental disorders, such as schizophrenia and autism spectrum disorders, show limitations in recapitulating the full complexity and heterogeneity of human neurodevelopmental disease states. Indeed, patient-derived hiPSCs offer distinct advantages over classical animal models in the study of human neuropathologies. Here we have discussed the current, relative translational merit of hiPSCs in investigating human neurodevelopmental and neuropsychiatric disorders with a specific emphasis on the utility of such systems to aid in the identification of biomarkers. We have highlighted the promises and pitfalls of reprogramming cell fate for the study of these disorders and provide recommendations for future directions in this field in order to overcome current limitations. Ultimately, this will aid in the development of effective clinical strategies for diverse patient populations affected by these disorders with the aim of also leading to biomarker identification.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Robert F Hillary
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David St Clair
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
67
|
Monte GG, Nani JV, de Almeida Campos MR, Dal Mas C, Marins LAN, Martins LG, Tasic L, Mori MA, Hayashi MAF. Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: Putative animal model for studying the pathways correlated to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:19-30. [PMID: 30578843 DOI: 10.1016/j.pnpbp.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Abstract
The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.
Collapse
Affiliation(s)
- Gabriela Guilherme Monte
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | | | - Caroline Dal Mas
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - Lucas Augusto Negri Marins
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - Lucas Gelain Martins
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo A Mori
- Departament of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil.
| |
Collapse
|
68
|
Ndel1 oligopeptidase activity as a potential biomarker of early stages of schizophrenia. Schizophr Res 2019; 208:202-208. [PMID: 30857875 DOI: 10.1016/j.schres.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/01/2023]
Abstract
Our previous studies showed reduced Ndel1 enzyme activity in patients with chronic schizophrenia (SCZ), and only a subtle NDEL1 mRNA increases in antipsychotic-naïve first-episode psychosis (FEP) individuals compared to matched healthy controls (HC). Aiming to refine the evaluation of Ndel1 enzyme activity in early stages of psychosis, we compared 3 groups composed by (1) subjects at ultra-high-risk (UHR) for psychosis, (2) a cohort comprising antipsychotic-naïve FEP individuals (assessed in three moments, at baseline (FEP-0), and after 2 months (FEP-2 M) and one year (FEP-1Y) of treatment with risperidone), and (3) a HC group. There was no significant difference in Ndel1 enzyme activity between UHR and HC, but this activity was significantly lower in FEP compared to HC. Conversely, Ndel1 activity in HC groups was higher than in FEP even before (FEP-0) or after the treatment with risperidone (FEP-2 M and FEP-1Y), and with progressive decrease of Ndel1 activity and significant improvement of symptoms observed after this treatment. In addition, a positive correlation was observed for Ndel1 activity with clinical symptoms as assessed by PANSS, while a negative correlation was seen for GAF scores. Our results suggest that reductions in Ndel1 activity in FEP may be possibly related to responses to the illness, rather than to the pharmacological effects of antipsychotics, which might be acting essentially in the symptoms suppression. This hypothesis might be further evaluated in prospective long-term follow-up studies with a larger sample cohort.
Collapse
|
69
|
Tsuboi M, Kishi Y, Yokozeki W, Koseki H, Hirabayashi Y, Gotoh Y. Ubiquitination-Independent Repression of PRC1 Targets during Neuronal Fate Restriction in the Developing Mouse Neocortex. Dev Cell 2019; 47:758-772.e5. [PMID: 30562514 DOI: 10.1016/j.devcel.2018.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Polycomb repressive complex (PRC) 1 maintains developmental genes in a poised state through monoubiquitination (Ub) of histone H2A. Although Ub-independent functions of PRC1 have also been suggested, it has remained unclear whether Ub-dependent and -independent functions of PRC1 operate differentially in a developmental context. Here, we show that the E3 ubiquitin ligase activity of Ring1B, a core component of PRC1, is necessary for the temporary repression of key neuronal genes in neurogenic (early-stage) neural stem or progenitor cells (NPCs) but is dispensable for the persistent repression of these genes associated with the loss of neurogenic potential in astrogliogenic (late-stage) NPCs. Our results also suggest that histone deacetylase (HDAC) activity of the NuRD/MBD3 complex and Phc2-dependent PRC1 clustering are necessary for the transition from the Ub-dependent to -independent function of PRC1. Together, these results indicate that Ub-independent mode of repression by PRC1 plays a key role in mammalian development during cell fate restriction.
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Wakana Yokozeki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Yusuke Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; PRESTO, JST, TokyoJapan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
70
|
Sheu JR, Hsieh CY, Jayakumar T, Lin GY, Lee HN, Huang SW, Yang CH. HDAC6 dysfunction contributes to impaired maturation of adult neurogenesis in vivo: vital role on functional recovery after ischemic stroke. J Biomed Sci 2019; 26:27. [PMID: 30999900 PMCID: PMC6471870 DOI: 10.1186/s12929-019-0521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Promoting post-stroke neurogenesis has long been proposed to be a therapeutic strategy for the enhancement of functional recovery after cerebral ischemic stroke. Despite numerous approaches have been widely reported the proliferation or differentiation of the neurogenic population therapeutic strategies by targeting adult neurogenesis not yet to be successfully clarified in clinical settings. Here, we hypothesized that alterations in microenvironment of the ischemic brain might impede the functional maturation of adult newly generated neurons that limits functional recovery after stroke. METHODS The in vivo retroviral based labeling model was applied to directly birth-date and trace the maturation process of adult newly generating neurons after hypoxic challenge. A rehabilitation therapy procedure was adopted through the combination of task-specific motor rehabilitating training with environmental enrichment to promote functional recovery after stroke. In addition, a pharmacological or genetic suppression of HDAC6 was performed to evaluate the functional significance of HDAC6 in the pathology of ischemic stroke induced deficits. RESULTS Serial morphological analyses at multiple stages along the maturation process showed significant retardation of the dendritic maturation on the newly generated neurons after stroke. Subsequent biochemical analyses revealed an aberrant nuclear translocation of HDAC6 that leads to the hyper-acetylation of α-tubulin (an indication of over-stabilized microtubules) after hypoxic challenge was observed at different time points after stroke. Furthermore, the mimicry experiments with either pharmacological or genetic suppression of HDAC6, phenocopied the stroke induced retardation in dendritic maturation of newly generating neurons in vivo. More importantly, we provide direct evidence showing the proper function of HDAC6 is required for rehabilitation therapy induced therapeutic benefits after stroke. CONCLUSION Together, our current study unravels that dysfunction of HDAC6 contributes to stroke induced deficits in neurogenesis and provides an innovative therapeutic strategy that targets HDAC6 for promoting functional recovery toward the patients with stroke in clinic.
Collapse
Affiliation(s)
- Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Guan-Yi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Hsing-Ni Lee
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Shin-Wei Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan.
| |
Collapse
|
71
|
Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein-α. Proc Natl Acad Sci U S A 2019; 116:8000-8009. [PMID: 30926666 DOI: 10.1073/pnas.1817183116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.
Collapse
|
72
|
Zapara TA, Romashchenko AV, Proskura AL, Ratushnyak AS. Effect of physical activity on structural asymmetry of mouse hippocampus. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The relevance of studies of adult neurogenesis is evident in connection with the potential use of these new neurons to replace neurons lost in the process of life. Despite considerable efforts, little is known about the fnal fate of these cells, the functional signifcance of their connections and the regulation of their development. It is known that physical activity signifcantly increases the number of fssile progenitors, the precursors of new neurons in the dentate gyrus of the hippocampus. The existing immunohistochemical methods for labeling new neurons do not allow tracing the temporal dynamics of changes in the volume of brain structures in the same animal, induced by external impacts, such as voluntary exercise. This makes it an urgent task to develop and improve methods for longterm control of changes that occur in the adult hippocampus due to the induction of neurogenesis. The main purpose of this work was to noninvasively track, by using magnetic resonance imaging (MRI), the temporal dynamics of changes in the volume of the hippocampus in the same animals that had voluntary physical activity. It was found that voluntary exercise did not change the total volume of the mouse hippocampus. However, the difference in the volume ratio between the right and left parts of the hippocampus was signifcantly lower compared with the control group. The reconstruction and analysis of proteinprotein interactions that ensure the survival of a large number of new neurons and their integration into existing neural networks in the hippocampus have been carried out. The proposed approach allows the noninvasive registration of changes in the ratio of the volumes of these paired brain structures.
Collapse
Affiliation(s)
- T. A. Zapara
- The Institute of Computational Technologies, SB RAS
| | - A. V. Romashchenko
- The Institute of Computational Technologies, SB RAS; Institute of Cytology and Genetics, SB RAS
| | | | | |
Collapse
|
73
|
St Clair D, Johnstone M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0037. [PMID: 29352035 PMCID: PMC5790834 DOI: 10.1098/rstb.2017.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’.
Collapse
Affiliation(s)
- David St Clair
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
74
|
Heterogeneity of Stem Cells in the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:31-53. [DOI: 10.1007/978-3-030-24108-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
75
|
Naghavi-Gargari B, Zahirodin A, Ghaderian SMH, Shirvani-Farsani Z. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci Lett 2018; 696:206-211. [PMID: 30599263 DOI: 10.1016/j.neulet.2018.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022]
Abstract
Bipolar disorder (BD) is a mental disorder that is often misdiagnosed with ineffective treatment. It has strong genetic component but unknown pathophysiology. Long non-coding RNAs (lncRNAs) have been recently recognized as one of the important genetic factors and are considered as one of the regulatory mechanisms of nervous system. Given that lncRNAs may be diagnostic biomarkers for BD, we aimed to quantify the levels of DISC1 and DISC2 lncRNA transcripts. The levels of DISC1 and DISC2 lncRNA were tested in peripheral blood mononuclear cells (PBMCs) of 50 BD and 50 controls by real-time PCR. In addition, we performed ROC curve analysis as well as correlation analysis between the gene expression and some clinical features of BD cases. Computational analysis of miRNAs binding sites and CpG Islands on DISC1 and DISC2 lncRNA was performed as well. Significant down-regulation of DISC1 and up-regulation of DISC2 were observed in BD cases compared with controls. The areas under the ROC curve (AUC) for DISC1 and DISC2 lncRNA were 0.76 and 0.68 respectively. There was no significant correlation between the levels of mRNA expression in PBMCs of BD patients and clinical features. These data demonstrated that DISC1 and DISC2 lncRNA expression was potentially associated with an increased risk of bipolar disorder and might involve several molecular mechanisms. Our results revealed that the transcript levels of DISC1 and DISC2 lncRNA could be considered as a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Bahar Naghavi-Gargari
- Department of Basic Science, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Zahirodin
- Behavioral Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Islamic Republic of Iran.
| |
Collapse
|
76
|
Fares J, Bou Diab Z, Nabha S, Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci 2018; 129:598-611. [PMID: 30433866 DOI: 10.1080/00207454.2018.1545771] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The hippocampus is one of the sites in the mammalian brain that is capable of continuously generating controversy. Adult neurogenesis is a remarkable process, and yet an intensely debatable topic in contemporary neuroscience due to its distinctiveness and conceivable impact on neural activity. The belief that neurogenesis continues through adulthood has provoked remarkable efforts to describe how newborn neurons differentiate and incorporate into the adult brain. It has also encouraged studies that investigate the consequences of inadequate neurogenesis in neuropsychiatric and neurodegenerative diseases and explore the potential role of neural progenitor cells in brain repair. The adult nervous system is not static; it is subjected to morphological and physiological alterations at various levels. This plastic mechanism guarantees that the behavioral regulation of the adult nervous system is adaptable in response to varying environmental stimuli. Three regions of the adult brain, the olfactory bulb, the hypothalamus, and the hippocampal dentate gyrus, contain new-born neurons that exhibit an essential role in the natural functional circuitry of the adult brain. Purpose/Aim: This article explores current advancements in adult hippocampal neurogenesis by presenting its history and evolution and studying its association with neural plasticity. The article also discusses the prospective roles of adult hippocampal neurogenesis and describes the intracellular, extracellular, pathological, and environmental factors involved in its regulation. Abbreviations AHN Adult hippocampal neurogenesis AKT Protein kinase B BMP Bone Morphogenic Protein BrdU Bromodeoxyuridine CNS Central nervous system DG Dentate gyrus DISC1 Disrupted-in-schizophrenia 1 FGF-2 Fibroblast Growth Factor 2 GABA Gamma-aminobutyric acid Mbd1 Methyl-CpG-binding domain protein 1 Mecp2 Methyl-CpG-binding protein 2 mTOR Mammalian target of rapamycin NSCs Neural stem cells OB Olfactory bulb; P21: cyclin-dependent kinase inhibitor 1 RBPj Recombination Signal Binding protein for Immunoglobulin Kappa J Region RMS Rostral migratory Stream SGZ Subgranular zone Shh Sonic hedgehog SOX2 SRY (sex determining region Y)-box 2 SVZ Subventricular zone Wnt3 Wingless-type mouse mammary tumor virus.
Collapse
Affiliation(s)
- Jawad Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,b Department of Neurological Surgery Feinberg School of Medicine , Northwestern University , Chicago , Illinois , USA
| | - Zeina Bou Diab
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Sanaa Nabha
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Youssef Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,c Department of Neurosurgery Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| |
Collapse
|
77
|
Bao H, Song J. Treating Brain Disorders by Targeting Adult Neural Stem Cells. Trends Mol Med 2018; 24:991-1006. [PMID: 30447904 PMCID: PMC6351137 DOI: 10.1016/j.molmed.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis, a developmental process of generating functionally integrated neurons from neural stem cells, occurs throughout life in the hippocampus of the mammalian brain and highlights the plastic nature of the mature central nervous system. Substantial evidence suggests that new neurons participate in cognitive and affective brain functions and aberrant adult neurogenesis contributes to various brain disorders. Focusing on adult hippocampal neurogenesis, we review recent findings that advance our understanding of the key properties and potential functions of adult neural stem cells. We further discuss the key evidence demonstrating the causal role of aberrant hippocampal neurogenesis and various brain disorders. Finally, we propose strategies aimed at simultaneously correcting stem cells and their niche for treating brain disorders.
Collapse
Affiliation(s)
- Hechen Bao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
78
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
79
|
Kimoto S, Makinodan M, Kishimoto T. Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiol Dis 2018; 131:104315. [PMID: 30391541 DOI: 10.1016/j.nbd.2018.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Social cognition refers to the psychological processes involved in the perception, encoding, storage, retrieval, and regulation of information about others and ourselves. This process is essential for survival and reproduction in complex social environments. Recent evidence suggests that impairments in social cognition frequently occur in schizophrenia, mainly contributing to poor functional outcomes, including the inability to engage in meaningful work and maintain satisfying interpersonal relationships. With the ambiguous definition of social cognition, the neurobiology underlying impaired social cognition remains unknown, and the effectiveness of currently available intervention strategies in schizophrenia remain limited. Considering the advances and challenges of translational research for schizophrenia, social cognition has been considered a high-priority domain for treatment development. Here, we describe the current state of the framework, clinical concerns, and intervention approaches for social cognition in schizophrenia. Next, we introduce translatable rodent models associated with schizophrenia that allow the evaluation of different components of social behaviors, providing deeper insights into the neural substrates of social cognition in schizophrenia. Our review presents a valuable perspective that indicates the necessity of building bridges between basic and clinical science researchers for the development of novel therapeutic approaches in impaired social cognition in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
80
|
Balta EA, Schäffner I, Wittmann MT, Sock E, von Zweydorf F, von Wittgenstein J, Steib K, Heim B, Kremmer E, Häberle BM, Ueffing M, Lie DC, Gloeckner CJ. Phosphorylation of the neurogenic transcription factor SOX11 on serine 133 modulates neuronal morphogenesis. Sci Rep 2018; 8:16196. [PMID: 30385877 PMCID: PMC6212486 DOI: 10.1038/s41598-018-34480-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11’s activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11’s transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.
Collapse
Affiliation(s)
- Elli-Anna Balta
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Felix von Zweydorf
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Julia von Wittgenstein
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kathrin Steib
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Birgit Heim
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Elisabeth Kremmer
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Benjamin Martin Häberle
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marius Ueffing
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany. .,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany.
| |
Collapse
|
81
|
New Roles for Old Glue: Astrocyte Function in Synaptic Plasticity and Neurological Disorders. Int Neurourol J 2018; 22:S106-114. [PMID: 30396259 PMCID: PMC6234728 DOI: 10.5213/inj.1836214.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
Previously believed to solely play a supportive role in the central nervous system, astrocytes are now considered active players in normal brain function. Evidence in recent decades extends their contributions beyond the classically held brain glue role; it's now known that astrocytes act as a unique excitable component with functions extending into local network modulation, synaptic plasticity, and memory formation, and postinjury repair. In this review article, we highlight our growing understanding of astrocyte function and physiology, the increasing role of gliotransmitters in neuron-glia communication, and the role of astrocytes in modulating synaptic plasticity and cognitive function. Owing to the duality of both beneficial and deleterious roles attributed to astrocytes, we also discuss the implications of this new knowledge as it applies to neurological disorders including Alzheimer disease, epilepsy, and schizophrenia.
Collapse
|
82
|
COSTA RODRIGOMDA, KARMIRIAN KARINA, REHEN STEVENSK. Deformation of Mitochondrial Cristae in Human Neural Progenitor Cells Exposed to Valproic Acid. ACTA ACUST UNITED AC 2018; 90:2223-2232. [DOI: 10.1590/0001-3765201820170762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - STEVENS K. REHEN
- Instituto D’Or de Pesquisa e Ensino, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
83
|
The Aftermath of Zika: Need for Long-Term Monitoring of Exposed Children. Trends Microbiol 2018; 26:729-732. [PMID: 29960747 DOI: 10.1016/j.tim.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023]
Abstract
Pregnancy infections with Zika virus are associated with a spectrum of fetal brain injuries beyond microcephaly. Nonmicrocephalic children exposed to Zika virus in utero or early life should undergo neurodevelopmental testing to identify deficits and allow for early intervention. Additionally, long-term monitoring for higher order neurocognitive deficits should be implemented.
Collapse
|
84
|
Zhu S, Abounit S, Korth C, Zurzolo C. Transfer of disrupted-in-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine. Open Biol 2018; 7:rsob.160328. [PMID: 28275106 PMCID: PMC5376705 DOI: 10.1098/rsob.160328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022] Open
Abstract
The disrupted-in-schizophrenia 1 (DISC1) gene was identified as a genetic risk factor for chronic mental illnesses (CMI) such as schizophrenia, bipolar disorder and severe recurrent depression. Insoluble aggregated DISC1 variants were found in the cingular cortex of sporadic, i.e. non-genetic, CMI patients. This suggests protein pathology as a novel, additional pathogenic mechanism, further corroborated in a recent transgenic rat model presenting DISC1 aggregates. Since the potential role of aggregation of DISC1 in sporadic CMI is unknown, we investigated whether DISC1 undergoes aggregation in cell culture and could spread between neuronal cells in a prion-like manner, as shown for amyloid proteins in neurodegenerative diseases. Co-culture experiments between donor cells forming DISC1 aggregates and acceptor cells showed that 4.5% of acceptor cells contained donor-derived DISC1 aggregates, thus indicating an efficient transfer in vitro. DISC1 aggregates were found inside tunnelling nanotubes (TNTs) and transfer was enhanced by increasing TNT formation and notably by dopamine treatment, which also induces DISC1 aggregation. These data indicate that DISC1 aggregates can propagate between cells similarly to prions, thus providing some molecular basis for the role of protein pathology in CMI.
Collapse
Affiliation(s)
- Seng Zhu
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Saïda Abounit
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| |
Collapse
|
85
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
86
|
Lucchese G, Stahl B. Peptide Sharing Between Viruses and DLX Proteins: A Potential Cross-Reactivity Pathway to Neuropsychiatric Disorders. Front Neurosci 2018; 12:150. [PMID: 29618965 PMCID: PMC5871705 DOI: 10.3389/fnins.2018.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The present study seeks to determine potential associations between viral infections and neuropsychiatric diseases. To address this issue, we investigated the peptide commonalities between viruses that have been related to psychiatric and neurological disorders—such as rubella, human immunodeficiency virus, and herpesviruses—and human distal-less homeobox (DLX) proteins expressed in developing brain—namely, DLX1, DLX2, DLX5, and DLX6. Peptide matching analyses revealed a high degree of pentapeptide sharing. From an immunological perspective, this overlap is relevant because pentapeptides are endowed with immunogenicity and antigenicity—that is, they are immune determinants. Moreover, infection-induced immune cross-reactions might have functional, spatial, and temporal implications related to the functions and expression patterns of DLX1 and DLX5 in the fetal and adult human brain. In sum, our data support the hypothesis that viral infections may be linked to neuropsychiatric diseases through autoimmune cross-reactions caused by molecular mimicry between viral proteins and brain-specific DLX self-antigens.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
87
|
Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwid JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WM, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M, Rajagopal L. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 2018; 24:368-374. [PMID: 29400709 PMCID: PMC5839998 DOI: 10.1038/nm.4485] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.
Collapse
Affiliation(s)
- Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Sahlgrenska Academy, Gothenburg University, Sweden
| | - Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer E. Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Colin Studholme
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Raj P. Kapur
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Blair Armistead
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Christie L. Walker
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jay Vornhagen
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Michelle Coleman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manjiri K. Dighe
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Dennis W.W. Shaw
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Veronica Santana-Ufret
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erica Boldenow
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Junwei Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Michael A. Davis
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Jesica A. Swanstrom
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Douglas G. Widman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph T. Medwid
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Jason Ogle
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - G. Michael Gough
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Wonsok Lee
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Chris English
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - W. McIntyre Durning
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Jeff Thiel
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Chris Gatenby
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Elyse C. Dewey
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marian R. Fairgrieve
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | | | - Richard F. Grant
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - LaRene Kuller
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
88
|
Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells. Mol Neurobiol 2018; 55:8014-8037. [PMID: 29498005 DOI: 10.1007/s12035-018-0906-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and βIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3β and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.
Collapse
|
89
|
Shao L, Lu B, Wen Z, Teng S, Wang L, Zhao Y, Wang L, Ishizuka K, Xu X, Sawa A, Song H, Ming G, Zhong Y. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Hum Mol Genet 2018; 26:2634-2648. [PMID: 28472294 DOI: 10.1093/hmg/ddx147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.
Collapse
Affiliation(s)
- Lisha Shao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Binyan Lu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P.R. China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Lingling Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Liyuan Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongjun Song
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guoli Ming
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
90
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
91
|
Kucharska-Mazur J, Jabłoński M, Misiak B, Frydecka D, Rybakowski J, Ratajczak MZ, Samochowiec J. Adult stem cells in psychiatric disorders - New discoveries in peripheral blood. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:23-27. [PMID: 28392482 DOI: 10.1016/j.pnpbp.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
The new area of research in psychiatric disorders is concerned with abnormal regeneration processes. The role of brain neurogenesis has been studied for decades. New discoveries, concerned with the pluripotency of VSEL cells and the role of factors involved in stem cell trafficking in peripheral blood create hope that it will be possible to develop a better understanding of the processes of neuroregeneration/neurodegeneration. There is an ongoing research investigating concentrations of: sphingosine -1-phosphate, SDF-1, elements of complement cascade, and stem cells in peripheral blood, including their possible connection to psychiatric disorders. Collected data, suggesting an abnormal course of regeneration processes in psychiatric disorders, raises hope of finding new potential markers of psychosis and anxiety disorders.
Collapse
Affiliation(s)
- Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur 10, 50-367 Wroclaw, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian University of Medicine, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|
92
|
Abstract
Neural stem cells (NSCs) give rise to the entire nervous system. Animal models suggest that defects in NSC proliferation and differentiation contribute to several brain disorders (e.g., microcephaly, macrocephaly, autism, schizophrenia, and Huntington's disease). However, animal models of such diseases do not fully recapitulate all disease-related phenotypes because of substantial differences in brain development between rodents and humans. Therefore, additional human-based evidence is required to understand the mechanisms that are involved in the development of neurological diseases that result from human NSC (hNSC) dysfunction. Human-induced pluripotent stem cells provide a new model to investigate the contribution of hNSCs to various neurological pathologies. In this chapter, we review the role of hNSCs in both neurodevelopment- and neurodegeneration-related human brain pathologies, with an emphasis on recent evidence that has been obtained using embryonic stem cell- or induced pluripotent stem cell-derived hNSCs and progenitors.
Collapse
Affiliation(s)
- Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
93
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
94
|
Gou N, Liu Z, Palaniyappan L, Li M, Pan Y, Chen X, Tao H, Wu G, Ouyang X, Wang Z, Dou T, Xue Z, Pu W. Effects of DISC1 Polymorphisms on Resting-State Spontaneous Neuronal Activity in the Early-Stage of Schizophrenia. Front Psychiatry 2018; 9:137. [PMID: 29875705 PMCID: PMC5974222 DOI: 10.3389/fpsyt.2018.00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/29/2018] [Indexed: 12/02/2022] Open
Abstract
Background: Localized abnormalities in the synchrony of spontaneous neuronal activity, measured with regional homogeneity (ReHo), has been consistently reported in patients with schizophrenia (SCZ) and their unaffected siblings. To date, little is known about the genetic influences affecting the spontaneous neuronal activity in SCZ. DISC1, a strong susceptible gene for SCZ, has been implicated in neuronal excitability and synaptic function possibly associated with regional spontaneous neuronal activity. This study aimed to examine the effects of DISC1 variations on the regional spontaneous neuronal activity in SCZ. Methods: Resting-state fMRI data were obtained from 28 SCZ patients and 21 healthy controls (HC) for ReHo analysis. Six single nucleotide polymorphisms (SNPs) of DISC1 gene were genotyped using the PCR and direct sequencing. Results: Significant diagnosis × genotype interactions were noted for three SNPs (rs821616, rs821617, and rs2738880). For rs821617, the interactions were localized to the precuneus, basal ganglia and pre-/post-central regions. Significant interactive effects were identified at the temporal and post-central gyri for rs821616 (Ser704Cys) and the inferior temporal gyrus for rs2738880. Furthermore, post-hoc analysis revealed that the DISC1 variations on these SNPs exerted different influences on ReHo between SCZ patients and HC. Conclusion: To our knowledge this is the first study to unpick the influence of DISC1 variations on spontaneous neuronal activity in SCZ; Given the emerging evidence that ReHo is a stable inheritable phenotype for schizophrenia, our findings suggest the DISC1 variations are possibly an inheritable source for the altered ReHo in this disorder.
Collapse
Affiliation(s)
- Ningzhi Gou
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Zhening Liu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Lena Palaniyappan
- Departments of Psychiatry and Medical Biophysics & Robarts and Lawson Research Institutes, University of Western Ontario, London, ON, Canada
| | - Mingding Li
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunzhi Pan
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Xudong Chen
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Haojuan Tao
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Guowei Wu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Xuan Ouyang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Zheng Wang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Taotao Dou
- Department of Neurosurgery, The First affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhimin Xue
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Weidan Pu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China
| |
Collapse
|
95
|
Repositioning of Somatic Golgi Apparatus Is Essential for the Dendritic Establishment of Adult-Born Hippocampal Neurons. J Neurosci 2017; 38:631-647. [PMID: 29217690 DOI: 10.1523/jneurosci.1217-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/02/2017] [Accepted: 10/29/2017] [Indexed: 01/22/2023] Open
Abstract
New dentate granule cells (DGCs) are continuously generated, and integrate into the preexisting hippocampal network in the adult brain. How an adult-born neuron with initially simple spindle-like morphology develops into a DGC, consisting of a single apical dendrite with further branches, remains largely unknown. Here, using retroviruses to birth date and manipulate newborn neurons, we examined initial dendritic formation and possible underlying mechanisms. We found that GFP-expressing newborn cells began to establish a DGC-like morphology at ∼7 d after birth, with a primary dendrite pointing to the molecular layer, but at this stage, with several neurites in the neurogenic zone. Interestingly, the Golgi apparatus, an essential organelle for neurite growth and maintenance, was dynamically repositioning in the soma of newborn cells during this initial integration stage. Two weeks after birth, by which time most neurites in the neurogenic zone were eliminated, a compact Golgi apparatus was positioned exclusively at the base of the primary dendrite. We analyzed the presence of Golgi-associated genes using single-cell transcriptomes of newborn DGCs, and among Golgi-related genes, found the presence of STK25 and STRAD, regulators of embryonic neuronal development. When we knocked down either of these two proteins, we found Golgi mislocalization and extensive aberrant dendrite formation. Furthermore, overexpression of a mutated form of STRAD, underlying the disorder polyhydramnios, megalencephaly, and symptomatic epilepsy, characterized by abnormal brain development and intractable epilepsy, caused similar defects in Golgi localization and dendrite formation in adult-born neurons. Together, our findings reveal a role for Golgi repositioning in regulating the initial integration of adult-born DGCs.SIGNIFICANCE STATEMENT Since the discovery of the continuous generation of new neurons in the adult hippocampus, extensive effort was directed toward understanding the functional contribution of these newborn neurons to the existing hippocampal circuit and associated behaviors, while the molecular mechanisms controlling their early morphological integration are less well understood. Dentate granule cells (DGCs) have a single, complex, apical dendrite. The events leading adult-born DGCs' to transition from simple spindle-like morphology to mature dendrite morphology are largely unknown. We studied establishment of newborn DGCs dendritic pattern and found it was mediated by a signaling pathway regulating precise localization of the Golgi apparatus. Furthermore, this Golgi-associated mechanism for dendrite establishment might be impaired in a human genetic epilepsy syndrome, polyhydramnios, megalencephaly, and symptomatic epilepsy.
Collapse
|
96
|
Prytkova I, Brennand KJ. Prospects for Modeling Abnormal Neuronal Function in Schizophrenia Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2017; 11:360. [PMID: 29217999 PMCID: PMC5703699 DOI: 10.3389/fncel.2017.00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Excitatory dopaminergic neurons, inhibitory GABAergic neurons, microglia, and oligodendrocytes have all been implicated in schizophrenia (SZ) network pathology. Still, SZ has been a difficult disorder to study, not only because of the limitations of animal models in capturing the complexity of the human mind, but also because it is greatly polygenic, with high rates of variability across the population. The advent of patient-derived pluripotent stem cells and induced neural and glial cultures has brought hope for modeling the molecular dysfunction underlying SZ pathology in a patient-specific manner. Here I review the successes of the patient-specific induced cultures in generating different cell types for the study of SZ, with special emphasis on the utility of co-culture techniques, both two- and three-dimensional, for modeling network dysfunction in disease.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, line>New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, line>New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
97
|
Zhu H, Yan H, Tang N, Li X, Pang P, Li H, Chen W, Guo Y, Shu S, Cai Y, Pei L, Liu D, Luo MH, Man H, Tian Q, Mu Y, Zhu LQ, Lu Y. Impairments of spatial memory in an Alzheimer's disease model via degeneration of hippocampal cholinergic synapses. Nat Commun 2017; 8:1676. [PMID: 29162816 PMCID: PMC5698429 DOI: 10.1038/s41467-017-01943-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Choline acetyltransferase neurons in the vertical diagonal band of Broca (vChATs) degenerate in the early stage of Alzheimer’s disease (AD). Here, we report that vChATs directly innervate newly generated immature neurons (NGIs) in the dorsal hippocampus (dNGIs) of adult mice and regulate both the dNGIs survival and spatial pattern separation. In a mouse model that exhibits amyloid-β plaques similar to AD patients, cholinergic synaptic transmission, dNGI survival and spatial pattern separation are impaired. Activation of vChATs with theta burst stimulation (TBS) that alleviates the decay in cholinergic synaptic transmission effectively protects against spatial pattern separation impairments in the AD mice and this protection was completely abolished by inhibiting the dNGIs survival. Thus, the impairments of pattern separation-associated spatial memory in AD mice are in part caused by degeneration of cholinergic synaptic transmission that modulates the dNGIs survival. Cholinergic neurons in the diagonal band of Broca degenerate early in Alzheimer’s disease. Here the authors show that in healthy mice, these cholinergic inputs innervate newborn neurons in the hippocampus, and that loss of this innervation in an Alzheimer’s disease model leads to impairments in spatial memory.
Collapse
Affiliation(s)
- Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huanhuan Yan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Tang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Pang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Guo
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu Shu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You Cai
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Pei
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
| | - Dan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hengye Man
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Biology, Boston University, 5 Cummington St, Boston, MA, 02215, USA
| | - Qing Tian
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
98
|
DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron 2017; 96:1041-1054.e5. [PMID: 29103808 DOI: 10.1016/j.neuron.2017.10.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023]
Abstract
Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.
Collapse
|
99
|
Li B, Sierra A, Deudero JJ, Semerci F, Laitman A, Kimmel M, Maletic-Savatic M. Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC SYSTEMS BIOLOGY 2017; 11:90. [PMID: 28984196 PMCID: PMC5629620 DOI: 10.1186/s12918-017-0468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in the hippocampus. New neurons have been associated with learning and memory as well as mood control, and impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging. Thus, understanding the biological properties of adult neurogenesis has important implications for human health. Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve using experimentation. However, the majority of the computational studies have predominantly focused on the late stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny. RESULTS Here, based on the branching process theory and biological evidence, we developed a computational model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade. Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while the apoptotic stage is short. CONCLUSION At a practical level, the stochastic model and simulation framework we developed will enable us to predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis due to disease or treatment.
Collapse
Affiliation(s)
- Biao Li
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
| | - Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Juan Jose Deudero
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Fatih Semerci
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Andrew Laitman
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Marek Kimmel
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
- Systems Engineering Group, Silesian University of Technology, Gliwice, 44–100 Poland
- Department of Statistics, Rice University, Houston, Texas, 77005 USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
100
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|