51
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
52
|
Xuan D, Qiang F, Xu H, Wang L, Xia Y. Screening for Mitochondrial tRNA Variants in 200 Patients with Systemic Lupus Erythematosus. Hum Hered 2024; 89:84-97. [PMID: 39536732 PMCID: PMC11844679 DOI: 10.1159/000542357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a common autoimmune disease with unknown etiology. Recently, a growing number of evidence suggested that mitochondrial dysfunctions played active roles in the pathogenesis of SLE, but its detailed mechanism remains largely undetermined. The aim of this study was to analyze the frequencies of mitochondrial tRNA (mt-tRNA) variants in Chinese individuals with SLE. METHODS We carried out a mutational screening of mt-tRNA variants in a cohort of 200 patients with SLE and 200 control subjects by PCR-Sanger sequencing. The potential pathogenicity of mt-tRNA variants was evaluated by phylogenetic conservation and haplogroup analyses. In addition, trans-mitochondrial cybrid cell lines were established, and mitochondrial functions including ATP, reactive oxygen species (ROS), mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential (MMP), superoxide dismutase (SOD), and mt-RNA transcription were analyzed in cybrids with and without these putative pathogenic mt-tRNA variants. RESULTS We identified five possible pathogenic variants: tRNAVal G1606A, tRNALeu(UUR) A3243G, tRNAIle A4295G, tRNAGly T9997C, and tRNAThr A15924G that only found in SLE patients but were absent in controls. Interestingly, these variants were located at extremely conserved nucleotides of the corresponding tRNAs and may alter tRNAs' structure and function. Furthermore, cells carrying these tRNA variants had much lower levels of ATP, mtDNA copy number, MMP, and SOD than controls; by contrast, the levels of ROS increased significantly (p < 0.05 for all). Furthermore, a significant reduction in mt-ND1, ND2, ND3, ND5, and A6 mRNA expression was observed in cells with these mt-tRNA variants, while compared with controls. Thus, failures in tRNA metabolism caused by these variants would impair mitochondrial translation and subsequently lead to mitochondrial dysfunction that was involved in the progression and pathogenesis of SLE. CONCLUSIONS Our study suggested that mt-tRNA variants were important causes for SLE, and screening for mt-tRNA pathogenic variants was recommended for early detection and prevention for this disorder.
Collapse
Affiliation(s)
- Dan Xuan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Fuyong Qiang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hui Xu
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Li Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yonghui Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
53
|
Traveset L, Cerdán Porqueras V, Huerga Encabo H, Avalle S, Esteve-Codina A, Fornas O, Aramburu J, Lopez-Rodriguez C. NFAT5 counters long-term IFN-1 responses in hematopoietic stem cells to preserve reconstitution potential. Blood Adv 2024; 8:5510-5526. [PMID: 39208369 PMCID: PMC11538617 DOI: 10.1182/bloodadvances.2023011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) readily recover from acute stress, but persistent stress can reduce their viability and long-term potential. Here, we show that the nuclear factor of activated T cells 5 (NFAT5), a transcription modulator of inflammatory responses, protects the HSC pool under stress. NFAT5 restrains HSC differentiation to multipotent progenitors after bone marrow transplantation and bone marrow ablation with ionizing radiation or chemotherapy. Correspondingly, NFAT5-deficient HSCs fail to support long-term reconstitution of hematopoietic progenitors and mature blood cells after serial transplant. Evidence from competitive transplant assays shows that these defects are HSC intrinsic. NFAT5-deficient HSCs exhibit enhanced expression of type 1 interferon (IFN-1) response genes after transplant, and suppressing IFN-1 receptor prevents their exacerbated differentiation and cell death after reconstitution and improves long-term regeneration potential. Blockade of IFN-1 receptor also prevented the overdifferentiation of NFAT5-deficient HSCs after bone marrow ablation. These findings show that long-term IFN-1 responses to different hematopoietic stressors drive HSCs toward more differentiated progenitors, and that NFAT5 has an HSC-intrinsic role, limiting IFN-1 responses to preserve reconstitution potential. Our identification of cell-intrinsic mechanisms that strengthen the resistance of HSCs to stress could help to devise approaches to protect long-term stemness during the treatment of hematopoietic malignancies.
Collapse
Affiliation(s)
- Laia Traveset
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Víctor Cerdán Porqueras
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Hector Huerga Encabo
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Avalle
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- Bioinformatics unit, Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Fornas
- Department of Medicine and Life Sciences, Flow Cytometry Unit, Universitat Pompeu Fabra, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jose Aramburu
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Lopez-Rodriguez
- Department of Medicine and Life Sciences, Immunology Unit, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
54
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
55
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
56
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024; 38:5270-5289. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
57
|
Hong Q, Zhu S, Yu Y, Ren Y, Jin L, Wang H, Zhang H, Guo K. The emerging role of mtDNA release in sepsis: Current evidence and potential therapeutic targets. J Cell Physiol 2024; 239:e31331. [PMID: 38888012 DOI: 10.1002/jcp.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.
Collapse
Affiliation(s)
- Qianya Hong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
58
|
Yan C, Liu X, Xu H, Wang L. Cytoplasmic mtDNA clearance suppresses inflammatory immune responses. Trends Cell Biol 2024; 34:897-900. [PMID: 39379269 DOI: 10.1016/j.tcb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Upon various stresses, mtDNA leaks from mitochondria into the cytoplasm, leading to cellular dysfunction and inflammation, thereby exacerbating disease progression. The autophagy-lysosome pathway has emerged as a pivotal quality control mechanism for eliminating abnormal cytoplasmic mtDNA. This article summarizes the mechanisms underlying mtDNA-triggered inflammation and how cytoplasmic mtDNA is eliminated.
Collapse
Affiliation(s)
- Chenghao Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Xu Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Liming Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China; Shenzhen Research Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
59
|
Song Y, Tang L, Li N, Xu J, Zhang Z, Ma H, Liao Y, Chu Y. Mycoplasma bovis activates apoptotic caspases to suppress xenophagy for its intracellular survival. Vet Microbiol 2024; 298:110298. [PMID: 39509837 DOI: 10.1016/j.vetmic.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Mammalian caspases are categorized into apoptotic and inflammatory types. Apoptotic caspases mediate apoptosis activation, while inflammatory caspases participate in inflammasome activation. Previous studies have shown that apoptotic caspases regulate autophagy in both cancer and pharmacological treatment models. However, the relationship between apoptotic caspases and xenophagy during pathogen infection remains elusive. In the current study, we used Mycoplasma bovis (M. bovis) as a model pathogen investigating the relationship between apoptotic caspases and xenophagy during infection. We found that M. bovis activated apoptotic caspases by triggering mitochondrial damage in macrophages, and the intracellular survival of M. bovis was enhanced by the activation of apoptotic caspases and restricted by the inhibition of apoptotic caspases. Moreover, confocal microscopy and Western blot analysis revealed that the activation of apoptotic caspases impedes host xenophagy by cleaving autophagy-related protein Beclin 1. Our findings indicate that M. bovis utilizes host apoptotic caspases to suppress xenophagy, thereby enhancing its intracellular survival. This research contributes to understanding the interplay between apoptotic caspases and xenophagy during pathogen infection, offering novel insights into the intracellular survival mechanisms of mycoplasma in macrophages.
Collapse
Affiliation(s)
- Yinjuan Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Li Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhengyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hui Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yi Liao
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, College of Animal and Veterinary Sciences, Southwest Minzu University, Sichuan 610041, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China.
| |
Collapse
|
60
|
Liu Y, Huang Y, Wei H, Liang X, Luo J. The role of post-translational modifications of cGAS in γδ T cells. Mol Immunol 2024; 175:146-154. [PMID: 39437619 DOI: 10.1016/j.molimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses DNA in a sequence-independent manner, triggering cGAMP synthesis, which activates stimulator of interferon genes (STING) and the subsequent expression of type I interferons, tumour necrosis factor alpha (TNF-α) and other proinflammatory factors in two downstream pathways. However, the function of the cGASSTING pathway in γδ T cells remains unclear. The γδ T-cell population differs from the innate-like lymphocyte population, particularly with respect to tissue distribution, indicating the unique potential of γδ T cells in treating infections and cancers. On the basis of accumulating evidence, cGAS activity is modulated by protein posttranslational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation, which affect multiple cGAS functions. Thus, here, we summarize recent research on PTMs of the cGAS protein that modulate γδ T-cell function. An understanding of cGAS features and modulation mechanisms may facilitate the design of therapies for γδ T-cell-related immune diseases and cancer.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yue Huang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Geriatrics, Institute of Gerontology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
61
|
Pan H, Su Q, Hong P, You Y, Zhou L, Zou J, Sun J, Zhong G, Liao J, Zhang H, Tang Z, Hu L. Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106129. [PMID: 39477583 DOI: 10.1016/j.pestbp.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Abstract
Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.
Collapse
Affiliation(s)
- Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yanli You
- College of Life Science, Yantai University, Yantai, 264005, Shandong Province, China.
| | - Limeng Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Junbo Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
62
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
63
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
64
|
Zhou G, Wang X, Guo M, Qu C, Gao L, Yu J, Li Y, Luo S, Shi Q, Guo Y. Mitophagy deficiency activates stimulator of interferon genes activation and aggravates pathogenetic cardiac remodeling. Genes Dis 2024; 11:101074. [PMID: 39281830 PMCID: PMC11399633 DOI: 10.1016/j.gendis.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2024] Open
Abstract
Stimulator of interferon genes (STING) has recently been found to play a crucial role in cardiac sterile inflammation and dysfunction. The role of stimulator of interferon genes (STING) in cardiac sterile inflammation and dysfunction has been recently discovered. This study aims to examine the involvement of STING in pathological cardiac remodeling and the mechanisms that govern the activation of the STING pathway. To investigate this, transverse aortic constriction (TAC) was performed on STING knockout mice to induce pressure overload-induced cardiac remodeling. Subsequently, cardiac function, remodeling, and inflammation levels were evaluated. The STING pathway was found to be activated in the pressure overload-stressed heart and angiotensin II (Ang II)-stimulated cardiac fibroblasts. Loss of STING expression led to a significant reduction in inflammatory responses, mitochondrial fragmentation, and oxidative stress in the heart, resulting in attenuated cardiac remodeling and dysfunction. Furthermore, the exacerbation of pressure overload-induced STING-mediated inflammation and pathological cardiac remodeling was observed when mitophagy was suppressed through the silencing of Parkin, an E3 ubiquitin ligase. Taken together, these findings indicate that STING represents a newly identified and significant molecule implicated in the process of pathological cardiac remodeling and that mitophagy is an upstream mechanism that regulates STING activation. Targeting STING may therefore provide a novel therapeutic strategy for pathological cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Guoxiang Zhou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyu Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Gao
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiong Shi
- The Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medical Diagnostics, Chongqing Medical University, Chongqing 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
65
|
Studstill C, Huang N, Sundstrom S, Moscoso S, Zhang H, Damania B, Moody C. Apoptotic Caspases Suppress Expression of Endogenous Retroviruses in HPV31+ Cells That Are Associated with Activation of an Innate Immune Response. Viruses 2024; 16:1695. [PMID: 39599810 PMCID: PMC11598866 DOI: 10.3390/v16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Avoidance of an immune response is critical to completion of the human papillomavirus (HPV) life cycle, which occurs in the stratified epithelium and is linked to epithelial differentiation. We previously demonstrated that high-risk HPVs use apoptotic caspases to suppress an antiviral innate immune response during the productive phase of the life cycle. We found that caspase-8 and caspase-3 suppress a type I IFN-β and type III IFN-λ response by disabling the MDA5/MAVS double-stranded RNA (dsRNA) sensing pathway, indicating that immunogenic RNAs increase upon differentiation in HPV+ cells. In this study, we demonstrate that caspase inhibition results in aberrant transcription of a subset of endogenous retroviruses (ERVs) that have been shown to activate an IFN response through dsRNA-sensing pathways. We show that the increase in ERV transcription is accompanied by an enrichment in dsRNA formation. Additionally, we demonstrate that the robust increase in ERV expression requires activation of the JAK/STAT-signaling pathway, indicating that this subset of ERVs is IFN-inducible. Overall, these results suggest a model by which caspase activity blocks the reactivation of ERVs through the JAK/STAT pathway, protecting HPV+ cells from an increase in immunogenic dsRNAs that otherwise would trigger an IFN response that inhibits productive viral replication.
Collapse
Affiliation(s)
- Caleb Studstill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Huang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shelby Sundstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samantha Moscoso
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Huirong Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
66
|
Xu T, Zhong X, Luo N, Ma W, Hao P. Review of Excessive Cytosolic DNA and Its Role in AIM2 and cGAS-STING Mediated Psoriasis Development. Clin Cosmet Investig Dermatol 2024; 17:2345-2357. [PMID: 39464745 PMCID: PMC11512523 DOI: 10.2147/ccid.s476785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
In psoriasis, keratinocytes are triggered by factors, such as infection or tissue damage, to release DNA, which thereby activates plasmacytoid dendritic cells and macrophages to induce inflammation, thickened epidermis, and parakeratosis. The recognition of double-stranded (ds)DNA facilitates the activation of cytoplasmic DNA sensors absent in melanoma 2 (AIM2) inflammasome assembly and cyclic guanosine monophosphate adenosine monophosphate (cGAMP) synthase (cGAS) - stimulator of interferon gene (STING) pathway, both of which play a pivotal role in mediating the inflammatory response and driving the progression of psoriasis. Additionally, secreted proinflammatory cytokines can stimulate further DNA release from keratinocytes. Notably, the activation of AIM2 and cGAS-STING signaling pathways also mediates programmed cell death, potentially enhancing DNA overproduction. As a result, excessive DNA can activate these pathways, amplifying persistent inflammatory responses that contribute to the maintenance of psoriasis. Several studies have validated that targeting DNA and its mediated activation of AIM2 and cGAS-STING offers promising therapeutic strategies for psoriasis. Here, we postulate a hypothesis that excessive cytosolic DNA can activate AIM2 and cGAS-STING, mediating inflammation and programmed cell death, ultimately fostering DNA accumulation and contributing to the development of psoriasis.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaojing Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Nana Luo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wenyi Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
67
|
Zhang Z, Su M, Jiang P, Wang X, Tong X, Wu G. Unlocking Apoptotic Pathways: Overcoming Tumor Resistance in CAR-T-Cell Therapy. Cancer Med 2024; 13:e70283. [PMID: 39377542 PMCID: PMC11459502 DOI: 10.1002/cam4.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy has transformed cancer treatment, leading to remarkable clinical outcomes. However, resistance continues to be a major obstacle, significantly limiting its efficacy in numerous patients. OBJECTIVES This review critically examines the challenges associated with CAR-T-cell therapy, with a particular focus on the role of apoptotic pathways in overcoming resistance. METHODS We explore various strategies to sensitize tumor cells to CAR-T-cell-mediated apoptosis, including the use of combination therapies with BH3 mimetics, Mcl-1 inhibitors, IAP inhibitors, and HDAC inhibitors. These agents inhibit anti-apoptotic proteins and activate intrinsic mitochondrial pathways, enhancing the susceptibility of tumor cells to apoptosis. Moreover, targeting the extrinsic pathway can increase the expression of death receptors on tumor cells, further promoting their apoptosis. The review also discusses the development of novel CAR constructs that enhance anti-apoptotic protein expression, such as Bcl-2, which may counteract CAR-T cell exhaustion and improve antitumor efficacy. We assess the impact of the tumor microenvironment (TME) on CAR-T cell function and propose dual-targeting CAR-T cells to simultaneously address both myeloid-derived suppressor cells (MDSCs) and tumor cells. Furthermore, we explore the potential of combining agents like PPAR inhibitors to activate the cGAS-STING pathway, thereby improving CAR-T cell infiltration into the tumor. CONCLUSIONS This review highlights that enhancing tumor cell sensitivity to apoptosis and increasing CAR-T cell cytotoxicity through apoptotic pathways could significantly improve therapeutic outcomes. Targeting apoptotic proteins, particularly those involved in the intrinsic mitochondrial pathway, constitutes a novel approach to overcoming resistance. The insights presented herein lay a robust foundation for future research and clinical applications aimed at optimizing CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhanna Zhang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Manqi Su
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Panruo Jiang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiaoxia Wang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiangmin Tong
- Department of Central LaboratorySchool of Medicine, Affiliated Hangzhou First People's Hospital, WestLake UniversityZhejiangHangzhouChina
| | - Gongqiang Wu
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| |
Collapse
|
68
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
69
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
70
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
71
|
Yang J, Ou X, Zeng H, Shao L. A comprehensive review on p38MAPK signaling as a potent radioprotector in testis. Andrology 2024. [PMID: 39287511 DOI: 10.1111/andr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Previous studies have shown that the activation of p38MAPK signaling plays a crucial role in regulating gonadal cell fate decisions in both mouse and human. Excessive activation of p38MAPK by radiation significantly causes testicular damage and negatively affects the male reproductive function. Therefore, fine-tuned regulation of p38MAPK signaling is critical in both physiological and pathological conditions. RESULT This review summarizes the impact of p38MAPK signaling on testicular germ cells and microenvironment under normal condition. The relationship between radiation, reactive oxygen species (ROS), and p38MAPK is summarized. In conclusion, radiation exposure triggers the overactivation of p38MAPK, which is regulated by ROS, resulting in testicular damage. Various p38MAPK-targeting agents are discussed, providing guidance for developing new strategies.
Collapse
Affiliation(s)
- Juan Yang
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangying Ou
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huihong Zeng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
72
|
Saad M, Ibrahim W, Hasanin AH, Elyamany AM, Matboli M. Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway. RSC Med Chem 2024:d4md00477a. [PMID: 39290381 PMCID: PMC11403872 DOI: 10.1039/d4md00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic. Herein, we aimed to evaluate the potential therapeutic effects of Zbiotics administration on NASH management by modulating the cGAS-STING-signaling pathway-related RNA network. In silico data analysis was performed and three DEGs (MAPK3/EDN1/TNF) were selected with their epigenetic modulators (miR-6888-5p miRNA, and lncRNA RABGAP1L-DT-206). The experimental design included NASH induction with an HSHF diet in Wistar rats and Zbiotics administration in NASH rats in comparison to statin treatment. Liver functions and lipid profile were assessed. Additionally, the expression levels of the constructed molecular network were assessed using RT-PCR. Moreover, the Zbiotics effects in NASH were further validated with histopathological examination of liver and colon samples. Also, immunohistochemistry staining of hepatic TNF-α and colonic occludin was assessed. Oral administration of Zbiotics for four weeks downregulated the expression of the cGAS-STING-related network (MAPK3/EDN1/TNF/miR-6888-5p miRNA/lncRNA RABGAP1L-DT-206) in NASH models. Zbiotics also ameliorated hepatic inflammation and steatosis, as evidenced by a notable improvement in NAS score and decreased hepatic TNF-α levels. Furthermore, Zbiotics exhibited favorable effects on colon health, including increased crypt length, reduced inflammatory cell infiltration, and restoration of colonic mucosa occludin expression. In conclusion, our findings suggest that Zbiotics has potential therapeutic effects on NASH via modulating the gut-liver axis and the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information Cairo Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for technology and information Cairo Egypt
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Aya Magdy Elyamany
- Anatomic Pathology Department, Faculty of Medicine, Cairo University Cairo Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
73
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
74
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
75
|
Chen KW, Broz P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat Cell Biol 2024; 26:1394-1406. [PMID: 39187689 DOI: 10.1038/s41556-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
76
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
77
|
Xiong Y, Chen J, Liang W, Li K, Huang Y, Song J, Zhang B, Qiu X, Qiu D, Zhang Q, Qin Y. Blockade of the mitochondrial DNA release ameliorates hepatic ischemia-reperfusion injury through avoiding the activation of cGAS-Sting pathway. J Transl Med 2024; 22:796. [PMID: 39198913 PMCID: PMC11351313 DOI: 10.1186/s12967-024-05588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Liver surgery during the perioperative period often leads to a significant complication known as hepatic ischemia-reperfusion (I/R) injury. Hepatic I/R injury is linked to the innate immune response. The cGAS-STING pathway triggers the activation of innate immune through the detection of DNA within cells. Nevertheless, the precise mechanism and significance of the cGAS-STING pathway in hepatic I/R injury are yet to be investigated. METHODS Mouse model of hepatic I/R injury was used in the C57BL/6 WT mice and the STING knockout (STING-KO) mice. In addition, purified primary hepatocytes were used to construct oxygen-glucose deprivation reperfusion (OGD-Rep) treatment models. RESULTS Our research revealed a notable increase in mRNA and protein levels of cGAS and STING in liver during I/R injury. Interestingly, the lack of STING exhibited a safeguarding impact on hepatic I/R injury by suppressing the elevation of liver enzymes, liver cell death, and inflammation. Furthermore, pharmacological cGAS and STING inhibition recapitulated these phenomena. Macrophages play a crucial role in the activation of the cGAS-STING pathway during hepatic I/R injury. The cGAS-STING pathway experiences a significant decrease in activity and hepatic I/R injury is greatly diminished following the elimination of macrophages. Significantly, we demonstrate that the activation of the cGAS-STING pathway is primarily caused by the liberation of mitochondrial DNA (mtDNA) rather than nuclear DNA (nDNA). Moreover, the safeguarding of the liver against I/R injury is also attributed to the hindrance of mtDNA release through the utilization of inhibitors targeting mPTP and VDAC oligomerization. CONCLUSIONS The results of our study suggest that the release of mtDNA plays a significant role in causing damage to liver by activating the cGAS-STING pathway during I/R injury. Furthermore, inhibiting the release of mtDNA can provide effective protection against hepatic I/R injury.
Collapse
Affiliation(s)
- Yi Xiong
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jiawen Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Wei Liang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Yingqi Huang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jingwen Song
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China
| | - Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
78
|
Zhang H, Tsui CK, Garcia G, Joe LK, Wu H, Maruichi A, Fan W, Pandovski S, Yoon PH, Webster BM, Durieux J, Frankino PA, Higuchi-Sanabria R, Dillin A. The extracellular matrix integrates mitochondrial homeostasis. Cell 2024; 187:4289-4304.e26. [PMID: 38942015 DOI: 10.1016/j.cell.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-β response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Kimberly Tsui
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry K Joe
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haolun Wu
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wudi Fan
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant M Webster
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Frankino
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
79
|
Stoolman JS, Grant RA, Poor TA, Weinberg SE, D'Alessandro KB, Tan J, Hu JYS, Zerrer ME, Wood WA, Harding MC, Soni S, Ridge KM, Schumacker PT, Budinger GRS, Chandel NS. Mitochondrial respiration in microglia is essential for response to demyelinating injury but not proliferation. Nat Metab 2024; 6:1492-1504. [PMID: 39048801 DOI: 10.1038/s42255-024-01080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer's disease and the response to demyelinating injury1-5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7-10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-β plaque coverage decreased and microglial interaction with amyloid-β plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury.
Collapse
Affiliation(s)
- Joshua S Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Rogan A Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jerica Tan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Yuan-Shih Hu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megan E Zerrer
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Walter A Wood
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sahil Soni
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen M Ridge
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
80
|
Li Z, Chen Z, Wang Y, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang W, Ou J, Lin L, Zhou J, Guo W, Li G, Lu YJ, Hu Y. Icariside I enhances the effects of immunotherapy in gastrointestinal cancer via targeting TRPV4 and upregulating the cGAS-STING-IFN-I pathway. Biomed Pharmacother 2024; 177:117134. [PMID: 39013225 DOI: 10.1016/j.biopha.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.
Collapse
Affiliation(s)
- Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Lin
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
81
|
Jiao M, Hu M, Pan D, Liu X, Bao X, Kim J, Li F, Li CY. VHL loss enhances antitumor immunity by activating the anti-viral DNA-sensing pathway. iScience 2024; 27:110285. [PMID: 39050705 PMCID: PMC11267025 DOI: 10.1016/j.isci.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
von Hippel-Lindau (VHL), known as a tumor suppressor gene, is frequently mutated in clear cell renal cell carcinoma (ccRCC). However, VHL mutation is not sufficient to promote tumor formation. In most cases other than ccRCC, VHL loss alters cellular homeostasis and causes cell stress and metabolic changes by stabilizing hypoxia-inducible factor (HIF) levels, resulting in a fitness disadvantage. In addition, the function of VHL in regulating immune response is still not well established. In this study, we demonstrate that VHL loss enhances the efficacy of anti-programmed death 1 (PD1) treatment in multiple murine tumor models in a T cell-dependent manner. Mechanistically, we discovered that upregulation of HIF1α/2α induced by VHL loss decreased mitochondrial outer membrane potential and caused the cytoplasmic leakage of mitochondrial DNA, which triggered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) activation and induced type I interferons. Our study thus provided mechanistic insights into the role of VHL gene loss in boosting antitumor immunity.
Collapse
Affiliation(s)
- Meng Jiao
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mengjie Hu
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Pan
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xinjian Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuhui Bao
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jonathan Kim
- School of Medicine, Duke University, Durham, NC 27710, USA
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
82
|
Kusuma F, Park S, Nguyen KA, Elvira R, Lee D, Han J. PKR Mediates the Mitochondrial Unfolded Protein Response through Double-Stranded RNA Accumulation under Mitochondrial Stress. Int J Mol Sci 2024; 25:7738. [PMID: 39062980 PMCID: PMC11276775 DOI: 10.3390/ijms25147738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress.
Collapse
Affiliation(s)
- Fedho Kusuma
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Soyoung Park
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Kim Anh Nguyen
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Rosalie Elvira
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| | - Duckgue Lee
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| |
Collapse
|
83
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
84
|
Han L, He J, Xie H, Gong Y, Xie C. Pan-cell death-related signature reveals tumor immune microenvironment and optimizes personalized therapy alternations in lung adenocarcinoma. Sci Rep 2024; 14:15682. [PMID: 38977778 PMCID: PMC11231366 DOI: 10.1038/s41598-024-66662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study constructed a comprehensive analysis of cell death modules in eliminating aberrant cells and remodeling tumor microenvironment (TME). Consensus analysis was performed in 490 lung adenocarcinoma (LUAD) patients based on 4 types of cell death prognostic genes. Intersection method divided these LUAD samples into 5 cell death risk (CDR) clusters, and COX regression analysis were used to construct the CDR signature (CDRSig) with risk scores. Significant differences of TME phenotypes, clinical factors, genome variations, radiosensitivity and immunotherapy sensitivity were observed in different CDR clusters. Patients with higher risk scores in the CDRSig tended to be immune-excluded or immune-desert, and those with lower risk scores were more sensitive to radiotherapy and immunotherapy. The results from mouse model showed that intense expression of the high-risk gene PFKP was associated with low CD8+ T cell infiltration upon radiotherapy and anti-PD-L1 treatment. Deficient assays in vitro confirmed that PFKP downregulation enhanced cGAS/STING pathway activation and radiosensitivity in LUAD cells. In conclusion, our studies originally performed a comprehensive cell death analysis, suggesting the importance of CDR patterns in reprogramming TME and providing novel clues for LUAD personalized therapies.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
85
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
86
|
Moeed A, Thilmany N, Beck F, Puthussery BK, Ortmann N, Haimovici A, Badr MT, Haghighi EB, Boerries M, Öllinger R, Rad R, Kirschnek S, Gentle IE, Donakonda S, Petric PP, Hummel JF, Pfaffendorf E, Zanetta P, Schell C, Schwemmle M, Weber A, Häcker G. The Caspase-Activated DNase drives inflammation and contributes to defense against viral infection. Cell Death Differ 2024; 31:924-937. [PMID: 38849575 PMCID: PMC11239672 DOI: 10.1038/s41418-024-01320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria react to infection with sub-lethal signals in the apoptosis pathway. Mitochondrial signals can be inflammatory but mechanisms are only partially understood. We show that activation of the caspase-activated DNase (CAD) mediates mitochondrial pro-inflammatory functions and substantially contributes to host defense against viral infection. In cells lacking CAD, the pro-inflammatory activity of sub-lethal signals was reduced. Experimental activation of CAD caused transient DNA-damage and a pronounced DNA damage response, involving major kinase signaling pathways, NF-κB and cGAS/STING, driving the production of interferon, cytokines/chemokines and attracting neutrophils. The transcriptional response to CAD-activation was reminiscent of the reaction to microbial infection. CAD-deficient cells had a diminished response to viral infection. Influenza virus infected CAD-deficient mice displayed reduced inflammation in lung tissue, higher viral titers and increased weight loss. Thus, CAD links the mitochondrial apoptosis system and cell death caspases to host defense. CAD-driven DNA damage is a physiological element of the inflammatory response to infection.
Collapse
Affiliation(s)
- Abdul Moeed
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nico Thilmany
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Frederic Beck
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bhagya K Puthussery
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Noemi Ortmann
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - M Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elham Bavafaye Haghighi
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ian E Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elisabeth Pfaffendorf
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Paola Zanetta
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
87
|
Wang P, Zhang L, Chen S, Li R, Liu P, Li X, Luo H, Huo Y, Zhang Z, Cai Y, Liu X, Huang J, Zhou G, Sun Z, Ding S, Shi J, Zhou Z, Yuan R, Liu L, Wu S, Wang G. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res 2024; 34:504-521. [PMID: 38811766 PMCID: PMC11217343 DOI: 10.1038/s41422-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Peipei Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ruoxi Yuan
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Liang Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
88
|
Li J, Tan J, Wang T, Yu S, Guo G, Li K, Yang L, Zeng B, Mei X, Gao S, Lao X, Zhang S, Liao G, Liang Y. cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer. Exp Hematol Oncol 2024; 13:63. [PMID: 38926796 PMCID: PMC11200990 DOI: 10.1186/s40164-024-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression. METHODS Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort. RESULTS Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients. CONCLUSIONS Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.
Collapse
Affiliation(s)
- Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shan Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guangliang Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Le Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xueying Mei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaomei Lao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, 56th Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-Sen University, 56th Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
89
|
Campia G, Beltrán-Visiedo M, Soler-Agesta R, Sato A, Bloy N, Zhao L, Liu P, Kepp O, Kroemer G, Galluzzi L, Galassi C. Flow cytometry-assisted analysis of phenotypic maturation markers on an immortalized dendritic cell line. Methods Cell Biol 2024; 189:153-168. [PMID: 39393881 DOI: 10.1016/bs.mcb.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Dendritic cells (DCs), and especially so conventional type I DCs (cDC1s), are fundamental regulators of anticancer immunity, largely reflecting their superior ability to engulf tumor-derived material and process it for cross-presentation on MHC Class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). Thus, investigating key DC functions including (but not limited to) phagocytic capacity, expression of CTL-activating ligands on the cell surface, and cross-presentation efficacy is an important component of multiple immuno-oncology studies. Unfortunately, DCs are terminally differentiated cells, implying that they cannot be propagated indefinitely in vitro and hence must be generated ad hoc from circulating or bone marrow-derived precursors, which presents several limitations. Here, we propose a simple, cytofluorometric method to quantify phenotypic activation markers including CD80, CD86 and MHC class II molecules on the surface of a conditionally immortalized immature DC line that can be indefinitely propagated in vitro but also driven into maturation at will with a simple change in culture conditions. Upon appropriate scaling and automatization, this approach is compatible with high-throughput screening programs for the discovery of novel DC activators that do not suffer from batch variability and other limitations associated with the generation of fresh DCs.
Collapse
Affiliation(s)
- Ginevra Campia
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Liwei Zhao
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Peng Liu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France; Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
90
|
Ku D, Yang Y, Park Y, Jang D, Lee N, Lee YK, Lee K, Lee J, Han YB, Jang S, Choi SR, Ha YJ, Choi YS, Jeong WJ, Lee YJ, Lee KJ, Cha S, Kim Y. SLIRP promotes autoimmune diseases by amplifying antiviral signaling via positive feedback regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587146. [PMID: 38915695 PMCID: PMC11195051 DOI: 10.1101/2024.03.28.587146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The abnormal innate immune response is a prominent feature underlying autoimmune diseases. One emerging factor that can trigger dysregulated immune activation is cytosolic mitochondrial double-stranded RNAs (mt-dsRNAs). However, the mechanism by which mt-dsRNAs stimulate immune responses remains poorly understood. Here, we discover SRA stem-loop interacting RNA binding protein (SLIRP) as a key amplifier of mt-dsRNA-triggered antiviral signals. In autoimmune diseases, SLIRP is commonly upregulated, and targeted knockdown of SLIRP dampens the interferon response. We find that the activation of melanoma differentiation-associated gene 5 (MDA5) by exogenous dsRNAs upregulates SLIRP, which then stabilizes mt-dsRNAs and promotes their cytosolic release to activate MDA5 further, augmenting the interferon response. Furthermore, the downregulation of SLIRP partially rescues the abnormal interferon-stimulated gene expression in autoimmune patients' primary cells and makes cells vulnerable to certain viral infections. Our study unveils SLIRP as a pivotal mediator of interferon response through positive feedback amplification of antiviral signaling.
Collapse
Affiliation(s)
- Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yewon Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngran Park
- Center for RNA Research, Institute of Basic Science, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daesong Jang
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, Florida, 32610, United States of America
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong-ki Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeseon Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Soojin Jang
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Se Rim Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology - Head & Neck Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun Jong Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Kyung Jin Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, 13488, Republic of Korea
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, Florida, 32610, United States of America
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea
| |
Collapse
|
91
|
Beltrán-Visiedo M, Serrano-Del Valle A, Jiménez-Aldúan N, Soler-Agesta R, Naval J, Galluzzi L, Marzo I. Cytofluorometric assessment of calreticulin exposure on CD38 + plasma cells from the human bone marrow. Methods Cell Biol 2024; 189:189-206. [PMID: 39393883 DOI: 10.1016/bs.mcb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Exposure of the endoplasmic reticulum chaperone calreticulin (CALR) on the surface of stressed and dying cells is paramount for their effective engulfment by professional antigen-presenting cells such as dendritic cells (DCs). Importantly, this is required (but not sufficient) for DCs to initiate an adaptive immune response that culminates with an effector phase as well as with the establishment of immunological memory. Conversely, the early exposure of phosphatidylserine (PS) on the outer layer of the plasma membrane is generally associated with the rapid engulfment of stressed and dying cells by tolerogenic macrophages. Supporting the clinical relevance of the CALR exposure pathway, the spontaneous or therapy-driven translocation of CALR to the surface of malignant cells, as well as intracellular biomarkers thereof, have been associated with improved disease outcome in patients affected by a variety of neoplasms, with the notable exception of multiple myeloma (MM). Here, we describe an optimized protocol for the flow cytometry-assisted quantification of surface-exposed CALR and PS on CD38+ plasma cells from the bone marrow of patients with MM. With some variations, we expect this method to be straightforwardly adaptable to the detection of CALR and PS on the surface of cancer cells isolated from patients with neoplasms other than MM.
Collapse
Affiliation(s)
- Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | | | - Nelia Jiménez-Aldúan
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
92
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
93
|
Yamada Y, Zheng Z, Jad AK, Yamashita M. Lethal and sublethal effects of programmed cell death pathways on hematopoietic stem cells. Exp Hematol 2024; 134:104214. [PMID: 38582294 DOI: 10.1016/j.exphem.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Programmed cell death is an evolutionally conserved cellular process in multicellular organisms that eliminates unnecessary or rogue cells during development, infection, and carcinogenesis. Hematopoietic stem cells (HSCs) are a rare, self-renewing, and multipotent cell population necessary for the establishment and regeneration of the hematopoietic system. Counterintuitively, key components necessary for programmed cell death induction are abundantly expressed in long-lived HSCs, which often survive myeloablative stress by engaging a prosurvival response that counteracts cell death-inducing stimuli. Although HSCs are well known for their apoptosis resistance, recent studies have revealed their unique vulnerability to certain types of programmed necrosis, such as necroptosis and ferroptosis. Moreover, emerging evidence has shown that programmed cell death pathways can be sublethally activated to cause nonlethal consequences such as innate immune response, organelle dysfunction, and mutagenesis. In this review, we summarized recent findings on how divergent cell death programs are molecularly regulated in HSCs. We then discussed potential side effects caused by sublethal activation of programmed cell death pathways on the functionality of surviving HSCs.
Collapse
Affiliation(s)
- Yuta Yamada
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zhiqian Zheng
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alaa K Jad
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
94
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
95
|
Chan YJ, Liu NT, Hsin F, Lu JY, Lin JY, Liu HM. Temporal regulation of MDA5 inactivation by Caspase-3 dependent cleavage of 14-3-3η. PLoS Pathog 2024; 20:e1012287. [PMID: 38843304 PMCID: PMC11185488 DOI: 10.1371/journal.ppat.1012287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/18/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
The kinetics of type I interferon (IFN) induction versus the virus replication compete, and the result of the competition determines the outcome of the infection. Chaperone proteins that involved in promoting the activation kinetics of PRRs rapidly trigger antiviral innate immunity. We have previously shown that prior to the interaction with MAVS to induce type I IFN, 14-3-3η facilitates the oligomerization and intracellular redistribution of activated MDA5. Here we report that the cleavage of 14-3-3η upon MDA5 activation, and we identified Caspase-3 activated by MDA5-dependent signaling was essential to produce sub-14-3-3η lacking the C-terminal helix (αI) and tail. The cleaved form of 14-3-3η (sub-14-3-3η) could strongly interact with MDA5 but could not support MDA5-dependent type I IFN induction, indicating the opposite functions between the full-length 14-3-3η and sub-14-3-3η. During human coronavirus or enterovirus infections, the accumulation of sub-14-3-3η was observed along with the activation of Caspase-3, suggesting that RNA viruses may antagonize 14-3-3η by promoting the formation of sub-14-3-3η to impair antiviral innate immunity. In conclusion, sub-14-3-3η, which could not promote MDA5 activation, may serve as a negative feedback to return to homeostasis to prevent excessive type I IFN production and unnecessary inflammation.
Collapse
Affiliation(s)
- Yun-Jui Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Nien-Tzu Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Fu Hsin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Jia-Ying Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Helene Minyi Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
96
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
97
|
Géli V, Nabet N. Saliva, a molecular reflection of the human body? Implications for diagnosis and treatment. Cell Stress 2024; 8:59-68. [PMID: 38826491 PMCID: PMC11144459 DOI: 10.15698/cst2024.05.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
For many diseases, and cancer in particular, early diagnosis allows a wider range of therapies and a better disease management. This has led to improvements in diagnostic procedures, most often based on tissue biopsies or blood samples. Other biological fluids have been used to diagnose disease, and among them saliva offers a number of advantages because it can be collected non-invasively from large populations at relatively low cost. To what extent might saliva content reveal the presence of a tumour located at a distance from the oral cavity and the molecular information obtained from saliva be used to establish a diagnosis are current questions. This review focuses primarily on the content of saliva and shows how it potentially offers a source of diagnosis, possibly at an early stage, for pathologies such as cancers or endometriosis.
Collapse
|
98
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
99
|
Miranda A, Pattnaik S, Hamilton PT, Fuss MA, Kalaria S, Laumont CM, Smazynski J, Mesa M, Banville A, Jiang X, Jenkins R, Cañadas I, Nelson BH. N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadj5428. [PMID: 38748789 PMCID: PMC11095474 DOI: 10.1126/sciadv.adj5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, NSW, Australia
| | - Phineas T. Hamilton
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Monica Mesa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Allyson Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Russell Jenkins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| |
Collapse
|
100
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 224.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|