51
|
Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S, Luchetti G, Sircar R, Nachtergaele S, Mydock-McGrane L, Krishnan K, Newstead S, Sansom MSP, Covey DF, Siebold C, Rohatgi R. Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. SCIENCE ADVANCES 2022; 8:eabm5563. [PMID: 35658032 PMCID: PMC9166294 DOI: 10.1126/sciadv.abm5563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 05/06/2023]
Abstract
Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown. We find that mutations in the CRD (but not the TMD) reduce the fold increase in SMO activity triggered by SHH. SHH also promotes the photocrosslinking of a sterol analog to the CRD in intact cells. In contrast, sterol binding to the TMD site boosts SMO activity regardless of SHH exposure. Mutational and computational analyses show that these sites are in allosteric communication despite being 45 angstroms apart. Hence, sterols function as both SHH-regulated orthosteric ligands at the CRD and allosteric ligands at the TMD to regulate SMO activity and Hh signaling.
Collapse
Affiliation(s)
- Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel E. Woolley
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Eamon F. X. Byrne
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sara Frigui
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Luchetti
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ria Sircar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sigrid Nachtergaele
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurel Mydock-McGrane
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Douglas F. Covey
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
52
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
53
|
Kandel N, Wang C. Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery. Front Mol Biosci 2022; 9:900560. [PMID: 35669560 PMCID: PMC9163320 DOI: 10.3389/fmolb.2022.900560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development. In adults, Hh signaling is mostly turned off but its abnormal activation is involved in many types of cancer. Hh signaling is initiated by the Hh ligand, generated from the Hh precursor by a specialized autocatalytic process called Hh autoprocessing. The Hh precursor consists of an N-terminal signaling domain (HhN) and a C-terminal autoprocessing domain (HhC). During Hh autoprocessing, the precursor is cleaved between N- and C-terminal domain followed by the covalent ligation of cholesterol to the last residue of HhN, which subsequently leads to the generation of Hh ligand for Hh signaling. Hh autoprocessing is at the origin of canonical Hh signaling and precedes all downstream signaling events. Mutations in the catalytic residues in HhC can lead to congenital defects such as holoprosencephaly (HPE). The aim of this review is to provide an in-depth summary of the progresses and challenges towards an atomic level understanding of the structural mechanisms of Hh autoprocessing. We also discuss drug discovery efforts to inhibit Hh autoprocessing as a new direction in cancer therapy.
Collapse
Affiliation(s)
- Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- *Correspondence: Chunyu Wang,
| |
Collapse
|
54
|
Wang W, Shiraishi R, Kawauchi D. Sonic Hedgehog Signaling in Cerebellar Development and Cancer. Front Cell Dev Biol 2022; 10:864035. [PMID: 35573667 PMCID: PMC9100414 DOI: 10.3389/fcell.2022.864035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The sonic hedgehog (SHH) pathway regulates the development of the central nervous system in vertebrates. Aberrant regulation of SHH signaling pathways often causes neurodevelopmental diseases and brain tumors. In the cerebellum, SHH secreted by Purkinje cells is a potent mitogen for granule cell progenitors, which are the most abundant cell type in the mature brain. While a reduction in SHH signaling induces cerebellar structural abnormalities, such as hypoplasia in various genetic disorders, the constitutive activation of SHH signaling often induces medulloblastoma (MB), one of the most common pediatric malignant brain tumors. Based on the existing literature on canonical and non-canonical SHH signaling pathways, emerging basic and clinical studies are exploring novel therapeutic approaches for MB by targeting SHH signaling at distinct molecular levels. In this review, we discuss the present consensus on SHH signaling mechanisms, their roles in cerebellar development and tumorigenesis, and the recent advances in clinical trials for MB.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- *Correspondence: Daisuke Kawauchi,
| |
Collapse
|
55
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
56
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
57
|
Dukes MW, Bajema EA, Whittemore TJ, Holmgren RA, Meade TJ. Delivery of Targeted Co(III)-DNA Inhibitors of Gli Proteins to Disrupt Hedgehog Signaling. Bioconjug Chem 2022; 33:643-653. [PMID: 35271256 PMCID: PMC10775819 DOI: 10.1021/acs.bioconjchem.2c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Hedgehog (Hh) signaling pathway is integral for embryonic development and normal cell maintenance. However, aberrant expression of the Hh pathway is recognized as the oncogenic driving force for basal cell carcinoma (BCC). Current chemotherapeutic treatments that inhibit Hh signaling allow treatment of only locally advanced and metastatic BCCs via inhibition of the transmembrane protein, smoothened. It is further recognized that downstream mutations often lead to chemoresistant tumor recurrence. The Gli proteins are the ultimate regulators of Hh signaling and belong to a family of Cys2His2 zinc finger transcription factors (ZnFTFs) that we have shown can be irreversibly inhibited by a series of cobalt(III) Schiff base-DNA (CoSB-DNA) conjugates. However, a significant challenge is the delivery of CoSB-DNA complexes in mammalian tissues. Herein, we report a polyethyleneimine-functionalized graphene oxide nanoconjugate (GOPEI) that delivers CoGli, a CoSB-DNA complex that targets Gli specifically. We describe the characterization of the surface functionalization of GOPEI and accumulation in ASZ murine BCC cells via confocal microscopy and inductively coupled plasma-mass spectrometry (ICP-MS). Lysosomal escape of CoGli is further confirmed by confocal microscopy. We report the successful targeting of Gli by CoGli and a 17-fold improvement in potency over small-molecule Gli inhibitor GANT-61 in inhibiting Hh-driven migration of ASZ murine BCC cells. This study provides a promising starting point for further investigating CoGli inhibitors of Hh signaling in developed mammalian tissues.
Collapse
Affiliation(s)
| | | | | | - Robert A Holmgren
- Department of Biochemistry, Molecular Biology and Cell Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
58
|
Smith AE, Sigurbjörnsdóttir ES, Steingrímsson E, Sigurbjörnsdóttir S. Hedgehog signalling in bone and osteoarthritis: the role of Smoothened and cholesterol. FEBS J 2022. [PMID: 35305060 DOI: 10.1111/febs.16440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Hedgehog signalling is essential for development, crucial for normal anatomical arrangement and activated during tissue damage repair. Dysregulation of hedgehog signalling is associated with cancer, developmental disorders and other diseases including osteoarthritis (OA). The hedgehog gene was first discovered in Drosophila melanogaster, and the pathway is evolutionarily conserved in most animals. Although there are several hedgehog ligands with different protein expression patterns, they share a common plasma membrane receptor, Patched1 and hedgehog signalling pathway activation is transduced through the G-protein-coupled receptor-like protein Smoothened (SMO) and downstream effectors. Functional assays revealed that activation of SMO is dependent on sterol binding, and cholesterol was observed bound to SMO in crystallography experiments. In vertebrates, hedgehog signalling coordinates endochondral ossification and balances osteoblast and osteoclast activation to maintain homeostasis. A recently discovered mutation of SMO in humans (SMOR173C ) is predicted to alter cholesterol binding and is associated with a higher risk of hip OA. Functional studies in mice and human tissue analysis provide evidence that hedgehog signalling is pathologically activated in chondrocytes of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Abbi Elise Smith
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Elín Sóley Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Sara Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, School of Engineering and Natural Sciences, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
59
|
Huang P, Wierbowski BM, Lian T, Chan C, García-Linares S, Jiang J, Salic A. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex. Dev Cell 2022; 57:670-685.e8. [PMID: 35231446 PMCID: PMC8932645 DOI: 10.1016/j.devcel.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlene Chan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
60
|
Makamte S, Thureau A, Jabrani A, Paquelin A, Plessis A, Sanial M, Rudenko O, Oteri F, Baaden M, Biou V. A large disordered region confers a wide spanning volume to vertebrate Suppressor of Fused as shown in a trans-species solution study. J Struct Biol 2022; 214:107853. [DOI: 10.1016/j.jsb.2022.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
61
|
Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate. Cell Res 2022; 32:288-301. [PMID: 35121857 PMCID: PMC8888579 DOI: 10.1038/s41422-022-00622-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) is a morphogen that binds to its receptor Patched 1 and activates Smoothened (SMO), thereby governing embryonic development and postnatal tissue homeostasis. Cholesterol can bind and covalently conjugate to the luminal cysteine-rich domain (CRD) of human SMO at the D95 residue (D99 in mouse). The reaction mechanism and biological function of SMO cholesterylation have not been elucidated. Here, we show that the SMO-CRD undergoes auto-cholesterylation which is boosted by calcium and involves an intramolecular ester intermediate. In cells, Hh stimulation elevates local calcium concentration in the SMO-localized endosomes through store-operated calcium entry. In addition, we identify the signaling-incompetent SMO D95E mutation, and the D95E mutant SMO can bind cholesterol but cannot be modified or activated by cholesterol. The homozygous SmoD99E/D99E knockin mice are embryonic lethal with severe developmental delay, demonstrating that cholesterylation of CRD is required for full-length SMO activation. Our work reveals the unique autocatalytic mechanism of SMO cholesterylation and an unprecedented role of calcium in Hh signaling.
Collapse
|
62
|
Kovachka S, Malloci G, Simsir M, Ruggerone P, Azoulay S, Mus-Veteau I. Inhibition of the drug efflux activity of Ptch1 as a promising strategy to overcome chemotherapy resistance in cancer cells. Eur J Med Chem 2022; 236:114306. [DOI: 10.1016/j.ejmech.2022.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
63
|
Zhong C, Wang B. Regulation of Cholesterol Binding to the Receptor Patched1 by its interactions With the Ligand Sonic Hedgehog (Shh). Front Mol Biosci 2022; 9:831891. [PMID: 35187087 PMCID: PMC8847689 DOI: 10.3389/fmolb.2022.831891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 01/17/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway is essential in cell development and regeneration, which is activated by the ligand Sonic hedgehog (Shh). The binding of Shh to its receptor Patched1 (PTCH1) releases the inhibitory effect on the downstream protein Smoothened (SMO), a G-protein-coupled-receptor (GPCR) protein. Cholesterol was supposed to function as a secondary messenger between PTCH1 and SMO. However, the molecular mechanism of this regulation process is still unclear. Therefore, microsecond coarse-grained molecular dynamics simulations were performed to investigate the protein-lipid interactions of the PTCH1 monomer and dimer-Shh complex. It was observed that the binding of cholesterols to the monomer is more stable than that to the dimer-Shh complex. It is regulated by the enrichment of Ganglioside lipids around proteins and the conformation of Y446, a residue in the sterol-sensing domain (SSD). The regulation of Shh on the dynamics of PTCH1 was further analyzed to explore the allosteric communication pathways between the Shh and the SSD. Our study provides structural and dynamic details of an additional perspective on the regulation of Hh signaling pathway through the lipid micro-environments of PTCH1.
Collapse
Affiliation(s)
- Changqing Zhong
- Centre for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Beibei Wang
- Centre for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
- *Correspondence: Beibei Wang,
| |
Collapse
|
64
|
Daggubati V, Raleigh DR, Sever N. Sterol regulation of developmental and oncogenic Hedgehog signaling. Biochem Pharmacol 2022; 196:114647. [PMID: 34111427 PMCID: PMC8648856 DOI: 10.1016/j.bcp.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3β,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.
Collapse
Affiliation(s)
- Vikas Daggubati
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA,Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - David R. Raleigh
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Navdar Sever
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA,Corresponding author: Navdar Sever, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB 405, Boston, MA 02115, USA, , Telephone: (617) 432-1612
| |
Collapse
|
65
|
Ma L, Cho W, Nelson ER. Our evolving understanding of how 27-hydroxycholesterol influences cancer. Biochem Pharmacol 2022; 196:114621. [PMID: 34043965 PMCID: PMC8611110 DOI: 10.1016/j.bcp.2021.114621] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/09/2023]
Abstract
Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL,To whom correspondence and reprint requests should be addressed: Erik R. Nelson. University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801. Phone: 217-244-5477. Fax: 217-333-1133.
| |
Collapse
|
66
|
Wu X, Yan R, Cao P, Qian H, Yan N. Structural advances in sterol-sensing domain-containing proteins. Trends Biochem Sci 2022; 47:289-300. [PMID: 35012873 DOI: 10.1016/j.tibs.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.
Collapse
Affiliation(s)
- Xuelan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Cao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hongwu Qian
- Ministry of Education (MOE) Key Laboratory of Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
67
|
Cho W, Ralko A, Sharma A. An In Situ Fluorescence Assay for Cholesterol Transporter Activity of the Patched. Methods Mol Biol 2022; 2374:37-47. [PMID: 34562241 DOI: 10.1007/978-1-0716-1701-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We recently developed a simultaneous in situ quantitative imaging technique for cholesterol in both leaflets of the plasma membrane of mammalian cells. This ratiometric fluorescence technique allows real-time monitoring of the cholesterol transporter activity of plasma membrane-resident proteins in living cells. When applied to the hedgehog signaling system, it enables direct quantitative measurement of the cholesterol transporter activity of Patched1 and the effect of the hedgehog ligand on this activity.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
68
|
Liu H, Zhang C. Measuring Smoothened (SMO)-Mediated Activation of the G i Protein. Methods Mol Biol 2022; 2374:205-212. [PMID: 34562255 DOI: 10.1007/978-1-0716-1701-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The oncoprotein Smoothened (SMO) can transduce the Hedgehog signal from the tumor suppressor Patched-1 (PTCH1) to glioma-associated-oncogene (Gli) transcription factors. Previous studies have shown that SMO is a G-protein-coupled receptor (GPCR) of the Frizzled-class (class-F) that can activate Gi family of heterotrimeric G proteins. Here, we describe [35S]-GTPγS assay using SMO cell membranes and purified Gi protein to measure the level of Gi protein activation following the activation of SMO by agonists.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
69
|
Winkler MBL, Nel L, Frain KM, Dedic E, Olesen E, Pedersen BP. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective. FEBS Lett 2022; 596:160-179. [PMID: 34897668 DOI: 10.1002/1873-3468.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.
Collapse
Affiliation(s)
- Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Kelly M Frain
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
70
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Kinnebrew M, Johnson KA, Radhakrishnan A, Rohatgi R. Measuring and Manipulating Membrane Cholesterol for the Study of Hedgehog Signaling. Methods Mol Biol 2022; 2374:73-87. [PMID: 34562244 PMCID: PMC8819901 DOI: 10.1007/978-1-0716-1701-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is an abundant lipid in mammalian plasma membranes that regulates the reception of the Hedgehog (Hh) signal in target cells. In vertebrates, cell-surface organelles called primary cilia function as compartments for the propagation of Hh signals. Recent structural, biochemical, and cell-biological studies have led to the model that Patched-1 (PTCH1), the receptor for Hh ligands, uses its transporter-like activity to lower cholesterol accessibility in the membrane surrounding primary cilia. Cholesterol restriction at cilia may represent the long-sought-after mechanism by which PTCH1 inhibits Smoothened (SMO), a cholesterol-responsive transmembrane protein of the G protein-coupled receptor superfamily that transmits the Hh signal across the membrane.Protein probes based on microbial cholesterol-binding proteins revealed that PTCH1 controls only a subset of the total cholesterol molecules, a biochemically defined fraction called accessible cholesterol. The accessible cholesterol pool coexists (and exchanges) with a pool of sequestered cholesterol, which is bound to phospholipids like sphingomyelin. In this chapter, we describe how to measure the accessible and sequestered cholesterol pools in live cells with protein-based probes. We discuss how to purify and fluorescently label these probes for use in flow cytometry and microscopy-based measurements of the cholesterol pools. Additionally, we describe how to modulate accessible cholesterol levels to determine if this pool regulates Hh signaling (or any other cellular process of interest).
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Rohatgi
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
72
|
Zhang Q, Jiang J. Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. Int J Mol Sci 2021; 22:ijms222413338. [PMID: 34948134 PMCID: PMC8703657 DOI: 10.3390/ijms222413338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (Q.Z.); (J.J.)
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.Z.); (J.J.)
| |
Collapse
|
73
|
Griffiths SC, Schwab RA, El Omari K, Bishop B, Iverson EJ, Malinauskas T, Dubey R, Qian M, Covey DF, Gilbert RJC, Rohatgi R, Siebold C. Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling. Nat Commun 2021; 12:7171. [PMID: 34887403 PMCID: PMC8660895 DOI: 10.1038/s41467-021-27475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.
Collapse
Affiliation(s)
- Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Evotec (UK) Ltd., Milton Park, Abingdon, UK
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kamel El Omari
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellen J Iverson
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MI, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MI, USA
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
74
|
Hurbain I, Macé AS, Romao M, Prince E, Sengmanivong L, Ruel L, Basto R, Thérond PP, Raposo G, D'Angelo G. Microvilli-derived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development. Curr Biol 2021; 32:361-373.e6. [PMID: 34890558 DOI: 10.1016/j.cub.2021.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.
Collapse
Affiliation(s)
- Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Elodie Prince
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Lucie Sengmanivong
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Laurent Ruel
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
75
|
Li W, Wang L, Wierbowski BM, Lu M, Dong F, Liu W, Li S, Wang P, Salic A, Gong X. Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release. Nat Commun 2021; 12:6966. [PMID: 34845226 PMCID: PMC8630017 DOI: 10.1038/s41467-021-27257-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The membrane protein Dispatched (Disp), which belongs to the RND family of small molecule transporters, is essential for Hedgehog (Hh) signaling, by catalyzing the extracellular release of palmitate- and cholesterol-modified Hh ligands from producing cells. Disp function requires Furin-mediated proteolytic cleavage of its extracellular domain, but how this activates Disp remains obscure. Here, we employ cryo-electron microscopy to determine atomic structures of human Disp1 (hDisp1), before and after cleavage, and in complex with lipid-modified Sonic hedgehog (Shh) ligand. These structures, together with biochemical data, reveal that proteolytic cleavage opens the extracellular domain of hDisp1, removing steric hindrance to Shh binding. Structure-guided functional experiments demonstrate the role of hDisp1-Shh interactions in ligand release. Our results clarify the mechanisms of hDisp1 activation and Shh morphogen release, and highlight how a unique proteolytic cleavage event enabled acquisition of a protein substrate by a member of a family of small molecule transporters.
Collapse
Affiliation(s)
- Wanqiu Li
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China ,grid.263817.90000 0004 1773 1790Present Address: Department of Pharmacology, School of Medicine, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Linlin Wang
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Bradley M. Wierbowski
- grid.38142.3c000000041936754XDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Mo Lu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Feitong Dong
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Wenchen Liu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Sisi Li
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China ,grid.508211.f0000 0004 6004 3854Present Address: Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, 518060 Shenzhen, Guangdong China
| | - Peiyi Wang
- grid.263817.90000 0004 1773 1790SUSTech Cryo-EM Facility Center, Southern University of Science and Technology, 518055 Shenzhen, Guangdong China
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xin Gong
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
76
|
Cohen JD, Cadena del Castillo CE, Serra ND, Kaech A, Spang A, Sundaram MV. The Caenorhabditis elegans Patched domain protein PTR-4 is required for proper organization of the precuticular apical extracellular matrix. Genetics 2021; 219:iyab132. [PMID: 34740248 PMCID: PMC8570789 DOI: 10.1093/genetics/iyab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, 8006 Zürich, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, 4001 Basel, Switzerland
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
77
|
Wang Y, Wang J, Li X, Xiong X, Wang J, Zhou Z, Zhu X, Gu Y, Dominissini D, He L, Tian Y, Yi C, Fan Z. N 1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun 2021; 12:6314. [PMID: 34728628 PMCID: PMC8563902 DOI: 10.1038/s41467-021-26718-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is characterized by high recurrence and heterogeneity, yet its mechanism is not well understood. Here we show that N1-methyladenosine methylation (m1A) in tRNA is remarkably elevated in hepatocellular carcinoma (HCC) patient tumour tissues. Moreover, m1A methylation signals are increased in liver cancer stem cells (CSCs) and are negatively correlated with HCC patient survival. TRMT6 and TRMT61A, forming m1A methyltransferase complex, are highly expressed in advanced HCC tumours and are negatively correlated with HCC survival. TRMT6/TRMT61A-mediated m1A methylation is required for liver tumourigenesis. Mechanistically, TRMT6/TRMT61A elevates the m1A methylation in a subset of tRNA to increase PPARδ translation, which in turn triggers cholesterol synthesis to activate Hedgehog signaling, eventually driving self-renewal of liver CSCs and tumourigenesis. Finally, we identify a potent inhibitor against TRMT6/TRMT61A complex that exerts effective therapeutic effect on liver cancer.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jianyi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ziheng Zhou
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoxiao Zhu
- CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Gu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dan Dominissini
- Cancer Research Center and Wohl Institute for Translational Medicine, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, 100853, Beijing, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
78
|
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin? Biochem Soc Trans 2021; 49:2455-2463. [PMID: 34515747 PMCID: PMC8589413 DOI: 10.1042/bst20210918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.
Collapse
|
79
|
Wang Q, Asarnow DE, Ding K, Mann RK, Hatakeyama J, Zhang Y, Ma Y, Cheng Y, Beachy PA. Dispatched uses Na + flux to power release of lipid-modified Hedgehog. Nature 2021; 599:320-324. [PMID: 34707294 PMCID: PMC8785653 DOI: 10.1038/s41586-021-03996-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.
Collapse
Affiliation(s)
- Qianqian Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel E Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Ke Ding
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Randall K Mann
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Hatakeyama
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Yong Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Urology, and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
80
|
Kinnebrew M, Luchetti G, Sircar R, Frigui S, Viti LV, Naito T, Beckert F, Saheki Y, Siebold C, Radhakrishnan A, Rohatgi R. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. eLife 2021; 10:e70504. [PMID: 34698632 PMCID: PMC8654371 DOI: 10.7554/elife.70504] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Giovanni Luchetti
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Physiological Chemistry, GenentechSouth San FranciscoUnited States
| | - Ria Sircar
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Sara Frigui
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
| | - Francis Beckert
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rajat Rohatgi
- Department of Biochemistry and Medicine, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
81
|
Ansell TB, Curran L, Horrell MR, Pipatpolkai T, Letham SC, Song W, Siebold C, Stansfeld PJ, Sansom MSP, Corey RA. Relative Affinities of Protein-Cholesterol Interactions from Equilibrium Molecular Dynamics Simulations. J Chem Theory Comput 2021; 17:6548-6558. [PMID: 34523933 PMCID: PMC8515805 DOI: 10.1021/acs.jctc.1c00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Specific interactions of lipids with membrane proteins contribute to protein stability and function. Multiple lipid interactions surrounding a membrane protein are often identified in molecular dynamics (MD) simulations and are, increasingly, resolved in cryo-electron microscopy (cryo-EM) densities. Determining the relative importance of specific interaction sites is aided by determination of lipid binding affinities using experimental or simulation methods. Here, we develop a method for determining protein-lipid binding affinities from equilibrium coarse-grained MD simulations using binding saturation curves, designed to mimic experimental protocols. We apply this method to directly obtain affinities for cholesterol binding to multiple sites on a range of membrane proteins and compare our results with free energies obtained from density-based equilibrium methods and with potential of mean force calculations, getting good agreement with respect to the ranking of affinities for different sites. Thus, our binding saturation method provides a robust, high-throughput alternative for determining the relative consequence of individual sites seen in, e.g., cryo-EM derived membrane protein structures surrounded by an array of ancillary lipid densities.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Luke Curran
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Michael R. Horrell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Tanadet Pipatpolkai
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, South Parks
Road, Oxford, OX1 3PT, U.K.
| | - Suzanne C. Letham
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford, OX1 3RE, U.K.
| | - Wanling Song
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Christian Siebold
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, U.K.
| | - Phillip J. Stansfeld
- School
of Life Sciences and Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Robin A. Corey
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
82
|
Manikowski D, Ehring K, Gude F, Jakobs P, Froese J, Grobe K. Hedgehog lipids: Promotors of alternative morphogen release and signaling?: Conflicting findings on lipidated Hedgehog transport and signaling can be explained by alternative regulated mechanisms to release the morphogen. Bioessays 2021; 43:e2100133. [PMID: 34611914 DOI: 10.1002/bies.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
83
|
NanoBRET and NanoBiT/BRET-Based Ligand Binding Assays Permit Quantitative Assessment of Small Molecule Ligand Binding to Smoothened. Methods Mol Biol 2021. [PMID: 34562254 DOI: 10.1007/978-1-0716-1701-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Smoothened (SMO) is a G protein-coupled receptor (GPCR) that mediates Hedgehog (Hh) signaling. SMO activity is regulated following the binding of Hh to the transmembrane protein Patched. Overactive SMO signaling is oncogenic, and hence this receptor is a target for several marketed drugs. However, development of new SMO ligands has been hampered by the fact that current radioligand and fluorescence-based binding assays are not high-throughput scalable. Here, we demonstrate two Nanoluciferase (Nluc) bioluminescence resonance energy transfer-based ligand binding assays (NanoBRET and NanoBiT/BRET) which provide a sensitive and high-throughput-compatible tool in drug screening efforts. In the described assays, SMO is N-terminally tagged either with full-length nanoluciferase or the partial HiBiT sequence, and subsequently binding of BODIPY-cyclopamine is assessed by quantifying resonance energy transfer between the receptor and the fluorescent ligand. Additionally, the assay allows performing competition binding experiments using commercially available SMO ligands, such as the SMO agonist SAG1.3.
Collapse
|
84
|
Luo Y, Wan G, Zhou X, Wang Q, Zhang Y, Bao J, Cong Y, Zhao Y, Li D. Architecture of Dispatched, a Transmembrane Protein Responsible for Hedgehog Release. Front Mol Biosci 2021; 8:701826. [PMID: 34557519 PMCID: PMC8453165 DOI: 10.3389/fmolb.2021.701826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway is crucial for programmed cell differentiation and proliferation. Dispatched (Disp) is a 12-transmembrane protein that plays a critical role in the Hedgehog (Hh) signaling pathway by releasing the dually lipidated ligand HhN from the membrane, a prerequisite step to the downstream signaling cascade. In this study, we focus on the Disp from water bear, a primitive animal known as the most indestructible on Earth. Using a zebrafish model, we show that the water bear homolog possesses the function of Disp. We have solved its structure to a 6.5-Å resolution using single-particle cryogenic electron microscopy. Consistent with the evolutional conservation of the pathway, the water bear Disp structure is overall similar to the previously reported structures of the fruit fly and human homologs. Although not revealing much detail at this resolution, the water bear Disp shows a different conformation compared to published structures, suggesting that they represent different functional snapshots.
Collapse
Affiliation(s)
- Yitian Luo
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guoyue Wan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuwen Wang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Bao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
85
|
Dalton GD, Oh SH, Tang L, Zhang S, Brown AL, Varadharajan V, Baleanu-Gogonea C, Gogonea V, Pathak P, Brown JM, Diehl AM. Hepatocyte activity of the cholesterol sensor smoothened regulates cholesterol and bile acid homeostasis in mice. iScience 2021; 24:103089. [PMID: 34568800 PMCID: PMC8449244 DOI: 10.1016/j.isci.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol is regulated by at least two transcriptional mechanisms involving sterol-regulatory-element-binding proteins (SREBPs) and liver X receptors (LXRs). Although SREBP and LXR pathways are the predominant mechanisms that sense cholesterol in the endoplasmic reticulum and nucleus to alter sterol-regulated gene expression, evidence suggests cholesterol in plasma membrane can be sensed by proteins in the Hedgehog (Hh) pathway which regulate organ self-renewal and are a morphogenic driver during embryonic development. Cholesterol interacts with the G-protein-coupled receptor Smoothened (Smo), which impacts downstream Hh signaling. Although evidence suggests cholesterol influences Hh signaling, it is not known whether Smo-dependent sterol sensing impacts cholesterol homeostasis in vivo. We examined dietary-cholesterol-induced reorganization of whole-body sterol and bile acid (BA) homeostasis in adult mice with inducible hepatocyte-specific Smo deletion. These studies demonstrate Smo in hepatocytes plays a regulatory role in sensing and feedback regulation of cholesterol balance driven by excess dietary cholesterol.
Collapse
Affiliation(s)
- George D. Dalton
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Seh-Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Linda Tang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Stephanie Zhang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Amanda L. Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Preeti Pathak
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
86
|
Reinisch KM, Prinz WA. Mechanisms of nonvesicular lipid transport. J Cell Biol 2021; 220:211813. [PMID: 33605998 PMCID: PMC7901144 DOI: 10.1083/jcb.202012058] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
We have long known that lipids traffic between cellular membranes via vesicles but have only recently appreciated the role of nonvesicular lipid transport. Nonvesicular transport can be high volume, supporting biogenesis of rapidly expanding membranes, or more targeted and precise, allowing cells to rapidly alter levels of specific lipids in membranes. Most such transport probably occurs at membrane contact sites, where organelles are closely apposed, and requires lipid transport proteins (LTPs), which solubilize lipids to shield them from the aqueous phase during their transport between membranes. Some LTPs are cup like and shuttle lipid monomers between membranes. Others form conduits allowing lipid flow between membranes. This review describes what we know about nonvesicular lipid transfer mechanisms while also identifying many remaining unknowns: How do LTPs facilitate lipid movement from and into membranes, do LTPs require accessory proteins for efficient transfer in vivo, and how is directionality of transport determined?
Collapse
Affiliation(s)
- Karin M Reinisch
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
87
|
Cai E, Zhang J, Ge X. Control of the Hedgehog pathway by compartmentalized PKA in the primary cilium. SCIENCE CHINA-LIFE SCIENCES 2021; 65:500-514. [PMID: 34505970 DOI: 10.1007/s11427-021-1975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.
Collapse
Affiliation(s)
- Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA.
| |
Collapse
|
88
|
Ehring K, Manikowski D, Goretzko J, Froese J, Gude F, Jakobs P, Rescher U, Kirchhefer U, Grobe K. Conserved cholesterol-related activities of Dispatched 1 drive Sonic hedgehog shedding from the cell membrane. J Cell Sci 2021; 135:271842. [PMID: 34308968 PMCID: PMC8403983 DOI: 10.1242/jcs.258672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show that cholesterol export from Disp-deficient cells is reduced, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpression of transgenic Disp or the structurally related protein Patched 1 (Ptc, also known as Ptch1; a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.
Collapse
Affiliation(s)
- Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Jonas Goretzko
- Center for Molecular Biology of Inflammation, Institute for Medical Biochemistry, University of Münster, Von Esmarch Strasse 56, D-48149 Münster, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Ursula Rescher
- Center for Molecular Biology of Inflammation, Institute for Medical Biochemistry, University of Münster, Von Esmarch Strasse 56, D-48149 Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| |
Collapse
|
89
|
Sukalskaia A, Straub MS, Deneka D, Sawicka M, Dutzler R. Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions. Nat Commun 2021; 12:4893. [PMID: 34385445 PMCID: PMC8361169 DOI: 10.1038/s41467-021-25106-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
The Tweety homologs (TTYHs) are members of a conserved family of eukaryotic membrane proteins that are abundant in the brain. The three human paralogs were assigned to function as anion channels that are either activated by Ca2+ or cell swelling. To uncover their unknown architecture and its relationship to function, we have determined the structures of human TTYH1–3 by cryo-electron microscopy. All structures display equivalent features of a dimeric membrane protein that contains five transmembrane segments and an extended extracellular domain. As none of the proteins shows attributes reminiscent of an anion channel, we revisited functional experiments and did not find any indication of ion conduction. Instead, we find density in an extended hydrophobic pocket contained in the extracellular domain that emerges from the lipid bilayer, which suggests a role of TTYH proteins in the interaction with lipid-like compounds residing in the membrane. The human Tweety homologue (TTYH) family of transmembrane proteins have been suggested to act as chloride channels. Here the authors present cryo-EM structures of the 3 human TTYH paralogs that do not display the expected features of an anion channel, and instead appear to interact with lipid-like compounds residing in the membrane; suggesting an involvement in lipid-associated processes.
Collapse
Affiliation(s)
| | - Monique S Straub
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Dawid Deneka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
90
|
Cadena Del Castillo CE, Hannich JT, Kaech A, Chiyoda H, Brewer J, Fukuyama M, Færgeman NJ, Riezman H, Spang A. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nat Commun 2021; 12:4898. [PMID: 34385431 PMCID: PMC8361143 DOI: 10.1038/s41467-021-24995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.
Collapse
Affiliation(s)
| | - J Thomas Hannich
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Hirohisa Chiyoda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
91
|
Morales-Alcala CC, Georgiou IC, Timmis AJ, Riobo-Del Galdo NA. Integral Membrane Protein 2A Is a Negative Regulator of Canonical and Non-Canonical Hedgehog Signalling. Cells 2021; 10:cells10082003. [PMID: 34440772 PMCID: PMC8394137 DOI: 10.3390/cells10082003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The Hedgehog (Hh) receptor PTCH1 and the integral membrane protein 2A (ITM2A) inhibit autophagy by reducing autolysosome formation. In this study, we demonstrate that ITM2A physically interacts with PTCH1; however, the two proteins inhibit autophagic flux independently, since silencing of ITM2A did not prevent the accumulation of LC3BII and p62 in PTCH1-overexpressing cells, suggesting that they provide alternative modes to limit autophagy. Knockdown of ITM2A potentiated PTCH1-induced autophagic flux blockade and increased PTCH1 expression, while ITM2A overexpression reduced PTCH1 protein levels, indicating that it is a negative regulator of PTCH1 non-canonical signalling. Our study also revealed that endogenous ITM2A is necessary for timely induction of myogenic differentiation markers in C2C12 cells since partial knockdown delays the timing of differentiation. We also found that basal autophagic flux decreases during myogenic differentiation at the same time that ITM2A expression increases. Given that canonical Hh signalling prevents myogenic differentiation, we investigated the effect of ITM2A on canonical Hh signalling using GLI-luciferase assays. Our findings demonstrate that ITM2A is a strong negative regulator of GLI transcriptional activity and of GLI1 stability. In summary, ITM2A negatively regulates canonical and non-canonical Hh signalling.
Collapse
Affiliation(s)
- Cintli C. Morales-Alcala
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK; (C.C.M.-A.); (I.C.G.)
| | - Ioanna Ch. Georgiou
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK; (C.C.M.-A.); (I.C.G.)
| | - Alex J. Timmis
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Natalia A. Riobo-Del Galdo
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK; (C.C.M.-A.); (I.C.G.)
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: ; Tel.: +44-0113-34-39184
| |
Collapse
|
92
|
Long T, Liu Y, Qin Y, DeBose-Boyd RA, Li X. Structures of dimeric human NPC1L1 provide insight into mechanisms for cholesterol absorption. SCIENCE ADVANCES 2021; 7:7/34/eabh3997. [PMID: 34407950 PMCID: PMC8373123 DOI: 10.1126/sciadv.abh3997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 05/05/2023]
Abstract
Polytopic Niemann-Pick C1-like 1 (NPC1L1) plays a major role in intestinal absorption of biliary cholesterol, vitamin E (VE), and vitamin K (VK). The drug ezetimibe inhibits NPC1L1-mediated absorption of cholesterol, lowering of circulating levels of low-density lipoprotein cholesterol. Here, we report cryo-electron microscopy structures of human NPC1L1 (hNPC1L1) bound to either cholesterol or a lipid resembling VE. These findings, together with functional assays, reveal that the same intramolecular channel in hNPC1L1 mediates transport of VE and cholesterol. hNPC1L1 exists primarily as a homodimer; dimerization is mediated by aromatic residues within a region of transmembrane helix 2 that exhibits a horizonal orientation in the membrane. Mutation of tryptophan-347 lies in this region disrupts dimerization and the resultant monomeric NPC1L1 exhibits reduced efficiency of cholesterol uptake. These findings identify the oligomeric state of hNPC1L1 as a target for therapies that inhibit uptake of dietary cholesterol and reduce the incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Liu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Qin
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
93
|
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui SF. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. SCIENCE ADVANCES 2021; 7:7/29/eabg3188. [PMID: 34272236 PMCID: PMC8284890 DOI: 10.1126/sciadv.abg3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo-electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.
Collapse
Affiliation(s)
- Miaoqing Hu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yawen Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
94
|
Kothandapani A, Jefcoate CR, Jorgensen JS. Cholesterol Contributes to Male Sex Differentiation Through Its Developmental Role in Androgen Synthesis and Hedgehog Signaling. Endocrinology 2021; 162:6204698. [PMID: 33784378 PMCID: PMC8168945 DOI: 10.1210/endocr/bqab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Anbarasi Kothandapani, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Joan S. Jorgensen, DVM, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| |
Collapse
|
95
|
Chow RY, Jeon US, Levee TM, Kaur G, Cedeno DP, Doan LT, Atwood SX. PI3K Promotes Basal Cell Carcinoma Growth Through Kinase-Induced p21 Degradation. Front Oncol 2021; 11:668247. [PMID: 34268113 PMCID: PMC8276170 DOI: 10.3389/fonc.2021.668247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Basal cell carcinoma (BCC) is a locally invasive epithelial cancer that is primarily driven by the Hedgehog (HH) pathway. Advanced BCCs are a critical subset of BCCs that frequently acquire resistance to Smoothened (SMO) inhibitors and identifying pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify a PI3K pathway expression signature in BCC. Pharmacological inhibition of PI3K activity in BCC cells significantly reduces cell proliferation and HH signaling. However, treatment of Ptch1fl/fl; Gli1-CreERT2 mouse BCCs with the PI3K inhibitor BKM120 results in a reduction of tumor cell growth with no significant effect on HH signaling. Downstream PI3K components aPKC and Akt1 showed a reduction in active protein, whereas their substrate, cyclin-dependent kinase inhibitor p21, showed a concomitant increase in protein stability. Our results suggest that PI3K promotes BCC tumor growth by kinase-induced p21 degradation without altering HH signaling.
Collapse
Affiliation(s)
- Rachel Y Chow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ung Seop Jeon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Taylor M Levee
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Gurleen Kaur
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Daniel P Cedeno
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Linda T Doan
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
96
|
Luo Y, Wan G, Zhang X, Zhou X, Wang Q, Fan J, Cai H, Ma L, Wu H, Qu Q, Cong Y, Zhao Y, Li D. Cryo-EM study of patched in lipid nanodisc suggests a structural basis for its clustering in caveolae. Structure 2021; 29:1286-1294.e6. [PMID: 34174188 DOI: 10.1016/j.str.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The 12-transmembrane protein Patched (Ptc1) acts as a suppressor for Hedgehog (Hh) signaling by depleting sterols in the cytoplasmic membrane leaflet that are required for the activation of downstream regulators. The positive modulator Hh inhibits Ptc1's transporter function by binding to Ptc1 and its co-receptors, which are locally concentrated in invaginated microdomains known as caveolae. Here, we reconstitute the mouse Ptc1 into lipid nanodiscs and determine its structure using single-particle cryoelectron microscopy. The structure is overall similar to those in amphipol and detergents but displays various conformational differences in the transmembrane region. Although most particles show monomers, we observe Ptc1 dimers with distinct interaction patterns and different membrane curvatures, some of which are reminiscent of caveolae. We find that an extramembranous "hand-shake" region rich in hydrophobic and aromatic residues mediates inter-Ptc1 interactions under different membrane curvatures. Our data provide a plausible framework for Ptc1 clustering in the highly curved caveolae.
Collapse
Affiliation(s)
- Yitian Luo
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Guoyue Wan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiang Zhang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuan Zhou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuwen Wang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jialin Fan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liya Ma
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hailong Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai 200032, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yun Zhao
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
97
|
Mechanism and ultrasensitivity in Hedgehog signaling revealed by Patched1 disease mutations. Proc Natl Acad Sci U S A 2021; 118:2006800118. [PMID: 33526656 DOI: 10.1073/pnas.2006800118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.
Collapse
|
98
|
Hamushan M, Cai W, Zhang Y, Ren Z, Du J, Zhang S, Zhao C, Cheng P, Zhang X, Shen H, Han P. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling. Bioact Mater 2021; 6:1563-1574. [PMID: 33294734 PMCID: PMC7691121 DOI: 10.1016/j.bioactmat.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Magnesium alloys are promising biomaterials for orthopedic implants because of their degradability, osteogenic effects, and biocompatibility. Magnesium has been proven to promote distraction osteogenesis. However, its mechanism of promoting distraction osteogenesis is not thoroughly studied. In this work, a high-purity magnesium pin developed and applied in rat femur distraction osteogenesis. Mechanical test, radiological and histological analysis suggested that high-purity magnesium pin can promote distraction osteogenesis and shorten the consolidation time. Further RNA sequencing investigation found that alternative Wnt signaling was activated. In further bioinformatics analysis, it was found that the Hedgehog pathway is the upstream signaling pathway of the alternative Wnt pathway. We found that Ptch protein is a potential target of magnesium and verified by molecular dynamics that magnesium ions can bind to Ptch protein. In conclusion, HP Mg implants have the potential to enhance bone consolidation in the DO application, and this process might be via regulating Ptch protein activating Hedgehog-alternative Wnt signaling.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weijie Cai
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yubo Zhang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zun Ren
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiafei Du
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd, Suzhou, 215513, China
| | - Changli Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Cheng
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaonong Zhang
- Suzhou Origin Medical Technology Co. Ltd, Suzhou, 215513, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Shen
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Pei Han
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
99
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
100
|
Buwaneka P, Ralko A, Liu SL, Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J Lipid Res 2021; 62:100084. [PMID: 33964305 PMCID: PMC8178126 DOI: 10.1016/j.jlr.2021.100084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cholesterol is an essential component of the mammalian plasma membrane involved in diverse cellular processes. Our recent quantitative imaging analysis using ratiometric cholesterol sensors showed that the available cholesterol concentration in the inner leaflet of the plasma membrane (IPM) is low in unstimulated cells and increased in a stimulus-specific manner to trigger cell signaling events. However, the transbilayer distribution of cholesterol in the plasma membrane of mammalian cells remains controversial. Here we report a systematic and rigorous evaluation of basal IPM cholesterol levels in a wide range of mammalian cells with different properties employing cholesterol sensors derived from the D4 domain of the Perfringolysin O toxin and a sterol-transfer protein, Osh4. Results consistently showed that, although basal IPM cholesterol levels vary significantly among cells, they remain significantly lower than cholesterol levels in the outer leaflets. We found that IPM cholesterol levels were particularly low in all tested primary cells. These results support the universality of the low basal IPM cholesterol concentration under physiological conditions. We also report here the presence of sequestered IPM cholesterol pools, which may become available to cytosolic proteins under certain physiological conditions. We hypothesize that these pools may partly account for the low basal level of available IPM cholesterol. In conclusion, we provide new experimental data that confirm the asymmetric transbilayer distribution of the plasma membrane cholesterol, which may contribute to regulation of various cellular signaling processes at the plasma membrane.
Collapse
Affiliation(s)
- Pawanthi Buwaneka
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shu-Lin Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|