51
|
Discovery of a new generation of angiotensin receptor blocking drugs: receptor mechanisms and in silico binding to enzymes relevant to covid-19. Comput Struct Biotechnol J 2022; 20:2091-2111. [PMID: 35432786 PMCID: PMC8994259 DOI: 10.1016/j.csbj.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as “bisartans” is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2+ domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681–686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric “warhead” of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid).
Collapse
|
52
|
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022; 27:molecules27072198. [PMID: 35408597 PMCID: PMC9000494 DOI: 10.3390/molecules27072198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.
Collapse
Affiliation(s)
- Mario S. Valdés-Tresanco
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin 050034, Colombia
| | - Alaín González Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| |
Collapse
|
53
|
Ben Boubaker R, Tiss A, Henrion D, Guissouma H, Chabbert M. Evolutionary information helps understand distinctive features of the angiotensin II receptors AT1 and AT2 in amniota. PLoS Comput Biol 2022; 18:e1009732. [PMID: 35202400 PMCID: PMC8870451 DOI: 10.1371/journal.pcbi.1009732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system. The analysis of protein sequences from different species can reveal interesting trends in the structural and functional evolution of a protein family. Here, we analyze the evolution of two G protein-coupled receptors, AT1 and AT2, which bind the angiotensin II peptide and are important regulators of the cardiovascular system. We show that these receptors underwent a mirror evolution. Specific mutations at, or near, the sodium binding pocket occurred in both AT1 and AT2 during the transition to terrestrial life. We carried out electrostatics computations and molecular dynamics simulations to decipher the details of the sodium binding mode in eel and human receptors, as prototypes of fish and amniota receptors. Our results indicate that sodium binding is kinetically slow but thermodynamically stable. Comparison of the sodium binding modes in eel and human receptors reveals that an unusual mutation in the sodium binding pocket of AT1 is critical for biased signaling of amniota AT1 whereas a mutation in AT2 promotes promiscuity of amniota AT2. In turn, these data indicate that a few mutations at a strategic position (here the sodium binding pocket) are an efficient way to gain functional evolution.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Asma Tiss
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- INSAT de Tunis, Université de Carthage, Carthage, Tunisie
| | - Daniel Henrion
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | | | - Marie Chabbert
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
54
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
55
|
Cryo-EM structures of human bradykinin receptor-G q proteins complexes. Nat Commun 2022; 13:714. [PMID: 35132089 PMCID: PMC8821558 DOI: 10.1038/s41467-022-28399-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
The type 2 bradykinin receptor (B2R) is a G protein-coupled receptor (GPCR) in the cardiovascular system, and the dysfunction of B2R leads to inflammation, hereditary angioedema, and pain. Bradykinin and kallidin are both endogenous peptide agonists of B2R, acting as vasodilators to protect the cardiovascular system. Here we determine two cryo-electron microscopy (cryo-EM) structures of human B2R-Gq in complex with bradykinin and kallidin at 3.0 Å and 2.9 Å resolution, respectively. The ligand-binding pocket accommodates S-shaped peptides, with aspartic acids and glutamates as an anion trap. The phenylalanines at the tail of the peptides induce significant conformational changes in the toggle switch W2836.48, the conserved PIF, DRY, and NPxxY motifs, for the B2R activation. This further induces the extensive interactions of the intracellular loops ICL2/3 and helix 8 with Gq proteins. Our structures elucidate the molecular mechanisms for the ligand binding, receptor activation, and Gq proteins coupling of B2R.
Collapse
|
56
|
Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 2022; 13:487. [PMID: 35078997 PMCID: PMC8789823 DOI: 10.1038/s41467-022-28056-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Signaling-biased ligands acting on G-protein-coupled receptors (GPCRs) differentially activate heterotrimeric G proteins and β-arrestins. Although a wealth of structural knowledge about signaling bias at the GPCR level exists (preferential engagement of a specific transducer), little is known about the bias at the transducer level (different functions mediated by a single transducer), partly due to a poor understanding of GPCR kinase (GRK)-mediated GPCR phosphorylation. Here, we reveal a unique role of the Gq heterotrimer as a determinant for GRK-subtype selectivity that regulates subsequent β-arrestin conformation and function. Using the angiotensin II (Ang II) type-1 receptor (AT1R), we show that β-arrestin recruitment depends on both GRK2/3 and GRK5/6 upon binding of Ang II, but solely on GRK5/6 upon binding of the β-arrestin-biased ligand TRV027. With pharmacological inhibition or genetic loss of Gq, GRK-subtype selectivity and β-arrestin functionality by Ang II is shifted to those of TRV027. Single-molecule imaging identifies relocation of AT1R and GRK5, but not GRK2, to an immobile phase under the Gq-inactive, AT1R-stimulated conditions. These findings uncover a previously unappreciated Gq-regulated mechanism that encodes GRK-subtype selectivity and imparts distinct phosphorylation-barcodes directing downstream β-arrestin functions. GPCR kinases (GRKs) phosphorylate active-form G-protein-coupled receptors (GPCRs). Here, the authors reveal that Gq heterotrimer coupled with the angiotensin II type-1 receptor (AT1R) determines the GRK subtypes recruited to the complex in a microdomain, thus defining subsequent AT1R phosphorylation patterns, β-arrestin conformation and functionality.
Collapse
|
57
|
Zimmermann A, Vu O, Brüser A, Sliwoski G, Marnett LJ, Meiler J, Schöneberg T. Mapping the binding sites of UDP and prostaglandin E2 glyceryl ester in the nucleotide receptor P2Y6. ChemMedChem 2022; 17:e202100683. [PMID: 35034430 PMCID: PMC9305961 DOI: 10.1002/cmdc.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Indexed: 12/02/2022]
Abstract
Cyclooxygenase‐2 catalyzes the biosynthesis of prostaglandins from arachidonic acid and the biosynthesis of prostaglandin glycerol esters (PG‐Gs) from 2‐arachidonoylglycerol. PG‐Gs are mediators of several biological actions such as macrophage activation, hyperalgesia, synaptic plasticity, and intraocular pressure. Recently, the human UDP receptor P2Y6 was identified as a target for the prostaglandin E2 glycerol ester (PGE2‐G). Here, we show that UDP and PGE2‐G are evolutionary conserved endogenous agonists at vertebrate P2Y6 orthologs. Using sequence comparison of P2Y6 orthologs, homology modeling, and ligand docking studies, we proposed several receptor positions participating in agonist binding. Site‐directed mutagenesis and functional analysis of these P2Y6 mutants revealed that both UDP and PGE2‐G share in parts one ligand‐binding site. Thus, the convergent signaling of these two chemically very different agonists has already been manifested in the evolutionary design of the ligand‐binding pocket.
Collapse
Affiliation(s)
- Anne Zimmermann
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Oanh Vu
- Vanderbilt University Department of Chemistry UNITED STATES
| | - Antje Brüser
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Gregory Sliwoski
- Vanderbilt University School of Medicine Department of Biomedical Informatics UNITED STATES
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine Department of Biochemistry UNITED STATES
| | - Jens Meiler
- Leipzig University: Universitat Leipzig Institute of Drug discovery GERMANY
| | - Torsten Schöneberg
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry Johannisallee 30 04103 Leipzig GERMANY
| |
Collapse
|
58
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
59
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
60
|
Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism. Nat Chem Biol 2021; 18:281-288. [PMID: 34937912 DOI: 10.1038/s41589-021-00930-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is a master regulator of lymphocyte egress from the lymph node and an established drug target for multiple sclerosis (MS). Mechanistically, therapeutic S1PR1 modulators activate the receptor yet induce sustained internalization through a potent association with β-arrestin. However, a structural basis of biased agonism remains elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of Gi-bound S1PR1 in complex with S1P, fingolimod-phosphate (FTY720-P) and siponimod (BAF312). In combination with functional assays and molecular dynamics (MD) studies, we reveal that the β-arrestin-biased ligands direct a distinct activation path in S1PR1 through the extensive interplay between the PIF and the NPxxY motifs. Specifically, the intermediate flipping of W2696.48 and the retained interaction between F2656.44 and N3077.49 are the key features of the β-arrestin bias. We further identify ligand-receptor interactions accounting for the S1PR subtype specificity of BAF312. These structural insights provide a rational basis for designing novel signaling-biased S1PR modulators.
Collapse
|
61
|
Jullié D, Valbret Z, Stoeber M. Optical tools to study the subcellular organization of GPCR neuromodulation. J Neurosci Methods 2021; 366:109408. [PMID: 34763022 DOI: 10.1016/j.jneumeth.2021.109408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022]
Abstract
Modulation of neuronal circuit activity is key to information processing in the brain. G protein-coupled receptors (GPCRs), the targets of most neuromodulatory ligands, show extremely diverse expression patterns in neurons and receptors can be localized in various sub-neuronal membrane compartments. Upon activation, GPCRs promote signaling cascades that alter the level of second messengers, drive phosphorylation changes, modulate ion channel function, and influence gene expression, all of which critically impact neuron physiology. Because of its high degree of complexity, this form of interneuronal communication has remained challenging to integrate into our conceptual understanding of brain function. Recent technological advances in fluorescence microscopy and the development of optical biosensors now allow investigating neuromodulation with unprecedented resolution on the level of individual cells. In this review, we will highlight recent imaging techniques that enable determining the precise localization of GPCRs in neurons, with specific focus on the subcellular and nanoscale level. Downstream of receptors, we describe novel conformation-specific biosensors that allow for real-time monitoring of GPCR activation and of distinct signal transduction events in neurons. Applying these new tools has the potential to provide critical insights into the function and organization of GPCRs in neuronal cells and may help decipher the molecular and cellular mechanisms that underlie neuromodulation.
Collapse
Affiliation(s)
- Damien Jullié
- Department of Psychiatry, University of California San Francisco, San Francisco, USA.
| | - Zoé Valbret
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
62
|
Yokoi S, Mitsutake A. Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations. Biophys Rev 2021; 14:221-231. [DOI: 10.1007/s12551-021-00862-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
|
63
|
Bender BJ, Bock A, Nesheva DN, Perry-Hauser NA. Viewpoints on the First Transatlantic GPCR Symposium for Early-Career Investigators. ACS Pharmacol Transl Sci 2021; 4:1705-1711. [PMID: 34661085 PMCID: PMC8506598 DOI: 10.1021/acsptsci.1c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/30/2022]
Abstract
In July 2021, we organized a virtual symposium aimed at early-career investigators (ECIs) in G protein-coupled receptor (GPCR) research: the first Transatlantic ECI GPCR Symposium. Here, we discuss the proceedings of this symposium and the unique networking events with GPCR leaders including the Nobel Laureates Dr. Robert Lefkowitz and Dr. Brian Kobilka.
Collapse
Affiliation(s)
- Brian J. Bender
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94143, United States
| | - Andreas Bock
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association (MDC), Receptor
Signaling Lab, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Desislava N. Nesheva
- University
of Nottingham, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, U.K.
| | - Nicole A. Perry-Hauser
- Department
of Psychiatry, Columbia University Vagelos
College of Physicians and Surgeons, New York, New York 10032, United States
- Division
of Molecular Therapeutics, New York Psychiatric
Institute, New York, New York 10032, United
States
| |
Collapse
|
64
|
Sargunas PR, Spangler JB. Full speed AHEAD in antibody discovery. Nat Chem Biol 2021; 17:1011-1012. [PMID: 34211163 DOI: 10.1038/s41589-021-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul R Sargunas
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
65
|
Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P, Hussain S. Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci 2021; 42:657-674. [PMID: 34270922 DOI: 10.1016/j.tips.2021.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (MPs) are important drug targets across most fields of medicine, but historically have posed a major challenge for drug discovery due to difficulties in producing them in functional forms. We review the state of the art in drug discovery strategies using recombinant multipass MPs, and outline methods to successfully express, stabilize, and formulate them for small-molecule and monoclonal antibody therapeutics development. Advances in structure-based drug design and high-throughput screening are allowing access to previously intractable targets such as ion channels and transporters, propelling the field towards the development of highly specific therapies targeting desired conformations.
Collapse
Affiliation(s)
- Ellen Gulezian
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | | | - Janna Bednenko
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Claudia Zafra
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Yihui Zhang
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Paul Colussi
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Sunyia Hussain
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA.
| |
Collapse
|
66
|
Novel allosteric ligands of the angiotensin receptor AT1R as autoantibody blockers. Proc Natl Acad Sci U S A 2021; 118:2019126118. [PMID: 34380734 DOI: 10.1073/pnas.2019126118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.
Collapse
|
67
|
Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 2021; 12:4721. [PMID: 34354057 PMCID: PMC8342441 DOI: 10.1038/s41467-021-25020-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common proteins targeted by approved drugs. A complete mechanistic elucidation of large-scale conformational transitions underlying the activation mechanisms of GPCRs is of critical importance for therapeutic drug development. Here, we apply a combined computational and experimental framework integrating extensive molecular dynamics simulations, Markov state models, site-directed mutagenesis, and conformational biosensors to investigate the conformational landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor) - a prototypical class A GPCR-activation. Our findings suggest a synergistic transition mechanism for AT1 receptor activation. A key intermediate state is identified in the activation pathway, which possesses a cryptic binding site within the intracellular region of the receptor. Mutation of this cryptic site prevents activation of the downstream G protein signaling and β-arrestin-mediated pathways by the endogenous AngII octapeptide agonist, suggesting an allosteric regulatory mechanism. Together, these findings provide a deeper understanding of AT1 receptor activation at an atomic level and suggest avenues for the design of allosteric AT1 receptor modulators with a broad range of applications in GPCR biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuhua Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
68
|
Rathinaswamy MK, Fleming KD, Dalwadi U, Pardon E, Harris NJ, Yip CK, Steyaert J, Burke JE. HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure 2021; 29:1371-1381.e6. [PMID: 34348129 DOI: 10.1016/j.str.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is considerable interest in developing antibodies as modulators of signaling pathways. One of the most important signaling pathways in higher eukaryotes is the phosphoinositide 3-kinase (PI3K) pathway, which plays fundamental roles in growth, metabolism, and immunity. The class IB PI3K, PI3Kγ, is a heterodimeric complex composed of a catalytic p110γ subunit bound to a p101 or p84 regulatory subunit. PI3Kγ is a critical component in multiple immune signaling processes and is dependent on activation by Ras and G protein-coupled receptors (GPCRs) to mediate its cellular roles. Here we describe the rapid and efficient characterization of multiple PI3Kγ binding single-chain camelid nanobodies using hydrogen-deuterium exchange (HDX) mass spectrometry (MS) for structural and biochemical studies. We identify nanobodies that stimulated lipid kinase activity, block Ras activation, and specifically inhibited p101-mediated GPCR activation. Overall, our work reveals insight into PI3Kγ regulation and identifies sites that may be exploited for therapeutic development.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
69
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, White KM, Zhang Z, Alon A, Schadt H, O'Donnell HR, Lyu J, Rosales R, McGovern BL, Rathnasinghe R, Jangra S, Schotsaert M, Galarneau JR, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021; 373:541-547. [PMID: 34326236 PMCID: PMC8501941 DOI: 10.1126/science.abi4708] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023]
Abstract
Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-René Galarneau
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France.
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
70
|
Effects of Statins on Renin-Angiotensin System. J Cardiovasc Dev Dis 2021; 8:jcdd8070080. [PMID: 34357323 PMCID: PMC8305238 DOI: 10.3390/jcdd8070080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Statins, a class of drugs for lowering serum LDL-cholesterol, have attracted attention because of their wide range of pleiotropic effects. An important but often neglected effect of statins is their role in the renin–angiotensin system (RAS) pathway. This pathway plays an integral role in the progression of several diseases including hypertension, heart failure, and renal disease. In this paper, the role of statins in the blockade of different components of this pathway and the underlying mechanisms are reviewed and new therapeutic possibilities of statins are suggested.
Collapse
|
71
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
72
|
Wellner A, McMahon C, Gilman MSA, Clements JR, Clark S, Nguyen KM, Ho MH, Hu VJ, Shin JE, Feldman J, Hauser BM, Caradonna TM, Wingler LM, Schmidt AG, Marks DS, Abraham J, Kruse AC, Liu CC. Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nat Chem Biol 2021; 17:1057-1064. [PMID: 34168368 DOI: 10.1038/s41589-021-00832-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.
Collapse
Affiliation(s)
- Alon Wellner
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan R Clements
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Sarah Clark
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kianna M Nguyen
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Ming H Ho
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Vincent J Hu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Jung-Eun Shin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Laura M Wingler
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Aaron G Schmidt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA. .,Department of Chemistry, University of California, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
73
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
74
|
Abstract
GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
75
|
Georgiou N, Gkalpinos VK, Katsakos SD, Vassiliou S, Tzakos AG, Mavromoustakos T. Rational Design and Synthesis of AT1R Antagonists. Molecules 2021; 26:2927. [PMID: 34069122 PMCID: PMC8156919 DOI: 10.3390/molecules26102927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertension is one of the most common diseases nowadays and is still the major cause of premature death despite of the continuous discovery of novel therapeutics. The discovery of the Renin Angiotensin System (RAS) unveiled a path to develop efficient drugs to fruitfully combat hypertension. Several compounds that prevent the Angiotensin II hormone from binding and activating the AT1R, named sartans, have been developed. Herein, we report a comprehensive review of the synthetic paths followed for the development of different sartans since the discovery of the first sartan, Losartan.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Vasileios K. Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.G.); (S.D.K.)
| | - Spyridon D. Katsakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.G.); (S.D.K.)
| | - Stamatia Vassiliou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.G.); (S.D.K.)
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
76
|
Structural insights into ligand recognition and activation of angiotensin receptors. Trends Pharmacol Sci 2021; 42:577-587. [PMID: 33985815 DOI: 10.1016/j.tips.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
G protein-coupled angiotensin II receptors, AT1R and AT2R, are integral components of the renin-angiotensin system (RAS) that regulates blood pressure and fluid balance in humans. While AT1R is a well-established target of angiotensin receptor blockers (ARBs) for managing hypertension and a prime system for studying biased signaling, AT2R has been recognized as a promising target against neuropathic pain and lung fibrosis. In this review, we discuss how recent structural advances illuminate ligand-binding modes and subtype selectivity, shared and distinct features of the receptors, their transducer-coupling patterns, and downstream signaling responses. We also underscore the key ATR aspects that require further studies to fully appreciate the mechanistic framework that fine-tunes their cellular and physiological functions, providing untapped potential for drug discovery.
Collapse
|
77
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
78
|
Mannes M, Martin C, Triest S, Pia Dimmito M, Mollica A, Laeremans T, Menet CJ, Ballet S. Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G s Protein-Coupled Receptors for Application in Drug Discovery. Angew Chem Int Ed Engl 2021; 60:10247-10254. [PMID: 33596327 DOI: 10.1002/anie.202100180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
G protein-coupled receptors (GPCRs) represent an important group of membrane proteins that play a central role in modern medicine. Unfortunately, conformational promiscuity hampers full therapeutic exploitation of GPCRs, since the largest population of the receptor will adopt a basal conformation, which subsequently challenges screens for agonist drug discovery programs. Herein, we describe a set of peptidomimetics able to mimic the ability of G proteins in stabilizing the active state of the β2 adrenergic receptor (β2 AR) and the dopamine 1 receptor (D1R). During fragment-based screening efforts, these (un)constrained peptide analogues of the α5 helix in Gs proteins, were able to identify agonism pre-imprinted fragments for the examined GPCRs, and as such, they behave as a generic tool, enabling an engagement in agonist earmarked discovery programs.
Collapse
Affiliation(s)
- Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Sarah Triest
- Confo Therapeutics N.V., Technologiepark-Zwijnaarde 94, 9052, Ghent, Belgium
| | - Marilisa Pia Dimmito
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Toon Laeremans
- Confo Therapeutics N.V., Technologiepark-Zwijnaarde 94, 9052, Ghent, Belgium
| | - Christel J Menet
- Confo Therapeutics N.V., Technologiepark-Zwijnaarde 94, 9052, Ghent, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
79
|
Mannes M, Martin C, Triest S, Pia Dimmito M, Mollica A, Laeremans T, Menet CJ, Ballet S. Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G
s
Protein‐Coupled Receptors for Application in Drug Discovery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morgane Mannes
- Research Group of Organic Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Sarah Triest
- Confo Therapeutics N.V. Technologiepark-Zwijnaarde 94 9052 Ghent Belgium
| | - Marilisa Pia Dimmito
- Research Group of Organic Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
- Department of Pharmacy University “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 31 66100 Chieti Italy
| | - Adriano Mollica
- Department of Pharmacy University “G. d'Annunzio” of Chieti-Pescara Via dei Vestini 31 66100 Chieti Italy
| | - Toon Laeremans
- Confo Therapeutics N.V. Technologiepark-Zwijnaarde 94 9052 Ghent Belgium
| | - Christel J. Menet
- Confo Therapeutics N.V. Technologiepark-Zwijnaarde 94 9052 Ghent Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
80
|
Morgenstern TJ, Colecraft HM. Controlling ion channel trafficking by targeted ubiquitination and deubiquitination. Methods Enzymol 2021; 654:139-167. [PMID: 34120711 DOI: 10.1016/bs.mie.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma membrane-localized ion channels are essential for diverse physiological processes such as neurotransmission, muscle contraction, and osmotic homeostasis. The surface density of such ion channels is a major determinant of their function, and tuning this variable is a powerful way to regulate physiology. Dysregulation of ion channel surface density due to inherited or de novo mutations underlies many serious diseases, and molecules that can correct trafficking deficits are potential therapeutics and useful research tools. We have developed targeted ubiquitination and deubiquitination approaches that enable selective posttranslational down- or up-regulation, respectively, of desired ion channels. The method employs bivalent molecules comprised of an ion-channel-targeted nanobody fused to catalytic domains of either an E3 ubiquitin ligase or a deubiquitinase. Here, we use two examples to provide detailed protocols that illustrate the utility of the approach-rescued surface expression of a trafficking-deficient mutant KV7.1 (KCNQ1) channel that causes long QT syndrome, and selective elimination of the CaV2.2 voltage-gated calcium channel from the plasma membrane using targeted ubiquitination. Important aspects of the approach include having a robust assay to measure ion channel surface density and generating nanobody binders to cytosolic domains or subunits of targeted ion channels. Accordingly, we also review available methods for determining ion channel surface density and nanobody selection.
Collapse
Affiliation(s)
- Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Henry M Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States; Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
81
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
82
|
Fischer TF, Schoeder CT, Zellmann T, Stichel J, Meiler J, Beck-Sickinger AG. Cyclic Analogues of the Chemerin C-Terminus Mimic a Loop Conformation Essential for Activating the Chemokine-like Receptor 1. J Med Chem 2021; 64:3048-3058. [PMID: 33705662 DOI: 10.1021/acs.jmedchem.0c01804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chemokine-like receptor 1 (CMKLR1) is a promising target for treating autoinflammatory diseases, cancer, and reproductive disorders. However, the interaction between CMKLR1 and its protein-ligand chemerin remains uncharacterized, and no drugs targeting this interaction have passed clinical trials. Here, we identify the binding mode of chemerin-9, the C-terminus of chemerin, at the receptor by combining complementary mutagenesis with structure-based modeling. Incorporating our experimental data, we present a detailed model of this binding site, including experimentally confirmed pairwise interactions for the most critical ligand residues: Chemerin-9 residue F8 binds to a hydrophobic pocket in CMKLR1 formed by the extracellular loop (ECL) 2, while F6 interacts with Y2.68, suggesting a turn-like structure. On the basis of this model, we created the first cyclic peptide with nanomolar activity, confirming the overall binding conformation. This constrained agonist mimics the loop conformation adopted by the natural ligand and can serve as a lead compound for future drug design.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Clara T Schoeder
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee37212, United States
| | - Tristan Zellmann
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee37212, United States.,Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| | | |
Collapse
|
83
|
Abstract
Nanobodies, small recombinant binders derived from camelid single chain antibodies, have become widely used tools in a diversity of disciplines related to membrane proteins. They are applied as chaperones in crystallization and blockers or modifiers of protein activity among numerous other applications. Their simple architecture as a single polypeptide chain, in contrast to classical antibodies, enables straightforward cloning, library generation, and recombinant expression. The small diameter and the pointed wedge-like shape of the antigen-binding site underlies binding to hollows and crevices of membrane proteins and renders nanobodies often conformation specific making them a preferred type of chaperone. Here we describe a simple protocol for the recombinant production of nanobodies in E. coli and their purification. We expand the current repertoire of usage further by describing a procedure for enlarging nanobodies on their C-terminal end to generate "macrobodies," without interfering with their original characteristics. These enlarged nanobodies extend the application as a chaperone in crystallography and can serve to increase the mass for small targets in single particle electron cryo-microscopy, a field where nanobodies had so far only limited effect because of their small size.
Collapse
|
84
|
Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals (Basel) 2021; 14:ph14030225. [PMID: 33799973 PMCID: PMC7998264 DOI: 10.3390/ph14030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hemorphins are short peptides produced by the proteolysis of the beta subunit of hemoglobin. These peptides have diverse physiological effects especially in the nervous and the renin-angiotensin systems. Such effects occur through the modulation of a diverse range of proteins including enzymes and receptors. In this review, we focus on pharmacological and functional targeting of G protein-coupled receptors (GPCRs) by hemorphins and their implication in physiology and pathophysiology. Among GPCRs, the opioid receptors constitute the first set of targets of hemorphins with implication in analgesia. Subsequently, several other GPCRs have been reported to be directly or indirectly involved in hemorphins’ action. This includes the receptors for angiotensin II, oxytocin, bombesin, and bradykinin, as well as the human MAS-related G protein-coupled receptor X1. Interestingly, both orthosteric activation and allosteric modulation of GPCRs by hemorphins have been reported. This review links hemorphins with GPCR pharmacology and signaling, supporting the implication of GPCRs in hemorphins’ effects. Thus, this aids a better understanding of the molecular basis of the action of hemorphins and further demonstrates that hemorphin-GPCR axis constitutes a valid target for therapeutic intervention in different systems.
Collapse
|
85
|
The Angiotensin II Type 1(AT1) Receptor and Cardiac Hypertrophy: Did We Have It Wrong All Along? J Cardiovasc Pharmacol 2021; 77:531-535. [PMID: 33657051 DOI: 10.1097/fjc.0000000000000999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT An ongoing issue in cardiac pharmacology is whether angiotensin II has direct growth promoting effects on the heart via the angiotensin II type 1 (AT1) receptor. This question has relevance for whether angiotensin-converting enzyme inhibitors and AT1 receptor blockers offer additional benefit in preventing adverse cardiac remodeling in hypertension. In a recent study, 2 strains of mice were infused with angiotensin II. In both, AT1 receptors were deleted in the heart and conduit vessels, but in one, AT1 receptors were also deleted in resistance vessels. Angiotensin II caused hypertrophy and hypertension in the strain lacking AT1 receptors in the heart and conduit vessels, but not in the strain without AT1 receptors in resistance vessels. This finding supports the conclusion that blood pressure is more important in determining cardiac hypertrophy than direct AT1 activation by angiotensin II, when the two are rapidly and simultaneously introduced. Surprisingly, mice with no cardiac AT1 receptor expression developed ventricular dilation and eccentric hypertrophy with pressure overload, in contrast to wild type mice that exhibited concentric hypertrophy, suggesting that cardiac AT1 receptors protect against high blood pressure. This interpretation revives issues related to β-arrestin-biased signaling and mechanosensitivity of AT1 receptors. Synthetic nanobodies, which are based on the variable regions of camelid-derived heavy chain-only antibodies, could be applied to explore the therapeutic potential of exploiting different activation states of AT1 under stress conditions, such as hypertension and heart failure. At the very least, this experimental approach is likely to reveal new facets of AT1 receptor signaling in the heart.
Collapse
|
86
|
Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci Rep 2021; 11:2751. [PMID: 33531570 PMCID: PMC7854682 DOI: 10.1038/s41598-021-81895-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. Development of vaccines against ETEC is very challenging due to the vast heterogeneity of the ETEC strains. An effective vaccines would have to be multicomponent to provide coverage of over ten ETEC strains with genetic variabilities. There is currently no vaccine licensed to prevent ETEC. Nanobodies are successful new biologics in treating mucosal infectious disease as they recognize conserved epitopes on hypervariable pathogens. Cocktails consisting of multiple nanobodies could provide even broader epitope coverage at a lower cost compared to monoclonal antibodies. Identification of conserved epitopes by nanobodies can also assist reverse engineering of an effective vaccine against ETEC. By screening nanobodies from immunized llamas and a naïve yeast display library against adhesins of colonization factors, we identified single nanobodies that show cross-protective potency against eleven major pathogenic ETEC strains in vitro. Oral administration of nanobodies led to a significant reduction of bacterial colonization in animals. Moreover, nanobody-IgA fusion showed extended inhibitory activity in mouse colonization compared to commercial hyperimmune bovine colostrum product used for prevention of ETEC-induced diarrhea. Structural analysis revealed that nanobodies recognized a highly-conserved epitope within the putative receptor binding region of ETEC adhesins. Our findings support further rational design of a pan-ETEC vaccine to elicit robust immune responses targeting this conserved epitope.
Collapse
|
87
|
Singh KD, Karnik SS. Angiotensin Type 1 Receptor Blockers in Heart Failure. Curr Drug Targets 2021; 21:125-131. [PMID: 31433752 DOI: 10.2174/1389450120666190821152000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Homeostasis in the cardiovascular system is maintained by physiological functions of the Renin Angiotensin Aldosterone System (RAAS). In pathophysiological conditions, over activation of RAAS leads to an increase in the concentration of Angiotensin II (AngII) and over activation of Angiotensin Type 1 Receptor (AT1R), resulting in vasoconstriction, sodium retention and change in myocyte growth. It causes cardiac remodeling in the heart which results in left ventricular hypertrophy, dilation and dysfunction, eventually leading to Heart Failure (HF). Inhibition of RAAS using angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has shown to significantly reduce morbidity and mortality due to HF. ACEi have been shown to have higher drug withdrawal rates due to discomfort when compared to ARBs; therefore, ARBs are the preferred choice of physicians for the treatment of HF in combination with other anti-hypertensive agents. Currently, eight ARBs have been approved by FDA and are clinically used. Even though they bind to the same site of AT1R displacing AngII binding but clinical outcomes are significantly different. In this review, we described the clinical significance of each ARB in the treatment of HF and their clinical outcome.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
88
|
Simões SC, Balico-Silva AL, Parreiras-E-Silva LT, Bitencourt ALB, Bouvier M, Costa-Neto CM. Signal Transduction Profiling of Angiotensin II Type 1 Receptor With Mutations Associated to Atrial Fibrillation in Humans. Front Pharmacol 2021; 11:600132. [PMID: 33424609 PMCID: PMC7786401 DOI: 10.3389/fphar.2020.600132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The AT1 receptor (AT1R) has a major role in the Renin-Angiotensin System, being involved in several physiological events including blood pressure control and electrolyte balance. The AT1R is a member of the G protein coupled receptors (GPCR) family, classically known to couple Gαq and engage β-arrestin recruitment. Both G protein and arrestin signaling pathways are involved in modulation of different downstream kinases. A previous study reported that mutations in the AT1R (A244S and I103T-A244S) were positively correlated with higher risk of atrial fibrillation in men. Based on that report, we aimed to investigate if these mutations, including I103T only, could affect AT1R signal transduction profile, and consequently, implicate in atrial fibrillation outcome. To address that, we engineered an AT1R carrying the above-mentioned mutations, and functionally evaluated different signaling pathways. Phosphokinase profiler array to assess the mutations downstream effects on kinases and kinase substrates phosphorylation levels was used. Our results show that the I103T-A244S mutant receptor presents decreased β-arrestin 2 recruitment, which could lead to a harmful condition of sustained Gαq signaling. Moreover, the phosphokinase profiler array revealed that the same mutation led to downstream modulation of kinase pathways that are linked to physiological responses such as fibrous tissue formation, apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Sarah C Simões
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - André L Balico-Silva
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - André L B Bitencourt
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
89
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
90
|
Esmaile SC, Bezerra KS, de Oliveira Campos DM, da Silva MK, Neto JXL, Manzoni V, Fulco UL, Oliveira JIN. Quantum binding energy features of the drug olmesartan bound to angiotensin type-1 receptors in the therapeutics of stroke. NEW J CHEM 2021. [DOI: 10.1039/d1nj03975j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the binding energies of 105 residues within a 10 Å pocket radius, predicted the energetic relevance of olmesartan regions, and the influence of individual protein segments on OLM -AT1 binding.
Collapse
Affiliation(s)
- Stephany Campanelli Esmaile
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Katyanna Sales Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | | | - Maria Karolaynne da Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - José Xavier Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Vinicius Manzoni
- Instituto de Física, Universidade Federal de Alagoas, 57072-970, Maceio, AL, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| |
Collapse
|
91
|
Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. J Biol Chem 2021; 296:100366. [PMID: 33545176 PMCID: PMC7950324 DOI: 10.1016/j.jbc.2021.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.
Collapse
Affiliation(s)
- András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
92
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
93
|
Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor. Int J Mol Sci 2020; 22:ijms22010209. [PMID: 33379211 PMCID: PMC7795518 DOI: 10.3390/ijms22010209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.
Collapse
|
94
|
Chontzopoulou E, Tzakos AG, Mavromoustakos T. On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules 2020; 26:E12. [PMID: 33375119 PMCID: PMC7792925 DOI: 10.3390/molecules26010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Antagonists of the AT1receptor (AT1R) are beneficial molecules that can prevent the peptide hormone angiotensin II from binding and activating the specific receptor causing hypertension in pathological states. This review article summarizes the multifaced applications of solid and liquid state high resolution nuclear magnetic resonance (NMR) spectroscopy in antihypertensive commercial drugs that act as AT1R antagonists. The 3D architecture of these compounds is explored through 2D NOESY spectroscopy and their interactions with micelles and lipid bilayers are described using solid state 13CP/MAS, 31P and 2H static solid state NMR spectroscopy. Due to their hydrophobic character, AT1R antagonists do not exert their optimum profile on the AT1R. Therefore, various vehicles are explored so as to effectively deliver these molecules to the site of action and to enhance their pharmaceutical efficacy. Cyclodextrins and polymers comprise successful examples of effective drug delivery vehicles, widely used for the delivery of hydrophobic drugs to the active site of the receptor. High resolution NMR spectroscopy provides valuable information on the physical-chemical forces that govern these drug:vehicle interactions, knowledge required to get a deeper understanding on the stability of the formed complexes and therefore the appropriateness and usefulness of the drug delivery system. In addition, it provides valuable information on the rational design towards the synthesis of more stable and efficient drug formulations.
Collapse
Affiliation(s)
- Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
95
|
Sevy AM, Chen MT, Castor M, Sylvia T, Krishnamurthy H, Ishchenko A, Hsieh CM. Structure- and sequence-based design of synthetic single-domain antibody libraries. Protein Eng Des Sel 2020; 33:6042250. [DOI: 10.1093/protein/gzaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-β peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.
Collapse
Affiliation(s)
| | - Ming-Tang Chen
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Michelle Castor
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Tyler Sylvia
- Discovery Biologics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Harini Krishnamurthy
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Andrii Ishchenko
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | | |
Collapse
|
96
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Cournia Z, Mavromoustakos T. Interplay of cholesterol, membrane bilayers and the AT1R: A cholesterol consensus motif on AT1R is revealed. Comput Struct Biotechnol J 2020; 19:110-120. [PMID: 33384858 PMCID: PMC7758360 DOI: 10.1016/j.csbj.2020.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Hypertension, mediated by the Angiotensin II receptor type 1 (AT1R), is still the major cause of premature death despite the discovery of novel therapeutics, highlighting the importance of an in depth understanding of the drug-AT1R recognition mechanisms coupled with the impact of the membrane environment on the interaction of drugs with AT1R. Herein, we examine the interplay of cholesterol-lipid-candesartan and the AT1R using Molecular Dynamics simulations of a model membrane consisting of 60:40 mol%. DPPC:cholesterol, candesartan and the AT1R, mimicking the physiological cholesterol concentration in sarcolemma membranes. The simulations of the model membrane of 60:40 mol%. DPPC:cholesterol were further validated using DOSY NMR experiments. Interestingly, our results suggest a significant role of cholesterol in the AT1R function imposed through a Cholesterol Consensus Motif (CCM) in the receptor, which could be crucial in the drug binding process. Candesartan diffusion towards AT1R through incorporation into lipid bilayers, appears to be retarded by the presence of cholesterol. However, its direct approach towards AT1R may be facilitated through the mobility induced on the N-terminus by the cholesterol binding on the CCM these novel insights could pave the way towards the development of more potent pharmaceutical agents to combat hypertension more effectively.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G. Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
- Corresponding authors.
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Corresponding authors.
| |
Collapse
|
97
|
Anderson SD, Tabassum A, Yeon JK, Sharma G, Santos P, Soong TH, Thu YW, Nies I, Kurita T, Chandler A, Alsamarah A, Kanassatega RS, Luo YL, Botello-Smith WM, Andresen BT. In silico prediction of ARB resistance: A first step in creating personalized ARB therapy. PLoS Comput Biol 2020; 16:e1007719. [PMID: 33237899 PMCID: PMC7725353 DOI: 10.1371/journal.pcbi.1007719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/09/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022] Open
Abstract
Angiotensin II type 1 receptor (AT1R) blockers (ARBs) are among the most prescribed drugs. However, ARB effectiveness varies widely, which may be due to non-synonymous single nucleotide polymorphisms (nsSNPs) within the AT1R gene. The AT1R coding sequence contains over 100 nsSNPs; therefore, this study embarked on determining which nsSNPs may abrogate the binding of selective ARBs. The crystal structure of olmesartan-bound human AT1R (PDB:4ZUD) served as a template to create an inactive apo-AT1R via molecular dynamics simulation (n = 3). All simulations resulted in a water accessible ligand-binding pocket that lacked sodium ions. The model remained inactive displaying little movement in the receptor core; however, helix 8 showed considerable flexibility. A single frame representing the average stable AT1R was used as a template to dock Olmesartan via AutoDock 4.2, MOE, and AutoDock Vina to obtain predicted binding poses and mean Boltzmann weighted average affinity. The docking results did not match the known pose and affinity of Olmesartan. Thus, an optimization protocol was initiated using AutoDock 4.2 that provided more accurate poses and affinity for Olmesartan (n = 6). Atomic models of 103 of the known human AT1R polymorphisms were constructed using the molecular dynamics equilibrated apo-AT1R. Each of the eight ARBs was then docked, using ARB-optimized parameters, to each polymorphic AT1R (n = 6). Although each nsSNP has a negligible effect on the global AT1R structure, most nsSNPs drastically alter a sub-set of ARBs affinity to the AT1R. Alterations within N298 –L314 strongly effected predicted ARB affinity, which aligns with early mutagenesis studies. The current study demonstrates the potential of utilizing in silico approaches towards personalized ARB therapy. The results presented here will guide further biochemical studies and refinement of the model to increase the accuracy of the prediction of ARB resistance in order to increase overall ARB effectiveness. The term "personalized medicine" was coined at the turn of the century, but most medicines currently prescribed are based on disease categories and occasionally racial demographics, not personalized attributes. In cardiovascular medicine, the personalization of medication is minimal, despite the fact that not all patients respond equally to common cardiovascular medications. Here we chose one prominent cardiovascular drug target, the angiotensin receptor, and, using computer modeling, created preliminary models of over 100 known alterations to the angiotensin receptor to determine if the alterations changed the ability of clinically used drugs to interact with the angiotensin receptor. The strength of interaction was compared to the wild-type angiotensin receptor, generating a map predicting which alteration affected which drug(s). It is expected that in the future, sequencing of drug targets can be used to compare a patient’s result to a map similar to what is provided in this manuscript to choose the optimal medication based on the patient’s genetics. Such a process has the potential to facilitate the personalization of current medication therapy.
Collapse
Affiliation(s)
- Shane D. Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Asna Tabassum
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Jae Kyung Yeon
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Garima Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Priscilla Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Tik Hang Soong
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Yin Win Thu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Isaac Nies
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Tomomi Kurita
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Andrew Chandler
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Abdelaziz Alsamarah
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Rhye-Samuel Kanassatega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Yun L. Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| | - Wesley M. Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| | - Bradley T. Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YLL); (WMB-S); (BTA)
| |
Collapse
|
98
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
99
|
Tsiailanis AD, Renziehausen A, Kiriakidi S, Vrettos EI, Markopoulos GS, Sayyad N, Hirmiz B, Aguilar MI, Del Borgo MP, Kolettas E, Widdop RE, Mavromoustakos T, Crook T, Syed N, Tzakos AG. Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid. Free Radic Biol Med 2020; 160:391-402. [PMID: 32822744 DOI: 10.1016/j.freeradbiomed.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor. Maximal surgical resection followed by radiotherapy and concomitant chemotherapy with temozolomide remains the first-line therapy, prolonging the survival of patients by an average of only 2.5 months. There is therefore an urgent need for novel therapeutic strategies to improve clinical outcomes. Reactive oxygen species (ROS) are an important contributor to GBM development. Here, we describe the rational design and synthesis of a stable hybrid molecule tethering two ROS regulating moieties, with the aim of constructing a chemopreventive and anticancer chemical entity that retains the properties of the parent compounds. We utilized the selective AT1R antagonist losartan, leading to the inhibition of ROS levels, and the antioxidant flavonoid quercetin. In GBM cells, we show that this hybrid retains the binding potential of losartan to the AT1R through competition-binding experiments and simultaneously exhibits ROS inhibition and antioxidant capacity similar to native quercetin. In addition, we demonstrate that the hybrid is able to alter the cell cycle distribution of GBM cells, leading to cell cycle arrest and to the induction of cytotoxic effects. Last, the hybrid significantly and selectively reduces cancer cell proliferation and angiogenesis in primary GBM cultures with respect to the isolated parent components or their simple combination, further emphasizing the potential utility of the current hybridization approach in GBM.
Collapse
Affiliation(s)
- Antonis D Tsiailanis
- University of Ioannina, Section of Organic Chemistry and Biochemistry, Department of Chemistry, Ioannina, Greece
| | - Alexander Renziehausen
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Eirinaios I Vrettos
- University of Ioannina, Section of Organic Chemistry and Biochemistry, Department of Chemistry, Ioannina, Greece
| | - Georgios S Markopoulos
- University of Ioannina, School of Medicine, Faculty of Health Sciences, Laboratory of Biology, University Campus, 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Biomedical Research Division, 45115, Ioannina, Greece
| | - Nisar Sayyad
- University of Ioannina, Section of Organic Chemistry and Biochemistry, Department of Chemistry, Ioannina, Greece
| | - Baydaa Hirmiz
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Marie-Isabel Aguilar
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mark P Del Borgo
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Evangelos Kolettas
- University of Ioannina, School of Medicine, Faculty of Health Sciences, Laboratory of Biology, University Campus, 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Biomedical Research Division, 45115, Ioannina, Greece
| | - Robert E Widdop
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Tim Crook
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK.
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK.
| | - Andreas G Tzakos
- University of Ioannina, Section of Organic Chemistry and Biochemistry, Department of Chemistry, Ioannina, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
100
|
Wellner A, McMahon C, Gilman MSA, Clements JR, Clark S, Nguyen KM, Ho MH, Shin JE, Feldman J, Hauser BM, Caradonna TM, Wingler LM, Schmidt AG, Marks DS, Abraham J, Kruse AC, Liu CC. Rapid generation of potent antibodies by autonomous hypermutation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.11.378778. [PMID: 33200136 PMCID: PMC7668743 DOI: 10.1101/2020.11.11.378778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, has poor compatibility with certain antigens ( e . g ., integral membrane proteins), and suffers from self-tolerance and immunodominance, which limit the functional spectrum of antibodies that can be obtained. Here, we describe A utonomous H ypermutation y E ast surf A ce D isplay (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. In AHEAD, antibody fragments are encoded on an error-prone orthogonal DNA replication system, resulting in Saccharomyces cerevisiae populations that continuously mutate surface-displayed antibody repertoires. Simple cycles of yeast culturing and enrichment for antigen binding drive the evolution of high-affinity antibody clones in a readily parallelizable process that takes as little as 2 weeks. We applied AHEAD to generate nanobodies against the SARS-CoV-2 S glycoprotein, a GPCR, and other targets. The SARS-CoV-2 nanobodies, concurrently evolved from an open-source naïve nanobody library in 8 independent experiments, reached subnanomolar affinities through the sequential fixation of multiple mutations over 3-8 AHEAD cycles that saw ∼580-fold and ∼925-fold improvements in binding affinities and pseudovirus neutralization potencies, respectively. These experiments highlight the defining speed, parallelizability, and effectiveness of AHEAD and provide a template for streamlined antibody generation at large with salient utility in rapid response to current and future viral outbreaks.
Collapse
|