51
|
Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, Gutierrez-Beltran E. Stress-related biomolecular condensates in plants. THE PLANT CELL 2023; 35:3187-3204. [PMID: 37162152 PMCID: PMC10473214 DOI: 10.1093/plcell/koad127] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
52
|
Wang J, Li C, Li L, Gao L, Hu G, Zhang Y, Reynolds MP, Zhang X, Jia J, Mao X, Jing R. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1918-1936. [PMID: 37158049 DOI: 10.1111/jipb.13504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1-TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ge Hu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanfei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center, Texcoco, 56237, Mexico
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
53
|
Flynn AJ, Miller K, Codjoe JM, King MR, Haswell ES. Mechanosensitive ion channels MSL8, MSL9, and MSL10 have environmentally sensitive intrinsically disordered regions with distinct biophysical characteristics in vitro. PLANT DIRECT 2023; 7:e515. [PMID: 37547488 PMCID: PMC10400277 DOI: 10.1002/pld3.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Intrinsically disordered protein regions (IDRs) are highly dynamic sequences that rapidly sample a collection of conformations over time. In the past several decades, IDRs have emerged as a major component of many proteomes, comprising ~30% of all eukaryotic protein sequences. Proteins with IDRs function in a wide range of biological pathways and are notably enriched in signaling cascades that respond to environmental stresses. Here, we identify and characterize intrinsic disorder in the soluble cytoplasmic N-terminal domains of MSL8, MSL9, and MSL10, three members of the MscS-like (MSL) family of mechanosensitive ion channels. In plants, MSL channels are proposed to mediate cell and organelle osmotic homeostasis. Bioinformatic tools unanimously predicted that the cytosolic N-termini of MSL channels are intrinsically disordered. We examined the N-terminus of MSL10 (MSL10N) as an exemplar of these IDRs and circular dichroism spectroscopy confirms its disorder. MSL10N adopted a predominately helical structure when exposed to the helix-inducing compound trifluoroethanol (TFE). Furthermore, in the presence of molecular crowding agents, MSL10N underwent structural changes and exhibited alterations to its homotypic interaction favorability. Lastly, interrogations of collective behavior via in vitro imaging of condensates indicated that MSL8N, MSL9N, and MSL10N have sharply differing propensities for self-assembly into condensates, both inherently and in response to salt, temperature, and molecular crowding. Taken together, these data establish the N-termini of MSL channels as intrinsically disordered regions with distinct biophysical properties and the potential to respond uniquely to changes in their physiochemical environment.
Collapse
Affiliation(s)
- Aidan J. Flynn
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- NSF Center for Engineering Mechanobiology, Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biochemistry and BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
| | - Kari Miller
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- NSF Center for Engineering Mechanobiology, Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Jennette M. Codjoe
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- NSF Center for Engineering Mechanobiology, Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Matthew R. King
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Elizabeth S. Haswell
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- NSF Center for Engineering Mechanobiology, Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
54
|
A “smart-sensing” bactericidal protein-based Pickering emulsion. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
55
|
Maruri-Lopez I, Chodasiewicz M. Involvement of small molecules and metabolites in regulation of biomolecular condensate properties. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102385. [PMID: 37348448 DOI: 10.1016/j.pbi.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Biomolecular condensate (BMCs) formation facilitates the grouping of molecules, including proteins, nucleic acids, and small molecules, creating specific microenvironments with particular functions. They are often assembled through liquid-liquid phase separation (LLPS), a phenomenon that arises when specific proteins, nucleic acids, and small molecules demix from the aqueous environment into another phase with different physiochemical properties. BMCs assemble and disassemble in response to external and internal stimuli such as temperature, molecule concentration, ionic strength, pH, and cellular redox state. Likewise, the nature of the regulatory stimuli may affect the lifespan, morphology, and content of BMCs. In humans, compelling evidence points to the critical role of BMCs in diseases. By contrast, the link between BMC formation, stress resistance, and cell survival has not been revealed in plants. Recent studies have pointed out the nascent roles of small molecules in the assembly and dynamics of BMCs; however, this is still an emerging field of study. This review briefly highlights the most significant efforts to identify the molecular mechanisms between small molecules and BMC formation and regulation in plants and other organisms. We then discuss (i) how small molecules exert control over the BMC assembly and dynamics in plants and (ii) how small molecules can influence the formation and material properties of plant BMCs. Finally, we propose novel alternatives that might help to understand the relationship between chemicals and condensation dynamics and their possible application to plant biotechnology.
Collapse
Affiliation(s)
- Israel Maruri-Lopez
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
56
|
Guo G, Wang X, Zhang Y, Li T. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1119-1132. [PMID: 37464880 PMCID: PMC10423696 DOI: 10.3724/abbs.2023131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Phase separation (PS) is an important mechanism underlying the formation of biomolecular condensates. Physiological condensates are associated with numerous biological processes, such as transcription, immunity, signaling, and synaptic transmission. Changes in particular amino acids or segments can disturb the protein's phase behavior and interactions with other biomolecules in condensates. It is thus presumed that variations in the phase-separating-prone domains can significantly impact the properties and functions of condensates. The dysfunction of condensates contributes to a number of pathological processes. Pharmacological perturbation of these condensates is proposed as a promising way to restore physiological states. In this review, we characterize the variations observed in PS proteins that lead to aberrant biomolecular compartmentalization. We also showcase recent advancements in bioinformatics of membraneless organelles (MLOs), focusing on available databases useful for screening PS proteins and describing endogenous condensates, guiding researchers to seek the underlying pathogenic mechanisms of biomolecular condensates.
Collapse
Affiliation(s)
- Gaigai Guo
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Xinxin Wang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Yi Zhang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Tingting Li
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- Key Laboratory for NeuroscienceMinistry of Education/National Health Commission of ChinaPeking UniversityBeijing100191China
| |
Collapse
|
57
|
Hutin S, Kumita JR, Strotmann VI, Dolata A, Ling WL, Louafi N, Popov A, Milhiet PE, Blackledge M, Nanao MH, Wigge PA, Stahl Y, Costa L, Tully MD, Zubieta C. Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3. Proc Natl Acad Sci U S A 2023; 120:e2304714120. [PMID: 37399408 PMCID: PMC10334799 DOI: 10.1073/pnas.2304714120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, Arabidopsis thaliana, LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro. The PrLD contains a poly-glutamine (polyQ) tract, whose length varies across natural Arabidopsis accessions. Here, we use a combination of biochemical, biophysical, and structural techniques to investigate the dilute and condensed phases of the ELF3 PrLD with varying polyQ lengths. We demonstrate that the dilute phase of the ELF3 PrLD forms a monodisperse higher-order oligomer that does not depend on the presence of the polyQ sequence. This species undergoes LLPS in a pH- and temperature-sensitive manner and the polyQ region of the protein tunes the initial stages of phase separation. The liquid phase rapidly undergoes aging and forms a hydrogel as shown by fluorescence and atomic force microscopies. Furthermore, we demonstrate that the hydrogel assumes a semiordered structure as determined by small-angle X-ray scattering, electron microscopy, and X-ray diffraction. These experiments demonstrate a rich structural landscape for a PrLD protein and provide a framework to describe the structural and biophysical properties of biomolecular condensates.
Collapse
Affiliation(s)
- Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Vivien I. Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Anika Dolata
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Wai Li Ling
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Nessim Louafi
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Anton Popov
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Martin Blackledge
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Max H. Nanao
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Philip A. Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979Grossbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476Potsdam, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Luca Costa
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Mark D. Tully
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| |
Collapse
|
58
|
Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, Shi WJ, Wang LJ, Yi MF, Wu J. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37128741 DOI: 10.1111/pce.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by glucose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.
Collapse
Affiliation(s)
- Jia-Hui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Ru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Qiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Lu-Jia Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming-Fang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
59
|
Morishita K, Watanabe K, Naguro I, Ichijo H. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep 2023; 42:112315. [PMID: 37019112 DOI: 10.1016/j.celrep.2023.112315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Biomolecular condensates are membraneless structures formed through phase separation. Recent studies have demonstrated that the material properties of biomolecular condensates are crucial for their biological functions and pathogenicity. However, the phase maintenance of biomolecular condensates in cells remains elusive. Here, we show that sodium ion (Na+) influx regulates the condensate liquidity under hyperosmotic stress. ASK3 condensates have higher fluidity at the high intracellular Na+ concentration derived from extracellular hyperosmotic solution. Moreover, we identified TRPM4 as a cation channel that allows Na+ influx under hyperosmotic stress. TRPM4 inhibition causes the liquid-to-solid phase transition of ASK3 condensates, leading to impairment of the ASK3 osmoresponse. In addition to ASK3 condensates, intracellular Na+ widely regulates the condensate liquidity and aggregate formation of biomolecules, including DCP1A, TAZ, and polyQ-protein, under hyperosmotic stress. Our findings demonstrate that changes in Na+ contribute to the cellular stress response via liquidity maintenance of biomolecular condensates.
Collapse
Affiliation(s)
- Kazuhiro Morishita
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
60
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
61
|
Nam J, Gwon Y. Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145420. [PMID: 37065458 PMCID: PMC10102667 DOI: 10.3389/fnagi.2023.1145420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Biomolecular condensates are subcellular organizations where functionally related proteins and nucleic acids are assembled through liquid-liquid phase separation, allowing them to develop on a larger scale without a membrane. However, biomolecular condensates are highly vulnerable to disruptions from genetic risks and various factors inside and outside the cell and are strongly implicated in the pathogenesis of many neurodegenerative diseases. In addition to the classical view of the nucleation-polymerization process that triggers the protein aggregation from the misfolded seed, the pathologic transition of biomolecular condensates can also promote the aggregation of proteins found in the deposits of neurodegenerative diseases. Furthermore, it has been suggested that several protein or protein-RNA complexes located in the synapse and along the neuronal process are neuron-specific condensates displaying liquid-like properties. As their compositional and functional modifications play a crucial role in the context of neurodegeneration, further research is needed to fully understand the role of neuronal biomolecular condensates. In this article, we will discuss recent findings that explore the pivotal role of biomolecular condensates in the development of neuronal defects and neurodegeneration.
Collapse
Affiliation(s)
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
62
|
Yamashita A, Shichino Y, Fujii K, Koshidaka Y, Adachi M, Sasagawa E, Mito M, Nakagawa S, Iwasaki S, Takao K, Shiina N. ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. iScience 2023; 26:106229. [PMID: 36876121 PMCID: PMC9982275 DOI: 10.1016/j.isci.2023.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Eri Sasagawa
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido 060-0812, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Corresponding author
| |
Collapse
|
63
|
Mountourakis F, Hatzianestis IH, Stavridou S, Bozhkov PV, Moschou PN. Concentrating and sequestering biomolecules in condensates: impact on plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1303-1308. [PMID: 36516452 PMCID: PMC10010603 DOI: 10.1093/jxb/erac497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fanourios Mountourakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | | | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | | |
Collapse
|
64
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
65
|
Montez M, Majchrowska M, Krzyszton M, Bokota G, Sacharowski S, Wrona M, Yatusevich R, Massana F, Plewczynski D, Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J 2023; 42:e112443. [PMID: 36705062 PMCID: PMC9975946 DOI: 10.15252/embj.2022112443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Collapse
Affiliation(s)
- Miguel Montez
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Maria Majchrowska
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ruslan Yatusevich
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ferran Massana
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| |
Collapse
|
66
|
Pantoja CF, Ibáñez de Opakua A, Cima-Omori MS, Zweckstetter M. Determining the Physico-Chemical Composition of Biomolecular Condensates from Spatially-Resolved NMR. Angew Chem Int Ed Engl 2023; 62:e202218078. [PMID: 36847235 DOI: 10.1002/anie.202218078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Liquid-Liquid phase separation has emerged as fundamental process underlying the formation of biomolecular condensates. Insights into the composition and structure of biomolecular condensates is, however, complicated by their molecular complexity and dynamics. Here, we introduce an improved spatially-resolved NMR experiment that enables quantitative analysis of the physico-chemical composition of multi-component biomolecular condensates in equilibrium and label-free. Application of spatially-resolved NMR to condensates formed by the Alzheimer's disease-associated protein Tau demonstrates decreased water content, exclusion of the molecular crowding agent dextran, presence of a specific chemical environment of the small molecule DSS, and ≈150-fold increased concentration of Tau inside the condensate. The results suggest that spatially-resolved NMR can have a major impact in understanding the composition and physical chemistry of biomolecular condensates.
Collapse
Affiliation(s)
- Christian F Pantoja
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| |
Collapse
|
67
|
Phase separation of SGS3 drives siRNA body formation and promotes endogenous gene silencing. Cell Rep 2023; 42:111985. [PMID: 36640363 DOI: 10.1016/j.celrep.2022.111985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The generation of small interfering RNA (siRNA) involves many RNA processing components, including SUPPRESSOR OF GENE SILENCING 3 (SGS3), RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), and DICER-LIKE proteins (DCLs). Nonetheless, how these components are coordinated to produce siRNAs is unclear. Here, we show that SGS3 forms condensates via phase separation in vivo and in vitro. SGS3 interacts with RDR6 and drives it to form siRNA bodies in cytoplasm, which is promoted by SGS3-targeted RNAs. Disrupting SGS3 phase separation abrogates siRNA body assembly and siRNA biogenesis, whereas coexpression of SGS3 and RDR6 induces siRNA body formation in tobacco and yeast cells. Dysfunction in translation and mRNA decay increases the number of siRNA bodies, whereas DCL2/4 mutations enhance their size. Purification of SGS3 condensates identifies numerous RNA-binding proteins and siRNA processing components. Together, our findings reveal that SGS3 phase separation-mediated formation of siRNA bodies is essential for siRNA production and gene silencing.
Collapse
|
68
|
Pintado-Grima C, Santos J, Iglesias V, Manglano-Artuñedo Z, Pallarès I, Ventura S. Exploring cryptic amyloidogenic regions in prion-like proteins from plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1060410. [PMID: 36726678 PMCID: PMC9885169 DOI: 10.3389/fpls.2022.1060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms' regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentín Iglesias
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona Centre for International Health Research (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zoe Manglano-Artuñedo
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarès
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
69
|
Ginell GM, Holehouse AS. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Methods Mol Biol 2023; 2563:95-116. [PMID: 36227469 DOI: 10.1007/978-1-0716-2663-4_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular organization is determined by a combination of membrane-bound and membrane-less biomolecular assemblies that range from clusters of tens of molecules to micrometer-sized cellular bodies. Over the last decade, membrane-less assemblies have come to be referred to as biomolecular condensates, reflecting their ability to condense specific molecules with respect to the remainder of the cell. In many cases, the physics of phase transitions provides a conceptual framework and a mathematical toolkit to describe the assembly, maintenance, and dissolution of biomolecular condensates. Among the various quantitative and qualitative models applied to understand intracellular phase transitions, the stickers-and-spacers framework offers an intuitive yet rigorous means to map biomolecular sequences and structure to the driving forces needed for higher-order assembly. This chapter introduces the fundamental concepts behind the stickers-and-spacers model, considers its application to different biological systems, and discusses limitations and misconceptions around the model.
Collapse
Affiliation(s)
- Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
70
|
Couée I. Perspectives in Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:429-444. [PMID: 36944892 DOI: 10.1007/978-1-0716-3044-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
State-of-the-art collections of strategies, approaches, and methods are immediately useful for ongoing characterizations or for novel discoveries in the scientific field of plant abiotic stress signaling. It must however be kept in mind that, in the future, these strategies, approaches, and methods will be facing a number of increasingly complex issues. The development of the necessary confrontation of laboratory-based knowledge on abiotic stress signaling mechanisms with real-life in natura situations of plant-stress interactions involves at least five levels of complexity: (i) plant biodiversity, (ii) the spatio-temporal heterogeneity of stress-related parameters, (iii) the unknowns of future stress-related constraints, (iv) the influence of biotic interactions, (v) the crosstalk between various signaling pathways and their final integration into physiological responses. These complexities are major bottlenecks for assessing the evolutionary, ecological, and agronomical relevance of abiotic stress signaling studies. All of the presently-described strategies, approaches, and methods will have to be gradually complemented with the development of real-time and in natura tools, with systematic application of mathematical modeling to complex interactions and with further research on the impact of stress memory mechanisms on long-term responses.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.
| |
Collapse
|
71
|
Couée I. Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:3-22. [PMID: 36944870 DOI: 10.1007/978-1-0716-3044-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10-20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.
| |
Collapse
|
72
|
Cheng SLH, Wu HW, Xu H, Singh RM, Yao T, Jang IC, Chua NH. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence. THE NEW PHYTOLOGIST 2022; 236:1779-1795. [PMID: 36093737 DOI: 10.1111/nph.18478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The mediator complex is highly conserved in eukgaryotes and is integral for transcriptional responses. Mediator subunits associate with signal-responsive transcription factors (TF) to activate expression of specific signal-responsive genes. As the key TF of Arabidopsis thaliana senescence, ORESARA1 (ORE1) is required for nitrogen deficiency (-N) induced senescence; however, the mediator subunit that associates with ORE1 remains unknown. Here, we show that Arabidopsis MED19a associates with ORE1 to activate -N senescence-responsive genes. Disordered MED19a forms inducible nuclear condensates under -N that is regulated by decreasing MED19a lysine acetylation. MED19a carboxyl terminus (cMED19a) harbors a mixed-charged intrinsically disordered region (MC-IDR) required for ORE1 interaction and liquid-liquid phase separation (LLPS). Plant and human cMED19 are sufficient to form heterotypic condensates with ORE1. Human cMED19 MC-IDR, but not yeast cMED19 IDR, partially complements med19a suggesting functional conservation in evolutionarily distant eukaryotes. Phylogenetic analysis of eukaryotic cMED19 revealed that the MC-IDR could arise through convergent evolution. Our result of MED19 MC-IDR suggests that plant MED19 is regulated by phase separation during stress responses.
Collapse
Affiliation(s)
- Steven Le Hung Cheng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543, Singapore
| | | | - Haiying Xu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Reuben Manjit Singh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Tao Yao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biochemistry, School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 Create Way, #03-06/07/8 Research Wing, Singapore, 138602, Singapore
| |
Collapse
|
73
|
Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat Chem Biol 2022; 18:1361-1369. [DOI: 10.1038/s41589-022-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
|
74
|
Burkart RC, Eljebbawi A, Stahl Y. Come together now: Dynamic body-formation of key regulators integrates environmental cues in plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:1052107. [PMID: 36452084 PMCID: PMC9702078 DOI: 10.3389/fpls.2022.1052107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants as sessile organisms are constantly exposed to changing environmental conditions, challenging their growth and development. Indeed, not only above-ground organs but also the underground root system must adapt accordingly. Consequently, plants respond to these constraints at a gene-regulatory level to ensure their survival and well-being through key transcriptional regulators involved in different developmental processes. Recently, intrinsically disordered domains within these regulators are emerging as central nodes necessary not only for interactions with other factors but also for their partitioning into biomolecular condensates, so-called bodies, possibly driven by phase separation. Here, we summarize the current knowledge about body-forming transcriptional regulators important for plant development and highlight their functions in a possible environmental context. In this perspective article, we discuss potential mechanisms for the formation of membrane-less bodies as an efficient and dynamic program needed for the adaptation to external cues with a particular focus on the Arabidopsis root. Hereby, we aim to provide a perspective for future research on transcriptional regulators to investigate body formation as an expeditious mechanism of plant-environment interactions.
Collapse
Affiliation(s)
- Rebecca C. Burkart
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ali Eljebbawi
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
75
|
Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries CM, Svergun DI, Betzel C, Morris RJ, Kragler F, Kehr J. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD. J Biol Chem 2022; 298:102631. [PMID: 36273579 PMCID: PMC9679465 DOI: 10.1016/j.jbc.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
In higher plants, long-distance RNA transport via the phloem is crucial for communication between distant plant tissues to align development with stress responses and reproduction. Several recent studies suggest that specific RNAs are among the potential long-distance information transmitters. However, it is yet not well understood how these RNAs enter the phloem stream, how they are transported, and how they are released at their destination. It was proposed that phloem RNA-binding proteins facilitate RNA translocation. In the present study, we characterized two orthologs of the phloem-associated RNA chaperone-like (PARCL) protein from Arabidopsis thaliana and Brassica napus at functional and structural levels. Microscale thermophoresis showed that these phloem-abundant proteins can bind a broad spectrum of RNAs and show RNA chaperone activity in FRET-based in vitro assays. Our SAXS experiments revealed a high degree of disorder, typical for RNA-binding proteins. In agroinfiltrated tobacco plants, eYFP-PARCL proteins mainly accumulated in nuclei and nucleoli and formed cytosolic and nuclear condensates. We found that formation of these condensates was impaired by tyrosine-to-glutamate mutations in the predicted prion-like domain (PLD), while C-terminal serine-to-glutamate mutations did not affect condensation but reduced RNA binding and chaperone activity. Furthermore, our in vitro experiments confirmed phase separation of PARCL and colocalization of RNA with the condensates, while mutation as well as phosphorylation of the PLD reduced phase separation. Together, our results suggest that RNA binding and condensate formation of PARCL can be regulated independently by modification of the C-terminus and/or the PLD.
Collapse
Affiliation(s)
- Anna Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany,For correspondence: Anna Ostendorp
| | - Steffen Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Zoé Chaudron
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Lukas Wolffram
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Khadija Rombi
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Linn von Pein
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Julia Kehr
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| |
Collapse
|
76
|
Lasker K, Boeynaems S, Lam V, Scholl D, Stainton E, Briner A, Jacquemyn M, Daelemans D, Deniz A, Villa E, Holehouse AS, Gitler AD, Shapiro L. The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems. Nat Commun 2022; 13:5643. [PMID: 36163138 PMCID: PMC9512792 DOI: 10.1038/s41467-022-33221-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Intracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material properties of these condensates are determined by a balance between attractive and repulsive forces mediated by a helical oligomerization domain and an expanded disordered region, respectively. A series of PopZ mutants disrupting this balance results in condensates that span the material properties spectrum, from liquid to solid. A narrow range of condensate material properties supports proper cell division, linking emergent properties to organismal fitness. We use these insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in human cells.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinson Lam
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Emma Stainton
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ashok Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Villa
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
77
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
78
|
Matsui A, Todaka D, Tanaka M, Mizunashi K, Takahashi S, Sunaoshi Y, Tsuboi Y, Ishida J, Bashir K, Kikuchi J, Kusano M, Kobayashi M, Kawaura K, Seki M. Ethanol induces heat tolerance in plants by stimulating unfolded protein response. PLANT MOLECULAR BIOLOGY 2022; 110:131-145. [PMID: 35729482 DOI: 10.1007/s11103-022-01291-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/26/2022] [Indexed: 05/24/2023]
Abstract
Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.
Collapse
Affiliation(s)
- Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Todaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kayoko Mizunashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuji Sunaoshi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Yuuri Tsuboi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
79
|
Krzyszton M, Yatusevich R, Wrona M, Sacharowski SP, Adamska D, Swiezewski S. Single seeds exhibit transcriptional heterogeneity during secondary dormancy induction. PLANT PHYSIOLOGY 2022; 190:211-225. [PMID: 35670742 PMCID: PMC9438484 DOI: 10.1093/plphys/kiac265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Seeds are highly resilient to the external environment, which allows plants to persist in unpredictable and unfavorable conditions. Some plant species have adopted a bet-hedging strategy to germinate a variable fraction of seeds in any given condition, and this could be explained by population-based threshold models. Here, in the model plant Arabidopsis (Arabidopsis thaliana), we induced secondary dormancy (SD) to address the transcriptional heterogeneity among seeds that leads to binary germination/nongermination outcomes. We developed a single-seed RNA-seq strategy that allowed us to observe a reduction in seed transcriptional heterogeneity as seeds enter stress conditions, followed by an increase during recovery. We identified groups of genes whose expression showed a specific pattern through a time course and used these groups to position the individual seeds along the transcriptional gradient of germination competence. In agreement, transcriptomes of dormancy-deficient seeds (mutant of DELAY OF GERMINATION 1) showed a shift toward higher values of the germination competence index. Interestingly, a significant fraction of genes with variable expression encoded translation-related factors. In summary, interrogating hundreds of single-seed transcriptomes during SD-inducing treatment revealed variability among the transcriptomes that could result from the distribution of population-based sensitivity thresholds. Our results also showed that single-seed RNA-seq is the method of choice for analyzing seed bet-hedging-related phenomena.
Collapse
Affiliation(s)
| | | | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Dorota Adamska
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | | |
Collapse
|
80
|
Seed-to-Seedling Transition: Novel Aspects. PLANTS 2022; 11:plants11151988. [PMID: 35956466 PMCID: PMC9370423 DOI: 10.3390/plants11151988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Transition from seed to seedling represents a critical stage in plants’ life cycles. This process includes three significant events in the seeds: (i) tissue hydration, (ii) the mobilization of reserve nutrients, and (iii) the activation of metabolic activity. Global metabolic rearrangements lead to the initiation of radicle growth and the resumption of vegetative development. It requires massive reprogramming of the transcriptome, proteome, metabolome, and attendant signaling pathways, resulting in the silencing of seed-maturation genes and the activation of vegetative growth genes. This Special Issue discusses the mechanisms of genetic, epigenetic, and hormonal switches during seed-to-seedling transitions. Detailed information has also been covered regarding the influence of germination features on seedling establishment.
Collapse
|
81
|
Wang H, Zhou X, Liu C, Li W, Guo W. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC PLANT BIOLOGY 2022; 22:357. [PMID: 35869418 PMCID: PMC9308338 DOI: 10.1186/s12870-022-03748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding β-1,3-glucanase, in cotton seed germination. RESULTS GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
82
|
Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr SK, Wildermuth MC, Chen T, MacMicking JD, He SY. Increasing the resilience of plant immunity to a warming climate. Nature 2022; 607:339-344. [PMID: 35768511 PMCID: PMC9279160 DOI: 10.1038/s41586-022-04902-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Christian Danve M Castroverde
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Richard Hilleary
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Adam Seroka
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Reza Sohrabi
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Diana Medina-Yerena
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Bethany Huot
- Department of Biology, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharon K Marr
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
83
|
A proteostasis network safeguards the chloroplast proteome. Essays Biochem 2022; 66:219-228. [PMID: 35670042 PMCID: PMC9400067 DOI: 10.1042/ebc20210058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Several protein homeostasis (proteostasis) pathways safeguard the integrity of thousands of proteins that localize in plant chloroplasts, the indispensable organelles that perform photosynthesis, produce metabolites, and sense environmental stimuli. In this review, we discuss the latest efforts directed to define the molecular process by which proteins are imported and sorted into the chloroplast. Moreover, we describe the recently elucidated protein folding and degradation pathways that modulate the levels and activities of chloroplast proteins. We also discuss the links between the accumulation of misfolded proteins and the activation of signalling pathways that cope with folding stress within the organelle. Finally, we propose new research directions that would help to elucidate novel molecular mechanisms to maintain chloroplast proteostasis.
Collapse
|
84
|
Oda Y, Shapiro MM, Lewis NM, Zhong X, Huse HK, Zhong W, Bruce JE, Manoil C, Harwood CS. CsrA-Controlled Proteins Reveal New Dimensions of Acinetobacter baumannii Desiccation Tolerance. J Bacteriol 2022; 204:e0047921. [PMID: 35285725 PMCID: PMC9017300 DOI: 10.1128/jb.00479-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Madelyn M. Shapiro
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| | - Nathan M. Lewis
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Xuefei Zhong
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Holly K. Huse
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Weizhi Zhong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
85
|
Guan B, Xue HW. Arabidopsis AUTOPHAGY-RELATED3 (ATG3) facilitates the liquid-liquid phase separation of ATG8e to promote autophagy. Sci Bull (Beijing) 2022; 67:350-354. [PMID: 36546085 DOI: 10.1016/j.scib.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Bin Guan
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
86
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|
87
|
Surridge C. Phase separation switching. NATURE PLANTS 2022; 8:12. [PMID: 34916601 DOI: 10.1038/s41477-021-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
88
|
Live imaging Arabidopsis thaliana embryos under different hydration conditions. STAR Protoc 2021; 2:101025. [PMID: 34977672 PMCID: PMC8683761 DOI: 10.1016/j.xpro.2021.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the ecological and agronomical importance of seed germination, how seeds integrate environmental signals to trigger germination remains enigmatic. Recently we reported that a protein called FLOE1 is involved in sensing and responding to water availability during germination. Here, we present a live-imaging protocol to assess the subcellular localization of a protein of interest during imbibition of desiccated Arabidopsis thaliana seeds with the goal of understanding protein dynamics during the early stages of water uptake. For complete details on the use and execution of this profile, please refer to Dorone et al. (2021).
Collapse
|
89
|
Holehouse AS, Ginell GM, Griffith D, Böke E. Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates. Biochemistry 2021; 60:3566-3581. [PMID: 34784177 PMCID: PMC8638251 DOI: 10.1021/acs.biochem.1c00465] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Indexed: 12/12/2022]
Abstract
In immature oocytes, Balbiani bodies are conserved membraneless condensates implicated in oocyte polarization, the organization of mitochondria, and long-term organelle and RNA storage. In Xenopus laevis, Balbiani body assembly is mediated by the protein Velo1. Velo1 contains an N-terminal prion-like domain (PLD) that is essential for Balbiani body formation. PLDs have emerged as a class of intrinsically disordered regions that can undergo various different types of intracellular phase transitions and are often associated with dynamic, liquid-like condensates. Intriguingly, the Velo1 PLD forms solid-like assemblies. Here we sought to understand why Velo1 phase behavior appears to be biophysically distinct from that of other PLD-containing proteins. Through bioinformatic analysis and coarse-grained simulations, we predict that the clustering of aromatic residues and the amino acid composition of residues between aromatics can influence condensate material properties, organization, and the driving forces for assembly. To test our predictions, we redesigned the Velo1 PLD to test the impact of targeted sequence changes in vivo. We found that the Velo1 design with evenly spaced aromatic residues shows rapid internal dynamics, as probed by fluorescent recovery after photobleaching, even when recruited into Balbiani bodies. Our results suggest that Velo1 might have been selected in evolution for distinctly clustered aromatic residues to maintain the structure of Balbiani bodies in long-lived oocytes. In general, our work identifies several tunable parameters that can be used to augment the condensate material state, offering a road map for the design of synthetic condensates.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Garrett M. Ginell
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Daniel Griffith
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Elvan Böke
- Centre
for Genomic Regulation (CRG), The Barcelona
Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08002, Spain
| |
Collapse
|
90
|
Ginsawaeng O, Heise C, Sangwan R, Karcher D, Hernández-Sánchez IE, Sampathkumar A, Zuther E. Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers. Biomolecules 2021; 11:biom11121770. [PMID: 34944414 PMCID: PMC8698616 DOI: 10.3390/biom11121770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
LEA proteins are involved in plant stress tolerance. In Arabidopsis, the LEA_4 Pfam group is the biggest group with the majority of its members being expressed in dry seeds. To assess subcellular localization in vivo, we investigated 11 seed-expressed LEA_4 proteins in embryos dissected from dry seeds expressing LEA_4 fusion proteins under its native promoters with the Venus fluorescent protein (proLEA_4::LEA_4:Venus). LEA_4 proteins were shown to be localized in the endoplasmic reticulum, nucleus, mitochondria, and plastids. LEA9, in addition to the nucleus, was also found in cytoplasmic condensates in dry seeds dependent on cellular hydration level. Most investigated LEA_4 proteins were detected in 4-d-old seedlings. In addition, we assessed bioinformatic tools for predicting subcellular localization and promoter motifs of 11 seed-expressed LEA_4 proteins. Ratiometric bimolecular fluorescence complementation assays showed that LEA7, LEA29, and LEA48 form homodimers while heterodimers were formed between LEA7-LEA29 and LEA42-LEA48 in tobacco leaves. Interestingly, LEA48 homodimers and LEA42-LEA48 heterodimers formed droplets structures with liquid-like behavior. These structures, along with LEA9 cytoplasmic condensates, may have been formed through liquid-liquid phase separation. These findings suggest possible important roles of LLPS for LEA protein functions.
Collapse
|
91
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
92
|
Sankaranarayanan M, Emenecker RJ, Wilby EL, Jahnel M, Trussina IREA, Wayland M, Alberti S, Holehouse AS, Weil TT. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev Cell 2021; 56:2886-2901.e6. [PMID: 34655524 PMCID: PMC8555633 DOI: 10.1016/j.devcel.2021.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marcus Jahnel
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irmela R E A Trussina
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Matt Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
93
|
Smolikova G, Strygina K, Krylova E, Leonova T, Frolov A, Khlestkina E, Medvedev S. Transition from Seeds to Seedlings: Hormonal and Epigenetic Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1884. [PMID: 34579418 PMCID: PMC8467299 DOI: 10.3390/plants10091884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Strygina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Ekaterina Krylova
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
94
|
Abstract
Seeds survive in a low-hydrated state and germinate upon water exposure. In a recent issue of Cell, Dorone et al. describe the prion-like protein FLOE1 and its role in inhibiting seeds' response to low water levels. Upon hydration, FLOE1 undergoes phase separation from the cytoplasm into gel-like droplets.
Collapse
Affiliation(s)
- Steve Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH UK.
| |
Collapse
|