51
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
52
|
Suenami S, Miyazaki R, Kubo T. Detection of Phospholipase C Activity in the Brain Homogenate from the Honeybee. J Vis Exp 2018. [PMID: 30272662 DOI: 10.3791/58173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The honeybee is a model organism for evaluating complex behaviors and higher brain function, such as learning, memory, and division of labor. The mushroom body (MB) is a higher brain center proposed to be the neural substrate of complex honeybee behaviors. Although previous studies identified genes and proteins that are differentially expressed in the MBs and other brain regions, the activities of the proteins in each region are not yet fully understood. To reveal the functions of these proteins in the brain, pharmacologic analysis is a feasible approach, but it is first necessary to confirm that pharmacologic manipulations indeed alter the protein activity in these brain regions. We previously identified a higher expression of genes encoding phospholipase C (PLC) in the MBs than in other brain regions, and pharmacologically assessed the involvement of PLC in honeybee behavior. In that study, we biochemically tested two pharmacologic agents and confirmed that they decreased PLC activity in the MBs and other brain regions. Here, we present a detailed description of how to detect PLC activity in honeybee brain homogenate. In this assay system, homogenates derived from different brain regions are reacted with a synthetic fluorogenic substrate, and fluorescence resulting from PLC activity is quantified and compared between brain regions. We also describe our evaluation of the inhibitory effects of certain drugs on PLC activity using the same system. Although this system is likely affected by other endogenous fluorescence compounds and/or the absorbance of the assay components and tissues, the measurement of PLC activity using this system is safer and easier than that using the traditional assay, which requires radiolabeled substrates. The simple procedure and manipulations allow us to examine PLC activity in the brains and other tissues of honeybees involved in different social tasks.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology; Department of Biological Sciences, Graduate School of Science, The University of Tokyo;
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
53
|
Eisler SA, Curado F, Link G, Schulz S, Noack M, Steinke M, Olayioye MA, Hausser A. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 2018; 7:35907. [PMID: 30028295 PMCID: PMC6070338 DOI: 10.7554/elife.35907] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that is required for the structural integrity and function of the Golgi complex. Despite its importance in the regulation of Golgi function, the molecular mechanisms regulating PKD activity are still incompletely understood. Using the genetically encoded PKD activity reporter G-PKDrep we now uncover a Rho signaling network comprising GEF-H1, the RhoGAP DLC3, and the Rho effector PLCε that regulate the activation of PKD at trans-Golgi membranes. We further show that this molecular network coordinates the formation of TGN-derived Rab6-positive transport carriers delivering cargo for localized exocytosis at focal adhesions.
Collapse
Affiliation(s)
- Stephan A Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Filipa Curado
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Schulz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Melanie Noack
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Maren Steinke
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
54
|
Compartmentalized cyclic nucleotides have opposing effects on regulation of hypertrophic phospholipase Cε signaling in cardiac myocytes. J Mol Cell Cardiol 2018; 121:51-59. [PMID: 29885334 DOI: 10.1016/j.yjmcc.2018.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/12/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
In cardiac myocytes activation of an exchange factor activated by cAMP (Epac) leads to activation of phospholipase Cε (PLCε)-dependent hydrolysis of phosphatidylinositol 4-phosphate (PI4P) in the Golgi apparatus a process critical for development of cardiac hypertrophy. Here we show that β-adrenergic receptor (βAR) stimulation does not stimulate this pathway in the presence of the broad spectrum phosphodiesterase (PDE) inhibitor IBMX, but selective PDE3 inhibition revealed βAR-dependent PI4P depletion. On the other hand, selective inhibition of PDE2 or PDE9A blocked endothelin-1 (ET-1) and cAMP-dependent PI4P hydrolysis by PLCε. Direct activation of protein kinase A (PKA), protein kinase G (PKG), or the atrial natriuretic factor (ANF) receptor abolished PI4P hydrolysis in response to multiple upstream stimuli. These results reveal distinct pools of cyclic nucleotides that either inhibit PLCε at the Golgi through PKA/PKG, or activate PLCε at the Golgi through Epac. These data together reveal a new mechanism by which ANF and selective PDE inhibitors can protect against cardiac hypertrophy.
Collapse
|
55
|
Madukwe JC, Garland-Kuntz EE, Lyon AM, Smrcka AV. G protein βγ subunits directly interact with and activate phospholipase Cϵ. J Biol Chem 2018. [PMID: 29535186 DOI: 10.1074/jbc.ra118.002354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C (PLC) enzymes hydrolyze membrane phosphatidylinositol 4,5 bisphosphate (PIP2) and regulate Ca2+ and protein kinase signaling in virtually all mammalian cell types. Chronic activation of the PLCϵ isoform downstream of G protein-coupled receptors (GPCRs) contributes to the development of cardiac hypertrophy. We have previously shown that PLCϵ-catalyzed hydrolysis of Golgi-associated phosphatidylinositol 4-phosphate (PI4P) in cardiac myocytes depends on G protein βγ subunits released upon stimulation with endothelin-1. PLCϵ binds and is directly activated by Ras family small GTPases, but whether they directly interact with Gβγ has not been demonstrated. To identify PLCϵ domains that interact with Gβγ, here we designed various single substitutions and truncations of WT PLCϵ and tested them for activation by Gβγ in transfected COS-7 cells. Deletion of only a single domain in PLCϵ was not sufficient to completely block its activation by Gβγ, but blocked activation by Ras. Simultaneous deletion of the C-terminal RA2 domain and the N-terminal CDC25 and cysteine-rich domains completely abrogated PLCϵ activation by Gβγ, but activation by the GTPase Rho was retained. In vitro reconstitution experiments further revealed that purified Gβγ directly interacts with a purified fragment of PLCϵ (PLCϵ-PH-RA2) and increases PIP2 hydrolysis. Deletion of the RA2 domain decreased Gβγ binding and eliminated Gβγ stimulation of PIP2 hydrolysis. These results provide first evidence that Gβγ directly interacts with PLCϵ and yield insights into the mechanism by which βγ subunits activate PLCϵ.
Collapse
Affiliation(s)
- Jerry C Madukwe
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14267.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | - Angeline M Lyon
- Department of Chemistry Purdue University, West Lafayette, Indiana 47907, and
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
56
|
Cil O, Perwad F. Monogenic Causes of Proteinuria in Children. Front Med (Lausanne) 2018; 5:55. [PMID: 29594119 PMCID: PMC5858124 DOI: 10.3389/fmed.2018.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
Glomerular disease is a common cause for proteinuria and chronic kidney disease leading to end-stage renal disease requiring dialysis or kidney transplantation in children. Nephrotic syndrome in children is diagnosed by the presence of a triad of proteinuria, hypoalbuminemia, and edema. Minimal change disease is the most common histopathological finding in children and adolescents with nephrotic syndrome. Focal segmental sclerosis is also found in children and is the most common pathological finding in patients with monogenic causes of nephrotic syndrome. Current classification system for nephrotic syndrome is based on response to steroid therapy as a majority of patients develop steroid sensitive nephrotic syndrome regardless of histopathological diagnosis or the presence of genetic mutations. Recent studies investigating the genetics of nephrotic syndrome have shed light on the pathophysiology and mechanisms of proteinuria in nephrotic syndrome. Gene mutations have been identified in several subcellular compartments of the glomerular podocyte and play a critical role in mitochondrial function, actin cytoskeleton dynamics, cell-matrix interactions, slit diaphragm, and podocyte integrity. A subset of genetic mutations are known to cause nephrotic syndrome that is responsive to immunosuppressive therapy but clinical data are limited with respect to renal prognosis and disease progression in a majority of patients. To date, more than 50 genes have been identified as causative factors in nephrotic syndrome in children and adults. As genetic testing becomes more prevalent and affordable, we expect rapid advances in our understanding of mechanisms of proteinuria and genetic diagnosis will help direct future therapy for individual patients.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| | - Farzana Perwad
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
57
|
Egan JM, Peterson CA, Fry WM. Lack of current observed in HEK293 cells expressing NALCN channels. BIOCHIMIE OPEN 2018; 6:24-28. [PMID: 29892559 PMCID: PMC5991895 DOI: 10.1016/j.biopen.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
The sodium leak channel NALCN is poorly understood, but is reported as a Na+-permeable, nonselective cation leak channel which regulates resting membrane potential and electrical excitability. Previous work has indicated that NALCN currents can be stimulated by activation of several G protein coupled receptors, including the M3 muscarinic receptor. We undertook a study using voltage clamp electrophysiology to investigate NALCN currents. We compared currents elicited from untransfected control HEK239 cells in response to M3R agonists muscarine or Oxotremorine M to currents elicited from cells transfected with M3R only or the M3R plus NALCN and cDNA encoding accessory proteins UNC-80 and Src. Currents with similar properties were observed in all three groups of cells in response to muscarine agonists, in similar proportions of cells tested, from all three groups of cells. Our findings do not support previous electrophysiological studies suggesting that heterologously expressed NALCN functions as a Na+ leak channel in HEK293 cells. More research will be required to determine the molecular requirements for successful expression of the NALCN channel. NALCN (sodium leak channel, non-selective) is a poorly understood ion channel. Several reports indicate that NALCN current can be recorded from transfected cells. Conflicting reports indicate NALCN currents are simply leaky patch clamp seals. We were unable to record currents attributable to NALCN in transfected HEK293 cells. Our experiments suggest that NALCN does not form channels in HEK293 cells.
Collapse
Affiliation(s)
- Jennifer M Egan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Colleen A Peterson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
58
|
Suenami S, Iino S, Kubo T. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee ( Apis mellifera L.). Biol Open 2018; 7:bio.028191. [PMID: 29330349 PMCID: PMC5829494 DOI: 10.1242/bio.028191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC) in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect. Summary: Intracellular signaling involved in early memory formation in insects is not fully understood. Here, we pharmacologically elucidated the role of phospholipase C in learning and memory in the honeybee.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
59
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
60
|
李 丽, 杨 泳, 刘 星, 张 川, 叶 青, 后 文, 赵 艳, 肖 高, 李 鑫, 李 艳, 刘 睿. [Pathogenic role of leukotriene B4 in pulmonary microvascular endothelial cell hyper- permeability induced by one lung ventilation in rabbits]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1523-1528. [PMID: 29180335 PMCID: PMC6779633 DOI: 10.3969/j.issn.1673-4254.2017.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To elucidate the pathogenic role of leukotriene B4 (LTB4) in increased pulmonary microvascular endothelial cell permeability induced by one lung ventilation (OLV) in rabbits. METHODS Forty-eight healthy Japanese white rabbits were randomly divided into control group (group C), saline pretreatment group (group S), bestatin (a leukotriene A4 hydrolase (LTA4H) inhibitor) plus saline pretreatment group (group B), OLV group (group O), saline pretreatment plus OLV group (group SO) and bestatin plus saline pretreatment with OLV group (group BO). ELISA was used to detect LTB4 content in the lung tissues, and LTA4H and phospholipase Cεl (PLCEl) expressions were examined by Western blotting and quantitative PCR. The wet/dry weight (W/D) ratio of the lung, lung permeability index and the expressions of myosin light chain kinase (MLCK) protein and mRNA in the lung tissues were determined to evaluate the permeability of the pulmonary microvascular endothelial cells (PMVECs). The severities of lung injury were evaluated by lung histomorphological scores. RESULTS No significant differences were found among groups C, S and B except that LTA4H expressions was significantly lower in group B than in groups C and S (P<0.05). OLV significantly increased the expressions of LTA4H (P<0.05) and resulted in LTB4 overproduction in the lungs (P<0.05) accompanied by significantly enhanced PLCE1 expression and PMVEC permeability (P<0.05). Pretreatment with bestatin, significantly reduced the expression of LTA4H and LTB4 production (P<0.05) and down-regulated the expression of PLCE1 in the lungs of the rabbits receiving OLV (P<0.05). CONCLUSION Bestatin plays a protective role in OLV-induced rabbit lung injury by downregulating LTA4H to reduce the production of LTB4 in the lungs. LTB4 can increase PMVEC permeability by up-regulating PLCE1 expression in rabbits with OLV-induced lung injury.
Collapse
Affiliation(s)
- 丽莎 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 泳 杨
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 星玲 刘
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 川荛 张
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 青妍 叶
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 文俊 后
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 艳花 赵
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 高鹏 肖
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 鑫楠 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 艳华 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 睿 刘
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| |
Collapse
|
61
|
Zhou RM, Li Y, Wang N, Huang X, Cao SR. Phospholipase C ε-1 gene polymorphisms and prognosis of esophageal cancer patients from a high-incidence region in northern China. Mol Clin Oncol 2017; 8:170-174. [PMID: 29387411 DOI: 10.3892/mco.2017.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Recent genome-wide association studies identified susceptibility loci for esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal cancer, in the phospholipase C ε-1 gene (PLCE1). The aim of the present study was to investigate whether polymorphisms of PLCE1 were associated with the prognosis of ESCC patients in a high-incidence region of northern China. The PLCE1 rs2274223 A/G and rs11599672T/G single-nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-ligase detection reaction method in 207 ESCC patients with survival information. The mean age ± standard deviation of the 207 ESCC patients was 60.3±7.9 years. Sex, age, smoking status and family history of upper gastrointestinal cancer were not found to be associated with the survival time of ESCC patients. The mean survival time of rs2274223 SNP A/A, A/G and G/G genotype carriers were 42.9, 43.4 and 46.3 months, respectively; for rs11599672 SNP T/T, T/G and G/G genotype carriers the survival time were 42.8, 43.8 and 42.7 months, respectively. There was no significant difference in survival time among the ESCC patients with different genotypes of rs2274223 and rs11599672 SNPs. In conclusion, PLCE1 rs227423 and rs11599672 SNPs cannot be used as predictive markers for the survival of ESCC patients from a high-incidence region of northern China.
Collapse
Affiliation(s)
- Rong-Miao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Li
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shi-Ru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
62
|
Hypertension Susceptibility Loci are Associated with Anthracycline-related Cardiotoxicity in Long-term Childhood Cancer Survivors. Sci Rep 2017; 7:9698. [PMID: 28851949 PMCID: PMC5575079 DOI: 10.1038/s41598-017-09517-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 01/25/2023] Open
Abstract
Anthracycline-based chemotherapy is associated with dose-dependent, irreversible damage to the heart. Childhood cancer survivors with hypertension after anthracycline exposure are at increased risk of cardiotoxicity, leading to the hypothesis that genetic susceptibility loci for hypertension may serve as predictors for development of late cardiotoxicity. Therefore, we determined the association between 12 GWAS-identified hypertension-susceptibility loci and cardiotoxicity in a cohort of long-term childhood cancer survivors (N = 108) who received anthracyclines and were screened for cardiac function via echocardiograms. Hypertension-susceptibility alleles of PLCE1:rs9327264 and ATP2B1:rs17249754 were significantly associated with cardiotoxicity risk conferring a protective effect with a 64% (95% CI: 0.18–0.76, P = 0.0068) and 74% (95% CI: 0.07–0.96, P = 0.040) reduction in risk, respectively. In RNAseq experiments of human induced pluripotent stem cell (iPSC) derived cardiomyocytes treated with doxorubicin, both PLCE1 and ATP2B1 displayed anthracycline-dependent gene expression profiles. In silico functional assessment further supported this relationship - rs9327264 in PLCE1 (P = 0.0080) and ATP2B1 expression (P = 0.0079) were both significantly associated with daunorubicin IC50 values in a panel of lymphoblastoid cell lines. Our findings demonstrate that the hypertension-susceptibility variants in PLCE1 and ATP2B1 confer a protective effect on risk of developing anthracycline-related cardiotoxicity, and functional analyses suggest that these genes are influenced by exposure to anthracyclines.
Collapse
|
63
|
Liu X, Zhang Y, Hong L, Han CJ, Zhang B, Zhou S, Wu CZ, Liu LP, Cui X. Gallic acid increases atrial natriuretic peptide secretion and mechanical dynamics through activation of PKC. Life Sci 2017; 181:45-52. [PMID: 28535942 DOI: 10.1016/j.lfs.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
AIMS Gallic acid (GA) protects against myocardial ischemia-reperfusion (I/R) injury, prevents cardiac hypertrophy and fibrosis, and has anti-inflammatory activity in the heart. However, its effects in regulating atrial natriuretic peptide (ANP) secretion are unknown. The aim of this study was to determine the function of GA in regulating ANP secretion and atrial dynamics in rat atria. KEY FINDINGS GA (0.01, 0.05, and 0.1μmol/L) significantly increased atrial ANP secretion and induced positive inotropy dose-dependently. GA (0.1μmol/L) also increased plasma level of ANP and hemodynamics in rats. These effects were accompanied by upregulation of atrial protein kinase C subtypes β and ε (PKCβ and PKCε), which was completely blocked by LY333531 and EAVSLKPT, antagonists of protein PKCβ and PKCε, respectively. GA-induced ANP secretion was also attenuated by Gö6983 but not rottlerin, antagonists of PKCα and PKCδ, and the positive inotropy was reversed by Gö6983. U-73122, a phospholipase C (PLC) antagonist, mitigated the effects of GA on ANP secretion and mechanical dynamics and downregulated Phospho-PLCβ at Ser537 (pPLCβ S537), Phospho-PLCβ at Ser1105 (pPLCβ S1105), PKCβ and PKCε levels, whereas KN62, an inhibitor of Ca2+/calmodulin-dependent kinase II, was not modified the GA-induced ANP secretion and suppressed GA-induced mechanical dynamics. SIGNIFICANCE GA promotes ANP secretion and effects positive inotropy with regard to mechanical dynamics through the activation of PLC-PKC signaling in rat atria.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Ying Zhang
- Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Chun-Ji Han
- Food Research Center, Yanbian University, Yanji 133-002, China
| | - Bo Zhang
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Shuai Zhou
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Cheng-Zhe Wu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Li-Ping Liu
- Department of Biology, School of Medicine Sciences, Dalian University, Dalian, China
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133-002, China; Cellular Function Research Center, Yanbian University, Yanji 133-002, China.
| |
Collapse
|
64
|
Tyutyunnykova A, Telegeev G, Dubrovska A. The controversial role of phospholipase C epsilon (PLCε) in cancer development and progression. J Cancer 2017; 8:716-729. [PMID: 28382133 PMCID: PMC5381159 DOI: 10.7150/jca.17779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023] Open
Abstract
The phospholipase C (PLC) enzymes are important regulators of membrane phospholipid metabolism. PLC proteins can be activated by the receptor tyrosine kinases (RTK) or G-protein coupled receptors (GPCR) in response to the different extracellular stimuli including hormones and growth factors. Activated PLC enzymes hydrolyze phosphoinositides to increase the intracellular level of Ca2+ and produce diacylglycerol, which are important mediators of the intracellular signaling transduction. PLC family includes 13 isozymes belonging to 6 subfamilies according to their domain structures and functions. Although importance of PLC enzymes for key cellular functions is well established, the PLC proteins belonging to the ε, ζ and η subfamilies were identified and characterized only during the last decade. As a largest known PLC protein, PLCε is involved in a variety of signaling pathways and controls different cellular properties. Nevertheless, its role in carcinogenesis remains elusive. The aim of this review is to provide a comprehensive and up-to-date overview of the experimental and clinical data about the role of PLCε in the development and progression of the different types of human and experimental tumors.
Collapse
Affiliation(s)
- Anna Tyutyunnykova
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gennady Telegeev
- The Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany.; German Cancer Consortium (DKTK), Dresden, Germany.; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
65
|
Cerminati S, Eberhardt F, Elena CE, Peirú S, Castelli ME, Menzella HG. Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme. Appl Microbiol Biotechnol 2017; 101:4471-4479. [PMID: 28238084 DOI: 10.1007/s00253-017-8201-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
Enzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.1%, compared to standard methods. A remarkably efficient fed-batch Escherichia coli fermentation process producing ∼14 g/L of the recombinant PIPLC enzyme was developed, which may facilitate the adoption of this cost-effective oil-refining process.
Collapse
Affiliation(s)
- Sebastián Cerminati
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina
| | - Florencia Eberhardt
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina
| | | | - Salvador Peirú
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina.,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina
| | - María E Castelli
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina.,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina
| | - Hugo G Menzella
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina. .,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina.
| |
Collapse
|
66
|
PLCε1 regulates SDF-1α-induced lymphocyte adhesion and migration to sites of inflammation. Proc Natl Acad Sci U S A 2017; 114:2693-2698. [PMID: 28213494 DOI: 10.1073/pnas.1612900114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)-expressing cells. Structure-function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs.
Collapse
|
67
|
The Epac-Phospholipase Cε Pathway Regulates Endocannabinoid Signaling and Cocaine-Induced Disinhibition of Ventral Tegmental Area Dopamine Neurons. J Neurosci 2017; 37:3030-3044. [PMID: 28209735 DOI: 10.1523/jneurosci.2810-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Exchange protein directly activated by cAMP (Epac) is a direct effector for the ubiquitous second messenger cAMP. Epac activates the phospholipase Cε (PLCε) pathway. PLCβ has been linked to the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we report that Epac facilitates endocannabinoid-mediated retrograde synaptic depression through activation of PLCε. Intracellular loading of a selective Epac agonist 8-CPT-2Me-cAMP into ventral tegmental area (VTA) dopamine neurons enabled previously ineffective stimuli to induce depolarization-induced suppression of inhibition (DSI) and long-term depression of IPSCs (I-LTD) in the VTA. DSI and I-LTD are mediated by 2-AG since they were blocked by a diacylglycerol lipase inhibitor. The effects of 8-CPT-2Me-cAMP on DSI and I-LTD were absent in Epac2 and PLCε knock-out mice, but remained intact in Epac1 knock-out mice. These results identify a novel mechanism for on-demand synthesis of retrograde signaling 2-AG by the Epac2-PLCε pathway. We investigated the functional significance of Epac2-PLCε-2-AG signaling in regulating inhibitory synaptic plasticity in VTA dopamine neurons induced by in vivo cocaine exposure. We showed that cocaine place conditioning led to a decrease in the frequency and amplitude of spontaneous IPSCs and an increase in action potential firing in wild-type mice, but not in Epac2 or PLCε knock-out mice. Together, these results indicate that the Epac2-PLCε-2-AG signaling cascade contributes to cocaine-induced disinhibition of VTA dopamine neurons.SIGNIFICANCE STATEMENT 2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid that depresses synaptic transmission through stimulation of CB1 receptors. Among the six isoforms of phospholipase C (PLC; PLCβ, PLCγ, PLCδ, PLCε, PLCζ, PLCη), only PLCβ has been linked to 2-AG synthesis. Here we demonstrate that 8-CPT-2Me-cAMP, a selective agonist of the cAMP sensor protein Epac, enhances 2-AG-mediated synaptic depression in ventral tegmental area (VTA) dopamine neurons via activation of PLCε. These results identify a novel mechanism for 2-AG synthesis via activation of the Epac-PLCε pathway. Furthermore, we show that cocaine-induced conditioned place preference and disinhibition of VTA dopamine neurons were impaired in mice lacking Epac or PLCε. Thus, the Epac-PLCε signaling pathway contributes to cocaine-induced disinhibition of VTA dopamine neurons and formation of drug-associated memories.
Collapse
|
68
|
DiStefano PV, Smrcka AV, Glading AJ. Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier. PLoS One 2016; 11:e0162338. [PMID: 27612188 PMCID: PMC5017709 DOI: 10.1371/journal.pone.0162338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability.
Collapse
Affiliation(s)
- Peter V. DiStefano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
- * E-mail:
| |
Collapse
|
69
|
Bijli KM, Fazal F, Slavin SA, Leonard A, Grose V, Alexander WB, Smrcka AV, Rahman A. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L517-24. [PMID: 27371732 DOI: 10.1152/ajplung.00069.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Valerie Grose
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - William B Alexander
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
70
|
Suenami S, Paul RK, Takeuchi H, Okude G, Fujiyuki T, Shirai K, Kubo T. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.). PLoS One 2016; 11:e0157841. [PMID: 27351839 PMCID: PMC4924639 DOI: 10.1371/journal.pone.0157841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023] Open
Abstract
The adult honeybee (Apis mellifera L.) mushroom bodies (MBs, a higher center in the insect brain) comprise four subtypes of intrinsic neurons: the class-I large-, middle-, and small-type Kenyon cells (lKCs, mKCs, and sKCs, respectively), and class-II KCs. Analysis of the differentiation of KC subtypes during metamorphosis is important for the better understanding of the roles of KC subtypes related to the honeybee behaviors. In the present study, aiming at identifying marker genes for KC subtypes, we used a cDNA microarray to comprehensively search for genes expressed in an MB-preferential manner in the honeybee brain. Among the 18 genes identified, we further analyzed three genes whose expression was enriched in the MBs: phospholipase C epsilon (PLCe), synaptotagmin 14 (Syt14), and discs large homolog 5 (dlg5). Quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of PLCe, Syt14, and dlg5 was more enriched in the MBs than in the other brain regions by approximately 31-, 6.8-, and 5.6-fold, respectively. In situ hybridization revealed that expression of both Syt14 and dlg5 was enriched in the lKCs but not in the mKCs and sKCs, whereas expression of PLCe was similar in all KC subtypes (the entire MBs) in the honeybee brain, suggesting that Syt14 and dlg5, and PLCe are available as marker genes for the lKCs, and all KC subtypes, respectively. In situ hybridization revealed that expression of PLCe is already detectable in the class-II KCs at the larval fifth instar feeding stage, indicating that PLCe expression is a characteristic common to the larval and adult MBs. In contrast, expression of both Syt14 and dlg5 became detectable at the day three pupa, indicating that Syt14 and dlg5 expressions are characteristic to the late pupal and adult MBs and the lKC specific molecular characteristics are established during the late pupal stages.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Tomoko Fujiyuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Kenichi Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail:
| |
Collapse
|
71
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
72
|
Smrcka AV. Regulation of phosphatidylinositol-specific phospholipase C at the nuclear envelope in cardiac myocytes. J Cardiovasc Pharmacol 2016; 65:203-10. [PMID: 25658460 DOI: 10.1097/fjc.0000000000000195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate hydrolysis at the plasma membrane by phospholipase C is one of the major hormone regulated intracellular signaling systems. The system generates the diffusible second messenger IP3 and the membrane bound messenger diacylglycerol. Spatial regulation of this system has been thought to be through specific subcellular distributions of the IP3 receptor or PKC. As is becoming increasingly apparent, receptor-stimulated signaling systems are also found at intracellular membranes. As discussed in this issue, G protein-coupled receptors have been identified at the nuclear envelope implying intracellular localization of the signaling systems that respond to G protein-coupled receptors. Here, we discuss the evidence for the existence of PLC signals that regulate nuclear processes, as well as the evidence for nuclear and nuclear envelope localization of PLC signaling components, and their implications for cardiac physiology and disease.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
73
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
74
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
75
|
Jiang T, Liu T, Li L, Yang Z, Bai Y, Liu D, Kong C. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis. Mol Med Rep 2016; 13:2039-45. [PMID: 26782701 PMCID: PMC4768990 DOI: 10.3892/mmr.2016.4762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Bladder cancer frequently shows mutational activation of the oncogene Ras, which is associated with bladder carcinogenesis. However, the signaling pathway downstream of Ras remains to be fully elucidated. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) is able to induce bladder cancer by driving the clonal expansion of initiated cells carrying the activated form of Ras. Phospholipase Cε (PLCε) is the main target of BBN, while the tumor promoting role of PLCε remains controversial. The present study examined the role of PLCε in BBN-induced bladder carcinogenesis of mice with genetically inactivated PLCε. Using light and electron microscopy, the present study demonstrated that PLCε−/− mice were resistant to BBN-induced bladder carcinogenesis. Furthermore, it was demonstrated that cyclooxygenase 2 and vascular endothelial growth factor-A were affected by the PLCε background of the mice, suggesting that the role of PLCε in tumor promotion may be ascribed to augmentation of inflammatory responses and angiogenesis. These results indicated that PLCε is crucial for BBN-induced bladder carcinogenesis as well as signaling downstream of Ras, and that PLCε is a candidate molecular target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Taimao Jiang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Li
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110036, P.R. China
| | - Zhijun Yang
- Department of Neurosurgery, Hospital of Beijing Military District of People's Liberation Army, Beijing 100070, P.R. China
| | - Yunfeng Bai
- Infection Section 15, The 302 Hospital of Chinese People's Liberation Army, Beijing 100039, P.R. China
| | - Dongye Liu
- Department of Urology, The 463 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110042, P.R. China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
76
|
Lucchesi O, Ruete MC, Bustos MA, Quevedo MF, Tomes CN. The signaling module cAMP/Epac/Rap1/PLCε/IP3 mobilizes acrosomal calcium during sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:544-61. [PMID: 26704387 DOI: 10.1016/j.bbamcr.2015.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022]
Abstract
Exocytosis of the sperm's single secretory granule, or acrosome, is a regulated exocytosis triggered by components of the egg's investments. In addition to external calcium, sperm exocytosis (termed the acrosome reaction) requires cAMP synthesized endogenously and calcium mobilized from the acrosome through IP3-sensitive channels. The relevant cAMP target is Epac. In the first part of this paper, we present a novel tool (the TAT-cAMP sponge) to investigate cAMP-related signaling pathways in response to progesterone as acrosome reaction trigger. The TAT-cAMP sponge consists of the cAMP-binding sites of protein kinase A regulatory subunit RIβ fused to the protein transduction domain TAT of the human immunodeficiency virus-1. The sponge permeated into sperm, sequestered endogenous cAMP, and blocked exocytosis. Progesterone increased the population of sperm with Rap1-GTP, Rab3-GTP, and Rab27-GTP in the acrosomal region; pretreatment with the TAT-cAMP sponge prevented the activation of all three GTPases. In the second part of this manuscript, we show that phospholipase Cε (PLCε) is required for the acrosome reaction downstream of Rap1 and upstream of intra-acrosomal calcium mobilization. Last, we present direct evidence that cAMP, Epac, Rap1, and PLCε are necessary for calcium mobilization from sperm's secretory granule. In summary, we describe here a pathway that connects cAMP to calcium mobilization from the acrosome during sperm exocytosis. Never before had direct evidence for each step of the cascade been put together in the same study.
Collapse
Affiliation(s)
- Ornella Lucchesi
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María C Ruete
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Matías A Bustos
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María F Quevedo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.
| |
Collapse
|
77
|
Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, Tamura T, Ishikawa Y. Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation. Arterioscler Thromb Vasc Biol 2015; 35:2617-25. [PMID: 26427796 DOI: 10.1161/atvbaha.115.306534] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration causes neointima, which is related to vascular remodeling after mechanical injury and atherosclerosis development. We previously reported that an exchange protein activated by cAMP (Epac) 1 was upregulated in mouse arterial neointima and promoted SMC migration. In this study, we examined the molecular mechanisms of Epac1-induced SMC migration and the effect of Epac1 deficiency on vascular remodeling in vivo. APPROACH AND RESULTS Platelet-derived growth factor-BB promoted a 2-fold increase in SMC migration in a primary culture of aortic SMCs obtained from Epac1(+/+) mice (Epac1(+/+)-ASMCs), whereas there was only a 1.2-fold increase in Epac1(-/-)-ASMCs. The degree of platelet-derived growth factor-BB-induced increase in intracellular Ca(2+) was smaller in Fura2-labeled Epac1(-/-)-ASMCs than in Epac1(+/+)-ASMCs. In Epac1(+/+)-ASMCs, an Epac-selective cAMP analog or platelet-derived growth factor-BB increased lamellipodia accompanied by cofilin dephosphorylation, which is induced by Ca(2+) signaling, whereas these effects were rarely observed in Epac1(-/-)-ASMCs. Furthermore, 4 weeks after femoral artery injury, prominent neointima were formed in Epac1(+/+) mice, whereas neointima formation was significantly attenuated in Epac1(-/-) mice in which dephosphorylation of cofilin was inhibited. The chimeric mice generated by bone marrow cell transplantation from Epac1(+/+) into Epac1(-/-) mice and vice versa demonstrated that the genetic background of vascular tissues, including SMCs rather than of bone marrow-derived cells affected Epac1-mediated neointima formation. CONCLUSIONS These data suggest that Epac1 deficiency attenuates neointima formation through, at least in part, inhibition of SMC migration, in which a decrease in Ca(2+) influx and a suppression of cofilin-mediated lamellipodia formation occur.
Collapse
Affiliation(s)
- Yuko Kato
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Utako Yokoyama
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| | - Chiharu Yanai
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Rina Ishige
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Daisuke Kurotaki
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masanari Umemura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Takayuki Fujita
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tetsuo Kubota
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Satoshi Okumura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masataka Sata
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tomohiko Tamura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| |
Collapse
|
78
|
Dusaban SS, Kunkel MT, Smrcka AV, Brown JH. Thrombin promotes sustained signaling and inflammatory gene expression through the CDC25 and Ras-associating domains of phospholipase Cϵ. J Biol Chem 2015; 290:26776-83. [PMID: 26350460 DOI: 10.1074/jbc.m115.676098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/24/2023] Open
Abstract
Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCϵ are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCϵ localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCϵ to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCϵ mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses.
Collapse
Affiliation(s)
- Stephanie S Dusaban
- From the Department of Pharmacology, School of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093 and
| | - Maya T Kunkel
- From the Department of Pharmacology, School of Medicine and
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | | |
Collapse
|
79
|
Litosch I. Regulating G protein activity by lipase-independent functions of phospholipase C. Life Sci 2015; 137:116-24. [DOI: 10.1016/j.lfs.2015.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/18/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022]
|
80
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
81
|
Schwede F, Chepurny OG, Kaufholz M, Bertinetti D, Leech CA, Cabrera O, Zhu Y, Mei F, Cheng X, Manning Fox JE, MacDonald PE, Genieser HG, Herberg FW, Holz GG. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Mol Endocrinol 2015; 29:988-1005. [PMID: 26061564 DOI: 10.1210/me.2014-1330] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.
Collapse
Affiliation(s)
- Frank Schwede
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Oleg G Chepurny
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Melanie Kaufholz
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Daniela Bertinetti
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Colin A Leech
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Over Cabrera
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Yingmin Zhu
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Fang Mei
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Xiaodong Cheng
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Jocelyn E Manning Fox
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Patrick E MacDonald
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Hans-G Genieser
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Friedrich W Herberg
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - George G Holz
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| |
Collapse
|
82
|
Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kannler M, Fahlbusch M, Barth H, Smrcka A, Hildebrandt F, Gudermann T, Dietrich A. Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol 2015; 230:1389-99. [PMID: 25521631 DOI: 10.1002/jcp.24883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022]
Abstract
In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca(2+) concentration [Ca(2+) ]i . Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca(2+) influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway. While TRPC6 activation by PLCβ and PLCγ isozymes was extensively studied, the role of PLCε in TRPC6 activation remains elusive. TRPC6 was co-immunoprecipitated with PLCε in a heterologous overexpression system in HEK293 cells as well as in freshly isolated murine podocytes. Receptor-operated TRPC6 currents in HEK293 cells expressing TRPC6 were reduced by a specific PLCε siRNA and by a PLCε loss-of-function mutant isolated from a patient with FSGS. PLCε-induced TRPC6 activation was also identified in murine embryonic fibroblasts (MEFs) lacking Gαq/11 proteins. Further analysis of the signal transduction pathway revealed a Gα12/13 Rho-GEF activation which induced Rho-mediated PLCε stimulation. Therefore, we identified a new pathway for TRPC6 activation by PLCε. PLCε-/- podocytes however, were undistinguishable from WT podocytes in their angiotensin II-induced formation of actin stress fibers and their GTPγS-induced TRPC6 activation, pointing to a redundant role of PLCε-mediated TRPC6 activation at least in podocytes.
Collapse
Affiliation(s)
- Hermann Kalwa
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Yu OM, Brown JH. G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol Pharmacol 2015; 88:171-80. [PMID: 25904553 DOI: 10.1124/mol.115.097857] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023] Open
Abstract
The low molecular weight G protein RhoA (rat sarcoma virus homolog family member A) serves as a node for transducing signals through G protein-coupled receptors (GPCRs). Activation of RhoA occurs through coupling of G proteins, most prominently, G12/13, to Rho guanine nucleotide exchange factors. The GPCR ligands that are most efficacious for RhoA activation include thrombin, lysophosphatidic acid, sphingosine-1-phosphate, and thromboxane A2. These ligands also stimulate proliferation, differentiation, and inflammation in a variety of cell and tissues types. The molecular events underlying these responses are the activation of transcription factors, transcriptional coactivators, and downstream gene programs. This review describes the pathways leading from GPCRs and RhoA to the regulation of activator protein-1, NFκB (nuclear factor κ-light-chain-enhancer of activated B cells), myocardin-related transcription factor A, and Yes-associated protein. We also focus on the importance of two prominent downstream transcriptional gene targets, the inflammatory mediator cyclooxygenase 2, and the matricellular protein cysteine-rich angiogenic inducer 61 (CCN1). Finally, we describe the importance of GPCR-induced activation of these pathways in the pathophysiology of cancer, fibrosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Olivia M Yu
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| | - Joan Heller Brown
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| |
Collapse
|
84
|
Cocco L, Follo MY, Manzoli L, Suh PG. Phosphoinositide-specific phospholipase C in health and disease. J Lipid Res 2015; 56:1853-60. [PMID: 25821234 DOI: 10.1194/jlr.r057984] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/20/2022] Open
Abstract
Phospholipases are widely occurring and can be found in several different organisms, including bacteria, yeast, plants, animals, and viruses. Phospholipase C (PLC) is a class of phospholipases that cleaves phospholipids on the diacylglycerol (DAG) side of the phosphodiester bond producing DAGs and phosphomonoesters. Among PLCs, phosphoinositide-specific PLC (PI-PLC) constitutes an important step in the inositide signaling pathways. The structures of PI-PLC isozymes show conserved domains as well as regulatory specific domains. This is important, as most PI-PLCs share a common mechanism, but each of them has a peculiar role and can have a specific cell distribution that is linked to a specific function. More importantly, the regulation of PLC isozymes is fundamental in health and disease, as there are several PLC-dependent molecular mechanisms that are associated with the activation or inhibition of important physiopathological processes. Moreover, PI-PLC alternative splicing variants can play important roles in complex signaling networks, not only in cancer but also in other diseases. That is why PI-PLC isozymes are now considered as important molecules that are essential for better understanding the molecular mechanisms underlying both physiology and pathogenesis, and are also potential molecular targets useful for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| |
Collapse
|
85
|
Wang Y, Wu X, Ou L, Yang X, Wang X, Tang M, Chen E, Luo C. PLCε knockdown inhibits prostate cancer cell proliferation via suppression of Notch signalling and nuclear translocation of the androgen receptor. Cancer Lett 2015; 362:61-9. [PMID: 25796442 DOI: 10.1016/j.canlet.2015.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
Abstract
Phospholipase Cε (PLCε), a key regulator of diverse cellular functions, has been implicated in various malignancies. Indeed, PLCε functions include cell proliferation, apoptosis and malignant transformation. Here, we show that PLCε expression is elevated in prostate cancer (PCa) tissues compared to benign prostate tissues. Furthermore, PLCε depletion using an adenovirally delivered shRNA significantly decreased cell growth and colony formation, arresting the PC3 and LNCaP cell lines in the S phase of the cell cycle. We also observed that PLCε was significantly correlated with Notch1 and androgen receptor (AR). Additionally, we demonstrate that the activation of both the Notch and AR signalling pathways is involved in PLCε-mediated oncogenic effects in PCa. Our findings suggest that PLCε is a putative oncogene and prognostic marker, potentially representing a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Ou
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaorong Wang
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Min Tang
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - E Chen
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
86
|
Pelletán LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, Mayorga LS, Belmonte SA. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation. J Biol Chem 2015; 290:9823-41. [PMID: 25713146 DOI: 10.1074/jbc.m114.629006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 11/06/2022] Open
Abstract
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.
Collapse
Affiliation(s)
- Leonardo E Pelletán
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Laila Suhaiman
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Cintia C Vaquer
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Matías A Bustos
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Gerardo A De Blas
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Nicolas Vitale
- the Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), CNRS et Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg, France
| | - Luis S Mayorga
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Silvia A Belmonte
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| |
Collapse
|
87
|
Malik S, deRubio RG, Trembley M, Irannejad R, Wedegaertner PB, Smrcka AV. G protein βγ subunits regulate cardiomyocyte hypertrophy through a perinuclear Golgi phosphatidylinositol 4-phosphate hydrolysis pathway. Mol Biol Cell 2015; 26:1188-98. [PMID: 25609085 PMCID: PMC4357516 DOI: 10.1091/mbc.e14-10-1476] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gβγ regulation of the perinuclear Golgi PI4P pathway and a separate pathway at the PM is required for ET-1–stimulated hypertrophy, and the efficacy of Gβγ inhibition in preventing heart failure may be due, in part, to its blocking both of these pathways. We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to activation of perinuclear PLCε is not clear. Here we tested the role of G protein βγ subunits. Gβγ inhibition blocked ET-1–stimulated Golgi PI4P depletion in neonatal and adult ventricular myocytes. Blocking Gβγ at the Golgi inhibited ET-1–dependent PI4P depletion and nuclear PKD activation. Translocation of Gβγ to the Golgi stimulated perinuclear Golgi PI4P depletion and nuclear PKD activation. Finally, blocking Gβγ at the Golgi or PM blocked ET-1–dependent cardiomyocyte hypertrophy. These data indicate that Gβγ regulation of the perinuclear Golgi PI4P pathway and a separate pathway at the PM is required for ET-1–stimulated hypertrophy, and the efficacy of Gβγ inhibition in preventing heart failure maybe due in part to its blocking both these pathways.
Collapse
Affiliation(s)
- S Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - R G deRubio
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - M Trembley
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - R Irannejad
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158
| | - P B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
88
|
Jung JH, Lee MY, Choi DY, Lee JW, You S, Lee KY, Kim J, Kim KP. Phospholipids of tumor extracellular vesicles stratify gefitinib-resistant nonsmall cell lung cancer cells from gefitinib-sensitive cells. Proteomics 2015; 15:824-35. [PMID: 25404199 DOI: 10.1002/pmic.201400243] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/06/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib are one of gold standard treatment options for nonsmall-cell lung cancer (NSCLC) patients, which eventually fail due to the acquired resistance and relapse because of the development of secondary activating mutations such as T790M in EGFR. Predicting chemo-responsiveness of cancer patients provides a major challenge in chemotherapy. The goal of the present study is to determine whether phospholipid signatures of tumor extracellular vesicles (EV) are associated with gefitinib-resistance of NSCLC. A sophisticated MS-based shotgun lipidomic assays were performed for in-depth analysis of the lipidomes of gefitinib-resistant (PC9R) and responsive (PC9) NSCLC cells and their shed EV from these cell lines (PC9EV or PC9REV). Lipid MALDI-MS analysis showed that EV phospholipid composition was significantly distinct in PC9R, compared to PC9 cells. Following statistical analyses has identified 35 (20 positive and 15 negative ion mode) differentially regulated lipids, which are significantly over- or underexpressed in PC9R EV, compared to PC9 EV (p value < 0.01, fold change > 1.5). Our phospholipid signatures suggest that EV associates with drug sensitivity, which is worthy of additional investigation to assess chemoresistance in patients with NSCLC treated with anti-EGFR TKIs.
Collapse
Affiliation(s)
- Jae Hun Jung
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Oldenburger A, Timens W, Bos S, Smit M, Smrcka AV, Laurent AC, Cao J, Hylkema M, Meurs H, Maarsingh H, Lezoualc'h F, Schmidt M. Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke. FASEB J 2014; 28:4617-28. [PMID: 25103224 DOI: 10.1096/fj.13-248930] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cigarette smoke (CS) induces inflammatory responses characterized by increase of immune cells and cytokine release. Remodeling processes, such as mucus hypersecretion and extracellular matrix protein production, are also directly or indirectly induced by CS. Recently, we showed that activation of the exchange protein directly activated by cAMP (Epac) attenuates CS extract-induced interleukin (IL)-8 release from cultured airway smooth muscle cells. Using an acute, short-term model of CS exposure, we now studied the role of Epac1, Epac2, and the Epac effector phospholipase-Cε (PLCε) in airway inflammation and remodeling in vivo. Compared to wild-type mice exposed to CS, the number of total inflammatory cells, macrophages, and neutrophils and total IL-6 release was lower in Epac2(-/-) mice, which was also the case for neutrophils and IL-6 in PLCε(-/-) mice. Taken together, Epac2, acting partly via PLCε, but not Epac1, enhances CS-induced airway inflammation in vivo. In total lung homogenates of Epac1(-/-) mice, MUC5AC and matrix remodeling parameters (transforming growth factor-β1, collagen I, and fibronectin) were increased at baseline. Our findings suggest that Epac1 primarily is capable of inhibiting remodeling processes, whereas Epac2 primarily increases inflammatory processes in vivo.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology and Groningen Research Institute for Asthma and COPD and
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD and Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sophie Bos
- Department of Molecular Pharmacology and
| | | | - Alan V Smrcka
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - Anne-Coline Laurent
- Institut National de la Recherche Scientifique (INSERM), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université de Toulouse III, Paul Sabatier, Toulouse, France; and
| | - Junjun Cao
- Groningen Research Institute for Asthma and COPD and Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Machteld Hylkema
- Groningen Research Institute for Asthma and COPD and Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology and Groningen Research Institute for Asthma and COPD and
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Frank Lezoualc'h
- Institut National de la Recherche Scientifique (INSERM), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université de Toulouse III, Paul Sabatier, Toulouse, France; and
| | - Martina Schmidt
- Department of Molecular Pharmacology and Groningen Research Institute for Asthma and COPD and
| |
Collapse
|
90
|
|
91
|
Holz GG, Leech CA, Chepurny OG. New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2593-600. [PMID: 24980705 DOI: 10.1016/j.bbadis.2014.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Recently published findings indicate that a knockout (KO) of soluble adenylyl cyclase (sAC, also known as AC-10) gene expression in mice leads to defective glucoregulation that is characterized by reduced pancreatic insulin secretion and reduced intraperitoneal glucose tolerance. Summarized here are current concepts regarding the molecular basis for this phenotype, with special emphasis on the potential role of sAC as a determinant of glucose-stimulated insulin secretion. Highlighted is new evidence that in pancreatic beta cells, oxidative glucose metabolism stimulates mitochondrial CO₂production that in turn generates bicarbonate ion (HCO(3)(-)). Since HCO(3)(-) binds to and directly stimulates the activity of sAC, we propose that glucose-stimulated cAMP production in beta cells is mediated not simply by transmembrane adenylyl cyclases (TMACs), but also by sAC. Based on evidence that sAC is expressed in mitochondria, there exists the possibility that beta-cell glucose metabolism is linked to mitochondrial cAMP production with consequent facilitation of oxidative phosphorylation. Since sAC is also expressed in the cytoplasm, sAC catalyzed cAMP production may activate cAMP sensors such as PKA and Epac2 to control ion channel function, intracellular Ca²⁺ handling, and Ca²⁺-dependent exocytosis. Thus, we propose that the existence of sAC in beta cells provides a new and unexpected explanation for previously reported actions of glucose metabolism to stimulate cAMP production. It seems possible that alterations of sAC activity might be of importance when evaluating new strategies for the treatment of type 2 diabetes (T2DM), or when evaluating why glucose metabolism fails to stimulate insulin secretion in patients diagnosed with T2DM. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- George G Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA.
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
92
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
93
|
Tumor suppressor role of phospholipase C epsilon in Ras-triggered cancers. Proc Natl Acad Sci U S A 2014; 111:4239-44. [PMID: 24591640 DOI: 10.1073/pnas.1311500111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase Cε (PLCε) has been characterized as a direct effector of Ras in vitro and in cellular systems; however, the role of PLCε in tumorigenesis and its link to Ras in this context remain unclear. To assess the role of PLCε in Ras-driven cancers, we generated two new mouse strains: one carrying a targeted deletion of Plce (Plce(-/-)) and the other carrying mutant alleles of Plce unable to bind to Ras (Plce(RAm/RAm)). The Plce(-/-) and, to a lesser degree, Plce(RAm/RAm) transgenic mice exhibited increased susceptibility to tumor formation in the two-stage skin carcinogenesis protocol, revealing a tumor suppressor function for this PLC. This result also suggests that in this context Ras binding in part regulates functions of PLCε. Although significant differences were not seen in the LSL-Kras(G12D) nonsmall cell lung carcinoma model, down-regulation of PLCε was found in animal tumors and in cellular systems following expression of the oncogenic Ras. An inhibitory impact of PLCε on cell growth requires intact lipase activity and is likely mediated by protein kinase C enzymes. Further cellular studies suggest involvement of histone deacetylase in the mechanism of PLCε down-regulation. Taken together, our results show a previously unidentified tumor suppressor role for this PLC in animal models and, together with observations of marked down-regulation in colorectal, lung, and skin tumors, suggest its use as a biological marker in cancer.
Collapse
|
94
|
Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, Heller Brown J. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal 2013; 6:ra108. [PMID: 24345679 DOI: 10.1126/scisignal.2004405] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.
Collapse
Affiliation(s)
- Sunny Y Xiang
- 1Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Ruisanchez É, Dancs P, Kerék M, Németh T, Faragó B, Balogh A, Patil R, Jennings BL, Liliom K, Malik KU, Smrcka AV, Tigyi G, Benyó Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB J 2013; 28:880-90. [PMID: 24249637 DOI: 10.1096/fj.13-234997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1-3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase-protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.
Collapse
Affiliation(s)
- Éva Ruisanchez
- 1Z.B., Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, POB 448, H-1446 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Yang YR, Follo MY, Cocco L, Suh PG. The physiological roles of primary phospholipase C. Adv Biol Regul 2013; 53:232-241. [PMID: 24041464 DOI: 10.1016/j.jbior.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The roles of phosphoinositide-specific phospholipase C (PLC) have been extensively investigated in diverse cell lines and pathological conditions. Among the PLC isozmes, primary PLCs, PLC-β and PLC-γ, are directly activated by receptor activation, unlike other secondary PLCs (PLC-ɛ, PLC-δ1, and PLC-η1). PLC-β isozymes are activated by G protein couple receptor and PLC-γ isozymes are activated by receptor tyrosine kinase (RTK). Primary PLCs are differentially expressed in different tissues, suggesting their specific roles in diverse tissues and regulate a variety of physiological and pathophysiological functions. Thus, dysregulation of phospholipases contributes to a number of human diseases and primary PLCs have been identified as therapeutic targets for prevention and treatment of diseases. Here we review the roles of primary PLCs in physiology and their impact in pathology.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | |
Collapse
|
97
|
Chen WY, Chen LY, Ou CM, Huang CC, Wei SC, Chang HT. Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal Chem 2013; 85:8834-40. [PMID: 23964669 DOI: 10.1021/ac402043t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis of fluorescent 11-mercaptoundecanoic acid-gold nanodot-liposome (11-MUA-Au ND/Lip) hybrids by incorporation of gold nanoparticles (∼3 nm) and 11-MUA molecules in hydrophobic phospholipid membranes that self-assemble to form small unilamellar vesicles. A simple and homogeneous fluorescence assay for phospholipase C (PLC) was developed on the basis of the fluorescence quenching of 11-MUA-Au ND/Lip hybrids in aqueous solution. The fluorescence of the 11-MUA-Au ND/Lip hybrids is quenched by oxygen (O2) molecules in solution, and quenching is reduced in the presence of PLC. PLC catalyzes the hydrolysis of phosphatidylcholine units from Lip to yield diacylglycerol (DAG) and phosphocholine (PC) products, leading to the decomposition of Lip. The diacylglycerol further interacts with 11-MUA-Au NDs via hydrophobic interactions, leading to inhibition of O2 quenching. The 11-MUA-Au ND/Lip probe provides a limit of detection (at a signal-to-noise ratio of 3) of 0.21 nM for PLC, with high selectivity over other proteins, enzymes, and phospholipases. We have validated the practicality of using this probe for the determination of PLC concentrations in breast cancer cells (MCF-7 and MDA-MB-231 cell lines) and nontumor cells (MCF-10A cell line), revealing that the PLC activity in the first two is at least 1.5-fold higher than that in the third. An inhibitor assay using 11-MUA-Au ND/Lip hybrids demonstrated that tricyclodecan-9-yl potassium xanthate (D609) inhibits PLC (10 nM) with an IC50 value of 3.81 ± 0.22 μM. This simple, sensitive, and selective approach holds great potential for detection of PLC in cancer cells and for the screening of anti-PLC drugs.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
99
|
Zhang L, Malik S, Pang J, Wang H, Park KM, Yule DI, Blaxall BC, Smrcka AV. Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 2013; 153:216-27. [PMID: 23540699 DOI: 10.1016/j.cell.2013.02.047] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/22/2013] [Accepted: 02/14/2013] [Indexed: 01/08/2023]
Abstract
Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in cardiovascular, pancreatic, and inflammatory functions. Here we show that conditional deletion of PLCε in mouse cardiac myocytes protects from stress-induced pathological hypertrophy. PLCε small interfering RNA (siRNA) in ventricular myocytes decreases endothelin-1 (ET-1)-dependent elevation of nuclear calcium and activation of nuclear protein kinase D (PKD). PLCε scaffolded to muscle-specific A kinase-anchoring protein (mAKAP), along with PKCε and PKD, localizes these components at or near the nuclear envelope, and this complex is required for nuclear PKD activation. Phosphatidylinositol 4-phosphate (PI4P) is identified as a perinuclear substrate in the Golgi apparatus for mAKAP-scaffolded PLCε. We conclude that perinuclear PLCε, scaffolded to mAKAP in cardiac myocytes, responds to hypertrophic stimuli to generate diacylglycerol (DAG) from PI4P in the Golgi apparatus, in close proximity to the nuclear envelope, to regulate activation of nuclear PKD and hypertrophic signaling pathways.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 2013; 19:567-75. [PMID: 23542788 DOI: 10.1038/nm.3128] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists exert antihypertensive actions through incompletely understood mechanisms. Here we demonstrate that cardiac Glp1r expression is localized to cardiac atria and that GLP-1R activation promotes the secretion of atrial natriuretic peptide (ANP) and a reduction of blood pressure. Consistent with an indirect ANP-dependent mechanism for the antihypertensive effects of GLP-1R activation, the GLP-1R agonist liraglutide did not directly increase the amount of cyclic GMP (cGMP) or relax preconstricted aortic rings; however, conditioned medium from liraglutide-treated hearts relaxed aortic rings in an endothelium-independent, GLP-1R-dependent manner. Liraglutide did not induce ANP secretion, vasorelaxation or lower blood pressure in Glp1r(-/-) or Nppa(-/-) mice. Cardiomyocyte GLP-1R activation promoted the translocation of the Rap guanine nucleotide exchange factor Epac2 (also known as Rapgef4) to the membrane, whereas Epac2 deficiency eliminated GLP-1R-dependent stimulation of ANP secretion. Plasma ANP concentrations were increased after refeeding in wild-type but not Glp1r(-/-) mice, and liraglutide increased urine sodium excretion in wild-type but not Nppa(-/-) mice. These findings define a gut-heart GLP-1R-dependent and ANP-dependent axis that regulates blood pressure.
Collapse
Affiliation(s)
- Minsuk Kim
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|