51
|
Zhang YC, Pei XG, Yu ZT, Gao Y, Wang LX, Zhang N, Song XY, Wu SF, Gao CF. Effects of nicotinic acetylcholine receptor subunit deletion mutants on insecticide susceptibility and fitness in Drosophila melanogaster. PEST MANAGEMENT SCIENCE 2022; 78:3519-3527. [PMID: 35576366 DOI: 10.1002/ps.6992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in insects and also the target site for many insecticides. Unfortunately, the effectiveness of these insecticides is diminishing as a consequence of the evolution of insecticide resistance. Further exploration of insecticide targets is important to sustainable pest management. RESULTS In order to validate the role of nAChR subunits in insecticide susceptibility and test whether the subunit's absence imposes the fitness cost on insects, we determined the susceptibility of eight nAChR subunit deletion mutants of Drosophila melanogaster to nine insecticides. These findings highlighted the specific resistance of the Dα6 deletion mutant to spinosyns. Although triflumezopyrim, dinotefuran and imidacloprid are competitive modulators of nAChRs, differences in susceptibility of the insect with different deletion mutants suggested that the target sites of these three insecticides do not overlap completely. Mutants showed decreased susceptibility to insecticides, accompanied by a reduction in fitness. The number of eggs produced by Dα1attP , Dα2attP , Dβ2attP and Dβ3attP females was significantly lesser than that of the vas-Cas9 strain as the control. In addition, adults of Dα2attP , Dα3attP and Dα7attP strains showed lower climbing performance. Meanwhile, males of Dα3attP , Dα5attP , Dβ2attP and Dβ3attP , and females of Dβ2attP showed significantly shorter longevity than those of the vas-Cas9 strain. CONCLUSION This study provides new insights into the interactions of different insecticides with different nAChRs subunit in D. melanogaster as a research model, it could help better understand such interaction in agricultural pests whose genetic manipulations for toxicological research are often challenging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Xin-Guo Pei
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Zhi-Tao Yu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Yang Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Li-Xiang Wang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Xin-Yu Song
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| |
Collapse
|
52
|
Deletion of the Serotonin Receptor 7 Gene Changed the Development and Behavior of the Mosquito, Aedes aegypti. INSECTS 2022; 13:insects13080671. [PMID: 35893026 PMCID: PMC9332693 DOI: 10.3390/insects13080671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Serotonin (5-HT) plays a vital role in many physiological processes in insects, regulating physiological activities such as growth and movement through multiple 5-HT receptors (5-HTRs), which were potential targets for some new insecticides. However, the specific function of individual 5-HTRs in Ae. aegypti is still unclear. In this study, we investigated the function of the 5-HT7A receptor during Ae. aegypti development. 5-HTR7A transcripts were detected at all stages of development by real-time PCR. The results indicated that the gene expression was highest in the limbs (p < 0.01). We also generated 5-HTR7A mutant mosquitoes using CRISPR-mediated gene editing. The mutants had an abnormal phenotype at the larval stage, including an aberrant head-to-chest ratio and decreased motor activity. The mutant pupae developed abnormally, and most died (56.67%) (p < 0.0001). Using external stimuli to larvae and pupae with abnormal phenotypes, we found the mutant G1 and G2 generations responded to external stimuli in a longer time than the wild-type (WT) mosquitoes, and most of the mutants were 2 to 3 s slower than the WTs to respond to external stimuli (p < 0.01). Due to higher mortality, mutant larvae and pupae had fewer numbers than the WTs. The egg hatching rate of mutant G1 and G2 generations was lower than that of the WTs (p < 0.01). The expression level of 5-HTR7A in the mutants decreased by about 65% compared with the control group using real-time PCR (p < 0.05). In all, the 5-HT7A receptor plays an important role in the metamorphosis, development and motor function of Aedes aegypti.
Collapse
|
53
|
Ansai S, Kitano J. Speciation and adaptation research meets genome editing. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200516. [PMID: 35634923 PMCID: PMC9149800 DOI: 10.1098/rstb.2020.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 07/20/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation and adaptive traits in natural populations is one of the fundamental goals in evolutionary biology. Genome editing technologies based on CRISPR-Cas systems and site-specific recombinases have enabled us to modify a targeted genomic region as desired and thus to conduct functional analyses of target loci, genes and mutations even in non-conventional model organisms. Here, we review the technical properties of genome editing techniques by classifying them into the following applications: targeted gene knock-out for investigating causative gene functions, targeted gene knock-in of marker genes for visualizing expression patterns and protein functions, precise gene replacement for identifying causative alleles and mutations, and targeted chromosomal rearrangement for investigating the functional roles of chromosomal structural variations. We describe examples of their application to demonstrate functional analysis of naturally occurring genetic variations and discuss how these technologies can be applied to speciation and adaptation research. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
54
|
Essential functions of mosquito ecdysone importers in development and reproduction. Proc Natl Acad Sci U S A 2022; 119:e2202932119. [PMID: 35696563 PMCID: PMC9231622 DOI: 10.1073/pnas.2202932119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Steroid hormones control sexual maturation and reproduction in insects and humans alike. The insect steroid hormone ecdysone uses a membrane transporter named Ecdysone Importer (EcI) to enter cells and promote these physiological processes, but EcI is unexpectedly missing in mosquito genomes. Using the yellow fever mosquito Aedes aegypti, here we show that mosquitoes use alternative ecdysone importers to facilitate ecdysone-dependent development and reproduction. These transporters are also present in other insects, including fruit flies, but they are dispensable for fly development and reproduction likely due to their limited expression patterns. Our results thus indicate that differential expression of steroid hormone importers enables tissue- and stage-specific hormone responses, and some importers can obtain critical physiological functions only in certain species. The primary insect steroid hormone ecdysone requires a membrane transporter to enter its target cells. Although an organic anion-transporting polypeptide (OATP) named Ecdysone Importer (EcI) serves this role in the fruit fly Drosophila melanogaster and most likely in other arthropod species, this highly conserved transporter is apparently missing in mosquitoes. Here we report three additional OATPs that facilitate cellular incorporation of ecdysone in Drosophila and the yellow fever mosquito Aedes aegypti. These additional ecdysone importers (EcI-2, -3, and -4) are dispensable for development and reproduction in Drosophila, consistent with the predominant role of EcI. In contrast, in Aedes, EcI-2 is indispensable for ecdysone-mediated development, whereas EcI-4 is critical for vitellogenesis induced by ecdysone in adult females. Altogether, our results indicate unique and essential functions of these additional ecdysone importers in mosquito development and reproduction, making them attractive molecular targets for species- and stage-specific control of ecdysone signaling in mosquitoes.
Collapse
|
55
|
Multigenerational laboratory culture of pelagic ctenophores and CRISPR-Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 2022; 17:1868-1900. [PMID: 35697825 DOI: 10.1038/s41596-022-00702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Despite long-standing experimental interest in ctenophores due to their unique biology, ecological influence and evolutionary status, previous work has largely been constrained by the periodic seasonal availability of wild-caught animals and difficulty in reliably closing the life cycle. To address this problem, we have developed straightforward protocols that can be easily implemented to establish long-term multigenerational cultures for biological experimentation in the laboratory. In this protocol, we describe the continuous culture of the Atlantic lobate ctenophore Mnemiopsis leidyi. A rapid 3-week egg-to-egg generation time makes Mnemiopsis suitable for a wide range of experimental genetic, cellular, embryological, physiological, developmental, ecological and evolutionary studies. We provide recommendations for general husbandry to close the life cycle of Mnemiopsis in the laboratory, including feeding requirements, light-induced spawning, collection of embryos and rearing of juveniles to adults. These protocols have been successfully applied to maintain long-term multigenerational cultures of several species of pelagic ctenophores, and can be utilized by laboratories lacking easy access to the ocean. We also provide protocols for targeted genome editing via microinjection with CRISPR-Cas9 that can be completed within ~2 weeks, including single-guide RNA synthesis, early embryo microinjection, phenotype assessment and sequence validation of genome edits. These protocols provide a foundation for using Mnemiopsis as a model organism for functional genomic analyses in ctenophores.
Collapse
|
56
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
57
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
58
|
Agarwal A, Sarma DK, Chaurasia D, Maan HS. Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms. Acta Trop 2022; 233:106539. [PMID: 35623398 DOI: 10.1016/j.actatropica.2022.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Vector-borne diseases, such as dengue, chikungunya, zika, yellow fever etc pose significant burden among the infectious diseases globally, especially in tropical and sub-tropical regions. Globalization, deforestation, urbanization, climate change, uncontrolled population growth, inadequate waste management and poor vector-management infrastructure have all contributed to the expansion of vector habitats and subsequent increase in vector-borne diseases throughout the world. Conventional vector control methods, such as use of insecticides, have significant negative environmental repercussions in addition to developing resistance in vectors. Till date, a very few vaccines or antiviral therapies have been approved for the treatment of vector borne diseases. In this review, we have discussed emerging molecular approaches like CRISPR (clustered regularly interspaced short palindromic repeats)/Cas-9, sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), Wolbachia (virus transmission blocking) and RNA interference (RNAi) to combat vector and vector-borne viruses. Due to the extensive advancements in RNAi research, a special focus has been given on its types, biogenesis, mechanism of action, delivery and experimental studies evaluating their application as anti-mosquito and anti-viral agent. These technologies appear to be highly promising in terms of contributing to vector control and antiviral drug development, and hence can be used to reduce global vector and vector-borne disease burden.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India.
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, Madhya Pradesh, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| |
Collapse
|
59
|
Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A, Younger MA, Matthews BJ, Merhof D, Thiberge S, Ignell R, Strauch M, McBride CS. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022; 605:706-712. [PMID: 35508661 DOI: 10.1038/s41586-022-04675-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
A globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient disease vector1. Host-seeking female mosquitoes strongly prefer human odour over the odour of animals2,3, but exactly how they distinguish between the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components4-7, making discrimination an interesting sensory coding challenge. Here we show that human and animal odours evoke activity in distinct combinations of olfactory glomeruli within the Ae. aegypti antennal lobe. One glomerulus in particular is strongly activated by human odour but responds weakly, or not at all, to animal odour. This human-sensitive glomerulus is selectively tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in human odour and which probably originate from unique human skin lipids. Using synthetic blends, we further demonstrate that signalling in the human-sensitive glomerulus significantly enhances long-range host-seeking behaviour in a wind tunnel, recapitulating preference for human over animal odours. Our research suggests that animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals targets for the design of next-generation mosquito-control strategies.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. .,Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA. .,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA. .,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Jessica L Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.,Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Annika Hinze
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexis L Kriete
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Graduate Program in Entomology, North Carolina State University, Raleigh, NC, USA
| | - Azwad Iqbal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Stephan Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.,Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. .,Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA. .,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
60
|
Amelia-Yap ZH, Azman AS, AbuBakar S, Low VL. Streptomyces derivatives as an insecticide: Current perspectives, challenges and future research needs for mosquito control. Acta Trop 2022; 229:106381. [PMID: 35183537 DOI: 10.1016/j.actatropica.2022.106381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
The pervasiveness of arboviruses in wreaking havoc on public health has lingered on international health agendas. A scarcity of mosquito-borne disease vaccines and therapies demands prompt attention, as billions of people worldwide are at risk of infections. It is widely known that vector control continues, and in some diseases, remains the only resort in suppressing disease transmissions we presently possess at its disposal. But the use of commercial insecticides is being crippled by the widespread insecticide resistance, which greatly menaces their efficacies, toxicological repercussions such as environmental pollution and human health risk. Rather, an environmentally benign technique of employing Streptomyces isolates from settings such as terrestrial soils, marine sediments, and mangrove soils for Culicidae management has recently received a lot of positive attention. Streptomyces' capacities to produce a wide range of bioactive secondary metabolites that contribute to pharmaceutical, agricultural and veterinarian, Streptomyces-derived bioactive compounds are increasingly being considered for use in vector control. Herein, we compiled all of the available datasets on the effectiveness of Streptomyces-derived compounds against major mosquito vectors of medical importance. Aedes, Anopheles, and Culex are used to assess the toxicity of crude extracts or fractions. This paper reviewed the promising ovicidal, larvicidal, and pupacidal effects of different Streptomyces strains. Notably, no research into the adulticidal effect of Streptomyces-derived compounds has yet been done. Aside from the genetic makeup, the production of secondary metabolites from Streptomyces depends on the growing conditions. And that, to optimise the maximum yield of highly potent bioactive compounds being extracted, solvents' choice is of paramount importance. Thus, both cultivation parameters and the choice of organic solvents for secondary metabolites extraction will be discussed. Furthermore, biases derived from different studies have implied the need for standardizing experimental procedures. While entomological data should be collected consistently across all studies to expedite evidence-based policymaking of bioinsecticides, the quality of data from vector control interventions - particularly the experimental design, execution, analysis, and presentation of results of vector control studies - will be thoroughly reviewed. Lastly, to promote consistency and reliability, these knowledge gaps are identified, along with a discussion of current perspectives on vector control, global bioinsecticide trends, challenges on commercializing bioinsecticides and future research needs.
Collapse
Affiliation(s)
- Zheng Hua Amelia-Yap
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Malaysia
| | - Sazaly AbuBakar
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Van Lun Low
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
61
|
Lee IH, Duvall LB. Maternally Instigated Diapause in Aedes albopictus: Coordinating Experience and Internal State for Survival in Variable Environments. Front Behav Neurosci 2022; 16:778264. [PMID: 35548691 PMCID: PMC9082357 DOI: 10.3389/fnbeh.2022.778264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is one of the most dangerous invasive species in the world. Females bite mammalian hosts, including humans, to obtain blood for egg development. The ancestral range of Ae. albopictus likely spanned from India to Japan and this species has since invaded a substantial portion of the globe. Ae. albopictus can be broadly categorized into temperate and tropical populations. One key to their ability to invade diverse ecological spaces is the capacity of females to detect seasonal changes and produce stress-resistant eggs that survive harsh winters. Females living in temperate regions respond to cues that predict the onset of unfavorable environmental conditions by producing eggs that enter maternally instigated embryonic diapause, a developmentally arrested state, which allows species survival by protecting the embryos until favorable conditions return. To appropriately produce diapause eggs, the female must integrate environmental cues and internal physiological state (blood feeding and reproductive status) to allocate nutrients and regulate reproduction. There is variation in reproductive responses to environmental cues between interfertile tropical and temperate populations depending on whether females are actively producing diapause vs. non-diapause eggs and whether they originate from populations that are capable of diapause. Although diapause-inducing environmental cues and diapause eggs have been extensively characterized, little is known about how the female detects gradual environmental changes and coordinates her reproductive status with seasonal dynamics to lay diapause eggs in order to maximize offspring survival. Previous studies suggest that the circadian system is involved in detecting daylength as a critical cue. However, it is unknown which clock network components are important, how these connect to reproductive physiology, and how they may differ between behavioral states or across populations with variable diapause competence. In this review, we showcase Ae. albopictus as an emerging species for neurogenetics to study how the nervous system combines environmental conditions and internal state to optimize reproductive behavior. We review environmental cues for diapause induction, downstream pathways that control female metabolic changes and reproductive capacity, as well as diapause heterogeneity between populations with different evolutionary histories. We highlight genetic tools that can be implemented in Ae. albopictus to identify signaling molecules and cellular circuits that control diapause. The tools and discoveries made in this species could translate to a broader understanding of how environmental cues are interpreted to alter reproductive physiology in other species and how populations with similar genetic and circuit organizations diversify behavioral patterns. These approaches may yield new targets to interfere with mosquito reproductive capacity, which could be exploited to reduce mosquito populations and the burden of the pathogens they transmit.
Collapse
Affiliation(s)
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University in the City of New York, New York, NY, United States
| |
Collapse
|
62
|
An E3 Ubiquitin Ligase Scaffolding Protein Is Proviral during Chikungunya Virus Infection in Aedes aegypti. Microbiol Spectr 2022; 10:e0059522. [PMID: 35435754 PMCID: PMC9241663 DOI: 10.1128/spectrum.00595-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus causing chikungunya disease (CHIKD) and is transmitted to humans by Aedes mosquitoes. The virus establishes an intricate balance of cellular interactions that ultimately helps in its replication and dodges cellular immune response. In an attempt to identify cellular host factors required during CHIKV replication in Aag2 cells, we performed global transcriptomics of CHIKV-infected Aag2 cells, and further, we compared this library with the Drosophila RNAi Screening Center (DRSC) database and identified transcripts that were regulated in Aedes aegypti during CHIKV infection. These analyses revealed specific pathways, such as ubiquitin-related pathways, proteolysis pathways, protein catabolic processes, protein modification, and cellular protein metabolic processes, involved during replication of the virus. Loss-of-function assays of selected candidates revealed their proviral or antiviral characteristics upon CHIKV infection in A. aegypti-derived Aag2 cells. Further validations identified that the ubiquitin proteasomal pathway is required for CHIKV infection in A. aegypti and that an important member of this family of proteins, namely, AeCullin-3 (Aedes ortholog of human cullin-3), is a proviral host factor of CHIKV replication in Aag2 cells. IMPORTANCE Arboviruses cause several diseases in humans and livestock. Vector control is the main strategy for controlling diseases transmitted by mosquitoes. In this context, it becomes paramount to understand how the viruses replicate in the vector for designing better transmission blocking strategies. We obtained the global transcriptome signature of A. aegypti cells during CHIKV infection, and in order to obtain the maximum information from these data sets, we further utilized the well-characterized Drosophila system and arrived upon a set of transcripts and their pathways that affect A. aegypti cells during CHIKV infection. These analyses and further validations reveal that important pathways related to protein degradation are actively involved during CHIKV infection in A. aegypti and are mainly proviral. Targeting these molecules may provide novel approaches for blocking CHIKV replication in A. aegypti.
Collapse
|
63
|
Nakamura T, Ylla G, Extavour CG. Genomics and genome editing techniques of crickets, an emerging model insect for biology and food science. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100881. [PMID: 35123119 DOI: 10.1016/j.cois.2022.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.
Collapse
Affiliation(s)
- Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
64
|
Chae K, Dawson C, Valentin C, Contreras B, Zapletal J, Myles KM, Adelman ZN. Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti. PNAS NEXUS 2022; 1:pgac037. [PMID: 36713320 PMCID: PMC9802104 DOI: 10.1093/pnasnexus/pgac037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
Promising genetics-based approaches are being developed to reduce or prevent the transmission of mosquito-vectored diseases. Less clear is how such transgenes can be removed from the environment, a concern that is particularly relevant for highly invasive gene drive transgenes. Here, we lay the groundwork for a transgene removal system based on single-strand annealing (SSA), a eukaryotic DNA repair mechanism. An SSA-based rescuer strain (kmoRG ) was engineered to have direct repeat sequences (DRs) in the Aedes aegypti kynurenine 3-monooxygenase (kmo) gene flanking the intervening transgenic cargo genes, DsRED and EGFP. Targeted induction of DNA double-strand breaks (DSBs) in the DsRED transgene successfully triggered complete elimination of the entire cargo from the kmoRG strain, restoring the wild-type kmo gene, and thereby, normal eye pigmentation. Our work establishes the framework for strategies to remove transgene sequences during the evaluation and testing of modified strains for genetics-based mosquito control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
65
|
Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, Heu CC, Kim D, Chaverra-Rodriguez D, Rasgon JL, Harrell RA, Nuss AB, Gulia-Nuss M. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 2022; 25:103781. [PMID: 35535206 PMCID: PMC9076890 DOI: 10.1016/j.isci.2022.103781] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022] Open
Abstract
Despite their capacity to acquire and pass on an array of debilitating pathogens, research on ticks has lagged behind other arthropod vectors, such as mosquitoes, largely because of challenges in applying available genetic and molecular tools. CRISPR-Cas9 is transforming non-model organism research; however, successful gene editing has not yet been reported in ticks. Technical challenges for injecting tick embryos to attempt gene editing have further slowed research progress. Currently, no embryo injection protocol exists for any chelicerate species, including ticks. Herein, we report a successful embryo injection protocol for the black-legged tick, Ixodes scapularis, and the use of this protocol for genome editing with CRISPR-Cas9. We also demonstrate that the ReMOT Control technique could be successfully used to generate genome mutations outside Insecta. Our results provide innovative tools to the tick research community that are essential for advancing our understanding of the molecular mechanisms governing pathogen transmission by tick vectors and the underlying biology of host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Michael N. Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Jeremiah B. Reyes
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Randeep Chana
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Chan C. Heu
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donghun Kim
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Duverney Chaverra-Rodriguez
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason L. Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robert A. Harrell
- Insect Transformation Facility, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
66
|
Gupta A, Singh SS, Mittal AM, Singh P, Goyal S, Kannan KR, Gupta AK, Gupta N. Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. iScience 2022; 25:103938. [PMID: 35265812 PMCID: PMC8899409 DOI: 10.1016/j.isci.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
Many experimental studies have examined behavioral and electrophysiological responses of mosquitoes to odors. However, the differences across studies in data collection, processing, and reporting make it difficult to perform large-scale analyses combining data from multiple studies. Here we extract and standardize data for 12 mosquito species, along with Drosophila melanogaster for comparison, from over 170 studies and curate the Mosquito Olfactory Response Ensemble (MORE), publicly available at https://neuralsystems.github.io/MORE. We demonstrate the ability of MORE in generating biological insights by finding patterns across studies. Our analyses reveal that ORs are tuned to specific ranges of several physicochemical properties of odorants; the empty-neuron recording technique for measuring OR responses is more sensitive than the Xenopus oocyte technique; there are systematic differences in the behavioral preferences reported by different types of assays; and odorants tend to become less attractive or more aversive at higher concentrations. MORE is a database of behavioral and electrophysiological responses to odors MORE includes data from 170 studies covering 12 species of mosquitoes along with flies MORE shows differences in odor preferences measured with different assays Empty-neuron technique measures responses more sensitively than the oocyte technique
Collapse
|
67
|
Pan X, Luo Y, Liao N, Zhang Y, Xiao M, Chen P, Lu C, Dong Z. CRISPR/Cpf1 multiplex genome editing system increases silkworm tolerance to BmNPV. Int J Biol Macromol 2022; 200:566-573. [PMID: 35066025 DOI: 10.1016/j.ijbiomac.2022.01.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
The CRISPR/Cas9 genome editing technology is now widely used in insect studies, but the use of CRISPR can be further increased to improve insect genome engineering. We established a direct mutation at multiple loci in several genes simultaneously used by CRISPR/Cpf1 multiplex genome editing technology to target the BmNPV genome. We constructed a transgenic line that can target the BmNPV ie-1, gp64, and DNApoly genes simultaneously, and hybridized this line with an FnCpf1 transgenic line to obtain an FnCpf1 × gNPVM binary hybrid expression system and to activate the FnCpf1 gene editing system. We showed that the multiple gene editing system introduced deletions, mutations, and insertions at three target sites, and that it did not affect the economic traits of transgenic silkworm lines. The antiviral response of multiplexed genome editing lines increased significantly, and viral gene transcription and replication were significantly affected in the transgenic silkworm lines. This study provides innovative resistance materials for silkworm breeding and also provides a simplified platform for efficient insect multi genome engineering and genetic operation.
Collapse
Affiliation(s)
- Xuan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yan Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Nachuan Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ya Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
68
|
Wang XX, Li J, Wang TX, Yang YN, Zhang HK, Zhou M, Kang L, Wei LY. A novel non-invasive identification of genome editing mutants from insect exuviae. INSECT SCIENCE 2022; 29:21-32. [PMID: 33860620 DOI: 10.1111/1744-7917.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
With the wide application of genome editing in insects, a simple and efficient identification method is urgently needed to meet the increasing demand for mutation detection. Here, taking migratory locusts as a model system, we developed a non-invasive method to accurately identify genome-edited mutants by using DNA from insect exuviae. We compared the quantity and quality of genomic DNA from exuviae in five instar hoppers and found that the 1st instar exuviae had the highest DNA yield and content, while the 3rd instar exuviae had the best quality. Consensus genotypes were identified from genomic DNA of hoppers at different developmental stages in the same individuals. Moreover, we demonstrated that the amplification products from DNA extracted from locust exuviae are the consensus sequences with those from the hemolymph and foreleg pre-tarsus. Therefore, non-invasive samples provide the same genotyping results as minimally invasive and invasive samples of the same individuals. Furthermore, this identification method that uses genomic DNA from exuviae can be used for early screening of positive genome-edited individuals in each generation for adult crossing. In our study, the non-invasive identification method was not only simpler and provided results earlier than existing methods, but also had a better reproducibility and accuracy. This non-invasive identification approach using genomic DNA from exuviae can be adapted to meet the growing demand for genetic analysis and will find wide application in insect genome editing research.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Jing Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Tong-Xin Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yi-Nuo Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hai-Kang Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Meng Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Le Kang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Ya Wei
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
69
|
Schneider WM, Hoffmann HH. Flavivirus-host interactions: an expanding network of proviral and antiviral factors. Curr Opin Virol 2022; 52:71-77. [PMID: 34896863 PMCID: PMC8655497 DOI: 10.1016/j.coviro.2021.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Flaviviruses are zoonotic pathogens transmitted by the bite of infected mosquitos and ticks and represent a constant burden to human health. Here we review recent literature aimed at uncovering how flaviviruses interact with the cells that they infect. A better understanding of these interactions may ultimately lead to novel therapeutic targets. We highlight several studies that employed low-biased methods to discover new protein-protein, protein-RNA, and genetic interactions, and spotlight recent work characterizing the host protein, TMEM41B, which has been shown to be critical for infection by diverse flaviviruses and coronaviruses.
Collapse
Affiliation(s)
- William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
70
|
Ang JXD, Nevard K, Ireland R, Purusothaman DK, Verkuijl SAN, Shackleford L, Gonzalez E, Anderson MAE, Alphey L. Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source. PLoS Genet 2022; 18:e1010060. [PMID: 35180218 PMCID: PMC8893643 DOI: 10.1371/journal.pgen.1010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/03/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing prevalence of insecticide resistance and the ongoing global burden of vector-borne diseases have encouraged new efforts in mosquito control. For Aedes aegypti, the most important arboviral vector, integration rates achieved in Cas9-based knock-ins so far have been rather low, highlighting the need to understand gene conversion patterns and other factors that influence homology-directed repair (HDR) events in this species. In this study, we report the effects of sequence mismatches or donor template forms on integration rates. We found that modest sequence differences between construct homology arms [DNA sequence in the donor template which resembles the region flanking the target cut] and genomic target comprising 1.2% nucleotide dissimilarity (heterology) significantly reduced integration rates. While most integrations (59-88%) from plasmid templates were the result of canonical [on target, perfect repair] HDR events, no canonical events were identified from other donor types (i.e. ssDNA, biotinylated ds/ssDNA). Sequencing of the transgene flanking region in 69 individuals with canonical integrations revealed 60% of conversion tracts to be unidirectional and extend up to 220 bp proximal to the break, though in three individuals bidirectional conversion of up to 725 bp was observed.
Collapse
Affiliation(s)
| | | | | | | | - Sebald A. N. Verkuijl
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| |
Collapse
|
71
|
Abstract
CRISPR-mediated genome engineering technologies have been adapted to a wide variety of organisms with high efficiency and specificity. The yellow fever mosquito, Aedes aegypti , is one such organism. It is also responsible for transmitting a wide variety of deadly viruses including Dengue, Zika, Yellow fever, and Chikungunya. The key to successful CRISPR-mediated gene editing applications is the delivery of both Cas9 ribonuclease and single-guide RNA (sgRNA ) to the nucleus of desired cells. Various methods have been developed for supplying the Cas9 endonuclease, sgRNA , and donor DNA to Ae. aegypti. In this chapter, we focus on methods of direct embryo delivery of editing components, presenting detailed step-by-step CRISPR/Cas9-based genome-editing protocols for inducing desired heritable edits in mosquitoes as well as insights into successful application of these protocols. We also highlight potential opportunities for customizing these protocols to manipulate the mosquito genome for innovative in vivo gene function studies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
72
|
Manoj F, Tai LW, Wang KSM, Kuhlman TE. Targeted insertion of large genetic payloads using cas directed LINE-1 reverse transcriptase. Sci Rep 2021; 11:23625. [PMID: 34880381 PMCID: PMC8654924 DOI: 10.1038/s41598-021-03130-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
A difficult genome editing goal is the site-specific insertion of large genetic constructs. Here we describe the GENEWRITE system, where site-specific targetable activity of Cas endonucleases is coupled with the reverse transcriptase activity of the ORF2p protein of the human retrotransposon LINE-1. This is accomplished by providing two RNAs: a guide RNA targeting Cas endonuclease activity and an appropriately designed payload RNA encoding the desired insertion. Using E. coli as a simple platform for development and deployment, we show that with proper payload design and co-expression of helper proteins, GENEWRITE can enable insertion of large genetic payloads to precise locations, although with off-target effects, using the described approach. Based upon these results, we describe a potential strategy for implementation of GENEWRITE in more complex systems.
Collapse
Affiliation(s)
- Femila Manoj
- Microbiology Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Laura W Tai
- Department of Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Katelyn Sun Mi Wang
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas E Kuhlman
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
73
|
Zhu GH, Albishi NM, Chen X, Brown RL, Palli SR. Expanding the Toolkit for Genome Editing in a Disease Vector, Aedes aegypti: Transgenic Lines Expressing Cas9 and Single Guide RNA Induce Efficient Mutagenesis. CRISPR J 2021; 4:846-853. [PMID: 33450159 PMCID: PMC8742270 DOI: 10.1089/crispr.2020.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas9 mediated genome editing methods are being used for the analysis of gene function. However, it is hard to identify gene knockout mutants for genes whose knockout does not cause distinct phenotypes. To overcome this issue in the disease vector, Aedes aegypti, a transgenic Cas9/single guide RNA (sgRNA) method, was used to knock out the eye marker gene, kynurenine 3-monooxygenase (kmo), and the juvenile hormone receptor, Methoprene-tolerant (Met). PiggyBac transformation vectors were prepared to express sgRNAs targeting kmo and Met under the control of the U6 promoter. Transgenic Ae. aegypti expressing kmo-sgRNA or Met-sgRNA under the control of the U6 promoter and enhanced green fluorescent protein (eGFP) under the control of the hr5ie1 promoter were produced. The U6-sgRNA adults were mated with AAEL010097-Cas9 adults. The progeny were screened, and the insects expressing eGFP and DsRed were selected and evaluated for mutations in target genes. About 77% and 78% of the progeny that were positive for both eGFP and DsRed in kmo-sgRNA and Met-sgRNA groups, respectively, showed mutations in their target genes.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Najla M. Albishi
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Rachel L. Brown
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
74
|
Zhang L, Li MZ, Chen ZH, Tang Y, Liao CH, Han Q. Arylalkalamine N-acetyltransferase-1 functions on cuticle pigmentation in the yellow fever mosquito, Aedes aegypti. INSECT SCIENCE 2021; 28:1591-1600. [PMID: 33369191 DOI: 10.1111/1744-7917.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the acetylation of dopamine, 5-hydroxy-tryptamine, tryptamine, octopamine, norepinephrine and other arylalkylamines to form respective N-acetyl-arylalkylamines. Depending on the products formed, aaNATs are involved in a variety of physiological functions. In the yellow fever mosquito, Aedes aegypti, a number of aaNATs and aaNAT-like proteins have been reported. However, the primary function of each individual aaNAT is yet to be identified. In this study we investigated the function of Ae. aegypti aaNAT1 (Ae-aaNAT1) in cuticle pigmentation and development of morphology. Ae-aaNAT1 transcripts were detected at all stages of development with highest expressions after pupation and right before adult eclosion. Ae-aaNAT1 mutant mosquitoes generated using clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 had no obvious effect on larval and pupal development. However, the mutant mosquitoes exhibited a roughened exoskeletal surface, darker cuticles, and color pattern changes suggesting that Ae-aaNAT1 plays a role in development of the morphology and pigmentation of Ae. aegypti adult cuticles. The mutant also showed less blood feeding efficiency and lower fecundity when compared with the wild-type. The mutation of Ae-aaNAT1 influenced expression of genes involved in cuticle formation. In summary, Ae-aaNAT1 mainly functions on cuticular pigmentation and also affects blood feeding efficiency and fecundity.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Miao-Zhen Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zhao-Hui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Cheng-Hong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| |
Collapse
|
75
|
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 2021; 118:2109381118. [PMID: 34697248 DOI: 10.1073/pnas.2109381118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt -/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox -/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox -/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Collapse
|
76
|
Abstract
Insect odorant-binding proteins (OBPs) are small soluble proteins that have been assigned roles in olfaction, but their other potential functions have not been extensively explored. Using CRISPR/Cas9-mediated disruption of Aedes aegyptiObp10 and Obp22, we demonstrate the pleiotropic contribution of these proteins to multiple processes that are essential for vectorial capacity. Mutant mosquitoes have impaired host-seeking and oviposition behavior, reproduction, and arbovirus transmission. Here, we show that Obp22 is linked to the male-determining sex locus (M) on chromosome 1 and is involved in male reproduction, likely by mediating the development of spermatozoa. Although OBP10 and OBP22 are not involved in flavivirus replication, abolition of these proteins significantly reduces transmission of dengue and Zika viruses through a mechanism affecting secretion of viral particles into the saliva. These results extend our current understanding of the role of insect OBPs in insect reproduction and transmission of human pathogens, making them essential determinants of vectorial capacity.
Collapse
|
77
|
Presnell JS, Browne WE. Krüppel-like factor gene function in the ctenophore Mnemiopsis leidyi assessed by CRISPR/Cas9-mediated genome editing. Development 2021; 148:272041. [PMID: 34373891 DOI: 10.1242/dev.199771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The Krüppel-like factor (Klf) gene family encodes transcription factors that play an important role in the regulation of stem cell proliferation, cell differentiation and development in bilaterians. Although Klf genes have been shown to specify functionally various cell types in non-bilaterian animals, their role in early-diverging animal lineages has not been assessed. Thus, the ancestral activity of these transcription factors in animal development is not well understood. The ctenophore Mnemiopsis leidyi has emerged as an important non-bilaterian model system for understanding early animal evolution. Here, we characterize the expression and functional role of Klf genes during M. leidyi embryogenesis. Zygotic Klf gene function was assessed with both CRISPR/Cas9-mediated genome editing and splice-blocking morpholino oligonucleotide knockdown approaches. Abrogation of zygotic Klf expression during M. leidyi embryogenesis resulted in abnormal development of several organs, including the pharynx, tentacle bulbs and apical organ. Our data suggest an ancient role for Klf genes in regulating endodermal patterning, possibly through regulation of cell proliferation.
Collapse
Affiliation(s)
- Jason S Presnell
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| | - William E Browne
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
78
|
Dong S, Dong Y, Simões ML, Dimopoulos G. Mosquito transgenesis for malaria control. Trends Parasitol 2021; 38:54-66. [PMID: 34483052 DOI: 10.1016/j.pt.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Malaria is one of the deadliest diseases. Because of the ineffectiveness of current malaria-control methods, several novel mosquito vector-based control strategies have been proposed to supplement existing control strategies. Mosquito transgenesis and gene drive have emerged as promising tools for preventing the spread of malaria by either suppressing mosquito populations by self-destructing mosquitoes or replacing mosquito populations with disease-refractory populations. Here we review the development of mosquito transgenesis and its application for malaria control, highlighting the transgenic expression of antiparasitic effector genes, inactivation of host factor genes, and manipulation of miRNAs and lncRNAs. Overall, from a malaria-control perspective, mosquito transgenesis is not envisioned as a stand-alone approach; rather, its use is proposed as a complement to existing vector-control strategies.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
79
|
Chae K, Valentin C, Jakes E, Myles KM, Adelman ZN. Novel synthetic 3'-untranslated regions for controlling transgene expression in transgenic Aedes aegypti mosquitoes. RNA Biol 2021; 18:223-231. [PMID: 34464234 DOI: 10.1080/15476286.2021.1971440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transgenic technology for mosquitoes is now more than two decades old, and a wide array of control sequences have been described for regulating gene expression in various life stages or specific tissues. Despite this, comparatively little attention has been paid to the development and validation of other transgene-regulating elements, especially 3'-untranslated regions (3'UTRs). As a consequence, the same regulatory sequences are often used multiple times in a single transgene array, potentially leading to instability of transgenic effector genes. To increase the repertoire of characterized 3'UTRs available for genetics-based mosquito control, we generated fifteen synthetic sequences based on the base composition of the widely used SV40 3'UTR sequence, and tested their ability to contribute to the expression of reporter genes EGFP or luciferase. Transient transfection in mosquito cells identified nine candidate 3'UTRs that conferred moderate to strong gene expression. Two of these were engineered into the mosquito genome through CRISPR/Cas9-mediated site-specific insertion and compared to the original SV40 3'UTR. Both synthetic 3'UTRs were shown to successfully promote transgene expression in all mosquito life stages (larva, pupa and adults), similar to the SV40 3'UTR, albeit with differences in intensity. Thus, the synthetic 3'UTR elements described here are suitable for regulating transgene expression in Ae. aegypti, and provide valuable alternatives in the design of multi-gene cassettes. Additionally, the synthetic-scramble approach we validate here could be used to generate additional functional 3'UTR elements in this or other organisms.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Emma Jakes
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
80
|
Quinn C, Anthousi A, Wondji C, Nolan T. CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus. G3 (BETHESDA, MD.) 2021; 11:6303614. [PMID: 34849822 PMCID: PMC8496255 DOI: 10.1093/g3journal/jkab201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The ability to introduce mutations, or transgenes, of choice to precise genomic locations has revolutionized our ability to understand how genes and organisms work. In many mosquito species that are vectors of various human diseases, the advent of CRISPR genome editing tools has shed light on basic aspects of their biology that are relevant to their efficiency as disease vectors. This allows a better understanding of how current control tools work and opens up the possibility of novel genetic control approaches, such as gene drives, that deliberately introduce genetic traits into populations. Yet for the Anopheles funestus mosquito, a significant vector of malaria in sub-Saharan Africa and indeed the dominant vector species in many countries, transgenesis has yet to be achieved. We describe herein an optimized transformation system based on the germline delivery of CRISPR components that allows efficient cleavage of a previously validated genomic site and preferential repair of these cut sites via homology-directed repair (HDR), which allows the introduction of exogenous template sequence, rather than end-joining repair. The rates of transformation achieved are sufficiently high that it should be able to introduce alleles of choice to a target locus, and recover these, without the need to include additional dominant marker genes. Moreover, the high rates of HDR observed suggest that gene drives, which employ an HDR-type mechanism to ensure their proliferation in the genome, may be well suited to work in A. funestus.
Collapse
Affiliation(s)
| | - Amalia Anthousi
- Department of Biology, University of Crete, Heraklion 700 13, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 700 13, Greece
| | - Charles Wondji
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé 5, Cameroon
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Corresponding author:
| |
Collapse
|
81
|
Feng X, Kambic L, Nishimoto JH, Reed FA, Denton JA, Sutton JT, Gantz VM. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. CRISPR J 2021; 4:595-608. [PMID: 34280034 PMCID: PMC8392076 DOI: 10.1089/crispr.2021.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Lukas Kambic
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | | | - Floyd A. Reed
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawai‘i, USA
| | - Jai A. Denton
- Institute of Vector-borne Disease, University of Monash, Clayton, Australia
| | - Jolene T. Sutton
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | - Valentino M. Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
82
|
Abstract
The ability to express a gene in all neurons is a crucial tool for studying the nervous system. Zhao et al., 2021 unlock genetic access to all neurons in mosquitoes by generating the first pan-neuronal transgenes in this non-model insect.
Collapse
Affiliation(s)
- Christopher J. Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Zhao Z, Tian D, McBride CS. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. CELL REPORTS METHODS 2021; 1:100042. [PMID: 34590074 PMCID: PMC8478256 DOI: 10.1016/j.crmeth.2021.100042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
The recent development of neurogenetic tools in Aedes aegypti mosquitoes is beginning to shed light on the neural basis of behaviors that make this species a major vector of human disease. However, we still lack a pan-neuronal expression driver-a key tool that provides genetic access to all neurons. Here, we describe our efforts to fill this gap via CRISPR/Cas9-mediated knock-in of reporters to broadly expressed neural genes and report on the generation of two strains, a Syt1:GCaMP6s strain that expresses synaptically localized GCaMP and a brp-T2A-QF2w driver strain that can be used to drive and amplify expression of any effector via the Q binary system. Both manipulations broadly and uniformly label the nervous system with only modest effects on behavior. We expect these strains to facilitate neurobiological research in Ae. aegypti mosquitoes and document both successful and failed manipulations as a roadmap for similar tool development in other non-model species.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - David Tian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolyn S. McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
84
|
Purusothaman DK, Shackleford L, Anderson MAE, Harvey-Samuel T, Alphey L. CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus Say. Sci Rep 2021; 11:14964. [PMID: 34294769 PMCID: PMC8298393 DOI: 10.1038/s41598-021-94065-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods (e.g. physical/chemical) are increasingly ineffective; use of insecticides also imposes hazards to both human and ecosystem health. Advances in genome editing have allowed the development of genetic insect control methods, which are species-specific and, theoretically, highly effective. CRISPR/Cas9 is a bacteria-derived programmable gene editing tool that is functional in a range of species. We describe the first successful germline gene knock-in by homology dependent repair in C. quinquefasciatus. Using CRISPR/Cas9, we integrated an sgRNA expression cassette and marker gene encoding a fluorescent protein fluorophore (Hr5/IE1-DsRed, Cq7SK-sgRNA) into the kynurenine 3-monooxygenase (kmo) gene. We achieved a minimum transformation rate of 2.8%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed. Insertion homozygotes displayed a white eye phenotype in early-mid larvae and a recessive lethal phenotype by pupation. This work provides an efficient method for engineering C. quinquefasciatus, providing a new tool for developing genetic control tools for this vector.
Collapse
Affiliation(s)
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, Surrey, UK
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, Surrey, UK
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, Surrey, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, Surrey, UK.
| |
Collapse
|
85
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
86
|
Abstract
Implementation of CRISPR/Cas9 methodologies for mosquito gene editing has not yet become widespread. This protocol details the procedure for Aedes aegypti mosquito gene editing using homology-directed repair and fluorescent marker insertion, which facilitates the generation and screening of mutant mosquito lines for gene function testing. We describe optimized methods for single guide RNA plasmid preparation, homologous recombination donor plasmid construction, embryo microinjection, and precise gene knock-in confirmation. We also provide general guidance for establishing mutant mosquito lines. For details on the practical use and execution of this protocol, please refer to Li et al. (2020).
Collapse
Affiliation(s)
- Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Matthew P. Su
- Department of Biological Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
87
|
Heu CC, McCullough FM, Luan J, Rasgon JL. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly ( Bemisia tabaci). CRISPR J 2021; 3:89-96. [PMID: 32315225 DOI: 10.1089/crispr.2019.0067] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bemisia tabaci cryptic species Middle East-Asia Minor I (MEAM1) is a serious agricultural polyphagous insect pest and vector of numerous plant viruses, causing major worldwide economic losses. B. tabaci control is limited by lack of robust gene editing tools. Gene editing is difficult in B. tabaci due to small embryos that are technically challenging to inject and which have high mortality post injection. We developed a CRISPR-Cas9 gene editing protocol based on injection of vitellogenic adult females rather than embryos ("ReMOT Control"). We identified an ovary-targeting peptide ligand ("BtKV") that, when fused to Cas9 and injected into adult females, transduced the ribonucleoprotein complex to the germline, resulting in efficient, heritable editing of the offspring genome. In contrast to embryo injection, adult injection is easy and does not require specialized equipment. Development of easy-to-use gene editing protocols for B. tabaci will allow researchers to apply the power of reverse genetic approaches to this species and will lead to novel control methods for this devastating pest insect.
Collapse
Affiliation(s)
- Chan C Heu
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Francine M McCullough
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Junbo Luan
- Department of Entomology, Cornell University, Ithaca, New York.,College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
88
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
89
|
McFarlane M, Laureti M, Levée T, Terry S, Kohl A, Pondeville E. Improved transient silencing of gene expression in the mosquito female Aedes aegypti. INSECT MOLECULAR BIOLOGY 2021; 30:355-365. [PMID: 33715239 DOI: 10.1111/imb.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Gene silencing using RNA interference (RNAi) has become a widely used genetic technique to study gene function in many organisms. In insects, this technique is often applied through the delivery of dsRNA. In the adult female Aedes aegypti, a main vector of human-infecting arboviruses, efficiency of gene silencing following dsRNA injection varies greatly according to targeted genes. Difficult knockdowns using dsRNA can thus hamper gene function analysis. Here, by analysing silencing of three different genes in female Ae. aegypti (p400, ago2 and E75), we show that gene silencing can indeed be dsRNA sequence dependent but different efficiencies do not correlate with dsRNA length. Our findings suggest that silencing is likely also gene dependent, probably due to gene-specific tissue expression and/or feedback mechanisms. We demonstrate that use of high doses of dsRNA can improve knockdown efficiency, and injection of a transfection reagent along with dsRNA reduces the variability in efficiency between replicates. Finally, we show that gene silencing cannot be achieved using siRNA injection in Ae. aegypti adult females. Overall, this work should help future gene function analyses using RNAi in adult females Ae. aegypti, leading toward a better understanding of physiological and infectious processes.
Collapse
Affiliation(s)
- M McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - M Laureti
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - T Levée
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - S Terry
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - A Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - E Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
90
|
Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS. Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster. PLoS Genet 2021; 17:e1009544. [PMID: 33999957 PMCID: PMC8158876 DOI: 10.1371/journal.pgen.1009544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/27/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo. Much of what we know about biological processes has come from the analysis of mutants whose loss-of-function phenotypes provide insight into their normal functions. However, for genes that are required for viability and which have multiple functions in the life of a cell or organism one can only observe mutant phenotypes produced up to the time of death. Normal functions performed in wild-type individuals later than the time of death of mutants cannot be observed. In one approach to overcoming this limitation, a class of peptide degradation signals (degrons) have been developed, which when fused to proteins-of-interest, can target those proteins for degradation in response to various stimuli (temperature, chemical agents, co-expressed proteins, or light). Here we describe a new inducible degron (the photo-N-degron or PND), which when fused to the N-terminus of a protein, can induce N-end rule-mediated degradation in response to blue-light illumination and have validated its use in both yeast and Drosophila embryos. Moreover, using the Drosophila embryonic patterning protein Cactus, we show that like the PND, the previously-described B-LID domain, but not the previously-described photosensitive degron (psd), can produce detectable light-inducible phenotypes in Drosophila embryos that are consistent with the role of Cactus in dorsal-ventral patterning.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Goheun Kim
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Theodora Koromila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - John W. Steele
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AS); (DSS)
| | - David S. Stein
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AS); (DSS)
| |
Collapse
|
91
|
Li X, Xu Y, Zhang H, Yin H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1202-1209. [PMID: 33590868 DOI: 10.1093/jme/tjab016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 06/12/2023]
Abstract
The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne diseases. This study uses the ReMOT Control technique in Culex pipiens pallens (L.) to produce genetically modified mosquitoes. A microinjection system was established by injecting 60 adult female mosquitoes-14 µl injection mixture was required, and no precipitation occurred with ≤1 µl of endosomal release reagents (chloroquine or saponin). The efficiency of delivery of the P2C-enhanced green fluorescent protein-Cas9 (P2C-EGFP-Cas9) ribonucleoprotein complex into the ovary was 100% when injected at 24 h post-bloodmeal (the peak of vitellogenesis). Using this method for KMO knockout, we found that gene editing in the ovary could also occur when P2C-Cas9 RNP complex was injected into the hemolymph of adult Cx. pipiens pallens by ReMOT Control. In the chloroquine group, of the 2,251 G0 progeny screened, 9 individuals showed with white and mosaic eye phenotypes. In the saponin group, of the 2,462 G0 progeny screened, 8 mutant individuals were observed. Sequencing results showed 13 bp deletions, further confirming the fact that gene editing occurred. In conclusion, the successful application of ReMOT Control in Cx. pipiens pallens not only provides the basic parameters (injection parameters and injection time) for this method but also facilitates the study of mosquito biology and control.
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
92
|
Nuss A, Sharma A, Gulia-Nuss M. Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases Research. Front Cell Infect Microbiol 2021; 11:678037. [PMID: 34041045 PMCID: PMC8141593 DOI: 10.3389/fcimb.2021.678037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate hematophagous arthropods that are distributed worldwide and are one of the most important vectors of pathogens affecting humans and animals. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind other arthropod vectors, such as mosquitoes. This is largely because of challenges in applying functional genomics and genetic tools to the idiosyncrasies unique to tick biology, particularly techniques for stable genetic transformations. CRISPR-Cas9 is transforming non-model organism research; however, successful germline editing has yet to be accomplished in ticks. Here, we review the ancillary methods needed for transgenic tick development and the use of CRISPR/Cas9, the most promising gene-editing approach, for tick genetic transformation.
Collapse
Affiliation(s)
- Andrew Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, United States
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| |
Collapse
|
93
|
Chae K, Valentin C, Dawson C, Jakes E, Myles KM, Adelman ZN. A knockout screen of genes expressed specifically in Ae. aegypti pupae reveals a critical role for stretchin in mosquito flight. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103565. [PMID: 33716097 DOI: 10.1016/j.ibmb.2021.103565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Aedes aegypti is a critical vector for transmitting Zika, dengue, chikungunya, and yellow fever viruses to humans. Genetic strategies to limit mosquito survival based upon sex distortion or disruption of development may be valuable new tools to control Ae. aegypti populations. We identified six genes with expression limited to pupal development; osi8 and osi11 (Osiris protein family), CPRs and CPF (cuticle protein family), and stretchin (a muscle protein). Heritable CRISPR/Cas9-mediated gene knockout of these genes did not reveal any defects in pupal development. However, stretchin-null mutations (strnΔ35/Δ41) resulted in flightless mosquitoes with an abnormal open wing posture. The inability of adult strnΔ35/Δ41 mosquitoes to fly restricted their escape from aquatic rearing media following eclosion, and substantially reduced adult survival rates. Transgenic strains which contain the EGFP marker gene under the control of strn regulatory regions (0.8 kb, 1.4 kb, and 2.2 kb upstream, respectively), revealed the gene expression pattern of strn in muscle-like tissues in the thorax during late morphogenesis from L4 larvae to young adults. We demonstrated that Ae. aegypti pupae-specific strn is critical for adult mosquito flight capability and a key late-acting lethal target for mosquito-borne disease control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Emma Jakes
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
94
|
Mok PL, Anandasayanam ANK, Oscar David HM, Tong J, Farhana A, Khan MSA, Sivaprakasam G, Koh AEH, Alzahrani B. Lung development, repair and cancer: A study on the role of MMP20 gene in adenocarcinoma. PLoS One 2021; 16:e0250552. [PMID: 33914777 PMCID: PMC8084150 DOI: 10.1371/journal.pone.0250552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/11/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple matrix metalloproteinases have significant roles in tissue organization during lung development, and repair. Imbalance of proteinases may lead to chronic inflammation, changes in tissue structure, and are also highly associated to cancer development. The role of MMP20 is not well studied in lung organogenesis, however, it was previously shown to be present at high level in lung adenocarcinoma. The current study aimed to identify the functional properties of MMP20 on cell proliferation and motility in a lung adenocarcinoma in vitro cell model, and relate the interaction of MMP20 with other molecular signalling pathways in the lung cells after gaining tumoral properties. In this study, two different single guide RNA (sgRNAs) that specifically targeted on MMP20 sites were transfected into human lung adenocarcinoma A549 cells by using CRISPR-Cas method. Following that, the changes of PI3-K, survivin, and MAP-K mRNA gene expression were determined by Real-Time Polymerase Chain Reaction (RT-PCR). The occurrence of cell death was also examined by Acridine Orange/Propidium Iodide double staining. Meanwhile, the motility of the transfected cells was evaluated by wound healing assay. All the data were compared with non-transfected cells as a control group. Our results demonstrated that the transfection of the individual sgRNAs significantly disrupted the proliferation of the A549 cell line through suppression in the gene expression of PI3-K, survivin, and MAP-K. When compared to non-transfected cells, both experimental cell groups showed reduction in the migration rate, as reflected by the wider gaps in the wound healing assay. The current study provided preliminary evidence that MMP20 could have regulatory role on stemness and proliferative genes in the lung tissues and affect the cell motility. It also supports the notion that targeting MMP20 could be a potential treatment mode for halting cancer progression.
Collapse
Affiliation(s)
- Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf Province, Saudi Arabia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | | | - Jiabei Tong
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf Province, Saudi Arabia
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pharmacology, Hamidiye International Faculty of Medicine, University of Health Sciences, Uskudar, Istanbul, Turkey
| | - Gothai Sivaprakasam
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf Province, Saudi Arabia
| |
Collapse
|
95
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
96
|
Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nat Commun 2021; 12:2290. [PMID: 33863888 PMCID: PMC8052367 DOI: 10.1038/s41467-021-22341-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.
Collapse
|
97
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|
98
|
Lan J, Wang Z, Chen Z, Zhang L, Zhao J, Guan Q, Liao C, Liu N, Han Q. Identification of the Aedes aegypti nAChR gene family and molecular target of spinosad. PEST MANAGEMENT SCIENCE 2021; 77:1633-1641. [PMID: 33202106 DOI: 10.1002/ps.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spinosad is an insecticide with unique mode of action (MOA) of disrupting nicotinic acetylcholine receptor and is efficacious against many insect species. Mutations in the nicotinic acetylcholine receptor (nAChR) α6 subunit have been identified that are associated with levels of spinosad resistance, but the molecular characterization of the nAChR gene family and a causative association between nAChR α6 and resistance to spinosad in Aedes aegypti, a primary vector of many arboviruses, have not yet been reported. RESULTS In this study, we identified 10 candidate nAChR subunits in Ae. Aegypti, nAChRα1-α9 and nAChRβ1, showing similarly orthologous relationships with Anopheles gambiae. With the application of the CRISPR/Cas9 genome editing system, we introduced a 32-bp deletion at the 5' end of the Aaeα6 (Ae. aegypti nAChR α6) gene in a homozygous mutant strain (Aaeα6-KO). The mutation produced two successive pre-mature stop codons, resulting in loss of function in the target receptor. The Aaeα6-KO mutant strain exhibited a 320-fold level of resistance to spinosad compared with wildtype. A recessive mode of inheritance for spinosad resistance was found in the Aaeα6-KO strain. CONCLUSION CRISPR/Cas9 introduced truncated Aaeα6 receptor in Ae. aegypti resulted in an increased level of resistance to spinosad, suggesting that the conserved nAChR α6 subunit is the target for spinosad insecticide. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zihe Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
99
|
Nguyen TNM, Choo A, Baxter SW. Lessons from Drosophila: Engineering Genetic Sexing Strains with Temperature-Sensitive Lethality for Sterile Insect Technique Applications. INSECTS 2021; 12:243. [PMID: 33805657 PMCID: PMC8001749 DOI: 10.3390/insects12030243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
A major obstacle of sterile insect technique (SIT) programs is the availability of robust sex-separation systems for conditional removal of females. Sterilized male-only releases improve SIT efficiency and cost-effectiveness for agricultural pests, whereas it is critical to remove female disease-vector pests prior to release as they maintain the capacity to transmit disease. Some of the most successful Genetic Sexing Strains (GSS) reared and released for SIT control were developed for Mediterranean fruit fly (Medfly), Ceratitis capitata, and carry a temperature sensitive lethal (tsl) mutation that eliminates female but not male embryos when heat treated. The Medfly tsl mutation was generated by random mutagenesis and the genetic mechanism causing this valuable heat sensitive phenotype remains unknown. Conditional temperature sensitive lethal mutations have also been developed using random mutagenesis in the insect model, Drosophila melanogaster, and were used for some of the founding genetic research published in the fields of neuro- and developmental biology. Here we review mutations in select D. melanogaster genes shibire, Notch, RNA polymerase II 215kDa, pale, transformer-2, Dsor1 and CK2α that cause temperature sensitive phenotypes. Precise introduction of orthologous point mutations in pest insect species with CRISPR/Cas9 genome editing technology holds potential to establish GSSs with embryonic lethality to improve and advance SIT pest control.
Collapse
Affiliation(s)
- Thu N. M. Nguyen
- Bio21 Institute, School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia;
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda Choo
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Simon W. Baxter
- Bio21 Institute, School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
100
|
Knockout of Two Cry-Binding Aminopeptidase N Isoforms Does Not Change Susceptibility of Aedes aegypti Larvae to Bacillus thuringiensis subsp. israelensis Cry4Ba and Cry11Aa Toxins. INSECTS 2021; 12:insects12030223. [PMID: 33807543 PMCID: PMC8002144 DOI: 10.3390/insects12030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The midgut aminopeptidase N (APN) isoforms have been identified as the binding receptor of insecticidal Cry toxins in numerous insects, including the major arbovirus vector Aedes aegypti (Ae. aegypti). However, whether the Cry-binding APN acts as an essential functional receptor to mediate Bacillus thuringiensis subsp. israelensis (Bti) toxicity in Ae. aegypti larvae remains to be determined. In this study, our results provide the direct molecular evidence demonstrating that two Cry-binding APN isoforms (AeAPN1 and AeAPN2) did not play a key role in mediating Bti Cry4Ba and Cry11Aa toxicity in Ae. aegypti larvae. Abstract The insecticidal Cry4Ba and Cry11Aa crystal proteins from Bacillus thuringiensis subsp. israelensis (Bti) are highly toxic to Ae. aegypti larvae. The glycosylphosphatidylinositol (GPI)-anchored APN was identified as an important membrane-bound receptor for multiple Cry toxins in numerous Lepidoptera, Coleoptera, and Diptera insects. However, there is no direct molecular evidence to link APN of Ae. aegypti to Bti toxicity in vivo. In this study, two Cry4Ba/Cry11Aa-binding Ae. aegypti GPI-APN isoforms (AeAPN1 and AeAPN2) were individually knocked-out using CRISPR/Cas9 mutagenesis, and the AeAPN1/AeAPN2 double-mutant homozygous strain was generated using the reverse genetics approach. ELISA assays showed that the high binding affinity of Cry4Ba and Cry11Aa protoxins to the midgut brush border membrane vesicles (BBMVs) from these APN knockouts was similar to the background from the wild-type (WT) strain. Likewise, the bioassay results showed that neither the single knockout of AeAPN1 or AeAPN2, nor the simultaneous disruption of AeAPN1 and AeAPN2 resulted in significant changes in susceptibility of Ae. aegypti larvae to Cry4Ba and Cry11Aa toxins. Accordingly, our results suggest that AeAPN1 and AeAPN2 may not mediate Bti Cry4Ba and Cry11Aa toxicity in Ae. aegypti larvae as their binding proteins.
Collapse
|