51
|
Krakkó D, Illés Á, Domján A, Demeter A, Dóbé S, Záray G. UV and (V)UV irradiation of sitagliptin in ultrapure water and WWTP effluent: Kinetics, transformation products and degradation pathway. CHEMOSPHERE 2022; 288:132393. [PMID: 34600926 DOI: 10.1016/j.chemosphere.2021.132393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/05/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Sitagliptin (SITA) is an antidiabetic drug consumed worldwide in high quantities. Because of the low removal rate of this compound in conventional wastewater treatment plants (WWTPs), it enters receiving surface waters with the discharged WWTP effluents. SITA can be detected up to μg/L concentration in rivers. In this study, UV (254 nm) and (V)UV (185 nm + 254 nm) irradiation was applied in laboratory scale to degrade SITA. The effect of three parameters was evaluated on the degradation rate, namely i) the efficiency in UV and (V)UV irradiation, ii) the presence or absence of dissolved oxygen, iii) the matrix effect of WWTP effluent. Degradation rate of SITA was largely increased by (V)UV irradiation, and decreased in WWTP effluent as expected. The presence of dissolved oxygen increased the degradation rate only in UV experiments and did not have a considerable effect in (V)UV experiments. In total, 14 transformation products (TPs) were identified (twelve new); their structures were proposed based on high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy analyses. The most characteristic reaction steps of the degradation of SITA involved nucleophilic aromatic photosubstitution whereas hydroxide ions acted as attacking nucleophiles and replaced F atoms of the phenyl moiety by hydroxide groups, in agreement with the increase in photolysis rate with increasing pH. The photochemical degradation pathway of SITA was also interpreted. Kinetic profiles revealed TP 421, TP 208 and TP 192 to be the most recalcitrant TPs.
Collapse
Affiliation(s)
- Dániel Krakkó
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ádám Illés
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2, Hungary
| | - Attila Domján
- NMR Research Laboratory, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2, Hungary
| | - Attila Demeter
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2, Hungary
| | - Sándor Dóbé
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2, Hungary
| | - Gyula Záray
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary; Environmental Chemistry Research Group, Institute of Aquatic Ecology, Centre for Ecological Research, H-1113, Budapest, Karolina út 29-31, Hungary.
| |
Collapse
|
52
|
Gusso D, Cruz FF, Fritsch PM, da Silva Gobbo MO, Morrone FB, Bonan CD. Pannexin channel 1, P2X7 receptors, and Dimethyl Sulfoxide mediate pain responses in zebrafish. Behav Brain Res 2022; 423:113786. [DOI: 10.1016/j.bbr.2022.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
|
53
|
Hamid N, Junaid M, Manzoor R, Duan JJ, Lv M, Xu N, Pei DS. Tissue distribution and endocrine disruption effects of chronic exposure to pharmaceuticals and personal care products mixture at environmentally relevant concentrations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106040. [PMID: 34856459 DOI: 10.1016/j.aquatox.2021.106040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) as emerging contaminants are ubiquitously present in the aquatic environment. Using in vivo and in silico techniques, this study aims to elucidate tissue distribution and endocrine disruption effects of chronic exposure (120 days) to PPCP mixture at environmentally relevant concentrations (ERCs) in adult zebrafish. Results from UHPLC-MS/MS analyses showed elevated distribution of PPCPs in zebrafish tissues in the order of liver > gonad > brain. Upregulation of steroid hormone receptors, both gonadotropin, and steroidogenic genes perturb the HPG axis pathway in females, while male fish exhibited significantly downregulated expressions of vtg, cyp17, and 17βhsd genes with inhibited fecundity. The Spearman correlation indicated a significant positive relationship between PPCPs bioaccumulation and mRNA levels of HPG axis genes. In silico molecular docking (MD) revealed specific amino acid residues of PPCPs binding with zebrafish estrogen receptors. Furthermore, the strongest binding energies of sulfamethoxazole, carbamazepine, and triclosan were discovered in erα and erβ estrogen receptors, confirming PPCPs' xenoestrogenic behavior. To summarize, chronic exposure to ERCs resulted in a high accumulation of PPCPs in the liver and gonad tissues of adult zebrafish, as well as associated perturbed genetic responses. As a result, strict environmental regulations for the disposal of PPCPs should be ensured to protect ecological and public health.
Collapse
Affiliation(s)
- Naima Hamid
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing 100049, China; State key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Jing Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
54
|
Varsha M, Senthil Kumar P, Senthil Rathi B. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. CHEMOSPHERE 2022; 287:132270. [PMID: 34560497 DOI: 10.1016/j.chemosphere.2021.132270] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a class of contaminants with low concentrations but significant harm, have received a lot of attention in recent times. ECs comprises of various chemicals that enter the environment every day. In today's modern lifestyle, we use many chemical-based products. These persist in wastewater and ultimately enter the water bodies, causing serious problems to the human and aquatic ecosystem. This is because the conventional wastewater treatment methods are inefficient in identifying and removing such contaminants. Aiming for a long-term, effective solution to this issue, Adsorption was proposed. Although several adsorbents are already present in the market, which have proved beneficial in removing such ECs, not all are affordable. This article reviews replacing costly adsorbents with agriculture-based biomass that are abundant, inexpensive, and biodegradable and possess excellent adsorption capacity. The objectives of this article is to look at adsorption as a viable treatment option for emerging pollutants, as well as sophisticated and cost-effective emerging contaminants treatment options.
Collapse
Affiliation(s)
- M Varsha
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Senthil Rathi
- Deprtament of Chemical Engineering, St. Joseph' College of Engineering, Chennai, 603110, India
| |
Collapse
|
55
|
Di Cicco M, Di Lorenzo T, Fiasca B, Ruggieri F, Cimini A, Panella G, Benedetti E, Galassi DMP. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149461. [PMID: 34426329 DOI: 10.1016/j.scitotenv.2021.149461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is one of the most widespread pharmaceutical compounds found in freshwaters as a pseudo-persistent pollutant due to its continuous release from point and diffuse sources, being its removal in Wastewater Treatment Plants incomplete. Moreover, DCF is particularly persistent in interstitial habitats and potentially toxic for the species that spend their whole life cycle among the same sediment grains. This study is aimed at offering a first contribution to the assessment of DCF effects on freshwater invertebrate species living in the interstitial habitats of springs, rivers, lakes and groundwaters. The Crustacea Copepoda are one of the main components of the freshwater interstitial communities, with the primacy taken by the worm-like and small-sized harpacticoids. A sub-lethal concentration of 50 μg L-1 DCF significantly affected six out of the eight behavior parameters of the burrower/interstitial crustacean harpacticoid Bryocamptus pygmaeus recorded by video tracking analysis. DCF exposure reduced swimming speed, swimming activity, exploration ability and thigmotaxis, and increased swimming path tortuosity. The biochemical approach revealed a reduced level of the mitochondrial superoxide dismutase 2 in individuals exposed to DCF. It could be explained by a decline in mitochondrial performance or by a reduced number of functional mitochondria. Since mitochondrial dysfunction may determine ATP reduction, it comes that less energy is produced for maintaining the cell functions of the DCF-exposed individuals. In addition, the increasing energy demand for the detoxification process further contributes to decrease the total energetic budget allocated for other physiological activities. These observations can explain the changes we have observed in the swimming behavior of the copepod B. pygmaeus.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca 400006, Romania
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Fabrizio Ruggieri
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
56
|
Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112983. [PMID: 34781135 DOI: 10.1016/j.ecoenv.2021.112983] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recently, both trivalent chromium Cr (III) and hexavalent chromium Cr (VI) have been reported to produce neurotoxicity. However, the underlying mechanisms of the neurotoxicity caused by different chemical valence of chromium remain unclear. OBJECTIVE The purpose of this study was to investigate the mechanism of neurotoxicity induced by exposure to chromium with different valence states based on metabolic disturbance in zebrafish larvae. METHODS Zebrafish embryos were exposed to 1 mg/L Cr (III) and 1 mg/L Cr (VI) for 120 hpf respectively. The related indexes of neural development were observed by stereoscope and behavior analysis system. 8OH-dG were detected using enzyme-linked immunosorbent assay. The generation of reactive oxygen species was detected using an oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate. AChE activity was determined by a colorimetric assay based on hydrolysis of acetylcholine. The expression levels of neurodevelopmental genes and methyltransferase genes in juvenile zebrafish was analyzed by real-time PCR. The methylation status of neurogenin1 and neurod1 genes was detected by bisulfite sequencing PCR. The binding of H3K27me3 was detected by chromatin immunoprecipitation-qPCR. Metabolic profiles and one carbon metabolic analysis were performed by UPLC-MS. RESULTS There were no significant differences in survival rate, hatching rate and spontaneous movement of zebrafish in both Cr-exposed groups compared to the control. The malformation rate in Cr (VI) -exposed group was obviously increased compared to the control and Cr (III) -exposed group. At 48hpf and 72hpf of exposure, the embryonic heart rate in Cr (III)-exposed group was significantly higher than that of Cr (VI)-exposed group and the control. At 120hpf, zebrafish in both Cr-exposed groups exhibited decreasing changes in swimming distance and disturbance of sensitivity to light and dark. 8OH-dG in Cr (VI)-exposed group were significantly higher than that in the control. The generation of ROS in both Cr -exposed groups was significantly higher than that in the control. The activity of AchE was significantly decreased in both Cr-exposed groups compared to the control. Most of early neurogenesis related genes, such as α-tubulin, elavl3, gap43, sox19b, neurogenin1 and neurod1 in Cr-exposed groups were significantly up-regulated compared to those in the control. The expression of dnmt1 and dnmt3 genes was significantly down-regulated in both Cr-exposed groups. BSP-PCR results showed that genic sequences in the neurogenin1 and neurod1 genes have lower levels of DNA methylation in both Cr-exposed groups, especial in Cr (VI)-exposed group. ChIP analysis showed that there was a decrease in H3K27me3 binding within the corresponding region of neurogenin1 in both Cr-exposed groups and that of neurod1 in Cr (III)-exposed group. Untargeted metabolomic analysis showed that significant changes in metabolites induced by Cr exposure were associated with differences in primary bile acid biosynthesis, phospholipid biosynthesis (phosphatidylcholine biosynthesis and phosphatidylethanolamine biosynthesis), linoleic acid metabolism, arachidonic acid metabolism, amino acid metabolism, purine metabolism, betaine metabolism, spermidine and spermine biosynthesis, and folate metabolism, the last four of which are related to one carbon metabolism. Targeted analysis of one carbon metabolites (5-MT, Gly, Met, SAH and Hcy) related with folate cycle and methionine metabolism were significantly decreased upon Cr exposure. The elevated SAM to SAH ratio in both Cr- exposed group indicated the decreasing capacity for methylation reaction. CONCLUSION Cr (III) and Cr (VI) can induce neurotoxicity by interfering with one carbon metabolism and affecting DNA methylation and histone methylation to regulate the expression of neuro-related genes. Cr exposure also influenced primary bile acid biosynthesis and phospholipid biosynthesis, which are associated with neuroprotective effects and need to be further validated.
Collapse
Affiliation(s)
- Yawen Xu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Li Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Zhu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ping Jiang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
57
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
58
|
Zhang N, Liu X, Pan L, Zhou X, Zhao L, Mou X, Zhou H, Liu J, Wang X. Evaluation of ibuprofen contamination in local urban rivers and its effects on immune parameters of juvenile grass carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1405-1413. [PMID: 34291405 DOI: 10.1007/s10695-021-00987-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 06/19/2023]
Abstract
Ibuprofen as a non-steroidal anti-inflammatory drug can be detected in the aquatic environments all over the world. This study evaluated the effects of ibuprofen on the immune parameters of juvenile grass carp at the concentration in real environments which were determined by detecting its concentrations in the surface water of local rivers. The concentration of ibuprofen ranged from 13.2 to 95.5 ng/L with a mean value of 47.9 ng/L in the surface water of local rivers detected by solid-phase extraction followed by LC-MS/MS analysis. Accordingly, juvenile grass carp were exposed to 4.8, 48.0 and 480.0 ng/L of ibuprofen for 14 days. The serum lysozyme activity of these fish decreased, while the serum creatinine levels were not affected after the exposure. Moreover, the mRNA expression of interleukin 6 in the skin and interleukin 1 beta and tumor necrosis factor alpha in the gills was enhanced by this exposure. These results collectively suggest that ibuprofen at environmentally relevant concentration can affect the immune parameters of juvenile grass carp, providing an insight into the possibility of this contaminant to modify the immunostatus of fish.
Collapse
Affiliation(s)
- Na Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xuelian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Longjing Pan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiang Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Liang Zhao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xinyi Mou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jianyu Liu
- Xpiscoric Inc., Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
59
|
Sánchez-Aceves L, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109071. [PMID: 33992815 DOI: 10.1016/j.cbpc.2021.109071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Despite the ubiquitous presence of multiple pollutants in aqueous environments have been extensively demonstrated, the ecological impact of chemical cocktails has not been studied in depth. In recent years, environmental studies have mainly focused on the risk assessment of individual chemical substances neglecting the effects of complex mixtures even though it has been demonstrated that combined effects exerted by pollutants might represent a greater hazard to the biocenosis. The current study evaluates the effects on the oxidative stress status induced by individual forms and binary mixtures of ibuprofen (IBU) and aluminum (Al) on brain, gills, liver and gut tissues of Danio rerio after long-term exposure to environmentally relevant concentrations (0.1-11 μg L-1 and 0.05 mg L-1- 6 mg L-1, respectively). Lipid peroxidation (LPO), Protein carbonyl content (PCC) and activity of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) were evaluated. Moreover, concentrations of both toxicants and the metabolite 2-OH-IBU were quantified on test water and tissues. Results show that ibuprofen (IBU) and aluminum (Al) singly promote the production of radical species and alters the oxidative stress status in all evaluated tissues of zebrafish, nevertheless, higher effects were elicited by mixtures as different interactions take place.
Collapse
Affiliation(s)
- Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| |
Collapse
|
60
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
61
|
García-Cambero JP, Corpa C, Lucena MA, Méndez P, Sierra P, Galán-Madruga D, Aguayo S. Presence of diclofenac, estradiol, and ethinylestradiol in Manzanares River (Spain) and their toxicity to zebrafish embryo development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49921-49935. [PMID: 33948840 DOI: 10.1007/s11356-021-14167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF), 17-β-estradiol (E2), and 17-α-ethinylestradiol (EE2) are emerging pollutants included in the first watch list agreed by European countries and set in the EU Water Directive. The objective of the present study was the analytical monitoring of DCF, E2, and EE2 in surface water and sediment of the Manzanares River in a stretch that crosses the city of Madrid, Spain, and to assess whether such environmental levels could affect the development of aquatic vertebrates through a zebrafish embryo-larval assay. Samples taken during two campaigns in the spring of 2015 were analyzed for DCF, E2, and EE2 by LC-MS or GC-MS. The levels of E2 and EE2 measured in surface water and sediments of the Manzanares were within the ranges reported in other Spanish and European studies; however, DCF levels were higher in the present study. The zebrafish embryos exposed to the Manzanares River water (0-144h) showed lethal effects and sublethal effects (developmental delay, bradycardia, and reduced locomotion). Nevertheless, these effects were not primarily associated with the levels of DCF, E2, and EE2 present in the Manzanares River, because representative mixtures of the field study prepared in the laboratory did not exhibit such toxicity to the zebrafish embryos.
Collapse
Affiliation(s)
- Jesús Pablo García-Cambero
- Area of Environmental Toxicology, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Cristina Corpa
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Miguel Angel Lucena
- Quality Assurance Programme, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Paloma Méndez
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Pilar Sierra
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - David Galán-Madruga
- Department of Atmospheric Pollution, National Environment Health Center, Carlos III Health Institute, 28220, Madrid, Spain.
- Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Carretera de Majadahonda a Pozuelo, km 2, 28220 Majadahonda, Madrid, Spain.
| | - Sonia Aguayo
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| |
Collapse
|
62
|
Trombini C, Kazakova J, Montilla-López A, Fernández-Cisnal R, Hampel M, Fernández-Torres R, Bello-López MÁ, Abril N, Blasco J. Assessment of pharmaceutical mixture (ibuprofen, ciprofloxacin and flumequine) effects to the crayfish Procambarus clarkii: A multilevel analysis (biochemical, transcriptional and proteomic approaches). ENVIRONMENTAL RESEARCH 2021; 200:111396. [PMID: 34062201 DOI: 10.1016/j.envres.2021.111396] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 μg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Alejandro Montilla-López
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
63
|
Sousa AP, Nunes B. Dangerous connections: biochemical and behavioral traits in Daphnia magna and Daphnia longispina exposed to ecologically relevant amounts of paracetamol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38792-38808. [PMID: 33740191 DOI: 10.1007/s11356-021-13200-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Exposure of nontarget organisms to therapeutic agents can cause distinct toxic effects, even at low concentrations. Paracetamol is a painkiller drug, widely used in human and veterinary therapies, being frequently found in the aquatic compartment in considerable amounts. Its toxicity has already been established for some species, but its full ecotoxicological potential is still not sufficiently described. To characterize the ecotoxicity of paracetamol, the present study evaluated several parameters, such as acute immobilization (EC50 calculation), biochemical alterations, and behavioral effects, in two species of freshwater microcrustaceans of the genus Daphnia (D. magna and D. longispina). To increase the relevance of the data obtained, animals were exposed to levels of paracetamol similar to those already reported to occur in the wild. Data showed antioxidant responses in both species, namely an increase of catalase and GSTs activities in D. magna. On the contrary, effects of paracetamol on D. longispina included only an impairment of GSTs activity. Despite the absence of anticholinesterasic effects, behavioral modifications were also observed. This set of data indicates that realistic levels of paracetamol may trigger the activation of the antioxidant defense system of freshwater crustaceans, causing changes in behavioral traits (increase in swimming time, but with a reduction in swimming distance) of unknown etiology that are likely to affect normal life traits of wild populations.
Collapse
Affiliation(s)
- Ana Paula Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
64
|
Hong X, Zhao G, Zhou Y, Chen R, Li J, Zha J. Risks to aquatic environments posed by 14 pharmaceuticals as illustrated by their effects on zebrafish behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145450. [PMID: 33545463 DOI: 10.1016/j.scitotenv.2021.145450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceutical residues in aquatic ecosystems is a worldwide problem that may pose serious threats and challenges to the environment, especially to the safety of aquatic biota. In the present study, we investigated the effects of 14 environmentally relevant pharmaceutical compounds on individual and collective-related behaviours in juvenile zebrafish (Danio rerio) for 21 days. The tested concentrations of the compounds spanned three orders of magnitude. This study also compared the potential risks of these compounds in Chinese surface waters based on the data on their toxic effects or only on behavioural effects. In the case of individual behaviours, most antidepressants, but not anti-inflammatory agents or blood lipid-lowering agents, decreased fish locomotor activity (LMA) and individual social activity (IDS); however, all three classes of compounds induced significant disruptions in the light/dark transition locomotor response (LMR-L/D) performance, even at lower treatment levels (0.1-1 μg/L). Furthermore, collective behaviour (CLB) analysis suggested that most of the compounds significantly altered the group sociability of fish and frequently occurred at environmentally relevant concentrations. Finally, a risk assessment suggested that the presence of ibuprofen, fluoxetine, and venlafaxine in the surface waters of China poses a relatively high risk to fish, regardless of the risk ranking based on the data of the toxic or behavioural effects.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqi Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
65
|
Szabelak A, Bownik A. Behavioral and physiological responses of Daphnia magna to salicylic acid. CHEMOSPHERE 2021; 270:128660. [PMID: 33268096 DOI: 10.1016/j.chemosphere.2020.128660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA), a metabolite of acetylsalicylic acid is a monohydroxybenzoic acid a common non-steroidal analgesic and anti-inflammatory drug (NSAID) frequently detected in various aquatic ecosystems at concentrations up to 19.50 μg L-1 in surface waters near livestock farms and 59.6 μg L-1 in wastewaters. Little is known on the effects of short-term exposure of freshwater crustaceans to salicylic acid. Therefore, the aim of our study was to determine the effects of SA at concentrations of 5 μg L-1, 500 μg L-1, 5 mg L-1, 50 mg L-1 and 500 mg L-1 on the behavior (swimming speed, swimming height, distance travelled) and physiological endpoints (heart rate, mandible movement) of Daphnia magna exposed for 24 h, 48 h and 72 h. The results showed that SA inhibited the swimming speed, swimming height and distance travelled, heart rate and mandible movement at 5 mg L-1, 50 mg L-1 and 500 mg L-1 when compared to the control. On the other hand, SA at 5 μg L-1 and 500 μg L-1 transiently increased swimming speed and distance travelled after 24 h of the exposure, except for swimming height. Behavioral and physiological disturbances were observed much earlier than lethality. Our study showed SA at environmental levels may be an ecotoxicological agent imparing behavior and physiology of freshwater crustaceans.
Collapse
Affiliation(s)
- Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| |
Collapse
|
66
|
Pandelides Z, Ussery EJ, Overturf MD, Guchardi J, Holdway DA. Inhibition of swim bladder inflation in Japanese medaka (Oryzias latipes) embryos following exposure to select pharmaceuticals alone and in combination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105796. [PMID: 33713916 DOI: 10.1016/j.aquatox.2021.105796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
This study leveraged the Japanese medaka fish embryo model for the assessment of effects of select contaminants on early development in fish. Fish embryos were exposed to various pharmaceutical contaminants including synthetic hormones and non-steroidal anti-inflammatory drugs and their effects on development were observed. Initial screening determined that swim bladder inflation failure was the most common endpoint detected. Swim bladder inflation failure was first explored in a study demonstrating that medaka require access to the air-water interphase to inflate their swim bladders in a time-dependent manner, and swim bladder inflation failure was correlated with mortality. Fish embryos were exposed 24-hours post fertilization until hatch to concentration ranges of various pharmaceutical contaminants including: 17β-estradiol, 17α-ethinylestradiol, and levonorgestrel (1 to 1000 µg/L), or diclofenac (0.32 to 100 mg/L). The main effect observed across all four compounds was a significant increase in failure of swim bladder inflation with increasing exposure concentration (24 to 72-hours post-hatch). Following single compound experiments combinatorial exposures using no-observed-effect concentrations were conducted. The main effect observed was a significant decrease in inflation success 24-hours post-hatch following a binary mixture of levonorgestrel and 17α-ethinylestradiol, as well as a significant decrease in swim bladder inflation success at all times following exposure to a quaternary mixture of all four compounds. This study demonstrated that embryonic exposure to pharmaceutical compounds, both alone and in combination, resulted in failure of swim bladder inflation in larval Japanese medaka.
Collapse
Affiliation(s)
- Z Pandelides
- University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada.
| | - E J Ussery
- University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - M D Overturf
- University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - J Guchardi
- University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - D A Holdway
- University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
67
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
68
|
Nguyen TH, Nguyen PD, Quetin-Leclercq J, Muller M, Ly Huong DT, Pham HT, Kestemont P. Developmental toxicity of Clerodendrum cyrtophyllum turcz ethanol extract in zebrafish embryo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113538. [PMID: 33144170 DOI: 10.1016/j.jep.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendrum cyrtophyllum Turcz has been used in traditional medicine for the treatment of various diseases. In spite of its therapeutic applications, research on its toxicity and teratogenicity is still limited. AIM OF THE STUDY The study aimed to investigate the developmental toxicity of the ethanol extract of C. cyrtophyllum (EE) in zebrafish embryo model. MATERIAL AND METHODS Major compounds from crude ethanol extract of Clerodendron cyrtophyllum Turcz leaves were determined using HPLC-DAD-Orbitrap-MS analysis. The developmental toxicity of EE were investigated using zebrafish embryo model. Zebrafish embryos at 6 h post-fertilization (hpf) were treated with EE at different concentrations. Egg coagulation, mortality, hatching, yolk sac edema, pericardial edema and teratogenicity were recorded each day for during a 5-day exposure. At time point 120 hpf, body length, pericardial area, heartbeat and yolk sac area were assessed. In order to elucidate molecular mechanisms for the developmental toxicity of EE, we further evaluated the effects of the EE on the expression of genes involved on signaling pathways affecting fish embryo's development such as heart development (gata5, myl7, myh6, has2, hand2, nkx 2.5), oxidative stress (cat, sod1, gpx4, gstp2), wnt pathway (β-catenin, wnt3a, wnt5, wnt8a, wnt11), or cell apoptosis (p53, bax, bcl2, casp3, casp8, casp9, apaf-1, gadd45bb) using qRT-PCR analysis. RESULTS Our results demonstrated that three major components including acteoside, cirsilineol and cirsilineol-4'-O-β-D-glucopyranoside were identified from EE. EE exposure during 6-96 h post-fertilization (hpf) at doses ranging from 80 to 200 μg/mL increased embryo mortality and reduced hatching rate. EE exposure at 20 and 40 μg/mL until 72-120 hpf induced a series of malformations, including yolk sac edema, pericardial edema, spine deformation, shorter body length. Based on two prediction models using a teratogenic index (TI), a 25% lethality concentration (LD25) and the no observed-adverse-effect level (NOAEL), EE is considered as teratogenic for zebrafish embryos with TI (LC50/EC50) and LD25/NOAEC values at 96 hpf reaching 3.87 and 15.73 respectively. The mRNA expression levels of p53, casp8, bax/bcl2, gstp2, nkx2.5, wnt3a, wnt11, gadd45bb and gata5 were significantly upregulated by EE exposure at 20 and 40 μg/mL while the expression of wnt5, hand2 and bcl2 were downregulated. CONCLUSIONS These results provide evidence for toxicity effects of EE to embryo stages and provide an insight into the potential toxicity mechanisms on embryonic development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 5000, Namur, Belgium; Pharmacology Department, Hanoi University of Pharmacy, Ha Noi, 100000, Viet Nam.
| | - Phuc-Dam Nguyen
- Department of Chemistry Education, School of Education, Can Tho University, Can Tho City, Viet Nam; Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Universite Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Joëlle Quetin-Leclercq
- Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Universite Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Marc Muller
- Dept. Life Sciences, GIGA-R, Lab. for Organogenesis and Regeneration, University of Liege, 4000, Liège 1, Belgium.
| | | | - Hai The Pham
- Department of Mỉcrobiology and Center for Life Science Research (CELIFE), Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, 5000, Namur, Belgium.
| |
Collapse
|
69
|
Niu X, Xu S, Yang Q, Xu X, Zheng M, Li X, Guan W. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior. HARMFUL ALGAE 2021; 103:101996. [PMID: 33980436 DOI: 10.1016/j.hal.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Karenia mikimotoi is a toxic dinoflagellate that forms harmful blooms in coastal waters, threatening aquaculture worldwide. However, we do not know whether K. mikimotoi has a neurotoxic effect on aquatic animal behavior. Thus, this study investigated potential K. mikimotoi neurotoxicity in zebrafish larvae. Cells of K. mikimotoi were collected at the mid-exponential phase from a batch culture to prepare ruptured cell solutions (RCS). At 6 h post-fertilization (hpf), zebrafish embryos were exposed to different RCS concentrations (0, 102, 103, 104, and 2.5 × 104 cells mL-1). After 120 hpf, treated larvae were collected to analyze locomotor behavior; activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT); and expression of genes related to neurodevelopment. We found that RCS did not affect survival rate, but significantly decreased larval locomotion, as well as their AChE, SOD, and CAT activity. Additionally, the examination of the day-night behavioral experiment revealed RCS decreased locomotion only at night. Zebrafish larvae were also significantly hypoactive in response to light and sound stimulations. Of the neurodevelopment genes, three (th, neurog1, and neurod1) were downregulated, while two (bdnf and manf) were upregulated. Our study suggests that K. mikimotoi neurotoxicity occurs through causing oxidative damage, as well as disorders in the cholinergic system and nervous system development. The results provide new insight that K. mikimotoi in low abundance did not cause significant lethal effect but still exhibited significant neurotoxicity on aquatic animals.
Collapse
Affiliation(s)
- Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Shengnan Xu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
70
|
Shu W, Price GW, Jamieson R, Lake C. Biodegradation kinetics of individual and mixture non-steroidal anti-inflammatory drugs in an agricultural soil receiving alkaline treated biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142520. [PMID: 33032129 DOI: 10.1016/j.scitotenv.2020.142520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Land application of biosolids is one potential source of pharmaceuticals and personal care products (PPCPs) into agricultural soils. Degradation is an important natural attenuation pathway that affects the fate and transport of PPCPs in the soil system and biosolids application could alter the process. The present study assessed the effect of individual and mixture compound environments on the biodegradation rate and half-life of three non-steroidal anti-inflammatory drugs (NSAIDs), naproxen (NPX), ibuprofen (IBF), and ketoprofen (KTF), in a loamy sand textured agricultural soil receiving an alkaline treated biosolid (ATB) amendment. A prolonged half-life of the target NSAIDs was determined for sterile soils and shorter half-lives in unsterile soils, indicating the loss of target compounds in all treatments was mainly attributed to biodegradation and followed first-order kinetics. IBF and NPX showed low to moderate persistence in soil and ATB amended soil, with half-lives ranging from 4.9 to 14.8 days, while KTF appeared to be highly persistent with an average half-life of 33 days. The order in which the target NSAIDs disappeared in both soil and ATB amended soil was: IBF > NPX > KTF, for both individual and mixture compound treatments. Soils that received the ATB amendment demonstrated inhibited degradation of NPX in all treatments, as well as IBF and KTF in individual compound treatment over the 14-day incubation study. We also observed an inhibition effect from the ATB amendment in sterile soil treatments. In mixture compound treatments, IBF degradation was inhibited in both soil and ATB amended soil. The degradation rate of KTF in mixture compound environment in soil was lower, while the opposite effects were observed in ATB amended soils. For NPX, the degradation was enhanced in mixture compound environment in ATB amended soil, while the same degradation rate of NPX was calculated in soil.
Collapse
Affiliation(s)
- W Shu
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G W Price
- Department of Engineering, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - R Jamieson
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C Lake
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
71
|
Shin J, Kwak J, Lee YG, Kim S, Choi M, Bae S, Lee SH, Park Y, Chon K. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116244. [PMID: 33321433 DOI: 10.1016/j.envpol.2020.116244] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 05/17/2023]
Abstract
This study investigated the competitive adsorption mechanisms of pharmaceuticals (i.e., naproxen, diclofenac, and ibuprofen) toward the pristine and NaOH-activated biochars from spent coffee wastes (SCW) in lake water and wastewater effluent. The kinetic and isotherm studies revealed that the improved physicochemical characteristics and physically homogenized surfaces of the pristine SCW biochar through the chemical activation with NaOH were beneficial to the adsorption of pharmaceuticals (competitive equilibrium adsorption capacity (Qe, exp): NaOH-activated SCW biochar (61.25-192.07 μmol/g) > pristine SCW biochar (14.81-20.65 μmol/g)). The adsorptive removal of naproxen (Qe, exp = 14.81-18.81 μmol/g), diclofenac (Qe, exp = 15.73-20.00 μmol/g), and ibuprofen (Qe, exp = 16.20-20.65 μmol/g) for the pristine SCW biochar showed linear correlations with their hydrophobicity (log D at pH 7.0: ibuprofen (1.71) > diclofenac (1.37) > naproxen (0.25)). However, their Qe, exp values for the NaOH-activated SCW biochar (naproxen (176.39-192.07 μmol/g) > diclofenac (78.44-98.74 μmol/g) > ibuprofen (61.25-80.02 μmol/g)) were inversely correlated to the order of their log D values. These results suggest that the reinforced aromatic structure of the NaOH-activated SCW biochar facilitated the π-π interaction. The calculated thermodynamic parameters demonstrated that the competitive adsorption of pharmaceuticals on the NaOH-activated SCW biochar compared to pristine SCW biochar occurred more spontaneously over the entire pH (5.0-11.0) and ionic strength (NaCl: 0-0.125 M) ranges. These observations imply that the NaOH-activated SCW biochar might be potentially applicable for the removal of pharmaceuticals in lake water and wastewater effluent.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sangwon Kim
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Minhee Choi
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Korea Hydro and Nuclear Power (KHNP) Central Research Institute, 50, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, Republic of Korea
| | - Yongeun Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
72
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
73
|
Allegaert K, van den Anker J. How to translate neurocognitive and behavioural outcome data in animals exposed to paracetamol to the human perinatal setting? Arch Med Sci 2020; 20:1294-1306. [PMID: 39439697 PMCID: PMC11493077 DOI: 10.5114/aoms.2020.100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 10/25/2024] Open
Abstract
Introduction There are epidemiological - not necessary causal - observations that link perinatal paracetamol (acetaminophen) exposure to impaired neuro-cognition and behaviour, but animal models may assist to better understand the mechanisms. Material and methods To provide an overview on preclinical data and mechanisms explored, we conducted a structured literature search on animal models and neuro-cognition and behavioural outcome following perinatal paracetamol exposure. Results This search resulted in 20 papers (rat (n = 9), zebrafish larvae (n = 6), mice (n = 5)), published between 2009 and 2020. Eight discussed pregnancy/fetal paracetamol exposure, 6 juvenile, 6 studies combined pregnancy and juvenile exposure. Quality assessment (SYRCLE's bias risk) showed a heterogeneous pattern with blinding issues. Most papers (n = 16) described paracetamol exposure without indication, except for an induced fever and repetitive needle pricking (rat), brain injury (mice), and a zebrafish nociception model. Reported outcomes related to biochemistry (mono-amines, amino acids, protein expression), anatomy (teratogen, morphology, nuclear size) or behaviour (spatial memory, motor, social behaviour and exploration, sexual behaviour). On mechanisms, the cumulative data support an interesting 'cannabinoid' hypothesis to link paracetamol to neuro-cognitive and behavioural outcome. Besides limited species diversity, there is relevant within-species paracetamol dosing variability (dose, duration) with undocumented exposure. Conclusions Models should further integrate clinical indications, as non-exposure is the obvious safest setting in the absence of an indication. Besides pain and fever and related to the cannabinoid hypothesis, this should include perinatal brain injury, as there is animal experimental evidence that cannabinoids are neuroprotective in newborn brain injury or asphyxia, further supported by evidence from non-perinatal models of paracetamol-related neuroprotective effects.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - John van den Anker
- Department of Pediatrics, Pharmacology and Physiology, Children’s National Medical Center, Washington DC, USA
- Intensive Care, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Pediatric Pharmacology, University Children’s Hospital Basel, Basel, Switzerland
| |
Collapse
|
74
|
Wijaya L, Alyemeni M, Ahmad P, Alfarhan A, Barcelo D, El-Sheikh MA, Pico Y. Ecotoxicological Effects of Ibuprofen on Plant Growth of Vigna unguiculata L. PLANTS 2020; 9:plants9111473. [PMID: 33147697 PMCID: PMC7692049 DOI: 10.3390/plants9111473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/24/2023]
Abstract
Despite the prevalence of the common pharmaceutical ibuprofen (IBU) in water and sediments worldwide, the effects of IBU on plants are largely unknown. This study was designed to assess the ecotoxicological effects of emerging pharmaceutical pollutant IBU on plant growth and development in a series of toxicity experiments using cowpea (Vigna unguiculata). Plant growth parameters (morphological and physicochemical) were investigated under a series of IBU concentrations (0, 400, 800, 1200, 1600, 2000 ppm IBU). IBU exposure reduced the shoot and root lengths, fresh and dry weights, leaf area, and chlorophyll a and b, carotenoid, total chlorophyll, mineral (K and Mg), glutathione reductase, and soluble protein contents. Simultaneously, increases in Ca and Mn contents, sodium translocation from roots to shoots, H2O2, malondialdehyde, superoxide dismutase, catalase, ascorbate peroxidase, and IBU uptake were observed. The amount of bioaccumulated IBU varied between 7% and 8%. IBU was translocated from roots to shoots with a translocation factor of 3-16%. The IC50 values for biomass and plant length were 1253 and 1955 ppm IBU, respectively, which is much higher than the reported levels of IBU in the environment. This study demonstrates that cowpea plants develop several morphological and physicochemical adaptations to cope under ibuprofen stress; environmentally relevant concentrations of IBU are unlikely to produce negative impacts.
Collapse
Affiliation(s)
- Leonard Wijaya
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
- Correspondence: ; Tel.: +966-11-4675873
| | - Mohammed Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mohamed A. El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (P.A.); (A.A.); (D.B.); (M.A.E.-S.)
| | - Yolanda Pico
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain;
| |
Collapse
|
75
|
Nikam VS, Singh D, Takawale R, Ghante MR. Zebrafish: An emerging whole-organism screening tool in safety pharmacology. Indian J Pharmacol 2020; 52:505-513. [PMID: 33666192 PMCID: PMC8092182 DOI: 10.4103/ijp.ijp_482_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/14/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
During the last two decades, the development in drug discovery is slackening due to drug withdrawal from the market or reported to have postmarket safety events. The vital organ toxicities, especially cardiotoxicity, hepatotoxicity, pulmonary toxicity, and neurotoxicity are the major concerns for high drug attrition rates. The pharmaceutical industry is looking for high throughput, high content analysis based novel assays that would be fast, efficient, reproducible, and cost-effective; would address toxicity, the safety of lead molecules, and complement currently used cell-based assays in preclinical testing. The use of zebrafish, a vertebrate screening model, for preclinical testing is increasing owing to the number of advantages and striking similarities with the mammal. The zebrafish embryo development is fast and all vital organs such as the heart, liver, brain, pancreas, and kidneys in zebrafish are functional within 96-120hpf. The maintenance cost of zebrafish is reasonably low as compared to mammalian systems. Due to these features, zebrafish has arisen as a potential experimental screening model in lead identification and validation in the drug efficacy, toxicity, and safety evaluation. Numbers of drugs and chemicals are screened using zebrafish embryos, and results were found to show 100% concordance with mammalian screening data. The application of zebrafish, being a whole-organism screening model, would show a significant reduction in the cost and time required in the drug development process. The present challenge includes complete automation of the zebrafish screening model, i.e., from sorting, imaging of embryos to data analysis to accelerate the therapeutic target identification, and validation process.
Collapse
Affiliation(s)
- Vandana S. Nikam
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Deeksha Singh
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rohan Takawale
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Minal R. Ghante
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
76
|
Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115891. [PMID: 33497943 DOI: 10.1016/j.envpol.2020.115891] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
77
|
Alkimin GD, Soares AMVM, Barata C, Nunes B. Can salicylic acid modulate biochemical, physiological and population alterations in a macrophyte species under chemical stress by diclofenac? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139715. [PMID: 32534307 DOI: 10.1016/j.scitotenv.2020.139715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a pharmaceutical drug that may exert toxic effects by its own; however, simultaneous exposure of plants to SA and to other substances, often results in the significant changes in the patterns of toxic response/resistance to these other sources of chemical stress. Thus, the aim of this work was to investigate the capacity of SA of modulating Lemna minor responses co-exposed to the pharmaceutical drug, diclofenac - DCF. To attain this objective, L. minor was exposed for 7 days, to DCF alone, and to combinations of DCF with SA. After exposure, biochemical, physiological and population endpoints were analyzed as follows: catalase (CAT) and glutathione S-transferases (GSTs) activities, pigments content (chlorophyll a (Chl a), b (Chl b) and total (TChl), carotenoids (Car) and [Chl a]/[Chl b] and [TChl]/[Car] ratios), and growth specific rate, fresh weight and root length. Single exposures to DCF were capable of causing effects in all analyzed endpoints. However, co-exposure of DCF with SA partially reverted these effects. Finally, we may suggest that SA is capable to prevent the toxicity of DCF in macrophytes, by modulating the toxic response of exposed plants.
Collapse
Affiliation(s)
- G D Alkimin
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A M V M Soares
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - B Nunes
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
78
|
Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today 2020; 25:2201-2211. [PMID: 33035664 DOI: 10.1016/j.drudis.2020.09.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is a small teleost (bony) fish used in many areas of pharmacology and toxicology. This animal model has advantages for the discovery of anti-inflammatory drugs, such as the potential for real-time assessment of cell migration mechanisms. Additionally, zebrafish display a repertoire of inflammatory cells, mediators, and receptors that are similar to those in mammals, including humans. Inflammatory disease modeling in either larvae or adult zebrafish represents a promising tool for the screening of new anti-inflammatory compounds, contributing to our understanding of the mechanisms involved in chronic inflammatory conditions. In this review, we provide an overview of the characterization of inflammatory responses in zebrafish, emphasizing its relevance for drug discovery in this research area.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Carla D Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Centro de Pesquisa em Toxicologia e Farmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
79
|
Adedara IA, Awogbindin IO, Afolabi BA, Ajayi BO, Rocha JBT, Farombi EO. Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115053. [PMID: 32806419 DOI: 10.1016/j.envpol.2020.115053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 05/27/2023]
Abstract
Environmental pollution by pharmaceuticals such as diclofenac (DCF) is globally acknowledged to be a threat to the ecosystems. Nauphoeta cinerea is an important insect with valuable ecological role. The present investigation aimed to elucidate the impact of DCF on insects by assessing the behavior and antioxidant defense response in nymphs of N. cinerea exposed to DCF-contaminated food at 0, 0.5, 1.0 and 2.0 μg kg-1 feed for 42 successive days. Subsequent to exposure period, neurobehavioral analysis using video-tracking software in a novel apparatus was performed before estimation of biochemical endpoints in the head, midgut and hemolymph of the insects. Results indicated that DCF-exposed insects exhibited marked reduction in the maximum speed, total distance traveled, mobile episodes, total mobile time, body rotation, absolute turn angle and path efficiency, whereas the total freezing time was increased compared with the control. The diminution in the exploratory activities of DCF-exposed insects was substantiated by heat maps and track plots. Additionally, DCF elicited marked diminution in antioxidant enzyme and acetylcholinesterase (AChE) activities along with increase in nitric oxide (NO), reactive oxygen and nitrogen species (RONS), and lipid peroxidation (LPO) levels in the head, midgut and hemolymph of the insects. Taken together, DCF elicited neurotoxicity and oxido-inflammatory stress in exposed insects. N. cinerea may be a suitable model insect for environmental risk assessment of pharmaceuticals in non-target insect species.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
80
|
Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30933-30944. [PMID: 31749003 DOI: 10.1007/s11356-019-06861-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days' exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK
- Bitung Marine Life Conservation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Tandurusa, Aertembaga, Bitung, North Sulawesi, Indonesia
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK.
| |
Collapse
|
81
|
Carneiro Brandão Pereira T, Batista Dos Santos K, Lautert-Dutra W, de Souza Teodoro L, de Almeida VO, Weiler J, Homrich Schneider IA, Reis Bogo M. Acid mine drainage (AMD) treatment by neutralization: Evaluation of physical-chemical performance and ecotoxicological effects on zebrafish (Danio rerio) development. CHEMOSPHERE 2020; 253:126665. [PMID: 32278191 DOI: 10.1016/j.chemosphere.2020.126665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) represents a major problem in the mining industry worldwide due to the risk of water and soil pollution. Its active treatment involves the addition of alkaline reagents such as NaOH or Ca(OH)2 to increase the pH and precipitate the dissolved metals, although substantial amounts of dissolved ions might persists. Under a remediation approach, the aim of this work was to assess the chemical and physical characteristics of treated effluent and to evaluate its ecotoxicological effects on zebrafish (Danio rerio) embryonic and larval stages, through developmental, functional, morphological, and behavioral end-points. The studied AMD sample, highly associated with pyrite, presented high sulfate and dissolved metal ions content and was submitted to the following treatment conditions: NaOH - pH 7.0 and 8.7, and Ca(OH)2 - pH 7.0 and 8.7. All neutralizing treatments resulted in a satisfactory reduction of the metals concentration, with best results achieved using Ca(OH)2 at pH 8.7; although Mn and As still remained above or very near the discharge maximum limits according to Brazilian legislation. Therefore, an additional step was employed to Mn and As adsorption by algal biomass. Regarding in-vivo toxicological assays, no significant lethality was recorded in all treated AMD groups, although adverse effects were observed in all endpoints analyzed. Ca(OH)2 groups performed closer to control than NaOH-treated groups. The additional polishing stage treatment with the algae Scenesmus sp. allowed tenuous improvements in terms of removal of residual amounts of As and Mn but not in the toxicological characteristics of treated AMD.
Collapse
Affiliation(s)
- Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS. Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil
| | - Karine Batista Dos Santos
- Laboratório de Tecnologia Mineral e Ambiental, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500. CEP-91501-970, Porto Alegre, RS, Brazil
| | - William Lautert-Dutra
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil
| | - Lilian de Souza Teodoro
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS. Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil
| | - Vítor Otacílio de Almeida
- Laboratório de Tecnologia Mineral e Ambiental, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500. CEP-91501-970, Porto Alegre, RS, Brazil
| | - Jéssica Weiler
- Laboratório de Tecnologia Mineral e Ambiental, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500. CEP-91501-970, Porto Alegre, RS, Brazil
| | - Ivo André Homrich Schneider
- Laboratório de Tecnologia Mineral e Ambiental, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500. CEP-91501-970, Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS. Av. Ipiranga, 6681. CEP: 90.619.900, Porto Alegre, RS, Brazil; Programa de Medicina e Ciências da Saúde, Escola de Medicina, PUCRS. Av. Ipiranga, 6690. CEP: 90.610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
82
|
Constantine LA, Green JW, Schneider SZ. Ibuprofen: Fish Short-Term Reproduction Assay with Zebrafish (Danio rerio) Based on an Extended OECD 229 Protocol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1534-1545. [PMID: 32367592 DOI: 10.1002/etc.4742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A study was conducted to understand the potential for ibuprofen to impact the hypothalamus-pituitary-gonadal endocrine axis resulting in disruption of fish reproduction. The Good Laboratory Practice study was conducted according to the Organisation for Economic Co-operation and Development 229 Protocol, Fish Short-Term Reproduction Assay, and extended an additional 4 d to evaluate hatching success in the F1 generation. Test organisms were exposed to nominal test concentrations of 0.5, 2.4, 11.5, 55.3, and 265.4 µg ibuprofen/L and a negative control (dilution water). To strengthen the statistical power of the study, twice the number of replicates were used in the negative control versus individual treatment levels. A 21-d pre-exposure to identify groups of actively spawning fish was immediately followed by a 36-d exposure. Results for apical endpoints of survival, growth, and reproduction (fecundity and fertility), as well as the biomarker vitellogenin in the F0 generation and time to hatch and hatching success in the F1 generation are presented. Based on mean measured exposure concentrations and effects on fecundity in the F0 generation and hatching success in the F1 generation, overall no-observed-effect concentration and lowest-observed-effect concentration for the present study were 55.2 and 265.9 µg ibuprofen/L, respectively. Results from the present study indicate a lack of endocrine-mediated reproductive effects in zebrafish at environmentally relevant concentrations of ibuprofen. Environ Toxicol Chem 2020;39:1534-1545. © 2020 SETAC.
Collapse
Affiliation(s)
| | - John W Green
- John W. Green Ecostatistical Consulting, Newark, Delaware, USA
| | | |
Collapse
|
83
|
Sun Y, Liu J, Lu G. Influence of aquatic colloids on the bioaccumulation and biological effects of diclofenac in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110470. [PMID: 32199218 DOI: 10.1016/j.ecoenv.2020.110470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Natural aquatic colloids play an important role in the migration, transformation of pollutants in the environment, but their potential effects are often ignored in ecotoxicology research. In this study, diclofenac (DCF) was selected as a typical drug to study the effects of natural colloids on the bioaccumulation and biotoxicity in juvenile zebrafish (Danio rerio) exposed to an environmentally relevant concentration (1 μg/L) and a high concentration (100 μg/L) of DCF. The results showed that the presence of colloids accelerated and enhanced the accumulation of DCF in zebrafish muscle and viscera, and the effects are greater at the environmentally relevant concentration of DCF. However, the colloids enhanced the burden in the head in the environmentally relevant concentration group, but reduced it in the high concentration group. This observation may be related to the occurrence of variations in the contribution of the adsorption forms of DCF and the colloids depending on different DCF concentrations. At the same time, the presence of colloids can significantly induce AChE activity of DCF in the brain and alter swimming activity and shoaling behaviour of the individuals, however no significant effects on the attack and shock behaviour were observed. These findings indicate that the combination of natural colloids and pollutants may change with pollutant concentrations, thereby altering the bioaccumulation and biological effects in aquatic organisms.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
84
|
Opriș O, Lung I, Soran ML, Ciorîță A, Copolovici L. Investigating the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the composition and ultrastructure of green leafy vegetables with important nutritional values. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:342-351. [PMID: 32272352 DOI: 10.1016/j.plaphy.2020.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The global presence of pharmaceuticals in the environment has been particularly considered a concerning problem with unknown consequences. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently prescribed drugs in the world, and as a result, they are commonly found in different environmental compartments. In the present work, we studied the effects of NSAIDs (diclofenac, ibuprofen, and naproxen) on the composition and ultrastructure of Atriplex patula L., S. oleracea, and Lactuca sativa L., three green leafy vegetables with significant nutritional value. Contaminant solutions of NSAIDs were applied every two days using concentrations of 0.1 mg L-1, 0.5 mg L-1, and 1 mg L-1. After eight weeks of exposure of the green leafy vegetables to the selected NSAIDs, the chlorophylls (a + b), carotenoids (zeaxanthin, lutein, and ß-carotene), total polyphenol and total flavonoid contents, antioxidant capacity, and the ultrastructural modifications were determined. The obtained results indicated a moderate reduction in the assimilating pigments, total polyphenol and flavonoid contents. In addition, ultrastructural damages of the chloroplasts and cell walls were observed in the leaves of the selected vegetables, which were exposed to abiotic stress-induced by NSAIDs. All data collectively suggest that this group of drugs induced harmful effects on plants, and implicitly they may also negatively affected human health on the long term.
Collapse
Affiliation(s)
- Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Ildikó Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania; "Babeș-Bolyai" University, Faculty of Biology and Geology, 5-7 Clinicilor, 400006, Cluj-Napoca, Romania
| | - Lucian Copolovici
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania; Faculty of Food Engineering, Tourism and Environmental Protection and Institute of Research, Innovation and Development in Technical and Natural Sciences of "Aurel Vlaicu" University, 2 Elena Drăgoi, 310330, Arad, Romania
| |
Collapse
|
85
|
Daou C, Hamade A, El Mouchtari EM, Rafqah S, Piram A, Wong-Wah-Chung P, Najjar F. Zebrafish toxicity assessment of the photocatalysis-biodegradation of diclofenac using composites of TiO 2 and activated carbon from Argania spinosa tree nutshells and Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17258-17267. [PMID: 32152859 DOI: 10.1007/s11356-020-08276-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
The occurrence and persistence of pharmaceutical products (PPs) in the environment have recently been well-documented and are a major concern for public health. Their incidence in aquatic ecosystems is the result of their direct release without any prior treatment or insufficient wastewater treatment. Therefore, an efficient and safe posttreatment process for removing PPs must be developed. In this study, we focused on the ability of photocatalysis or combined photocatalysis and biodegradation to effectively and safely remove diclofenac (DCF) and its by-products from water. The heterogeneous photocatalysis system was based on bio-sourced activated carbon obtained from Argania spinosa tree nutshells and Degussa P25 titanium dioxide (ACP-TiO2), and biodegradation involved Pseudomonas aeruginosa. Toxicity tests were conducted with zebrafish embryos to evaluate the applicability of the treatment processes. The results showed that photocatalytic treatment with 0.1 mg/L of ACP-TiO2 9% for 7.5 h is sufficient to eliminate DCF (50 mg L-1) and its by-products from water. Low levels of malformation (< 20%) were detected in zebrafish embryos treated with photocatalyzed DCF solutions at 1, 5, and 7 mg L-1 after 4 days of exposure. After 3 h of incubation, P. aeruginosa was found to reduce the toxicity of DCF (10 mg L-1) photocatalyzed for 2 and 4 h. Additional studies should be conducted to elucidate the biodegradation mechanism.
Collapse
Affiliation(s)
- Claude Daou
- Laboratory of Analytical Chemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| | - Aline Hamade
- Laboratory of Therapeutic Innovation, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - El Mountassir El Mouchtari
- Laboratory of Analytical and Molecular Chemistry, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Environmental Chemistry, CNRS, Aix Marseille University, Marseille, France
| | - Salah Rafqah
- Laboratory of Analytical and Molecular Chemistry, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Anne Piram
- Laboratory of Environmental Chemistry, CNRS, Aix Marseille University, Marseille, France
| | - Pascal Wong-Wah-Chung
- Laboratory of Environmental Chemistry, CNRS, Aix Marseille University, Marseille, France
| | - Fadia Najjar
- Laboratory of Therapeutic Innovation, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| |
Collapse
|
86
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, Dublán-García O, Romero R. Ibuprofen at environmentally relevant concentrations alters embryonic development, induces teratogenesis and oxidative stress in Cyprinus carpio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136327. [PMID: 31923683 DOI: 10.1016/j.scitotenv.2019.136327] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory (NSAIDs) that is used in various conditions. The prescriptions and the global consumption of this drug are very high and its annual production oscillates in millions of tons, this generates that the IBU is present in many waterbodies because it is discharged through the municipal, hospital and industrial effluents. For the above, the purpose of this work was to determine if IBU at environmentally relevant concentrations was capable of inducing alterations to embryonic development, teratogenic effects and oxidative stress in oocytes and embryos of Cyprinus carpio. Oocytes of common carp were exposed to IBU concentrations between 1.5 and 11.5 μg L-1 (environmentally relevant). LC50 and EC50 of malformations were determined to calculate the teratogenic index (TI). Also, main alterations to embryonic development and teratogenic effects were evaluated. Oxidative stress was evaluated by determining biomarkers of cellular oxidation and antioxidation using the same concentrations at 72 and 96 hpf in embryos of Cyprinus carpio. The results showed a LC50 of 4.17 μg L-1, EC50 of 1.39 μg L-1 and TI of 3.0. The main embryonic development disorders and teratogenic effects were delayed hatching, hypopigmentation, pericardial edema, yolk deformation, and developmental delay. Biomarkers of cellular oxidation and antioxidants were increased with respect to the control in a concentration-dependent manner. The results of the study allow us to conclude that IBU at environmentally relevant concentrations is capable of inducing embryotoxicity and teratogenicity in a fish of commercial interest like Cyprinus carpio.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Rubi Romero
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, CP 50200 Toluca, Mexico
| |
Collapse
|
87
|
Zhang K, Yuan G, Werdich AA, Zhao Y. Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113613. [PMID: 31838392 DOI: 10.1016/j.envpol.2019.113613] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac are highly prescribed worldwide and their presence in aquatic system may pose a potential risk to aquatic organisms. Here, we systematically assessed their cardiovascular disruptive effects in zebrafish (Danio rerio) at environmentally relevant concentrations between 0.04 and 25.0 μg/L. Ibuprofen significantly increased the cardiac outputs of zebrafish embryos at actual concentrations of 0.91, 4.3 and 21.9 μg/L. It up-regulated the blood cell velocity, total blood flow and down-regulated the blood cell density at concentrations of 4.3 μg/L and higher. In comparison, diclofenac led to inhibition of spontaneous muscle contractions and decreased hatching rate of zebrafish embryos at the highest concentration (24.1 μg/L), while it had negligible effects on the cardiac physiology and hemodynamics. Transcriptional analysis of biomarker genes involved in cardiovascular physiology, such as the significantly up-regulated nppa and nkx2.5 expressions response to ibuprofen but not to diclofenac, is consistent with these observations. In addition, both ibuprofen and diclofenac altered the morphology of intersegmental vessels at high concentrations. Our results revealed unexpected cardiovascular functional alterations of NSAIDs to fish at environmental or slightly higher than surface water concentrations and thus provided novel insights into the understanding of their potential environmental risks.
Collapse
Affiliation(s)
- Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Andreas A Werdich
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
88
|
Severo ES, Marins AT, Cerezer C, Costa D, Nunes M, Prestes OD, Zanella R, Loro VL. Ecological risk of pesticide contamination in a Brazilian river located near a rural area: A study of biomarkers using zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110071. [PMID: 31841896 DOI: 10.1016/j.ecoenv.2019.110071] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/22/2023]
Abstract
Aquatic environments are affected by the use of pesticides in agricultural areas near rivers. To assess the impact of pesticide residues on affected environments Danio rerio (zebrafish) embryos have become an alternative model for biomonitoring studies. In the present study, zebrafish embryos were used as bioindicator of water quality in the Vacacaí river, located in the city of Santa Maria, southern Brazil. We hypothesized that it would be possible to observe changes in the biomarkers tested in the embryos. Exposures were performed over a total of eight months during the year 2018 using water collected in a river located near agricultural areas. Twenty-four pesticides were found in river water samples. The most frequently found were atrazine, quinclorac and clomazone. During exposure (96 h) spontaneous movement, the heart rate and hatching rate were evaluated. After the exposure time the embryos were euthanized for biochemical assays. We analyzed biomarkers such as thiobarbituric acid reactive substance (TBARS), acetylcholinesterase (AChE), glutathione S-transferase (GST) and catalase (CAT). We observed increases in GST and TBARS, especially during periods of major water contamination such as January, February, October, and November. Pesticides can affect the development of native species that reproduce during periods of high agricultural production. These results demonstrate the potential use of biochemical parameters combined with developmental and behavioral analyses in zebrafish embryos for biomonitoring studies.
Collapse
Affiliation(s)
- Eduardo Stringini Severo
- Programa de Pós-Graduação em Biodiversidade Animal, Brazil; Laboratório de Toxicologia Aquática, LABTAQ, Brazil
| | - Aline Teixeira Marins
- Programa de Pós-Graduação em Biodiversidade Animal, Brazil; Laboratório de Toxicologia Aquática, LABTAQ, Brazil
| | - Cristina Cerezer
- Programa de Pós-Graduação em Biodiversidade Animal, Brazil; Laboratório de Toxicologia Aquática, LABTAQ, Brazil
| | - Dennis Costa
- Programa de Pós-graduação em Ciências Fisiológicas - (FURG), Rio Grande, RS, Brazil
| | - Mauro Nunes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil
| | - Osmar Damian Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, CEP: 97105-900, Brazil
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, CEP: 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Biodiversidade Animal, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Laboratório de Toxicologia Aquática, LABTAQ, Brazil.
| |
Collapse
|
89
|
Ryzhkina IS, Kiseleva YV, Murtazina LI, Kuznetsova TV, Zainulgabidinov ER, Knyazev IV, Petrov AM, Kondakov SE, Konovalov AI. Diclofenac sodium aqueous systems at low concentrations: Interconnection between physicochemical properties and action on hydrobionts. J Environ Sci (China) 2020; 88:177-186. [PMID: 31862059 DOI: 10.1016/j.jes.2019.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Diclofenac sodium (DS) is a widely used nonsteroidal anti-inflammatory drug (NSAIDs). NSAIDs are poorly removed during standard wastewater treatment. The consequences of the presence of NSAIDs in rivers and lakes at 10-11-10-8 mol/L are not yet established; therefore, ecotoxicologists have focused their efforts on studying the effect of low-concentration NSAIDs on fish and hydrobionts, and also on predicting the potential risks to humans. Literature provides some information about the bioeffects of some NSAID solutions in low concentrations but there is no physicochemical explanation for these phenomena. Studying the physicochemical patterns of DS solutions in the low range of concentrations and establishing an interconnection between the solutions' physicochemical properties and bioeffects can provide a conceptually new and important source of information regarding the unknown effects of DS. The physicochemical properties and action of DS solutions on Ceriodaphnia affinis cladocerans, Paramecium caudatum infusoria, Chlorella vulgaris unicellular green algae, as well as on the growth of the roots of Triticum vulgare wheat seeds, were studied in the calculated concentration range of 1 × 10-3-1 × 10-18 mol/L. The relationship between these phenomena was established using the certified procedures for monitoring the toxicity of natural water and wastewater. It was shown for the first time that water solutions of DS are dispersed systems in which the dispersed phase undergoes a rearrangement with dilution, accompanied by changes in its size and properties, which affects the nonmonotonic dependences of the system's physicochemical properties and could cause nonmonotonic changes in action on hydrobionts in the low concentration range.
Collapse
Affiliation(s)
- Irina S Ryzhkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., Kazan 420088, Russia.
| | - Yuliya V Kiseleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., Kazan 420088, Russia
| | - Lyaisan I Murtazina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., Kazan 420088, Russia
| | - Tatyana V Kuznetsova
- Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, 28 Daurskaya Str., Kazan 420087, Russia
| | - Erik R Zainulgabidinov
- Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, 28 Daurskaya Str., Kazan 420087, Russia
| | - Igor V Knyazev
- Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, 28 Daurskaya Str., Kazan 420087, Russia
| | - Andrew M Petrov
- Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, 28 Daurskaya Str., Kazan 420087, Russia
| | - Sergey E Kondakov
- Lomonosov Moscow State University, Chemistry Dept., 1/3 Lenin Hills, Moscow 119899, Russia
| | - Alexander I Konovalov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., Kazan 420088, Russia
| |
Collapse
|
90
|
The food preservative ethoxyquin impairs zebrafish development, behavior and alters gene expression profile. Food Chem Toxicol 2020; 135:110926. [DOI: 10.1016/j.fct.2019.110926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
|
91
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
92
|
Nogueira AF, Pinto G, Correia B, Nunes B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. ENVIRONMENTAL TOXICOLOGY 2019; 34:1177-1190. [PMID: 31322327 DOI: 10.1002/tox.22819] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
For several years, the scientific community has been concerned about the presence of pharmaceuticals in the wild, since these compounds may have unpredictable deleterious effects on living organisms. Two examples of widely used pharmaceuticals that are present in the environment are paracetamol and ciprofloxacin. Despite their common presence in the aquatic environment due to their poor removal by sewage treatment plants, knowledge concerning their putative toxic effects is still scarce. This work aimed to characterize the effects of paracetamol (0.005, 0.025, 0.125, 0.625, and 3.125 mg/L) and ciprofloxacin (0.005, 0.013, 0.031, 0.078, 0.195, and 0.488 μg/L) in zebrafish embryos and larvae, exposed to environmentally relevant levels, close to the real concentrations of these pharmaceuticals in surface waters and effluents. The adopted toxic end points were developmental, a behavioral parameter (total swimming time), and a biomarker-based approach (quantification of the activities of catalase, glutathione-S-transferase, cholinesterases, glutathione peroxidase, and lipid peroxidation levels) combined with epigenetic analysis (immunohistochemical detection of 5-methylcytidine). Exposure to paracetamol had effects on all of the adopted toxic end points; however, ciprofloxacin only caused effects on behavioral tests and alterations in biomarkers. It is possible to ascertain the occurrence of oxidative stress following exposure to both drugs, which was more evident regarding paracetamol, an effect that may be related to the observed epigenetic modifications.
Collapse
Affiliation(s)
- Ana F Nogueira
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Glória Pinto
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Barbara Correia
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
93
|
Mu X, Liu J, Yuan L, Yang K, Huang Y, Wang C, Yang W, Shen G, Li Y. The mechanisms underlying the developmental effects of bisphenol F on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:877-884. [PMID: 31412491 DOI: 10.1016/j.scitotenv.2019.05.489] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
With the increasing use of bisphenol F (BPF) as BPA alternative, BPF are widely distributed in multiple environment media. Our previous study demonstrated that BPF possess equivalent toxicity towards zebrafish as BPA, while its toxic mechanism remains largely unknown. To investigate the mechanisms mediating the developmental effects of BPF, zebrafish embryos were exposed to 0.0005, 0.5, and 5.0 mg/L BPF. Morphological examination indicated that BPF exposure led to depigmentation, decreased heart rate, inhibited spontaneous movement, hatch inhibition, and spinal deformation. Motor neuron-green fluorescence zebrafish assay indicated that exposure to 0.5 or 5.0 mg/L BPF affected embryonic motor neuron development, which is consistent with the spinal defect and spontaneous movement inhibition. Transcriptomic analysis showed that genes associated with the observed symptoms, including neuron development (ngln2a, socs3a, fosb), cardiac development (klf2a), and spinal deformation (ngs, col8a1a, egr2a), were down-regulated after exposure to either 0.0005 (environmental relevant concentration) or 0.5 mg/L BPF. This partially explained the mechanisms underlying the effects of BPF. In conclusion, BPF had the potential to affect zebrafish development even at environmental level through down-regulating associated genes.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| |
Collapse
|
94
|
Acetaminophen Removal from Water by Microalgae and Effluent Toxicity Assessment by the Zebrafish Embryo Bioassay. WATER 2019. [DOI: 10.3390/w11091929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, zebrafish embryo bioassays were performed to assess the efficiency of microalgae in the removal of acetaminophen from water. Chlorella sorokiniana (CS), Chlorella vulgaris (CV) and Scenedesmus obliquus (SO) were the strains used for water treatment. Toxic effects on zebrafish embryo caused by effluents from microalgae treatment were compared with those observed under exposure to experimental solutions with known concentrations of acetaminophen. The three microalgae strains allowed for the reduction of acetaminophen concentration and its toxic effects, but CS was the most efficient one. At the end of the batch culture, a 67% removal was provided by CS with a reduction of 62% in the total abnormalities on the exposed zebrafish embryo. On the other hand, toxic effects observed under exposure to effluents treated by microalgae were alike to those determined for acetaminophen experimental solutions with equivalent concentration. Thus, it may be inferred that microalgae biodegradation of acetaminophen did not involve an increased toxicity for zebrafish embryo.
Collapse
|
95
|
Promoting zebrafish embryo tool to identify the effects of chemicals in the context of Water Framework Directive monitoring and assessment. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
96
|
Bittner L, Klüver N, Henneberger L, Mühlenbrink M, Zarfl C, Escher BI. Combined Ion-Trapping and Mass Balance Models To Describe the pH-Dependent Uptake and Toxicity of Acidic and Basic Pharmaceuticals in Zebrafish Embryos ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7877-7886. [PMID: 31177773 DOI: 10.1021/acs.est.9b02563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the current study was to understand and develop models to predict the pH-dependent toxicity of ionizable pharmaceuticals in embryos of the zebrafish Danio rerio. We found a higher uptake and toxicity with increasing neutral fraction of acids (diclofenac, genistein, naproxen, torasemide, and warfarin) and bases (metoprolol and propranolol). Simple mass balance models accounting for the partitioning to lipids and proteins in the zebrafish embryo were found to be suitable to predict the bioconcentration after 96 h of exposure if pH values did not differ much from the internal pH of 7.55. For other pH values, a kinetic ion-trap model for the zebrafish embryo explained the pH dependence of biouptake and toxicity. The total internal lethal concentrations killing 50% of the zebrafish embryos (ILC50) were calculated from the measured BCF and LC50. The resulting ILC50 were independent of external pH. Critical membrane concentrations were deduced by an internal mass balance model, and apart from diclofenac, whose specific toxicity in fish had already been established, all pharmaceuticals were confirmed to act as baseline toxicants in zebrafish.
Collapse
Affiliation(s)
- Lisa Bittner
- Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Luise Henneberger
- Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Marie Mühlenbrink
- Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Christiane Zarfl
- Eberhard Karls University of Tübingen , Center for Applied Geoscience , Hölderlinstrasse 12 , 72074 Tübingen , Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
- Eberhard Karls University of Tübingen , Center for Applied Geoscience , Hölderlinstrasse 12 , 72074 Tübingen , Germany
| |
Collapse
|
97
|
Pohl J, Ahrens L, Carlsson G, Golovko O, Norrgren L, Weiss J, Örn S. Embryotoxicity of ozonated diclofenac, carbamazepine, and oxazepam in zebrafish (Danio rerio). CHEMOSPHERE 2019; 225:191-199. [PMID: 30875502 DOI: 10.1016/j.chemosphere.2019.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical residues are polluting the surface water environments worldwide. Sewage and wastewater treatment, therefore, needs to be improved in order to remove pharmaceutical residues from the effluent. One such treatment improvement is effluent ozonation. Even though ozonation has proven to be very efficient in reducing pharmaceutical parent compound concentrations in wastewater effluents, much remains unclear regarding potentially toxic ozonation by-product (OBP) formation. In this study, we sought to elucidate the aquatic toxicity of ozonated pharmaceuticals in zebrafish (Danio rerio) embryos in a static 144 h post fertilization (hpf) fish embryotoxicity (ZFET) assay. Three pharmaceuticals commonly detected in wastewater effluents, i.e. carbamazepine, diclofenac, and oxazepam, were selected for testing. Toxicity was assessed before and after 1 min ozonation (0.053 mg L-1 peak O3 concentration) and 10 min ozonation (0.147 mg L-1 peak O3 concentration). Chemical analysis showed that carbamazepine and diclofenac were largely removed by ozone (90 ± 11% and 97 ± 3.8%), whereas oxazepam was removed to a lesser extent (19 ± 5.7%). The ZFET assay revealed diverging toxicities. Diclofenac embryotoxicity decreased with increasing ozonation. Oxazepam did not cause embryotoxicity in the ZFET assay either pre- or post ozonation, but larvae swimming activity was affected at 144 hpf. Carbamazepine embryotoxicity, on the other hand, increased with increasing ozonation. Chemical analysis showed the formation of two OBPs (carbamazepine-10,11-epoxide and 10,11-dihydrocarbamazepine), possibly explaining the increased embryotoxicity. The results of this study highlight the importance of new chemical and toxicological knowledge regarding the formation of OBPs in post-ozonated effluents.
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Lutz Ahrens
- Section for Organic Environmental Chemistry and Ecotoxicology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Oksana Golovko
- Section for Geochemistry and Hydrology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Norrgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jana Weiss
- Section for Organic Environmental Chemistry and Ecotoxicology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
98
|
Zhou S, Chen Q, Di Paolo C, Shao Y, Hollert H, Seiler TB. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:89-98. [PMID: 30739855 DOI: 10.1016/j.scitotenv.2019.01.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Although the effects of pharmaceuticals on aquatic organisms have been widely investigated during the last decades, toxic effects, especially delayed toxicity, during the developmental stage at environmental relevant concentrations were rarely known. In this study, a sensitive assay based on behavioral alterations was used for studying the delayed toxicity during the developmental stage on zebrafish embryos. Eight pharmaceuticals that were frequently detected with concentrations ranging from ng/l to μg/l were screened for this study. Behavioral alterations of zebrafish at 118 hpf (hours post fertilization) after exposing to eight single pharmaceuticals with concentrations in the ranges of environmental detected and their mixtures during embryonic development (2-50 h post fertilization, hpf) were observed. Multiple endpoints, including mortality, hatching rate, swimming speed and angular velocity were evaluated. Results showed that behavioral profile alterations in zebrafish larvae are promising for predicting delayed sublethal effects of chemicals. Delayed hatch was observed at 72 hpf following embryonic exposure to triclosan (1 μg/l) and carbamazepine (100 μg/l) up to 50 hpf. The zebrafish larval locomotor behavior following embryonic exposure to 0.1 μg/l triclosan and 1 μg/l caffeine in the early stages of development (2-50 hpf) was altered. Furthermore, the effects of the mixture of 8 pharmaceuticals each with the highest environmental concentration on larval behavior were observed during embryonic development. Generally, this study showed that the effects of pharmaceuticals singly or their mixtures in surface waters cannot be ignored.
Collapse
Affiliation(s)
- Shangbo Zhou
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Carolina Di Paolo
- Shell Health, Shell International B.V., Carel van Bylandtlaan 23, 2596 HP The Hague, the Netherlands
| | - Ying Shao
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
99
|
Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O. Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:751-764. [PMID: 30743961 DOI: 10.1016/j.scitotenv.2019.01.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Hospital functioning generates a great quantity of contaminants, among which organic materials, heavy metals, and diverse pharmaceuticals are noteworthy that can affect organisms if they are not properly removed from the effluents. The hospital effluent evaluated in the present study came from IMSS (Instituto Mexicano del Seguro Social) Clinic 221 in downtown Toluca, State of Mexico, a secondary care facility. The contaminants identified in hospitals have been associated with deleterious effects on aquatic organisms; however, it is necessary to continue with more studies in order to be able to regulate the production of said contaminants which are generally dumped into the city sewage system. The present study had the purpose of evaluating the alterations to embryonic development and teratogenic effects on oocytes Cyprinus carpio after exposure to different proportions of hospital effluent. For said purpose, the physicochemical properties of the effluent were determined. Concentrations of the main microcontaminants were also determined. An embryolethality study out and the determination of the main alterations to embryonic development and teratogenic effects produced, due to exposure of C. carpio at different proportions of the effluent, were carried out. The results showed that the physicochemical properties were within the values permitted by Mexican regulation; however, the presence of contaminants such as NaClO, metals, anti-biotics, anti-diabetics, non-steroidal anti-inflammatory drugs, hormones and beta-blockers, was detected. Lethal concentration 50 was 5.65% and the effective concentration for malformations was 3.85%, with a teratogenic index of 1.46. The main teratogenic alterations were yolk deformation, scoliosis, modified chorda structure, tail malformation, fin deformity and mouth hyperplasia. A high rate of hatching delay was observed. The results suggest that the hospital effluent under study is capable of inducing embryotoxicity and teratogenicity in oocytes of C. carpio.
Collapse
Affiliation(s)
- Marlenne Luja-Mondragón
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico.
| | - Nely SanJuan-Reyes
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Hariz Islas-Flores
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - José Manuel Orozco-Hernández
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Gerardo Heredia-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Marcela Galar-Martínez
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Octavio Dublán-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| |
Collapse
|
100
|
González-Fraga J, Dipp-Alvarez V, Bardullas U. Quantification of Spontaneous Tail Movement in Zebrafish Embryos Using a Novel Open-Source MATLAB Application. Zebrafish 2019; 16:214-216. [PMID: 30615594 DOI: 10.1089/zeb.2018.1688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jose González-Fraga
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, México
| | - Victor Dipp-Alvarez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, México
| | - Ulises Bardullas
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, México
| |
Collapse
|