51
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
52
|
Lopez LR, Ahn JH, Alves T, Arthur JC. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:934619. [PMID: 35959366 PMCID: PMC9362432 DOI: 10.3389/fcimb.2022.934619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Janelle C. Arthur,
| |
Collapse
|
53
|
Ke A, Parreira VR, Farber JM, Goodridge L. Inhibition of Cronobacter sakazakii in an infant simulator of the human intestinal microbial ecosystem using a potential synbiotic. Front Microbiol 2022; 13:947624. [PMID: 35910651 PMCID: PMC9335077 DOI: 10.3389/fmicb.2022.947624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Powdered infant formula (PIF) can be contaminated with Cronobacter sakazakii, which can cause severe illnesses in infants. Synbiotics, a combination of probiotics and prebiotics, could act as an alternative control measure for C. sakazakii contamination in PIF and within the infant gut, but synbiotics have not been well studied for their ability to inhibit C. sakazakii. Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) inoculated with infant fecal matter, we demonstrated that a potential synbiotic, consisting of six lactic acid bacteria (LAB) strains and Vivinal GOS, can inhibit the growth of C. sakazakii in an infant possibly through either the production of antimicrobial metabolites like acetate, increasing species diversity within the SHIME compartments to compete for nutrients or a combination of mechanisms. Using a triple SHIME set-up, i.e., three identical SHIME compartments, the first SHIME (SHIME 1) was designated as the control SHIME in the absence of a treatment, whereas SHIME 2 and 3 were the treated SHIME over 2, 1-week treatment periods. The addition of the potential synbiotic (LAB + VGOS) resulted in a significant decrease in C. sakazakii levels within 1 week (p < 0.05), but in the absence of a treatment the significant decline took 2 weeks (p < 0.05), and the LAB treatment did not decrease C. sakazakii levels (p ≥ 0.05). The principal component analysis showed a distinction between metabolomic profiles for the control and LAB treatment, but similar profiles for the LAB + VGOS treatment. The addition of the potential synbiotic (LAB + VGOS) in the first treatment period slightly increased species diversity (p ≥ 0.05) compared to the control and LAB, which may have had an effect on the survival of C. sakazakii throughout the treatment period. Our results also revealed that the relative abundance of Bifidobacterium was negatively correlated with Cronobacter when no treatments were added (ρ = −0.96; p < 0.05). These findings suggest that C. sakazakii could be inhibited by the native gut microbiota, and inhibition can be accelerated by the potential synbiotic treatment.
Collapse
|
54
|
Abstract
Changes in the composition of the gut microbiota are associated with many human diseases. So far, however, we have failed to define homeostasis or dysbiosis by the presence or absence of specific microbial species. The composition and function of the adult gut microbiota is governed by diet and host factors that regulate and direct microbial growth. The host delivers oxygen and nitrate to the lumen of the small intestine, which selects for bacteria that use respiration for energy production. In the colon, by contrast, the host limits the availability of oxygen and nitrate, which results in a bacterial community that specializes in fermentation for growth. Although diet influences microbiota composition, a poor diet weakens host control mechanisms that regulate the microbiota. Hence, quantifying host parameters that control microbial growth could help define homeostasis or dysbiosis and could offer alternative strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
55
|
Zhong T, Wang C, Wang X, Freitas-de-Melo A, Zeng B, Zhao Q, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. Early Weaning and Milk Substitutes Affect the Gut Microbiome, Metabolomics, and Antibody Profile in Goat Kids Suffering From Diarrhea. Front Microbiol 2022; 13:904475. [PMID: 35801115 PMCID: PMC9253616 DOI: 10.3389/fmicb.2022.904475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early weaning and milk substitutes increase the incidence of diarrhea in young ruminants, which may modify their gut microbiota, metabolism, immunity, and health. The aim of the study was to determine if early weaning and milk substitutes affect the gut microbiota, metabolism, and immunological status of goat kids suffering from diarrhea. The 16S rRNA gene and metagenomic sequencing in feces and serum metabolomics of early-weaned and artificially reared goat kids suffering from diarrhea (DK group) and healthy goat kids reared by their mothers (HK group) were analyzed. The serum biochemistry and immunoglobulin concentration were also determined. Several probiotics, such as Streptococcus and Lactobacillus, were higher in the feces of the DK group than in feces of the HK group. Ruminococcus sp. was elevated in the feces of HKs, likely being a biomarker for goat health. Taking all the carbohydrate-active enzyme (CAZyme) families into consideration, 20 CAZyme families were different between the groups. Compared with the DK group, the relative quantity of glycoside hydrolases (GH) and glycosyltransferase (GT) families in the HK group decreased. GT70 was only identified in HK kids participating in the activity of β-glucuronosyltransferase during the carbohydrate metabolism. Overall, 24 metabolites were different between the groups, which were mainly involved in protein digestion and absorption, cyanoamino acid metabolism, and cholesterol metabolism. The concentrations of immunoglobulins G and M were significantly lower in the DK than in the HK group. In conclusion, our study characterized the fecal microbiota, metabolism, and immunological status of early-weaned and artificially reared goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Cheng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
56
|
Creasey HN, Zhang W, Widmer G. Effect of Caging on Cryptosporidium parvum Proliferation in Mice. Microorganisms 2022; 10:1242. [PMID: 35744762 PMCID: PMC9230662 DOI: 10.3390/microorganisms10061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidiosis is an enteric infection caused by several protozoan species in the genus Cryptosporidium (phylum Apicomplexa). Immunosuppressed mice are commonly used to model this infection. Surprisingly, for a pathogen like Cryptosporidium parvum, which is readily transmitted fecal-orally, mice housed in the same cage can develop vastly different levels of infection, ranging from undetectable to lethal. The motivation for this study was to investigate this phenomenon and assess the association between the severity of cryptosporidiosis and the fecal microbiota. To this aim, the association between severity of cryptosporidiosis and caging (group caged vs. individually caged) and between the microbiota taxonomy and the course of the infection was examined. In contrast to mice caged in groups of four, a majority of mice caged individually did not excrete a detectable level of oocysts. Microbiota α diversity in samples collected between three days prior to infection and one day post-infection was negatively correlated with the severity of cryptosporidiosis, suggesting a causal negative relationship between microbiota diversity and susceptibility to C. parvum.
Collapse
Affiliation(s)
- Hannah N. Creasey
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| | - Wen Zhang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
- Gerald J. and Dorothy R. Friedman School of Nutrition, Tufts University, Boston, MA 02111, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| |
Collapse
|
57
|
Liou MJ, Miller BM, Litvak Y, Nguyen H, Natwick DE, Savage HP, Rixon JA, Mahan SP, Hiyoshi H, Rogers AWL, Velazquez EM, Butler BP, Collins SR, McSorley SJ, Harshey RM, Byndloss MX, Simon SI, Bäumler AJ. Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host Microbe 2022; 30:836-847.e6. [PMID: 35568027 PMCID: PMC9187619 DOI: 10.1016/j.chom.2022.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Changes in the microbiota composition are associated with many human diseases, but factors that govern strain abundance remain poorly defined. We show that a commensal Escherichia coli strain and a pathogenic Salmonella enterica serovar Typhimurium isolate both utilize nitrate for intestinal growth, but each accesses this resource in a distinct biogeographical niche. Commensal E. coli utilizes epithelial-derived nitrate, whereas nitrate in the niche occupied by S. Typhimurium is derived from phagocytic infiltrates. Surprisingly, avirulent S. Typhimurium was shown to be unable to utilize epithelial-derived nitrate because its chemotaxis receptors McpB and McpC exclude the pathogen from the niche occupied by E. coli. In contrast, E. coli invades the niche constructed by S. Typhimurium virulence factors and confers colonization resistance by competing for nitrate. Thus, nutrient niches are not defined solely by critical resources, but they can be further subdivided biogeographically within the host into distinct microhabitats, thereby generating new niche opportunities for distinct bacterial species.
Collapse
Affiliation(s)
- Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 9190401, Israel
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Dean E Natwick
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hannah P Savage
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jordan A Rixon
- Center for Immunology and Infectious Diseases and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hirotaka Hiyoshi
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Immunology and Infectious Diseases and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mariana X Byndloss
- Vanderbilt Institute for Infection, Immunology and Inflammation and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Scott I Simon
- Department of Biomedical Engineering, College of Engineering and Department of Dermatology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
58
|
Sharma A, Raman V, Lee J, Forbes NS. Microbial Imbalance Induces Inflammation by Promoting Salmonella Penetration through the Mucosal Barrier. ACS Infect Dis 2022; 8:969-981. [PMID: 35404574 DOI: 10.1021/acsinfecdis.1c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The balance of microbial species in the intestine must be maintained to prevent inflammation and disease. Healthy bacteria suppress infection by pathogens and prevent disorders such as inflammatory bowel diseases (IBDs). The role of mucus in the relation between pathogens and the intestinal microbiota is poorly understood. Here, we hypothesized that healthy bacteria inhibit infection by preventing pathogens from penetrating the mucus layer and that microbial imbalance leads to inflammation by promoting the penetration of the mucosal barrier. We tested this hypothesis with an in vitro model that contains mucus, an epithelial cell layer, and resident immune cells. We found that, unlike probiotic VSL#3 bacteria, Salmonella penetrated the mucosal layers and induced the production of interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. At ratios greater than 104:1, probiotic bacteria suppressed the growth and penetration of Salmonella and reduced the production of inflammatory cytokines. Counterintuitively, low densities of healthy bacteria increased both pathogen penetration and cytokine production. In all cases, mucus increased Salmonella penetration and the production of cytokines. These results suggest that mucus lessens the protective effect of probiotic bacteria by promoting barrier penetration. In this model, a more imbalanced microbial population caused infection and inflammation by selecting pathogens that are more invasive and immunogenic. Combined, the results suggest that the depletion of commensal bacteria or an insufficient dosage of probiotics could worsen an infection and cause increased inflammation. A better understanding of the interactions between pathogens, healthy microbes, and the mucosal barrier will improve the treatment of infections and inflammatory diseases.
Collapse
Affiliation(s)
- Abhinav Sharma
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
59
|
Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e3. [PMID: 39295779 PMCID: PMC11406415 DOI: 10.1017/gmb.2022.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 09/21/2024]
Abstract
The human large intestinal microbiota thrives on dietary carbohydrates that are converted to a range of fermentation products. Short-chain fatty acids (acetate, propionate and butyrate) are the dominant fermentation acids that accumulate to high concentrations in the colon and they have health-promoting effects on the host. Although many gut microbes can also produce lactate, it usually does not accumulate in the healthy gut lumen. This appears largely to be due to the presence of a relatively small number of gut microbes that can utilise lactate and convert it to propionate, butyrate or acetate. There is increasing evidence that these microbes play important roles in maintaining a healthy gut environment. In this review, we will provide an overview of the different microbes involved in lactate metabolism within the gut microbiota, including biochemical pathways utilised and their underlying energetics, as well as regulation of the corresponding genes. We will further discuss the potential consequences of perturbation of the microbiota leading to lactate accumulation in the gut and associated disease states and how lactate-utilising bacteria may be employed to treat such diseases.
Collapse
Affiliation(s)
- Petra Louis
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | | | | | - Harry James Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
60
|
Devlin AS. Lessons learned by an organic chemist entering the microbiome field. Cell Host Microbe 2022; 30:435-438. [PMID: 35421338 DOI: 10.1016/j.chom.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Here, I reflect on my trajectory from a graduate student in organic chemistry to an early-career scientist in the microbiome field. I discuss strategies for discovering microbiome-derived molecules and their activities, and I contemplate how we will uncover which of the molecules we identify are responsible for driving host phenotypes.
Collapse
Affiliation(s)
- A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
62
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
63
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of MicrobiologyUniversity College CorkCorkIreland
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| | | | - Eugene Dempsey
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Reynolds Paul Ross
- School of MicrobiologyUniversity College CorkCorkIreland
- APC MicrobiomeCorkIreland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| |
Collapse
|
64
|
Sheridan PO, Louis P, Tsompanidou E, Shaw S, Harmsen HJ, Duncan SH, Flint HJ, Walker AW. Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria. Microb Genom 2022; 8. [PMID: 35077342 PMCID: PMC8914356 DOI: 10.1099/mgen.0.000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, Anaerobutyricum soehngenii and Coprococcus catus, during growth on lactate, hexose sugar or hexose plus lactate. In A. soehngenii L2-7 six genes of the lactate utilization (lct) cluster, including NAD-independent d-lactate dehydrogenase (d-iLDH), were co-ordinately upregulated during growth on equimolar d- and l-lactate (dl-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in C. catus GD/7 included a six-gene cluster (lap) encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A d-iLDH homologue in C. catus is encoded by a separate, partial lct, gene cluster, but not upregulated on lactate. While C. catus converts three mols of dl-lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed lct cluster expression in A. soehngenii, there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer C. catus. This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.
Collapse
Affiliation(s)
- Paul O Sheridan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Petra Louis
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Eleni Tsompanidou
- Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine, 23 St. Machar Drive, AB24 3RY Aberdeen, UK
| | - Hermie J Harmsen
- Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| |
Collapse
|
65
|
Lee MJ, Park YM, Kim B, Tae IH, Kim NE, Pranata M, Kim T, Won S, Kang NJ, Lee YK, Lee DW, Nam MH, Hong SJ, Kim BS. Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes 2022; 14:2068366. [PMID: 35485368 PMCID: PMC9067516 DOI: 10.1080/19490976.2022.2068366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome influences the development of allergic diseases during early childhood. However, there is a lack of comprehensive understanding of microbiome-host crosstalk. Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic dermatitis (AD) and the potential interactions between host and microbiome that control this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6-36 months; 112 non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host interactions were analyzed in animal and in vitro cell assays. Although the gut microbiome maturated with age in both AD and non-AD groups, its development was disordered in the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome development could aggravate balanced microbiome-host interactions, including immune responses during early childhood with AD.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Yoon Mee Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Byunghyun Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - in Hwan Tae
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Marina Pranata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Taewon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
66
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2021; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
67
|
Florfenicol Enhances Colonization of a Salmonella enterica Serovar Enteritidis floR Mutant with Major Alterations to the Intestinal Microbiota and Metabolome in Neonatal Chickens. Appl Environ Microbiol 2021; 87:e0168121. [PMID: 34613752 DOI: 10.1128/aem.01681-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Florfenicol is an important antibiotic commonly used in poultry production to prevent and treat Salmonella infection. However, oral administration of florfenicol may alter the animals' natural microbiota and metabolome, thereby reducing intestinal colonization resistance and increasing susceptibility to Salmonella infection. In this study, we determined the effect of florfenicol (30 mg/kg of body weight) on gut colonization of neonatal chickens challenged with Salmonella enterica subsp. enterica serovar Enteritidis. We then analyzed the microbial community structure and metabolic profiles of cecal contents using microbial 16S amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics, respectively. We also screened the marker metabolites using a multi-omics technique and assessed the effect of these markers on intestinal colonization by S. Enteritidis. Florfenicol administration significantly increased the loads of S. Enteritidis in cecal contents, spleen, and liver and prolonged the residence of S. Enteritidis. Moreover, florfenicol significantly affected cecal colony structures, with reduced abundances of Lactobacillus and Bacteroidetes and increased levels of Clostridia, Clostridium, and Dorea. The metabolome was greatly influenced by florfenicol administration, and perturbation in metabolic pathways related to linoleic acid metabolism (linoleic acid, conjugated linoleic acid [CLA], 12,13-EpOME, and 12,13-diHOME) was most prominently detected. We screened CLA and 12,13-diHOME as marker metabolites, which were highly associated with Lactobacillus, Clostridium, and Dorea. Supplementation with CLA maintained intestinal integrity, reduced intestinal inflammation, and accelerated Salmonella clearance from the gut and remission of enteropathy, whereas treatment with 12,13-diHOME promoted intestinal inflammation and disrupted intestinal barrier function to sustain Salmonella infection. Thus, these results highlight that florfenicol alters the intestinal microbiota and metabolism of neonatal chickens and promotes Salmonella infection mainly by affecting linoleic acid metabolism. IMPORTANCE Florfenicol is a broad-spectrum fluorine derivative of chloramphenicol frequently used in poultry to prevent/treat Salmonella. However, oral administration of florfenicol may lead to alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to Salmonella infection, and the possible mechanisms linking antibiotics and Salmonella colonization in poultry have not yet been fully elucidated. In the current study, we show that increased colonization by S. Enteritidis in chickens administered florfenicol is associated with large shifts in the gut microbiota and metabolic profiles. The most influential linoleic acid metabolism is highly associated with the abundances of Lactobacillus, Clostridium, and Dorea in the intestine. The screened target metabolites in linoleic acid metabolism affect S. Enteritidis colonization, intestinal inflammation, and intestinal barrier function. Our findings provide a better understanding of the susceptibility of animal species to Salmonella after antibiotic intervention, which may help to elucidate infection mechanisms that are important for both animal and human health.
Collapse
|
68
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
69
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
70
|
Mackie GM, Copland A, Takahashi M, Nakanishi Y, Everard I, Kato T, Oda H, Kanaya T, Ohno H, Maslowski KM. Bacterial cancer therapy in autochthonous colorectal cancer affects tumor growth and metabolic landscape. JCI Insight 2021; 6:e139900. [PMID: 34710062 PMCID: PMC8675204 DOI: 10.1172/jci.insight.139900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial cancer therapy (BCT) shows great promise for treatment of solid tumors, yet basic mechanisms of bacterial-induced tumor suppression remain undefined. Attenuated strains of Salmonella enterica serovar Typhimurium (STm) have commonly been used in mouse models of BCT in xenograft and orthotopic transplant cancer models. We aimed to better understand the tumor epithelium-targeted mechanisms of BCT by using autochthonous mouse models of intestinal cancer and tumor organoid cultures to assess the effectiveness and consequences of oral treatment with aromatase A-deficient STm (STmΔaroA). STmΔaroA delivered by oral gavage significantly reduced tumor burden and tumor load in both a colitis-associated colorectal cancer (CAC) model and in a spontaneous Apcmin/+ intestinal cancer model. STmΔaroA colonization of tumors caused alterations in transcription of mRNAs associated with tumor stemness, epithelial-mesenchymal transition, and cell cycle. Metabolomic analysis of tumors demonstrated alteration in the metabolic environment of STmΔaroA-treated tumors, suggesting that STmΔaroA imposes metabolic competition on the tumor. Use of tumor organoid cultures in vitro recapitulated effects seen on tumor stemness, mesenchymal markers, and altered metabolome. Furthermore, live STmΔaroA was required, demonstrating active mechanisms including metabolite usage. We have demonstrated that oral BCT is efficacious in autochthonous intestinal cancer models, that BCT imposes metabolic competition, and that BCT has direct effects on the tumor epithelium affecting tumor stem cells.
Collapse
Affiliation(s)
- Gillian M. Mackie
- University of Birmingham, Institute of Immunology and Immunotherapy and Institute of Metabolism and Systems Research, Birmingham, United Kingdom
| | - Alastair Copland
- University of Birmingham, Institute of Immunology and Immunotherapy and Institute of Metabolism and Systems Research, Birmingham, United Kingdom
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Isabel Everard
- University of Birmingham, Institute of Immunology and Immunotherapy and Institute of Metabolism and Systems Research, Birmingham, United Kingdom
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hirotsugu Oda
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kendle M. Maslowski
- University of Birmingham, Institute of Immunology and Immunotherapy and Institute of Metabolism and Systems Research, Birmingham, United Kingdom
- Laboratory for Intestinal Ecosystem, RIKEN Institute for Integrative Medical Science, Yokohama, Japan
| |
Collapse
|
71
|
Bokoliya SC, Dorsett Y, Panier H, Zhou Y. Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies. Front Cell Infect Microbiol 2021; 11:711055. [PMID: 34621688 PMCID: PMC8490673 DOI: 10.3389/fcimb.2021.711055] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been widely recognized as an approach to determine the microbiome’s causal role in gut dysbiosis-related disease models and as a novel disease-modifying therapy. Despite potential beneficial FMT results in various disease models, there is a variation and complexity in procedural agreement among research groups for performing FMT. The viability of the microbiome in feces and its successful transfer depends on various aspects of donors, recipients, and lab settings. This review focuses on the technical practices of FMT in animal studies. We first document crucial factors required for collecting, handling, and processing donor fecal microbiota for FMT. Then, we detail the description of gut microbiota depletion methods, FMT dosages, and routes of FMT administrations in recipients. In the end, we describe assessments of success rates of FMT with sustainability. It is critical to work under the anaerobic condition to preserve as much of the viability of bacteria. Utilization of germ- free mice or depletion of recipient gut microbiota by antibiotics or polyethylene glycol are two common recipient preparation approaches to achieve better engraftment. Oral-gastric gavage preferred by most researchers for fast and effective administration of FMT in mice. Overall, this review highlights various methods that may lead to developing the standard and reproducible protocol for FMT.
Collapse
Affiliation(s)
- Suresh C Bokoliya
- Department of Medicine, University of Connecticut (UConn) Health, Farmington, CT, United States
| | - Yair Dorsett
- Department of Medicine, University of Connecticut (UConn) Health, Farmington, CT, United States
| | - Hunter Panier
- Department of Medicine, University of Connecticut (UConn) Health, Farmington, CT, United States
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut (UConn) Health, Farmington, CT, United States
| |
Collapse
|
72
|
Zhang L, Wen B, Bao M, Cheng Y, Mahmood T, Yang W, Chen Q, Lv L, Li L, Yi J, Xie N, Lu C, Tan Y. Andrographolide Sulfonate Is a Promising Treatment to Combat Methicillin-resistant Staphylococcus aureus and Its Biofilms. Front Pharmacol 2021; 12:720685. [PMID: 34603031 PMCID: PMC8481920 DOI: 10.3389/fphar.2021.720685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant pathogen threatening human health and safety. Biofilms are an important cause of its drug resistance and pathogenicity. Inhibition and elimination of biofilms is an important strategy for the treatment of MRSA infection. Andrographolide sulfonate (AS) is an active component of the traditional herbal medicine Andrographis paniculata. This study aims to explore the inhibitory effect and corresponding mechanisms of AS on MRSA and its biofilms. Three doses of AS (6.25, 12.5, and 25 mg/ml) were introduced to MRSA with biofilms. In vitro antibacterial testing and morphological observation were used to confirm the inhibitory effect of AS on MRSA with biofilms. Real-time PCR and metabonomics were used to explore the underlying mechanisms of the effect by studying the expression of biofilm-related genes and endogenous metabolites. AS displayed significant anti-MRSA activity, and its minimum inhibitory concentration was 50 μg/ml. Also, AS inhibited biofilms and improved biofilm permeability. The mechanisms are mediated by the inhibition of the expression of genes, such as quorum sensing system regulatory genes (agrD and sarA), microbial surface components–recognizing adhesion matrix genes (clfA and fnbB), intercellular adhesion genes (icaA, icaD, and PIA), and a gene related to cellular eDNA release (cidA), and the downregulation of five biofilm-related metabolites, including anthranilic acid, D-lactic acid, kynurenine, L-homocitrulline, and sebacic acid. This study provided valuable evidence for the activity of AS against MRSA and its biofilms and extended the methods to combat MRSA infection.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Weifeng Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Lang Lv
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Ning Xie
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Olaparib: A Clinically Applied PARP Inhibitor Protects from Experimental Crohn's Disease and Maintains Barrier Integrity by Improving Bioenergetics through Rescuing Glycolysis in Colonic Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7308897. [PMID: 34567413 PMCID: PMC8457969 DOI: 10.1155/2021/7308897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Crohn's disease (CD) is an inflammatory disorder of the intestines characterized by epithelial barrier dysfunction and mucosal damage. The activity of poly(ADP-ribose) polymerase-1 (PARP-1) is deeply involved in the pathomechanism of inflammation since it leads to energy depletion and mitochondrial failure in cells. Focusing on the epithelial barrier integrity and bioenergetics of epithelial cells, we investigated whether the clinically applied PARP inhibitor olaparib might improve experimental CD. We used the oral PARP inhibitor olaparib in the 2,4,6-trinitrobenzene sulfonic acid- (TNBS-) induced mouse colitis model. Inflammatory scoring, cytokine levels, colon histology, hematological analysis, and intestinal permeability were studied. Caco-2 monolayer culture was utilized as an epithelial barrier model, on which we used qPCR and light microscopy imaging, and measured impedance-based barrier integrity, FITC-dextran permeability, apoptosis, mitochondrial oxygen consumption rate, and extracellular acidification rate. Olaparib reduced the inflammation score, the concentration of IL-1β and IL-6, enhanced the level of IL-10, and decreased the intestinal permeability in TNBS-colitis. Blood cell ratios, such as lymphocyte to monocyte ratio, platelet to lymphocyte ratio, and neutrophil to lymphocyte ratio were improved. In H2O2-treated Caco-2 monolayer, olaparib decreased morphological changes, barrier permeability, and preserved barrier integrity. In oxidative stress, olaparib enhanced glycolysis (extracellular acidification rate), and it improved mitochondrial function (mitochondrial coupling efficiency, maximal respiration, and spare respiratory capacity) in epithelial cells. Olaparib, a PARP inhibitor used in human cancer therapy, improved experimental CD and protected intestinal barrier integrity by preventing its energetic collapse; therefore, it could be repurposed for the therapy of Crohn's disease.
Collapse
|
74
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
75
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
76
|
Type III secretion system effector subnetworks elicit distinct host immune responses to infection. Curr Opin Microbiol 2021; 64:19-26. [PMID: 34537517 DOI: 10.1016/j.mib.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Citrobacter rodentium, a natural mouse pathogen which colonises the colon of immuno-competent mice, provides a robust model for interrogating host-pathogen-microbiota interactions in vivo. This model has been key to providing new insights into local host responses to enteric infection, including changes in intestinal epithelial cell immunometabolism and mucosal immunity. C. rodentium injects 31 bacterial effectors into epithelial cells via a type III secretion system (T3SS). Recently, these effectors were shown to be able to form multiple intracellular subnetworks which can withstand significant contractions whilst maintaining virulence. Here we highlight recent advances in understanding gut mucosal responses to infection and effector biology, as well as potential uses for artificial intelligence (AI) in understanding infectious disease and speculate on the role of T3SS effector networks in host adaption.
Collapse
|
77
|
Fujiwara H. Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:703298. [PMID: 34512627 PMCID: PMC8429959 DOI: 10.3389/fimmu.2021.703298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based- cellular immunotherapy for hematological malignancies. Immune reactions not only promote graft-versus-tumor effects that kill hematological malignant cells but also graft-versus-host disease (GVHD) that is the primary complication characterized by systemic organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD has long been recognized as an immunological reaction that requires an immunosuppressive treatment targeting immune cells. However immune suppression cannot always prevent GVHD or effectively treat it once it has developed. Recent studies using high-throughput sequencing technology investigated the impact of microbial flora on GVHD and provided profound insights of the mechanism of GVHD other than immune cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that can alter intestinal homeostasis and the severity of experimental GVHD. This axis can potentially be manipulated via dietary intervention or metabolites produced by intestinal bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of experimental GVHD regulation by the complex microbial community-metabolites-host tissue axis. Furthermore, we summarize the major findings of microbiome-based immunotherapeutic approaches that protect tissues from experimental GVHD. Understanding the complex relationships between gut microbiota-metabolites-host tissues axis provides crucial insight into the pathogenesis of GVHD and advances the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
78
|
van Doorn CLR, Schouten GK, van Veen S, Walburg KV, Esselink JJ, Heemskerk MT, Vrieling F, Ottenhoff THM. Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate Improves Host Control of Salmonella enterica Serovar Typhimurium Infection in Human Macrophages. Front Immunol 2021; 12:739938. [PMID: 34552598 PMCID: PMC8450447 DOI: 10.3389/fimmu.2021.739938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Global increases in the prevalence of antimicrobial resistance highlight the urgent need for novel strategies to combat infectious diseases. Recent studies suggest that host metabolic pathways play a key role in host control of intracellular bacterial pathogens. In this study we explored the potential of targeting host metabolic pathways for innovative host-directed therapy (HDT) against intracellular bacterial infections. Through gene expression profiling in human macrophages, pyruvate metabolism was identified as potential key pathway involved in Salmonella enterica serovar Typhimurium (Stm) infections. Next, the effect of targeting pyruvate dehydrogenase kinases (PDKs) - which are regulators of the metabolic checkpoint pyruvate dehydrogenase complex (PDC) - on macrophage function and bacterial control was studied. Chemical inhibition of PDKs by dichloroacetate (DCA) induced PDC activation and was accompanied with metabolic rewiring in classically activated macrophages (M1) but not in alternatively activated macrophages (M2), suggesting cell-type specific effects of dichloroacetate on host metabolism. Furthermore, DCA treatment had minor impact on cytokine and chemokine secretion on top of infection, but induced significant ROS production by M1 and M2. DCA markedly and rapidly reduced intracellular survival of Stm, but interestingly not Mycobacterium tuberculosis, in human macrophages in a host-directed manner. In conclusion, DCA represents a promising novel HDT compound targeting pyruvate metabolism for the treatment of Stm infections.
Collapse
|
79
|
Tiffany CR, Lee JY, Rogers AWL, Olsan EE, Morales P, Faber F, Bäumler AJ. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. MICROBIOME 2021; 9:174. [PMID: 34412707 PMCID: PMC8375055 DOI: 10.1186/s40168-021-01123-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood. METHODS Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa. Causality was investigated by engrafting germ-free or antibiotic-treated mice with complex or defined microbial communities. RESULTS We noted that a depletion of Clostridia and Erysipelotrichia from the gut microbiota triggered by antibiotic treatment was associated with an increase in the cecal concentration of sugar acids and sugar alcohols (polyols). Notably, when we inoculated germ-free mice with a defined microbial community of 14 Clostridia and 3 Erysipelotrichia isolates, we observed the inverse, with a marked decrease in the concentrations of sugar acids and polyols in cecal contents. The carbohydrate footprint produced by the defined microbial community was similar to that observed in gnotobiotic mice receiving a cecal microbiota transplant from conventional mice. Supplementation with sorbitol, a polyol used as artificial sweetener, increased cecal sorbitol concentrations in antibiotic-treated mice, which was abrogated after inoculation with a Clostridia isolate able to grow on sorbitol in vitro. CONCLUSIONS We conclude that consumption of sugar alcohols by Clostridia and Erysipelotrichia species depletes these metabolites from the intestinal lumen during homeostasis. Video abstract.
Collapse
Affiliation(s)
- Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Department of Biological Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Josef-Schneider-Street 2/D15, 97080, Würzburg, Germany
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
80
|
Ward CD, Murchison CE, Petroll WM, Robertson DM. Evaluation of the Repeatability of the LacryDiag Ocular Surface Analyzer for Assessment of the Meibomian Glands and Tear Film. Transl Vis Sci Technol 2021; 10:1. [PMID: 34338722 PMCID: PMC8340660 DOI: 10.1167/tvst.10.9.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to determine the intra- and interobserver repeatability of the new LacryDiag Ocular Surface Analyzer and compare it to a similar all-in-one device, the OCULUS Keratograph 5M. Methods Thirty healthy subjects aged 18 years and above were recruited for this study. All patients were free of any existing ocular pathology. The LacryDiag Ocular Surface Analyzer was used to evaluate tear meniscus height, interferometry, noninvasive tear break-up time (NIBUT), and meibography. The same or analogous exams were performed using the OCULUS Keratograph 5M. Test equivalation was used to compare data from corresponding examinations. Paired t-tests and coefficient of variation were used to determine inter- and intraobserver repeatability. Bland-Altman analysis was used to determine level of agreement between devices. Results There were no differences in mean values for tear meniscus height, NIBUT, or tear film interferometry between observers for either device. Significant differences were found between observers for meibography when using the LacryDiag (P = 0.008 for percent loss calculation and P = 0.004 for grading scale). Intra-observer variability for NIBUT was significantly higher for the Keratograph (P = 0.0003 for observer A and P < 0.0001 for observer B). Conclusions There was a good correlation but poor agreement between devices for a given observer. This was likely influenced by the use of repeated testing and the non-dry eye cohort. Translational Relevance Both the repeatability of the testing device and the use of multiple outcome measures are essential for the diagnosis and monitoring of patients with dry eye disease (DED).
Collapse
Affiliation(s)
- Cameron D Ward
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline E Murchison
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Matthew Petroll
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
81
|
Miller BM, Liou MJ, Zhang LF, Nguyen H, Litvak Y, Schorr EM, Jang KK, Tiffany CR, Butler BP, Bäumler AJ. Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface. Cell Host Microbe 2021; 28:789-797.e5. [PMID: 33301718 DOI: 10.1016/j.chom.2020.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
The colonic microbiota exhibits cross-sectional heterogeneity, but the mechanisms that govern its spatial organization remain incompletely understood. Here we used Citrobacter rodentium, a pathogen that colonizes the colonic surface, to identify microbial traits that license growth and survival in this spatial niche. Previous work showed that during colonic crypt hyperplasia, type III secretion system (T3SS)-mediated intimate epithelial attachment provides C. rodentium with oxygen for aerobic respiration. However, we find that prior to the development of colonic crypt hyperplasia, T3SS-mediated intimate attachment is not required for aerobic respiration but for hydrogen peroxide (H2O2) respiration using cytochrome c peroxidase (Ccp). The epithelial NADPH oxidase NOX1 is the primary source of luminal H2O2 early after C. rodentium infection and is required for Ccp-dependent growth. Our results suggest that NOX1-derived H2O2 is a resource that governs bacterial growth and survival in close proximity to the mucosal surface during gut homeostasis.
Collapse
Affiliation(s)
- Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Yael Litvak
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 9190401, Israel
| | - Eva-Magdalena Schorr
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kyung Ku Jang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Present address: Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
82
|
Wang B, Ye X, Zhou Y, Zhao P, Mao Y. Glycyrrhizin Attenuates Salmonella Typhimurium-Induced Tissue Injury, Inflammatory Response, and Intestinal Dysbiosis in C57BL/6 Mice. Front Vet Sci 2021; 8:648698. [PMID: 34239908 PMCID: PMC8258384 DOI: 10.3389/fvets.2021.648698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonellae are one of the most important foodborne pathogens, which threaten the health of humans and animals severely. Glycyrrhizin (GL) has been proven to exhibit anti-inflammatory and tissue-protective properties. Here, we investigated the effects of GL on tissue injury, inflammatory response, and intestinal dysbiosis in Salmonella Typhimurium-infected mice. Results showed that GL or gentamicin (GM) significantly (P < 0.05) alleviated ST-induced splenomegaly indicated by the decreased spleen index, injury of liver and jejunum indicated by the decreased hepatocytic apoptosis, and the increased jejunal villous height. GL significantly (P < 0.05) increased secretion of inflammatory cytokines (IFN-γ, IL-12p70, IL-6, and IL-10) in spleen and IL-12p40 mRNA expression in liver. Meanwhile, GL or GM pre-infection treatments significantly (P < 0.05) decreased ST-induced pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-6) expression in both spleen and liver and increased (P < 0.05) anti-inflammatory cytokine IL-10 secretion in spleen. Furthermore, GL or GM pre-infection treatment also regulates the diversities and compositions of intestinal microbiota and decreased the negative connection among the intestinal microbes in ST-infected mice. The above findings indicate that GL alleviates ST-induced splenomegaly, hepatocytic apoptosis, injury of jejunum and liver, inflammatory response of liver and spleen, and intestinal dysbacteriosis in mice.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaolin Ye
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Mao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
83
|
Schubert C, Winter M, Ebert‐Jung A, Kierszniowska S, Nagel‐Wolfrum K, Schramm T, Link H, Winter S, Unden G. C4
‐dicarboxylates and
l
‐aspartate utilization by
Escherichia coli
K‐12 in the mouse intestine:
l
‐aspartate as a major substrate for fumarate respiration and as a nitrogen source. Environ Microbiol 2021; 23:2564-2577. [DOI: 10.1111/1462-2920.15478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Maria Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Andrea Ebert‐Jung
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | | | - Kerstin Nagel‐Wolfrum
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Thorben Schramm
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Sebastian Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Gottfried Unden
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| |
Collapse
|
84
|
Baumgartner M, Pfrunder-Cardozo KR, Hall AR. Microbial community composition interacts with local abiotic conditions to drive colonization resistance in human gut microbiome samples. Proc Biol Sci 2021; 288:20203106. [PMID: 33757361 PMCID: PMC8059542 DOI: 10.1098/rspb.2020.3106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biological invasions can alter ecosystem stability and function, and predicting what happens when a new species or strain arrives remains a major challenge in ecology. In the mammalian gastrointestinal tract, susceptibility of the resident microbial community to invasion by pathogens has important implications for host health. However, at the community level, it is unclear whether susceptibility to invasion depends mostly on resident community composition (which microbes are present), or also on local abiotic conditions (such as nutrient status). Here, we used a gut microcosm system to disentangle some of the drivers of susceptibility to invasion in microbial communities sampled from humans. We found resident microbial communities inhibited an invading Escherichia coli strain, compared to community-free control treatments, sometimes excluding the invader completely (colonization resistance). These effects were stronger at later time points, when we also detected altered community composition and nutrient availability. By separating these two components (microbial community and abiotic environment), we found taxonomic composition played a crucial role in suppressing invasion, but this depended critically on local abiotic conditions (adapted communities were more suppressive in nutrient-depleted conditions). This helps predict when resident communities will be most susceptible to invasion, with implications for optimizing treatments based on microbiota management.
Collapse
Affiliation(s)
- Michael Baumgartner
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Katia R Pfrunder-Cardozo
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
85
|
Whon TW, Kim HS, Shin NR, Sung H, Kim MS, Kim JY, Kang W, Kim PS, Hyun DW, Seong HJ, Sul WJ, Roh SW, Bae JW. Calf Diarrhea Caused by Prolonged Expansion of Autochthonous Gut Enterobacteriaceae and Their Lytic Bacteriophages. mSystems 2021; 6:e00816-20. [PMID: 33653940 PMCID: PMC8546982 DOI: 10.1128/msystems.00816-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
Neonatal calf diarrhea is a common disease leading to a major economic loss for cattle producers worldwide. Several infectious and noninfectious factors are implicated in calf diarrhea, but disease control remains problematic because of the multifactorial etiology of the disease. Here, we conducted diagnostic multiplex PCR assay and meta-omics analysis (16S rRNA gene-based metataxonomics and untargeted transcriptional profiling) of rectal content of normal and diarrheic beef calves (n = 111). In the diarrheic calf gut, we detected both microbial compositional dysbiosis (i.e., increased abundances of the family Enterobacteriaceae members and their lytic bacteriophages) and functional dysbiosis (i.e., elevated levels of aerobic respiration and virulence potential). The calf diarrheic transcriptome mirrored the gene expression of the bovine host and was enriched in cellular pathways of sulfur metabolism, innate immunity, and gut motility. We then isolated 12 nontoxigenic Enterobacteriaceae strains from the gut of diarrheic calves. Feeding a strain mixture to preweaning mice resulted in a significantly higher level of fecal moisture content, with decreased body weight gain and shortened colon length. The presented findings suggest that gut inflammation followed by a prolonged expansion of nontoxigenic autochthonous Enterobacteriaceae contributes to the onset of diarrhea in preweaning animals.IMPORTANCE Calf diarrhea is the leading cause of death of neonatal calves worldwide. Several infectious and noninfectious factors are implicated in calf diarrhea, but disease control remains problematic because of the multifactorial etiology of the disease. The major finding of the current study centers around the observation of microbial compositional and functional dysbiosis in rectal samples from diarrheic calves. These results highlight the notion that gut inflammation followed by a prolonged expansion of autochthonous Enterobacteriaceae contributes to the onset of calf diarrhea. Moreover, this condition possibly potentiates the risk of invasion of notorious enteric pathogens, including Salmonella spp., and the emergence of inflammation-resistant (or antibiotic-resistant) microbiota via active horizontal gene transfer mediated by lytic bacteriophages.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Joon Yong Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Woorim Kang
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
86
|
Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun 2021; 12:755. [PMID: 33531483 PMCID: PMC7854624 DOI: 10.1038/s41467-020-20793-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1-/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.
Collapse
|
87
|
Abstract
The etiology of polycystic ovary syndrome (PCOS) remains unclear, although studies indicate that both genetic and environmental factors contribute to the syndrome. In 2012, Tremellen and Pearce proposed the idea that dysbiosis of the intestinal (gut) microbiome is a causative factor of metabolic and reproductive manifestations of PCOS. In the past 5 years, studies in both humans and rodent models have demonstrated that changes in the taxonomic composition of gut bacteria are associated with PCOS. Studies have also clearly shown that these changes in gut microbiota are associated with PCOS as opposed to obesity, since these changes are observed in women with PCOS that are both of a normal weight or obese, as well as in adolescent girls with PCOS and obesity compared with body mass index- and age-matched females without the disorder. Additionally, studies in both women with PCOS and rodent models of PCOS demonstrated that hyperandrogenism is associated with gut microbial dysbiosis, indicating that androgens may modulate the gut microbial community in females. One study reported that the fecal microbiome transplantation of stool from women with PCOS or exposure to certain bacteria resulted in a PCOS-like phenotype in mice, while other studies showed that exposure to a healthy gut microbiome, pre/probiotics, or specific gut metabolites resulted in protection from developing PCOS-like traits in mice. Altogether, these results suggest that dysbiosis of the gut microbiome may be sufficient to develop PCOS-like symptoms and that modulation of the gut microbiome may be a potential therapeutic target for PCOS.
Collapse
Affiliation(s)
- Maryan G Rizk
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, California, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, California, USA
| |
Collapse
|
88
|
Affiliation(s)
- Jason P Lynch
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
89
|
The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J Clin Med 2021; 10:jcm10030459. [PMID: 33504109 PMCID: PMC7865818 DOI: 10.3390/jcm10030459] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.
Collapse
|
90
|
Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat Commun 2021; 12:462. [PMID: 33469019 PMCID: PMC7815924 DOI: 10.1038/s41467-020-20746-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile is a bacterial pathogen that causes a range of clinical disease from mild to moderate diarrhea, pseudomembranous colitis, and toxic megacolon. Typically, C. difficile infections (CDIs) occur after antibiotic treatment, which alters the gut microbiota, decreasing colonization resistance against C. difficile. Disease is mediated by two large toxins and the expression of their genes is induced upon nutrient depletion via the alternative sigma factor TcdR. Here, we use tcdR mutants in two strains of C. difficile and omics to investigate how toxin-induced inflammation alters C. difficile metabolism, tissue gene expression and the gut microbiota, and to determine how inflammation by the host may be beneficial to C. difficile. We show that C. difficile metabolism is significantly different in the face of inflammation, with changes in many carbohydrate and amino acid uptake and utilization pathways. Host gene expression signatures suggest that degradation of collagen and other components of the extracellular matrix by matrix metalloproteinases is a major source of peptides and amino acids that supports C. difficile growth in vivo. Lastly, the inflammation induced by C. difficile toxin activity alters the gut microbiota, excluding members from the genus Bacteroides that are able to utilize the same essential nutrients released from collagen degradation. The effects of antibiotics on the gut microbiota can lead to enhanced colonization of Clostridioides difficile (C. difficile) and toxin-mediated pathogenesis. Here, using defined toxin-mutant strains and a murine model, the authors provide insights into how toxin-induced inflammation alters C. difficile metabolism, host tissue gene expression and gut microbiota, together influencing a beneficial niche for infection.
Collapse
|
91
|
Hofmann JD, Biedendieck R, Michel AM, Schomburg D, Jahn D, Neumann-Schaal M. Influence of L-lactate and low glucose concentrations on the metabolism and the toxin formation of Clostridioides difficile. PLoS One 2021; 16:e0244988. [PMID: 33411772 PMCID: PMC7790285 DOI: 10.1371/journal.pone.0244988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.
Collapse
Affiliation(s)
- Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
92
|
Hopkins EGD, Frankel G. Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota. Methods Mol Biol 2021; 2291:399-418. [PMID: 33704766 DOI: 10.1007/978-1-0716-1339-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Citrobacter rodentium is a natural enteric mouse pathogen that models human intestinal diseases, such as pathogenic E. coli infections, ulcerative colitis, and colon cancer. Upon reaching the monolayer of intestinal epithelial cells (IECs) lining the gut, a complex web of interactions between the host, the pathogen, and the microbiota ensues. A number of studies revealed surprisingly rapid changes in IEC bioenergetics upon infection, involving a switch from oxidative phosphorylation to aerobic glycolysis, leading to mucosal oxygenation and subsequent changes in microbiota composition. Microbiome studies have revealed a bloom in Enterobacteriaceae during C. rodentium infection in both resistant (i.e., C57BL/6) and susceptible (i.e., C3H/HeN) strains of mice concomitant with a depletion of butyrate-producing Clostridia. The emerging understanding that dysbiosis of cholesterol metabolism is induced by enteric infection further confirms the pivotal role immunometabolism plays in disease outcome. Inversely, the host and microbiota also impact upon the progression of infection, from the susceptibility of the distal colon to C. rodentium colonization to clearance of the pathogen, both via opsonization from the host adaptive immune system and out competition by the resident microbiota. Further complicating this compendium of interactions, C. rodentium exploits microbiota metabolites to fine-tune virulence gene expression and promote colonization. This chapter summarizes the current knowledge of the myriad of pathogen-host-microbiota interactions that occur during the progression of C. rodentium infection in mice and the broader implications of these findings on our understanding of enteric disease.
Collapse
Affiliation(s)
- Eve G D Hopkins
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
93
|
The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021; 14:296-304. [PMID: 33500564 PMCID: PMC7835650 DOI: 10.1038/s41385-020-00361-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Bacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host's defense against viral respiratory infections. The gut microbiota's composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota's composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung-gut axis in coronavirus disease 2019.
Collapse
|
94
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
95
|
Antonson AM, Evans MV, Galley JD, Chen HJ, Rajasekera TA, Lammers SM, Hale VL, Bailey MT, Gur TL. Unique maternal immune and functional microbial profiles during prenatal stress. Sci Rep 2020; 10:20288. [PMID: 33219314 PMCID: PMC7679384 DOI: 10.1038/s41598-020-77265-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal stress during pregnancy is widespread and is associated with poor offspring outcomes, including long-term mental health issues. Prenatal stress-induced fetal neuroinflammation is thought to underlie aberrant neurodevelopment and to derive from a disruption in intrauterine immune homeostasis, though the exact origins are incompletely defined. We aimed to identify divergent immune and microbial metagenome profiles of stressed gestating mice that may trigger detrimental inflammatory signaling at the maternal-fetal interface. In response to stress, maternal glucocorticoid circuit activation corresponded with indicators of systemic immunosuppression. At the maternal-fetal interface, density of placental mononuclear leukocytes decreased with stress, yet maternal whole blood leukocyte analysis indicated monocytosis and classical M1 phenotypic shifts. Genome-resolved microbial metagenomic analyses revealed reductions in genes, microbial strains, and metabolic pathways in stressed dams that are primarily associated with pro-inflammatory function. In particular, disrupted Parasutterella excrementihominis appears to be integral to inflammatory and metabolic dysregulation during prenatal stress. Overall, these perturbations in maternal immunological and microbial regulation during pregnancy may displace immune equilibrium at the maternal-fetal interface. Notably, the absence of and reduction in overt maternal inflammation during stress indicates that the signaling patterns driving fetal outcomes in this context are more nuanced and complex than originally anticipated.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Morgan V Evans
- Environmental Health Sciences Division, College of Public Health, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Helen J Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Therese A Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Environmental Health Sciences Division, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sydney M Lammers
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Barnes Medical Student Research Scholarship Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Vanessa L Hale
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Medical Scientist Training Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 120A Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
96
|
Abstract
There are 100 trillion diverse bacterial residents in the mammalian gut. Commensal bacterial species/strains cooperate and compete with each other to establish a well-balanced community, crucial for the maintenance of host health. Pathogenic bacteria hijack cooperative mechanisms or use strategies to evade competitive mechanisms to establish infection. Moreover, pathogenic bacteria cause marked environmental changes in the gut, such as the induction of inflammation, which fosters the selective growth of pathogens. In this review, we summarize the latest findings concerning the mechanisms by which commensal bacterial species/strains colonize the gut through cooperative or competitive behaviors. We also review the mechanisms by which pathogenic bacteria adapt to the inflamed gut and thrive at the expense of commensal bacteria. The understanding of bacterial adaptation to the healthy and the inflamed gut may provide new bacteria-targeted therapeutic approaches that selectively promote the expansion of beneficial commensal bacteria or limit the growth of pathogenic bacteria.
Collapse
Affiliation(s)
- Yijie Guo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,CONTACT Nobuhiko Kamada Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
97
|
Gut Microbiota and Immune System Interactions. Microorganisms 2020; 8:microorganisms8101587. [PMID: 33076307 PMCID: PMC7602490 DOI: 10.3390/microorganisms8101587] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic interactions between gut microbiota and a host’s innate and adaptive immune systems play key roles in maintaining intestinal homeostasis and inhibiting inflammation. The gut microbiota metabolizes proteins and complex carbohydrates, synthesize vitamins, and produce an enormous number of metabolic products that can mediate cross-talk between gut epithelial and immune cells. As a defense mechanism, gut epithelial cells produce a mucosal barrier to segregate microbiota from host immune cells and reduce intestinal permeability. An impaired interaction between gut microbiota and the mucosal immune system can lead to an increased abundance of potentially pathogenic gram-negative bacteria and their associated metabolic changes, disrupting the epithelial barrier and increasing susceptibility to infections. Gut dysbiosis, or negative alterations in gut microbial composition, can also dysregulate immune responses, causing inflammation, oxidative stress, and insulin resistance. Over time, chronic dysbiosis and the translocation of bacteria and their metabolic products across the mucosal barrier may increase prevalence of type 2 diabetes, cardiovascular disease, inflammatory bowel disease, autoimmune disease, and a variety of cancers. In this paper, we highlight the pivotal role gut microbiota and their metabolites (short-chain fatty acids (SCFAs)) play in mucosal immunity.
Collapse
|
98
|
Chanin RB, Winter MG, Spiga L, Hughes ER, Zhu W, Taylor SJ, Arenales A, Gillis CC, Büttner L, Jimenez AG, Smoot MP, Santos RL, Winter SE. Epithelial-Derived Reactive Oxygen Species Enable AppBCX-Mediated Aerobic Respiration of Escherichia coli during Intestinal Inflammation. Cell Host Microbe 2020; 28:780-788.e5. [PMID: 33053375 DOI: 10.1016/j.chom.2020.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium separates host tissue and gut-associated microbial communities. During inflammation, the host releases reactive oxygen and nitrogen species as an antimicrobial response. The impact of these radicals on gut microbes is incompletely understood. We discovered that the cryptic appBCX genes, predicted to encode a cytochrome bd-II oxidase, conferred a fitness advantage for E. coli in chemical and genetic models of non-infectious colitis. This fitness advantage was absent in mice that lacked epithelial NADPH oxidase 1 (NOX1) activity. In laboratory growth experiments, supplementation with exogenous hydrogen peroxide enhanced E. coli growth through AppBCX-mediated respiration in a catalase-dependent manner. We conclude that epithelial-derived reactive oxygen species are degraded in the gut lumen, which gives rise to molecular oxygen that supports the aerobic respiration of E. coli. This work illustrates how epithelial host responses intersect with gut microbial metabolism in the context of gut inflammation.
Collapse
Affiliation(s)
- Rachael B Chanin
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Savannah J Taylor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandre Arenales
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270, Brazil
| | - Caroline C Gillis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Büttner
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Angel G Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Madeline P Smoot
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270, Brazil
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
99
|
Labarta-Bajo L, Gramalla-Schmitz A, Gerner RR, Kazane KR, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Raffatellu M, Zúñiga EI. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc Natl Acad Sci U S A 2020; 117:24998-25007. [PMID: 32958643 PMCID: PMC7547153 DOI: 10.1073/pnas.2003656117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Anna Gramalla-Schmitz
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Romana R Gerner
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
| | - Katelynn R Kazane
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Tara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA 92093
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-University of California San Diego, La Jolla, CA 92093
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093;
| |
Collapse
|
100
|
Dvorak Z, Klapholz M, Burris TP, Willing BP, Gioiello A, Pellicciari R, Galli F, March J, O'Keefe SJ, Sartor RB, Kim CH, Levy M, Mani S. Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Mol Pharmacol 2020; 98:343-349. [PMID: 32764096 PMCID: PMC7485585 DOI: 10.1124/molpharm.120.000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Max Klapholz
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas P Burris
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Benjamin P Willing
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Antimo Gioiello
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Roberto Pellicciari
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Francesco Galli
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - John March
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Stephen J O'Keefe
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - R Balfour Sartor
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Chang H Kim
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Maayan Levy
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|