51
|
Gaab ME, Lozano PO, Ibañez D, Manese KD, Riego FM, Tiongco RE, Albano PM. A Meta-Analysis on the Association of Colibactin-Producing pks+ Escherichia coli with the Development of Colorectal Cancer. Lab Med 2023; 54:75-82. [PMID: 35960765 DOI: 10.1093/labmed/lmac072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Previous studies on the association between pks+Escherichia coli and colorectal cancer (CRC) demonstrated conflicting results. Hence, we performed a meta-analysis to obtain more precise estimates. METHODS Related literature was obtained from PubMed, ScienceDirect, Google Scholar, and Cochrane Library. Data were then extracted, summarized, and subjected to analysis using Review Manager 5.4 by computing for the pooled odds ratios at the 95% confidence interval. RESULTS Overall analysis showed that individuals carrying pks+E coli had a greater risk of developing CRC. Subgroup analysis further showed that individuals from Western countries carrying pks+E coli and individuals with pks+E coli in their tissue samples had increased risk of developing CRC. CONCLUSION Results of this meta-analysis suggest that individuals with pks+E coli have a greater risk of developing CRC. However, more studies are needed to confirm our claims.
Collapse
Affiliation(s)
- Marcianne Elaine Gaab
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Prim Olivette Lozano
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Danica Ibañez
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Korina Diane Manese
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Fatima May Riego
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Raphael Enrique Tiongco
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Pia Marie Albano
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
52
|
Li X, Chen W, Gao J, Gao W, Zhang Y, Zeng H, Zheng B. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
53
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
54
|
Cheng L, Wu H, Chen Z, Hao H, Zheng X. Gut microbiome at the crossroad of genetic variants and behavior disorders. Gut Microbes 2023; 15:2201156. [PMID: 37089016 PMCID: PMC10128504 DOI: 10.1080/19490976.2023.2201156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Genetic variants are traditionally known to shape the susceptibility to neuropsychiatric disorders. An increasing number of studies indicate that remodeling of the gut microbiome by genetic variance serves as a versatile regulator of gut-brain crosstalk and behavior. Evidence also emerges that certain behavioral symptoms are specifically attributed to gut microbial remodeling and gut-to-brain signals, which necessitates rethinking of neuropsychiatric disease etiology and treatment from a systems perspective of reciprocal gene-microbe interactions. Here, we present an emerging picture of how gut microbes and host genetics interactively shape complex psychiatric phenotypes. We illustrate the growing understanding of how the gut microbiome is shaped by genetic changes and its connection to behavioral outcome. We also discuss working strategies and open questions in translating associative gene-microbiome-behavior findings into causal links and novel targets for neurobehavioral disorders. Dual targeting of the genetic and microbial factors may expand the space of drug discovery for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
55
|
Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASH. iScience 2022; 26:105905. [PMID: 36691622 PMCID: PMC9860397 DOI: 10.1016/j.isci.2022.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
Collapse
|
56
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
57
|
Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol 2022; 19:753-767. [PMID: 35906289 DOI: 10.1038/s41575-022-00658-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis, phenotypically comprising a spectrum of inflammatory bowel diseases (IBDs), spread globally during the westernization of lifestyle and dietary habits over the past few decades. Here, we review experimental and clinical evidence for the metabolic nature of gut inflammation in IBD and delineate distinct parallels to the inflammatory state in metabolic diseases. Experimental evidence indicates that excessive intake of specific macronutrients in a Western diet fuels an inflammatory response in the gut by exploiting sensors of innate immunity and perturbation of gut microbial metabolism. Genetic IBD risk partly affects metabolism and stress signalling of innate immunity, and immunometabolism controls susceptibility to gut inflammation. Epidemiological and clinical studies indicate that specific nutrients in the Western diet pose a risk for the development of IBD and a poor disease course. Translational studies in IBD indicate perturbation of energy metabolism in immune cells and perturbation of gut microbial metabolism, which can be shaped by diet. In turn, dietary restriction by exclusive enteral nutrition induces remission in patients with IBD. Collectively, these studies support a metabolic underpinning of gut inflammation in IBD as described for metabolic inflammation in obesity and related disorders.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
58
|
Astorga J, Gasaly N, Dubois-Camacho K, De la Fuente M, Landskron G, Faber KN, Urra FA, Hermoso MA. The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD. Front Immunol 2022; 13:1028953. [PMID: 36466902 PMCID: PMC9716353 DOI: 10.3389/fimmu.2022.1028953] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.
Collapse
Affiliation(s)
- Jessica Astorga
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Karen Dubois-Camacho
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Félix A. Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
59
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
60
|
Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, Gajniak P, Słowińska K, Niepolski L, Walkowiak J, Mądry E. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia—A Narrative Review. Nutrients 2022; 14:nu14173478. [PMID: 36079734 PMCID: PMC9458173 DOI: 10.3390/nu14173478] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events. Therefore, this review aimed to provide insight into the physiological mechanisms of iron management and investigate the state of knowledge of the relationship between iron supplementation, inflammatory status and changes in gut microbiota milieu in diseases typically complicated with IDA and considered as having an inflammatory background such as in inflammatory bowel disease, colorectal cancer or obesity. Understanding the precise mechanisms critical to iron metabolism and the awareness of serious adverse effects associated with iron supplementation may lead to the provision of better IDA treatment. Well-planned research, specific to each patient category and disease, is needed to find measures and methods to optimise iron treatment and reduce adverse effects.
Collapse
Affiliation(s)
- Ida J. Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Jakub Winkler-Galicki
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Nowicka
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Marta Błaszczyk
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paulina Gajniak
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Karolina Słowińska
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Niepolski
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| |
Collapse
|
61
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
62
|
Lee JE, Kim KS, Koh H, Lee DW, Kang NJ. Diet-Induced Host-Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Curr Dev Nutr 2022; 6:nzac110. [PMID: 36060223 PMCID: PMC9429970 DOI: 10.1093/cdn/nzac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease. Environmental sanitization, modern lifestyles, advanced medicines, ethnic origins, host genetics and immune systems, mucosal barrier function, and the gut microbiota have been delineated to explain how they cause mucosal inflammation. However, the pathogenesis of IBD and its therapeutic targets remain elusive. Recent studies have highlighted the importance of the human gut microbiota in health and disease, suggesting that the pathogenesis of IBD is highly associated with imbalances of the gut microbiota or alterations of epithelial barrier function in the gastrointestinal (GI) tract. Moreover, diet-induced alterations of the gut microbiota in the GI tract modulate immune responses and perturb metabolic homeostasis. This review summarizes recent findings on IBD and its association with diet-induced changes in the gut microbiota; furthermore, it discusses how diets can modulate host gut microbes and immune systems, potentiating the impact of personalized diets on therapeutic targets for IBD.
Collapse
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
63
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
64
|
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr 2022; 9:788775. [PMID: 35903457 PMCID: PMC9315388 DOI: 10.3389/fnut.2022.788775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the preventive effects of plant oils with different linoleic acid/alpha-linolenic acid (LA/ALA) ratios against colitis symptoms, and dysbiosis of gut microbiota in acute colitis mouse model.MethodsSixty male C57BL/6 mice were assigned into six groups (n = 10): three groups were fed low-fat diets with low, medium, and high LA/ALA ratios; and three groups were fed with high-fat diets with low, medium, and high LA/ALA ratios. After 3 months of diet, the mice were exposed to dextran sodium sulfate solution to induce acute colitis. The severity of colitis was estimated by disease activity index (DAI) and histopathological examination. 16S rRNA gene sequencing was used for the analysis of gut microbiota.ResultsPlant oils with a lower LA/ALA ratio showed higher alleviating effects on the symptoms of colitis, which were accompanied by the better prebiotic characteristics manifested as effectively inhibiting the abnormal expansion of phylum Proteobacteria and genus Escherichia-Shigella in the gut microbiota of colitis mouse models.ConclusionA potential IBD prevention strategy of reducing the LA/ALA ratio in the daily consumed plant oils was proposed in this study. Furthermore, based on the optimized LA/ALA ratio, this preventive effect might not be weakened by the high intake of plant oils.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Hao Yue
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Wan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Wei Fang Medical University, Weifang, China
| | - Shuxia Ji
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chong Geng,
| |
Collapse
|
65
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
66
|
Sinha A, Li Y, Mirzaei MK, Shamash M, Samadfam R, King IL, Maurice CF. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. MICROBIOME 2022; 10:105. [PMID: 35799219 PMCID: PMC9264660 DOI: 10.1186/s40168-022-01275-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) including Crohn's disease (CD) and ulcerative colitis (UC) are characterized by chronic and debilitating gut inflammation. Altered bacterial communities of the intestine are strongly associated with IBD initiation and progression. The gut virome, which is primarily composed of bacterial viruses (bacteriophages, phages), is thought to be an important factor regulating and shaping microbial communities in the gut. While alterations in the gut virome have been observed in IBD patients, the contribution of these viruses to alterations in the bacterial community and heightened inflammatory responses associated with IBD patients remains largely unknown. RESULTS Here, we performed in vivo microbial cross-infection experiments to follow the effects of fecal virus-like particles (VLPs) isolated from UC patients and healthy controls on bacterial diversity and severity of experimental colitis in human microbiota-associated (HMA) mice. Shotgun metagenomics confirmed that several phages were transferred to HMA mice, resulting in treatment-specific alterations in the gut virome. VLPs from healthy and UC patients also shifted gut bacterial diversity of these mice, an effect that was amplified during experimental colitis. VLPs isolated from UC patients specifically altered the relative abundance of several bacterial taxa previously implicated in IBD progression. Additionally, UC VLP administration heightened colitis severity in HMA mice, as indicated by shortened colon length and increased pro-inflammatory cytokine production. Importantly, this effect was dependent on intact VLPs. CONCLUSIONS Our findings build on recent literature indicating that phages are dynamic regulators of bacterial communities in the gut and implicate the intestinal virome in modulating intestinal inflammation and disease. Video Abstract.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Yue Li
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Mohammadali Khan Mirzaei
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Bavaria, Germany
| | - Michael Shamash
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Rana Samadfam
- Charles River Laboratories, 22022 Transcanadienne, Senneville, QC, H9X 3R3, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| |
Collapse
|
67
|
Abstract
Changes in the composition of the gut microbiota are associated with many human diseases. So far, however, we have failed to define homeostasis or dysbiosis by the presence or absence of specific microbial species. The composition and function of the adult gut microbiota is governed by diet and host factors that regulate and direct microbial growth. The host delivers oxygen and nitrate to the lumen of the small intestine, which selects for bacteria that use respiration for energy production. In the colon, by contrast, the host limits the availability of oxygen and nitrate, which results in a bacterial community that specializes in fermentation for growth. Although diet influences microbiota composition, a poor diet weakens host control mechanisms that regulate the microbiota. Hence, quantifying host parameters that control microbial growth could help define homeostasis or dysbiosis and could offer alternative strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
68
|
Krela-Kaźmierczak I, Zakerska-Banaszak O, Skrzypczak-Zielińska M, Łykowska-Szuber L, Szymczak-Tomczak A, Zawada A, Rychter AM, Ratajczak AE, Skoracka K, Skrzypczak D, Marcinkowska E, Słomski R, Dobrowolska A. Where Do We Stand in the Behavioral Pathogenesis of Inflammatory Bowel Disease? The Western Dietary Pattern and Microbiota-A Narrative Review. Nutrients 2022; 14:nu14122520. [PMID: 35745251 PMCID: PMC9230670 DOI: 10.3390/nu14122520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the increasing knowledge with regard to IBD (inflammatory bowel disease), including ulcerative colitis (UC) and Crohn’s disease (CD), the etiology of these conditions is still not fully understood. Apart from immunological, environmental and nutritional factors, which have already been well documented, it is worthwhile to look at the possible impact of genetic factors, as well as the composition of the microbiota in patients suffering from IBD. New technologies in biochemistry allow to obtain information that can add to the current state of knowledge in IBD etiology.
Collapse
Affiliation(s)
- Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | | | - Liliana Łykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Dorota Skrzypczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Emilia Marcinkowska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| |
Collapse
|
69
|
Liou MJ, Miller BM, Litvak Y, Nguyen H, Natwick DE, Savage HP, Rixon JA, Mahan SP, Hiyoshi H, Rogers AWL, Velazquez EM, Butler BP, Collins SR, McSorley SJ, Harshey RM, Byndloss MX, Simon SI, Bäumler AJ. Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host Microbe 2022; 30:836-847.e6. [PMID: 35568027 PMCID: PMC9187619 DOI: 10.1016/j.chom.2022.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Changes in the microbiota composition are associated with many human diseases, but factors that govern strain abundance remain poorly defined. We show that a commensal Escherichia coli strain and a pathogenic Salmonella enterica serovar Typhimurium isolate both utilize nitrate for intestinal growth, but each accesses this resource in a distinct biogeographical niche. Commensal E. coli utilizes epithelial-derived nitrate, whereas nitrate in the niche occupied by S. Typhimurium is derived from phagocytic infiltrates. Surprisingly, avirulent S. Typhimurium was shown to be unable to utilize epithelial-derived nitrate because its chemotaxis receptors McpB and McpC exclude the pathogen from the niche occupied by E. coli. In contrast, E. coli invades the niche constructed by S. Typhimurium virulence factors and confers colonization resistance by competing for nitrate. Thus, nutrient niches are not defined solely by critical resources, but they can be further subdivided biogeographically within the host into distinct microhabitats, thereby generating new niche opportunities for distinct bacterial species.
Collapse
Affiliation(s)
- Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 9190401, Israel
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Dean E Natwick
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hannah P Savage
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jordan A Rixon
- Center for Immunology and Infectious Diseases and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hirotaka Hiyoshi
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Immunology and Infectious Diseases and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mariana X Byndloss
- Vanderbilt Institute for Infection, Immunology and Inflammation and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Scott I Simon
- Department of Biomedical Engineering, College of Engineering and Department of Dermatology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
70
|
Yu Y, Cai Y, Yang B, Xie S, Shen W, Wu Y, Sui Z, Cai J, Ni C, Ye J. High-Fat Diet Enhances the Liver Metastasis Potential of Colorectal Cancer through Microbiota Dysbiosis. Cancers (Basel) 2022; 14:cancers14112573. [PMID: 35681554 PMCID: PMC9179364 DOI: 10.3390/cancers14112573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High-fat diet (HFD) is hypothesized to induce gut dysbiosis and promote colorectal cancer (CRC). However, the specific mechanisms involved require investigation. In this study, we established an animal model and utilized 16S sequencing to determine the effects of HFD on gut microbiota, as well as on the colon and liver. Furthermore, due to the abundance of Desulfovibrio (DSV) in the faecal samples of HFD-fed rats and CRC hepatic metastasis patients, we also conducted a DSV gavage animal experiment to determine the role of DSV in CRC development. Our study confirmed that HFD could cause microbiota dysbiosis, especially DSV enrichment, and may promote CRC initiation and metastasis. Abstract Obesity, metabolic changes, and intestinal microbiota disruption significantly affect tumorigenesis and metastasis in colorectal cancer (CRC). However, the relationships among these factors remain poorly understood. In this study, we found that a high-fat diet (HFD) promoted gut barrier dysfunction and inflammation in the colorectum and liver. We further investigated gut microbiota changes through 16S rRNA sequencing of faecal samples from HFD-fed rats and CRC hepatic metastasis patients and found an abundance of Desulfovibrio (DSV). DSV could also induce barrier dysfunction in the colorectum and inflammation in the colorectum and liver, suggesting that it contributes to the formation of a microenvironment conducive to CRC tumorigenesis and metastasis. These findings highlight that HFD-induced microbiota dysbiosis, especially DSV abundance, could promote CRC initiation and metastasis.
Collapse
Affiliation(s)
- Yina Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yangke Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Bin Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Siyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Wenjuan Shen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yaoyi Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Ziqi Sui
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou 310009, China;
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Chao Ni
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| |
Collapse
|
71
|
Olendzki B, Bucci V, Cawley C, Maserati R, McManus M, Olednzki E, Madziar C, Chiang D, Ward DV, Pellish R, Foley C, Bhattarai S, McCormick BA, Maldonado-Contreras A. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14:2046244. [PMID: 35311458 PMCID: PMC8942410 DOI: 10.1080/19490976.2022.2046244] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
Collapse
Affiliation(s)
- Barbara Olendzki
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rene Maserati
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Margaret McManus
- Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Effie Olednzki
- Center for Applied Nutrition, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Camilla Madziar
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David Chiang
- Department of Medicine,University of Massachusetts Medical SchoolWorcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall Pellish
- UMass Memorial Medical Center University Campus, Department of Gastroenterology
| | - Christine Foley
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics, 368 Plantation Street, Albert Sherman Center, Office AS.81045, Worcester, Massachusetts, 01605, Worcester, Massachusetts, USA
| |
Collapse
|
72
|
Yang J, Germano PM, Oh S, Wang S, Wang J, Lee R, Paige H, Yang S, Henning SM, Zhong J, Jacobs JP, Li Z. Pomegranate Extract Improves Colitis in IL-10 Knockout Mice Fed a High Fat High Sucrose Diet. Mol Nutr Food Res 2022; 66:e2100730. [PMID: 34932869 DOI: 10.1002/mnfr.202100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Indexed: 11/10/2022]
Abstract
SCOPE The study tests the hypothesis that dietary pomegranate extract (PomX) supplementation attenuates colitis in a Western diet feed IL-10 deficient (IL-10-/-) murine model. METHODS AND RESULTS Four-week-old male IL-10-/- mice are randomly assigned to a high fat high sucrose (HFHS) diet or a HFHS diet supplement with 0.25% PomX for 8 weeks. PomX supplementation lead to significantly lower histological score for colitis (2.6 ± 0.5 vs 3.9 ± 1.0), lower spleen weight (0.11 ± 0.01 vs 0.15 ± 0.02), and lower circulating Interleukin 6(IL-6) levels (15.8±2.2 vs 29.5±5.5) compared with HFHS fed controls. RNAseq analysis of colonic tissues showed 483 downregulated and 263 upregulated genes with PomX supplementation, which are mainly associated with inflammatory responses, defenses, and neutrophil degranulation. In addition, PomX treatment affects the cecal microbiome with increased alpha diversity, altered microbial composition, and increased levels of the tryptophan-related microbial metabolite indole propionate. CONCLUSION The data demonstrate that dietary PomX supplementation ameliorated colitis and lowered inflammatory markers in HFHS fed IL-10-/- mice. These data support the anti-inflammatory effects of dietary PomX supplementation for IBD and a potential mediating role of gut microbiome, suggesting the need for future clinical studies to explore the use of PomX dietary supplementation in IBD patients.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Patrizia Maria Germano
- Department of Medicine at the David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Research Service Department, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90095, USA
| | - Suwan Oh
- Research Service Department, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90095, USA
| | - Sijia Wang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jing Wang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hayden Paige
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Scarlet Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jin Zhong
- Department of Pathology and Laboratory Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90095, USA
| | - Jonathan P Jacobs
- Department of Medicine at the David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Medicine at the David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90095, USA
| |
Collapse
|
73
|
Eng C, Jácome AA, Agarwal R, Hayat MH, Byndloss MX, Holowatyj AN, Bailey C, Lieu CH. A comprehensive framework for early-onset colorectal cancer research. Lancet Oncol 2022; 23:e116-e128. [PMID: 35090673 DOI: 10.1016/s1470-2045(21)00588-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Sporadic colorectal cancer has traditionally been viewed as a malignancy of older individuals. However, as the global prevalence of the disease diagnosed in younger individuals (<50 years) is expected to increase within the next decade, greater recognition is now being given to early-onset colorectal cancer. The cause of the predicted rise in prevalence is largely unknown and probably multifactorial. In this Series paper, we discuss the potential underlying causes of early-onset colorectal cancer, the role of energy balance, biological and genomic mechanisms (including microbiome aspects), and the treatment of early-onset colorectal cancer. We have specifically considered the psychosocial challenges of being diagnosed with colorectal cancer at younger age and the potential financial toxicity that might ensue. This Series paper brings a comprehensive review based on the existing data in the hopes of optimising the overall outcomes for patients with early-onset colorectal cancer.
Collapse
|
74
|
Rath E, Haller D. Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury. Mucosal Immunol 2022; 15:595-604. [PMID: 35534699 PMCID: PMC9259489 DOI: 10.1038/s41385-022-00514-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
The intestinal epithelium represents the most regenerative tissue in the human body, located in proximity to the dense and functionally diverse microbial milieu of the microbiome. Episodes of tissue injury and incomplete healing of the intestinal epithelium are a prerequisite for immune reactivation and account for recurrent, chronically progressing phenotypes of inflammatory bowel diseases (IBD). Mitochondrial dysfunction and associated changes in intestinal epithelial functions are emerging concepts in the pathogenesis of IBD, suggesting impaired metabolic flexibility of epithelial cells affects the regenerative capacity of the intestinal tissue. Next to rendering the intestinal mucosa susceptible to inflammatory triggers, metabolic reprogramming of the epithelium is implicated in shaping adverse microbial environments. In this review, we introduce the concept of "metabolic injury" as a cell autonomous mechanism of tissue wounding in response to mitochondrial perturbation. Furthermore, we highlight epithelial metabolism as intersection of microbiome, immune cells and epithelial regeneration.
Collapse
Affiliation(s)
- Eva Rath
- grid.6936.a0000000123222966Technical University of Munich, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany
| | - Dirk Haller
- grid.6936.a0000000123222966Technical University of Munich, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany ,grid.6936.a0000000123222966Technical University of Munich, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany
| |
Collapse
|
75
|
Ren Z, Peng L, Chen S, Pu Y, Lv H, Wei H, Wan C. Lactiplantibacillus plantarum 1201 Inhibits Intestinal Infection of Salmonella enterica subsp. enterica Serovar Typhimurium Strain ATCC 13311 in Mice with High-Fat Diet. Foods 2021; 11:85. [PMID: 35010211 PMCID: PMC8750823 DOI: 10.3390/foods11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Salmonella Typhimurium is widely distributed in food. It can colonise the gastrointestinal tract after ingestion, causing lamina propria edema, inflammatory cell infiltration, and mucosal epithelial decomposition. A high-fat diet (HFD) can induce an inflammatory response, but whether HFD can increase the infection level of S. Typhimurium is unknown. We established a model of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 ATCC 13311 infection in healthy adult mice with a maintenance diet (MD) or HFD to explore the effect of Lactiplantibacillus plantarum 1201 intervention on S. Typhimurium ATCC 13311 colonization and its protective effects on mice. HFD exacerbated the infection of S. Typhimurium ATCC 13311, while the intervention of L. plantarum 1201 effectively mitigated this process. L. plantarum 1201 can reduce the colonies of S. ATCC 13311 in the intestines and tissues; and reduce intestinal inflammation by down-regulating the level of TLR4/NF-κB pathway related proteins in serum and the expression of related inflammatory factors in the colon and jejunum. Since L. plantarum 1201 can inhibit the colonization of S. Typhimurium ATCC 13311 and relieve inflammation in HFD, current research may support the use of L. plantarum 1201 to prevent S. Typhimurium infection.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Pu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
76
|
Eindor-Abarbanel A, Healey GR, Jacobson K. Therapeutic Advances in Gut Microbiome Modulation in Patients with Inflammatory Bowel Disease from Pediatrics to Adulthood. Int J Mol Sci 2021; 22:ijms222212506. [PMID: 34830388 PMCID: PMC8622771 DOI: 10.3390/ijms222212506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is mounting evidence that the gut microbiota plays an important role in the pathogenesis of inflammatory bowel disease (IBD). For the past decade, high throughput sequencing-based gut microbiome research has identified characteristic shifts in the composition of the intestinal microbiota in patients with IBD, suggesting that IBD results from alterations in the interactions between intestinal microbes and the host’s mucosal immune system. These studies have been the impetus for the development of new therapeutic approaches targeting the gut microbiome, such as nutritional therapies, probiotics, fecal microbiota transplant and beneficial metabolic derivatives. Innovative technologies can further our understanding of the role the microbiome plays as well as help to evaluate how the different approaches in microbiome modulation impact clinical responses in adult and pediatric patients. In this review, we highlight important microbiome studies in patients with IBD and their response to different microbiome modulation therapies, and describe the differences in therapeutic response between pediatric and adult patient cohorts.
Collapse
Affiliation(s)
- Adi Eindor-Abarbanel
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Yitzhak Shamir Medical Center, Affiliated to Tel Aviv University, Beer-Yaakov 7033001, Israel
| | - Genelle R. Healey
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kevan Jacobson
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
77
|
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, Rock KD, Howard CD, Morrison KE, Ravel J, Bale TL. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun 2021; 12:6289. [PMID: 34725359 PMCID: PMC8560944 DOI: 10.1038/s41467-021-26634-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Newborns are colonized by maternal microbiota that is essential for offspring health and development. The composition of these pioneer communities exhibits individual differences, but the importance of this early-life heterogeneity to health outcomes is not understood. Here we validate a human microbiota-associated model in which fetal mice are cesarean delivered and gavaged with defined human vaginal microbial communities. This model replicates the inoculation that occurs during vaginal birth and reveals lasting effects on offspring metabolism, immunity, and the brain in a community-specific manner. This microbial effect is amplified by prior gestation in a maternal obesogenic or vaginal dysbiotic environment where placental and fetal ileum development are altered, and an augmented immune response increases rates of offspring mortality. Collectively, we describe a translationally relevant model to examine the defined role of specific human microbial communities on offspring health outcomes, and demonstrate that the prenatal environment dramatically shapes the postnatal response to inoculation.
Collapse
Affiliation(s)
- Eldin Jašarević
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth M Hill
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick J Kane
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay Rutt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Trevonn Gyles
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher D Howard
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
78
|
Wen S, He L, Zhong Z, Zhao R, Weng S, Mi H, Liu F. Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis. Front Immunol 2021; 12:741934. [PMID: 34691046 PMCID: PMC8526899 DOI: 10.3389/fimmu.2021.741934] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with gut microbiota disequilibrium and regulatory T (Treg)/T helper 17 (Th17) immune imbalance. Stigmasterol, a plant-derived sterol, has shown anti-inflammatory effects. Our study aimed to identify the effects of stigmasterol on experimental colitis and the related mechanisms. Stigmasterol treatment restored the Treg/Th17 balance and altered the gut microbiota in a dextran sodium sulfate (DSS)-induced colitis model. Transplantation of the faecal microbiota of stigmasterol-treated mice significantly alleviated inflammation. Additionally, stigmasterol treatment enhanced the production of gut microbiota-derived short-chain fatty acids (SCFAs), particularly butyrate. Next, human naïve CD4+ T cells sorted from IBD patients were cultured under Treg- or Th17-polarizing conditions; butyrate supplementation increased the differentiation of Tregs and decreased Th17 cell differentiation. Mechanistically, butyrate activated peroxisome proliferator-activated receptor gamma (PPARγ) and reprogrammed energy metabolism, thereby promoting Treg differentiation and inhibiting Th17 differentiation. Our results demonstrate that butyrate-mediated PPARγ activation restores the balance of Treg/Th17 cells, and this may be a possible mechanism, by which stigmasterol attenuates IBD.
Collapse
Affiliation(s)
- Shuting Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Long He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuotai Zhong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyuan Zhao
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Senhui Weng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
79
|
A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021; 13:nu13113736. [PMID: 34835992 PMCID: PMC8622458 DOI: 10.3390/nu13113736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the microbiome plays an important role in instigating inflammation in ulcerative colitis (UC), strategies targeting the microbiome may offer an alternative therapeutic approach. The goal of the pilot trial was to evaluate the potential efficacy and feasibility of a novel UC exclusion diet (UCED) for clinical remission, as well as the potential of sequential antibiotics for diet-refractory patients to achieve remission without steroids. METHODS This was a prospective, single-arm, multicenter, open-label pilot study in patients aged 8-19, with pediatric UC activity index (PUCAI) scores >10 on stable maintenance therapy. Patients failing to enter remission (PUCAI < 10) on the diet could receive a 14-day course of amoxycillin, metronidazole and doxycycline (AMD), and were re-assessed on day 21. The primary endpoint was intention-to-treat (ITT) remission at week 6, with UCED as the only intervention. RESULTS Twenty-four UCED treatment courses were given to 23 eligible children (mean age: 15.3 ± 2.9 years). The median PUCAI decreased from 35 (30-40) at baseline to 12.5 (5-30) at week 6 (p = 0.001). Clinical remission with UCED alone was achieved in 9/24 (37.5%). The median fecal calprotectin declined from 818 (630.0-1880.0) μg/g at baseline to 592.0 (140.7-1555.0) μg/g at week 6 (p > 0.05). Eight patients received treatment with antibiotics after failing on the diet; 4/8 (50.0%) subsequently entered remission 3 weeks later. CONCLUSION The UCED appears to be effective and feasible for the induction of remission in children with mild to moderate UC. The sequential use of UCED followed by antibiotic therapy needs to be evaluated as a microbiome-targeted, steroid-sparing strategy.
Collapse
|
80
|
Lau TC, Fiebig-Comyn AA, Shaler CR, McPhee JB, Coombes BK, Schertzer JD. Low dietary fiber promotes enteric expansion of a Crohn's disease-associated pathobiont independent of obesity. Am J Physiol Endocrinol Metab 2021; 321:E338-E350. [PMID: 34280051 DOI: 10.1152/ajpendo.00134.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity is associated with metabolic, immunological, and infectious disease comorbidities, including an increased risk of enteric infection and inflammatory bowel disease such as Crohn's disease (CD). Expansion of intestinal pathobionts such as adherent-invasive Escherichia coli (AIEC) is a common dysbiotic feature of CD, which is amplified by prior use of oral antibiotics. Although high-fat, high-sugar diets are associated with dysbiotic expansion of E. coli, it is unknown if the content of fat or another dietary component in obesogenic diets is sufficient to promote AIEC expansion. Here, we found that administration of an antibiotic combined with feeding mice an obesogenic low-fiber, high-sucrose, high-fat diet (HFD) that is typically used in rodent-obesity studies promoted AIEC intestinal expansion. Even a short-term (i.e., 1 day) pulse of HFD feeding before infection was sufficient to promote AIEC expansion, indicating that the magnitude of obesity was not the main driver of AIEC expansion. Controlled-diet experiments demonstrated that neither dietary fat nor sugar were the key determinants of AIEC colonization, but that lowering dietary fiber from approximately 13% to 5%-6% was sufficient to promote the intestinal expansion of AIEC when combined with antibiotics in mice. When combined with antibiotics, lowering fiber promoted AIEC intestinal expansion to a similar extent as widely used HFDs in mice. However, lowering dietary fiber was sufficient to promote AIEC intestinal expansion without affecting body mass. Our results show that low dietary fiber combined with oral antibiotics are environmental factors that promote the expansion of Crohn's disease-associated pathobionts in the gut.NEW & NOTEWORTHY It is commonly thought that obesity or a high-fat diet alters pathogenic bacteria and promotes inflammatory gut diseases. We found that lower dietary fiber is a key factor that expands a gut pathobiont linked to Crohn's disease, independent of obesity status in mice.
Collapse
Affiliation(s)
- Trevor C Lau
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Aline A Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Christopher R Shaler
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
81
|
The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Curr Opin Microbiol 2021; 63:221-230. [PMID: 34428628 DOI: 10.1016/j.mib.2021.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
A central goal of microbiome research is to understand the factors that balance gut-associated microbial communities, thereby creating longitudinal and cross-sectional heterogeneity in their composition and density. Whereas the diet dictates taxa dominance, microbial communities are linked intimately to host physiology through digestive and absorptive functions that generate longitudinal heterogeneity in nutrient availability. Additionally, the host differentially controls the access to electron acceptors along the longitudinal axis of the intestine to drive the development of microbial communities that are dominated by facultatively anaerobic bacteria in the small intestine or obligately anaerobic bacteria in the large intestine. By secreting mucus and antimicrobials, the host further constructs microhabitats that generate cross-sectional heterogeneity in the colonic microbiota composition. Here we will review how understanding the host factors involved in generating longitudinal and cross-sectional microbiota heterogeneity helps define physiological states that are characteristic of or appropriate to a homeostatic microbiome.
Collapse
|
82
|
Microbes exploit death-induced nutrient release by gut epithelial cells. Nature 2021; 596:262-267. [PMID: 34349263 DOI: 10.1038/s41586-021-03785-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.
Collapse
|
83
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
84
|
Foegeding NJ, Jones ZS, Byndloss MX. Western lifestyle as a driver of dysbiosis in colorectal cancer. Dis Model Mech 2021; 14:dmm049051. [PMID: 34060626 PMCID: PMC8214737 DOI: 10.1242/dmm.049051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Landmark discoveries in the gut microbiome field have paved the way for new research aimed at illuminating the influence of microbiota in colorectal cancer. A major challenge is to account for the effect of inherently variable environmental factors on the host and the gut microbiome, while concurrently determining their contribution to carcinogenesis. Here, we briefly discuss the role of the gut microbial community in colorectal cancer and elaborate on the recent insight that environmental factors related to a Western diet and lifestyle may drive the bloom of tumorigenic members of the gut microbiota. We also discuss how future research focused on untangling host-microbe interactions in the colon may influence medical insights that relate to the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Nora J. Foegeding
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Zachary S. Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
85
|
Penrose HM, Iftikhar R, Collins ME, Toraih E, Ruiz E, Ungerleider N, Nakhoul H, Flemington EF, Kandil E, Shah SB, Savkovic SD. Ulcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapy. Sci Rep 2021; 11:9010. [PMID: 33907256 PMCID: PMC8079702 DOI: 10.1038/s41598-021-88489-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their association with treatment outcomes. The global immune cell landscape of UC tissue included increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and cellular signaling. We identified a specific transcriptional signature of one hundred DEGs (UC100) that distinctly separated UC inflamed from uninflamed transcriptomes. Several UC100 DEGs, with unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders to both therapies of which four had significant predictive power to treatment outcome. We demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC signature across cohorts and a UC resistant signature with predictive performance to biologic therapy outcome.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Eman Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Shamita B Shah
- Division of Gastroenterology, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
86
|
Drug Discovery Inspired from Nuclear Receptor Sensing of Microbial Signals. Trends Mol Med 2021; 27:624-626. [PMID: 33865719 DOI: 10.1016/j.molmed.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Host-microbiota interactions are vital for diverse pathophysiological events and may be targeted for innovative therapeutics. Nuclear receptors (NRs) are versatile host sensors of microbial signals that coordinate diverse environmental cues with local and remote adaptions. Harnessing NR-mediated sensory machinery could provide an alternative lynchpin for gut microbiota-oriented drug discovery strategy.
Collapse
|
87
|
An J, Zhao X, Wang Y, Noriega J, Gewirtz AT, Zou J. Western-style diet impedes colonization and clearance of Citrobacter rodentium. PLoS Pathog 2021; 17:e1009497. [PMID: 33819308 PMCID: PMC8049485 DOI: 10.1371/journal.ppat.1009497] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/15/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD's reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.
Collapse
Affiliation(s)
- Junqing An
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Xu Zhao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanling Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (ATG); (JZ)
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (ATG); (JZ)
| |
Collapse
|
88
|
Lai KKY, Hu X, Chosa K, Nguyen C, Lin DP, Lai KK, Kato N, Higuchi Y, Highlander SK, Melendez E, Eriguchi Y, Fueger PT, Ouellette AJ, Chimge NO, Ono M, Kahn M. p300 Serine 89: A Critical Signaling Integrator and Its Effects on Intestinal Homeostasis and Repair. Cancers (Basel) 2021; 13:cancers13061288. [PMID: 33799418 PMCID: PMC7999107 DOI: 10.3390/cancers13061288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Given their high degree of identity and even greater similarity at the amino acid level, Kat3 coactivators, CBP (Kat3A) and p300 (Kat3B), have long been considered redundant. We describe the generation of novel p300 S89A knock-in mice carrying a single site directed amino acid mutation in p300, changing the highly evolutionarily conserved serine 89 to alanine, thus enhancing Wnt/CBP/catenin signaling (at the expense of Wnt/p300/catenin signaling). p300 S89A knock-in mice exhibit multiple organ system, immunologic and metabolic differences, compared with their wild type counterparts. In particular, these p300 S89A knock-in mice are highly sensitive to intestinal injury resulting in colitis which is known to significantly predispose to colorectal cancer. Our results highlight the critical role of this region in p300 as a signaling nexus and provide further evidence that p300 and CBP are non-redundant, playing definite and distinctive roles in development and disease. Abstract Differential usage of Kat3 coactivators, CBP and p300, by β-catenin is a fundamental regulatory mechanism in stem cell maintenance and initiation of differentiation and repair. Based upon our earlier pharmacologic studies, p300 serine 89 (S89) is critical for controlling differential coactivator usage by β-catenin via post-translational phosphorylation in stem/progenitor populations, and appears to be a target for a number of kinase cascades. To further investigate mechanisms of signal integration effected by this domain, we generated p300 S89A knock-in mice. We show that S89A mice are extremely sensitive to intestinal insult resulting in colitis, which is known to significantly increase the risk of developing colorectal cancer. We demonstrate cell intrinsic differences, and microbiome compositional differences and differential immune responses, in intestine of S89A versus wild type mice. Genomic and proteomic analyses reveal pathway differences, including lipid metabolism, oxidative stress response, mitochondrial function and oxidative phosphorylation. The diverse effects on fundamental processes including epithelial differentiation, metabolism, immune response and microbiome colonization, all brought about by a single amino acid modification S89A, highlights the critical role of this region in p300 as a signaling nexus and the rationale for conservation of this residue and surrounding region for hundreds of million years of vertebrate evolution.
Collapse
Affiliation(s)
- Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Xiaohui Hu
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - David P. Lin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Keith K. Lai
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan;
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Sarah K. Highlander
- Clinical Microbiome Service Center and Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ 86005, USA;
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Yoshihiro Eriguchi
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.E.); (A.J.O.)
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Andre J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.E.); (A.J.O.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (K.K.Y.L.); (X.H.); (K.C.); (C.N.); (D.P.L.); (Y.H.); (E.M.); (N.-O.C.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
89
|
Whon TW, Shin NR, Kim JY, Roh SW. Omics in gut microbiome analysis. J Microbiol 2021; 59:292-297. [DOI: 10.1007/s12275-021-1004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
|
90
|
Kurilenko N, Fatkhullina AR, Mazitova A, Koltsova EK. Act Locally, Act Globally-Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells 2021; 10:cells10020348. [PMID: 33562334 PMCID: PMC7915371 DOI: 10.3390/cells10020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.
Collapse
Affiliation(s)
- Natalia Kurilenko
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | | | - Aleksandra Mazitova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | - Ekaterina K. Koltsova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
- Correspondence:
| |
Collapse
|
91
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
92
|
Urbauer E, Rath E, Haller D. Mitochondrial Metabolism in the Intestinal Stem Cell Niche-Sensing and Signaling in Health and Disease. Front Cell Dev Biol 2021; 8:602814. [PMID: 33469536 PMCID: PMC7813778 DOI: 10.3389/fcell.2020.602814] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism. Thus, mitochondrial function emerges at the interface of determining health and disease, and failure to adapt mitochondrial function to environmental cues potentially results in aberrant tissue responses. A mechanistic understanding of the underlying role of mitochondrial fitness in intestinal pathologies is still in its infancy, and therapies targeting mitochondrial (dys)function are currently lacking. This review discusses mitochondrial signaling and metabolism in intestinal stem cells and Paneth cells as critical junction translating host- and microbe-derived signals into epithelial responses. Consequently, we propose mitochondrial fitness as a hallmark for intestinal epithelial cell plasticity, determining the regenerative capacity of the epithelium.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany.,ZIEL Institute for Food & Health, Technische Universität München, Munich, Germany
| |
Collapse
|
93
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
94
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
95
|
Environmental stimuli and gut inflammation via dysbiosis in mouse and man. Nat Rev Gastroenterol Hepatol 2020; 17:715-716. [PMID: 33005024 DOI: 10.1038/s41575-020-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
96
|
Overlapping risks. Nat Rev Microbiol 2020; 18:542. [DOI: 10.1038/s41579-020-0430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|