51
|
Chien PN, Ryu SE. Protein Tyrosine Phosphatase σ in Proteoglycan-Mediated Neural Regeneration Regulation. Mol Neurobiol 2012; 47:220-7. [DOI: 10.1007/s12035-012-8346-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
|
52
|
Monestier O, Brun C, Cocquempot O, Petit D, Blanquet V. GASP/WFIKKN proteins: evolutionary aspects of their functions. PLoS One 2012; 7:e43710. [PMID: 22937083 PMCID: PMC3427181 DOI: 10.1371/journal.pone.0043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/26/2012] [Indexed: 02/05/2023] Open
Abstract
Growth and differentiation factor Associated Serum Protein (GASP) 1 and 2 are proteins known to be involved in the control of myostatin activity at least in vitro. Most deuterostome GASPs share a modular organization including WAP, follistatin/kazal, IGc2, two kunitz, and NTR domains. Based on an exon shuffling model, we performed independent phylogenetic analyses on these modules and assessed that papilin is probably a sister sequence to GASP with a divergence date estimated from the last common ancestor to bilateria. The final organization was acquired by the addition of the FS domain in early deuterostomes. Our study revealed that Gasp genes diverged during the first round of genome duplication in early vertebrates. By evaluating the substitution rate at different sites on the proteins, we showed a better conservation of the follistatin/kazal domain of GASP1 than GASP2 in mammals, suggesting a stronger interaction with myostatin. We also observed a progressive increase in the conservation of follistatin and kunitz domains from the ancestor of Ciona to early vertebrates. In situ hybridization performed on mouse embryos showed a weak Gasp1 expression in the formed somites at 10.5 dpc and in limb buds from embryonic E10.0 to E12.5. Similar results were obtained for zebrafish embryos. We propose a synthetic view showing possible interactions between GASP1 and myostatin and highlighting the role of the second kunitz domain in preventing myostatin proteolysis.
Collapse
Affiliation(s)
- Olivier Monestier
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, France
- Université de Limoges, Limoges, France
| | - Caroline Brun
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, France
- Université de Limoges, Limoges, France
| | - Olivier Cocquempot
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, France
- Université de Limoges, Limoges, France
| | - Daniel Petit
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, France
- Université de Limoges, Limoges, France
| | - Véronique Blanquet
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, France
- Université de Limoges, Limoges, France
- * E-mail:
| |
Collapse
|
53
|
Reichardt LF, Prokop A. Introduction: the role of extracellular matrix in nervous system development and maintenance. Dev Neurobiol 2012; 71:883-8. [PMID: 21898856 DOI: 10.1002/dneu.20975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
54
|
Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012; 486:410-4. [PMID: 22722203 PMCID: PMC3383085 DOI: 10.1038/nature11059] [Citation(s) in RCA: 525] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/16/2012] [Indexed: 12/02/2022]
Abstract
In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons1. Astrocyte-secreted thrombospondins induce structural synapses, however these synapses are post-synaptically silent2. Here we use biochemical fractionation of astrocyte conditioned media (ACM) to identify glypican 4 (Gpc4) and 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell (RGC) neurons, and show that depletion of these molecules from ACM significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA glutamate receptor (AMPAR). Gpc4&6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and induce the formation of post-synaptically functioning CNS synapses.
Collapse
Affiliation(s)
- Nicola J Allen
- Stanford University School of Medicine, Department of Neurobiology, 299 Campus Drive, Fairchild Science Building D231, Stanford, California 94305-5125, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Horn KE, Xu B, Gobert D, Hamam BN, Thompson KM, Wu CL, Bouchard JF, Uetani N, Racine RJ, Tremblay ML, Ruthazer ES, Chapman CA, Kennedy TE. Receptor protein tyrosine phosphatase sigma regulates synapse structure, function and plasticity. J Neurochem 2012; 122:147-61. [PMID: 22519304 DOI: 10.1111/j.1471-4159.2012.07762.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.
Collapse
Affiliation(s)
- Katherine E Horn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Dani N, Broadie K. Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol 2012; 72:2-21. [PMID: 21509945 DOI: 10.1002/dneu.20891] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Synapse formation is driven by precisely orchestrated intercellular communication between the presynaptic and the postsynaptic cell, involving a cascade of anterograde and retrograde signals. At the neuromuscular junction (NMJ), both neuron and muscle secrete signals into the heavily glycosylated synaptic cleft matrix sandwiched between the two synapsing cells. These signals must necessarily traverse and interact with the extracellular environment, for the ligand-receptor interactions mediating communication to occur. This complex synaptomatrix, rich in glycoproteins and proteoglycans, comprises heterogeneous, compartmentalized domains where specialized glycans modulate trans-synaptic signaling during synaptogenesis and subsequent synapse modulation. The general importance of glycans during development, homeostasis and disease is well established, but this important molecular class has received less study in the nervous system. Glycan modifications are now understood to play functional and modulatory roles as ligands and co-receptors in numerous tissues; however, roles at the synapse are relatively unexplored. We highlight here properties of synaptomatrix glycans and glycan-interacting proteins with key roles in synaptogenesis, with a particular focus on recent advances made in the Drosophila NMJ genetic system. We discuss open questions and interesting new findings driving this investigation of complex, diverse, and largely understudied glycan mechanisms at the synapse.
Collapse
Affiliation(s)
- Neil Dani
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
57
|
Jung JY, Oh JH, Kim YK, Shin MH, Lee D, Chung JH. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin. J Korean Med Sci 2012; 27:300-6. [PMID: 22379342 PMCID: PMC3286778 DOI: 10.3346/jkms.2012.27.3.300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/02/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation.
Collapse
Affiliation(s)
- Ji-Yong Jung
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Mi Hee Shin
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dayae Lee
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
58
|
Leu C, de Kovel CGF, Zara F, Striano P, Pezzella M, Robbiano A, Bianchi A, Bisulli F, Coppola A, Giallonardo AT, Beccaria F, Trenité DKN, Lindhout D, Gaus V, Schmitz B, Janz D, Weber YG, Becker F, Lerche H, Kleefuss-Lie AA, Hallman K, Kunz WS, Elger CE, Muhle H, Stephani U, Møller RS, Hjalgrim H, Mullen S, Scheffer IE, Berkovic SF, Everett KV, Gardiner MR, Marini C, Guerrini R, Lehesjoki AE, Siren A, Nabbout R, Baulac S, Leguern E, Serratosa JM, Rosenow F, Feucht M, Unterberger I, Covanis A, Suls A, Weckhuysen S, Kaneva R, Caglayan H, Turkdogan D, Baykan B, Bebek N, Ozbek U, Hempelmann A, Schulz H, Rüschendorf F, Trucks H, Nürnberg P, Avanzini G, Koeleman BPC, Sander T. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies. Epilepsia 2012; 53:308-18. [PMID: 22242659 DOI: 10.1111/j.1528-1167.2011.03379.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. METHODS Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. KEY FINDINGS For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). SIGNIFICANCE Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31.3 preferentially predispose to myoclonic seizures or absence seizures, respectively. Phenotype- genotype strategies applying narrow trait definitions in phenotypic homogeneous subgroups of families improve the prospects of disentangling the genetic basis of common familial GGE syndromes.
Collapse
|
59
|
Wilson NH, Stoeckli ET. Sonic Hedgehog regulates Wnt activity during neural circuit formation. VITAMINS AND HORMONES 2012; 88:173-209. [PMID: 22391304 DOI: 10.1016/b978-0-12-394622-5.00008-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gradients of secreted morphogens, such as Sonic hedgehog (Shh), Wnt, and TGFβ/Bmp, have classically been shown to control many aspects of early development by regulating cell proliferation and determining cell fate. However, recent studies demonstrate that these molecules also play important and evolutionarily conserved roles in later aspects of neural development. Depending on the context, these molecules can elicit gene transcription in the nucleus, or alternatively can provide instructive signals at the growth cone that induce local and rapid changes in cytoskeletal organization. Shh can activate different cellular transduction pathways via its binding to alternative coreceptor complexes or simply by adaptation of its "classical" signaling pathway. However, in most of its activities during neural development, Shh does not act alone but rather in concert with other morphogens, particularly the Wnts. This review provides an overview of the mechanisms by which Shh signaling acts in concert with Wnts to mediate a myriad of cellular processes that are required for neural circuit formation.
Collapse
Affiliation(s)
- Nicole H Wilson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
60
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
61
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
62
|
Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011; 31:14051-66. [PMID: 21976490 PMCID: PMC3220601 DOI: 10.1523/jneurosci.1737-11.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a family of extracellular matrix molecules with various functions in regulating tissue morphogenesis, cell division, and axon guidance. A number of CSPGs are highly upregulated by reactive glial scar tissues after injuries and form a strong barrier for axonal regeneration in the adult vertebrate CNS. Although CSPGs may negatively regulate axonal growth via binding and altering activity of other growth-regulating factors, the molecular mechanisms by which CSPGs restrict axonal elongation are not well understood. Here, we identified a novel receptor mechanism whereby CSPGs inhibit axonal growth via interactions with neuronal transmembrane leukocyte common antigen-related phosphatase (LAR). CSPGs bind LAR with high affinity in transfected COS-7 cells and coimmunoprecipitate with LAR expressed in various tissues including the brain and spinal cord. CSPG stimulation enhances activity of LAR phosphatase in vitro. Deletion of LAR in knock-out mice or blockade of LAR with sequence-selective peptides significantly overcomes neurite growth restrictions of CSPGs in neuronal cultures. Intracellularly, CSPG-LAR interaction mediates axonal growth inhibition of neurons partially via inactivating Akt and activating RhoA signals. Systemic treatments with LAR-targeting peptides in mice with thoracic spinal cord transection injuries induce significant axon growth of descending serotonergic fibers in the vicinity of the lesion and beyond in the caudal spinal cord and promote locomotor functional recovery. Identification of LAR as a novel CSPG functional receptor provides a therapeutic basis for enhancing axonal regeneration and functional recovery after CNS injuries in adult mammals.
Collapse
Affiliation(s)
- Daniel Fisher
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Bin Xing
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - John Dill
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Hui Li
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Hai Hiep Hoang
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Zhenze Zhao
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Xiao-Li Yang
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Robert Bachoo
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Stephen Cannon
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Frank M. Longo
- Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN–Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shuxin Li
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| |
Collapse
|
63
|
Xiao T, Staub W, Robles E, Gosse NJ, Cole GJ, Baier H. Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 2011; 146:164-76. [PMID: 21729787 DOI: 10.1016/j.cell.2011.06.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/10/2011] [Accepted: 06/09/2011] [Indexed: 01/08/2023]
Abstract
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.
Collapse
Affiliation(s)
- Tong Xiao
- Programs in Neuroscience, Department of Physiology, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158-2722, USA
| | | | | | | | | | | |
Collapse
|
64
|
Lemonnier T, Blanchard S, Toli D, Roy E, Bigou S, Froissart R, Rouvet I, Vitry S, Heard JM, Bohl D. Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet 2011; 20:3653-66. [PMID: 21685203 DOI: 10.1093/hmg/ddr285] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By providing access to affected neurons, human induced pluripotent stem cells (iPSc) offer a unique opportunity to model human neurodegenerative diseases. We generated human iPSc from the skin fibroblasts of children with mucopolysaccharidosis type IIIB. In this fatal lysosomal storage disease, defective α-N-acetylglucosaminidase interrupts the degradation of heparan sulfate (HS) proteoglycans and induces cell disorders predominating in the central nervous system, causing relentless progression toward severe mental retardation. Partially digested proteoglycans, which affect fibroblast growth factor signaling, accumulated in patient cells. They impaired isolation of emerging iPSc unless exogenous supply of the missing enzyme cleared storage and restored cell proliferation. After several passages, patient iPSc starved of an exogenous enzyme continued to proliferate in the presence of fibroblast growth factor despite HS accumulation. Survival and neural differentiation of patient iPSc were comparable with unaffected controls. Whereas cell pathology was modest in floating neurosphere cultures, undifferentiated patient iPSc and their neuronal progeny expressed cell disorders consisting of storage vesicles and severe disorganization of Golgi ribbons associated with modified expression of the Golgi matrix protein GM130. Gene expression profiling in neural stem cells pointed to alterations of extracellular matrix constituents and cell-matrix interactions, whereas genes associated with lysosome or Golgi apparatus functions were downregulated. Taken together, these results suggest defective responses of patient undifferentiated stem cells and neurons to environmental cues, which possibly affect Golgi organization, cell migration and neuritogenesis. This could have potential consequences on post-natal neurological development, once HS proteoglycan accumulation becomes prominent in the affected child brain.
Collapse
Affiliation(s)
- Thomas Lemonnier
- Institut Pasteur, Unité Rétrovirus et Transfert Génétique, 28 rue du Dr Roux, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 2011; 332:484-8. [PMID: 21454754 PMCID: PMC3154093 DOI: 10.1126/science.1200840] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.
Collapse
Affiliation(s)
- Charlotte H. Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yingjie Shen
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Alan P. Tenney
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Motor Neuron Center, Columbia University, New York, NY 10032, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Geoffrey C. Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John T. Gallagher
- School of Cancer and Imaging Sciences, Faculty of Medical and Health Sciences, University of Manchester, Paterson Institute for Cancer Research, Manchester M20 4BX, UK
- Iduron, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John G. Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
66
|
Ori A, Wilkinson MC, Fernig DG. A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J Biol Chem 2011; 286:19892-904. [PMID: 21454685 DOI: 10.1074/jbc.m111.228114] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence supports the involvement of heparan sulfate (HS) proteoglycans in physiological processes such as development and diseases including cancer and neurodegenerative disorders. The role of HS emerges from its ability to interact and regulate the activity of a vast number of extracellular proteins including growth factors and extracellular matrix components. A global view on how protein-HS interactions influence the extracellular proteome and, consequently, cell function is currently lacking. Here, we systematically investigate the functional and structural properties that characterize HS-interacting proteins and the network they form. We collected 435 human proteins interacting with HS or the structurally related heparin by integrating literature-derived and affinity proteomics data. We used this data set to identify the topological features that distinguish the heparin/HS-interacting network from the rest of the extracellular proteome and to analyze the enrichment of gene ontology terms, pathways, and domain families in heparin/HS-binding proteins. Our analysis revealed that heparin/HS-binding proteins form a highly interconnected network, which is functionally linked to physiological and pathological processes that are characteristic of higher organisms. Therefore, we then investigated the existence of a correlation between the expansion of domain families characteristic of the heparin/HS interactome and the increase in biological complexity in the metazoan lineage. A strong positive correlation between the expansion of the heparin/HS interactome and biosynthetic machinery and organism complexity emerged. The evolutionary role of HS was reinforced by the presence of a rudimentary HS biosynthetic machinery in a unicellular organism at the root of the metazoan lineage.
Collapse
Affiliation(s)
- Alessandro Ori
- Institute of Integrative Biology and Centre for Glycobiology, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
67
|
Risk conferring genes in multiple sclerosis. FEBS Lett 2011; 585:3789-97. [DOI: 10.1016/j.febslet.2011.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
68
|
Shin JE, Oh JH, Kim YK, Jung JY, Chung JH. Transcriptional regulation of proteoglycans and glycosaminoglycan chain-synthesizing glycosyltransferases by UV irradiation in cultured human dermal fibroblasts. J Korean Med Sci 2011; 26:417-24. [PMID: 21394312 PMCID: PMC3051091 DOI: 10.3346/jkms.2011.26.3.417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 01/25/2011] [Indexed: 01/19/2023] Open
Abstract
Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm(2) of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, β1,3-glucuronyltransferase-1, β1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of β1,3-galactosyltransferase-6, β1,4-galactosyltransferase-3, -7, β-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.
Collapse
Affiliation(s)
- Jeong-Eun Shin
- Department of Dermatology, Seoul National University College of Medicine, Institute of Dermatological Science, Medical Research Center, Seoul National University, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Institute of Dermatological Science, Medical Research Center, Seoul National University, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Institute of Dermatological Science, Medical Research Center, Seoul National University, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji-Yong Jung
- Department of Dermatology, Seoul National University College of Medicine, Institute of Dermatological Science, Medical Research Center, Seoul National University, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Institute of Dermatological Science, Medical Research Center, Seoul National University, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
69
|
Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalhães AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. ACTA ACUST UNITED AC 2011; 192:153-69. [PMID: 21200028 PMCID: PMC3019558 DOI: 10.1083/jcb.201009136] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syndecan-3 may act alone or as a coreceptor with RET to promote cell spreading, neurite outgrowth, and migration of cortical neurons by GNDF, NRTN, and ARTN. Glial cell line–derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL–syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3–dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid–releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.
Collapse
Affiliation(s)
- Maxim M Bespalov
- Institute of Biotechnology, Viikki Biocenter, and 2 Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Vandenbroeck K, Urcelay E, Comabella M. IFN-beta pharmacogenomics in multiple sclerosis. Pharmacogenomics 2010; 11:1137-48. [PMID: 20712530 DOI: 10.2217/pgs.10.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a condition of the CNS marked by inflammation and neurodegeneration. Interferon (IFN)-beta was the first, and still is the main, immunomodulatory treatment for MS. Its clinical efficacy is limited, and a proportion of patients, ranging between 20-55%, do not respond to the therapy. Identification and subsequently, implementation in the clinic of biomarkers predictive for individual therapeutic response would facilitate improved patient care in addition to ensuring a more rational provision of this therapy. In this article, we summarize the main findings from studies addressing the pharmacogenomics of clinical response to IFN-beta in MS by either whole-genome association scans, candidate gene or transcriptomics studies. Whole-genome DNA association screens have revealed a high representation of brain-specific genes, and have hinted toward both extracellular ligand-gated ion channels and type I IFNs pathway genes as important categories of genetic IFN-beta response modifiers. One hit, glypican 5 (GPC5), was recently replicated in an independent study of IFN-beta responsiveness. Recent RNA transcriptomics studies have revealed the occurrence of a pre-existing type I IFN gene-expression signature, composed of genes that are predominantly induced by type I IFNs, as a potential contributing feature of poor response to therapy. Thus, while the outlines of a complex polygenic mechanism are gradually being uncovered, the main challenges for the near future will reside in the robust validation of identified response-modifying genes as well as in the decipherment of the mechanistic relationships between these genes and clinical response to IFN-beta.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Neurogenomiks Group, Universidad del País Vasco (UPV/EHU), Leioa, Spain.
| | | | | |
Collapse
|
71
|
Rohrbough J, Broadie K. Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap. Development 2010; 137:3523-33. [PMID: 20876658 DOI: 10.1242/dev.047878] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bidirectional trans-synaptic signals induce synaptogenesis and regulate subsequent synaptic maturation. Presynaptically secreted Mind the gap (Mtg) molds the synaptic cleft extracellular matrix, leading us to hypothesize that Mtg functions to generate the intercellular environment required for efficient signaling. We show in Drosophila that secreted Jelly belly (Jeb) and its receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) are localized to developing synapses. Jeb localizes to punctate aggregates in central synaptic neuropil and neuromuscular junction (NMJ) presynaptic terminals. Secreted Jeb and Mtg accumulate and colocalize extracellularly in surrounding synaptic boutons. Alk concentrates in postsynaptic domains, consistent with an anterograde, trans-synaptic Jeb-Alk signaling pathway at developing synapses. Jeb synaptic expression is increased in Alk mutants, consistent with a requirement for Alk receptor function in Jeb uptake. In mtg null mutants, Alk NMJ synaptic levels are reduced and Jeb expression is dramatically increased. NMJ synapse morphology and molecular assembly appear largely normal in jeb and Alk mutants, but larvae exhibit greatly reduced movement, suggesting impaired functional synaptic development. jeb mutant movement is significantly rescued by neuronal Jeb expression. jeb and Alk mutants display normal NMJ postsynaptic responses, but a near loss of patterned, activity-dependent NMJ transmission driven by central excitatory output. We conclude that Jeb-Alk expression and anterograde trans-synaptic signaling are modulated by Mtg and play a key role in establishing functional synaptic connectivity in the developing motor circuit.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences and Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37235-1634, USA.
| | | |
Collapse
|
72
|
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T. Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. J Cell Mol Med 2010; 13:4505-21. [PMID: 20394677 PMCID: PMC4515066 DOI: 10.1111/j.1582-4934.2008.00558.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The extracellular sulfatases Sulf1 and Sulf2 remove specific 6-O-sulfate groups from heparan sulfate, thereby modulating numerous signalling pathways underlying development and homeostasis. In vitro data have suggested that the two enzymes show functional redundancy. To elucidate their in vivo functions and to further address the question of a putative redundancy, we have generated Sulf1- and Sulf2-deficient mice. Phenotypic analysis of these animals revealed higher embryonic lethality of Sulf2 knockout mice, which can be associated with neuroanatomical malformations during embryogenesis. Sulf1 seems not to be essential for developmental or postnatal viability, as mice deficient in this sulfatase show no overt phenotype. However, neurite outgrowth deficits were observed in hippocampal and cerebellar neurons of both mutant mouse lines, suggesting that not only Sulf2 but also Sulf1 function plays a role in the developing nervous system. Behavioural analysis revealed differential deficits with regard to cage activity and spatial learning for Sulf1- and Sulf2-deficient mouse lines. In addition, Sulf1-specific deficits were shown for synaptic plasticity in the CA1 region of the hippocampus, associated with a reduced spine density. These results reveal that Sulf1 and Sulf2 fulfil non-redundant functions in vivo in the development and maintenance of the murine nervous system.
Collapse
Affiliation(s)
- Ina Kalus
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
Ypsilanti AR, Zagar Y, Chédotal A. Moving away from the midline: new developments for Slit and Robo. Development 2010; 137:1939-52. [DOI: 10.1242/dev.044511] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most tissues, the precise control of cell migration and cell-cell interaction is of paramount importance to the development of a functional structure. Several families of secreted molecules have been implicated in regulating these aspects of development, including the Slits and their Robo receptors. These proteins have well described roles in axon guidance but by influencing cell polarity and adhesion, they participate in many developmental processes in diverse cell types. We review recent progress in understanding both the molecular mechanisms that modulate Slit/Robo expression and their functions in neural and non-neural tissue.
Collapse
Affiliation(s)
- Athena R. Ypsilanti
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Yvrick Zagar
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Alain Chédotal
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| |
Collapse
|
74
|
Johnson BA, Wang J, Taylor EM, Caillier SJ, Herbert J, Khan OA, Cross AH, De Jager PL, Gourraud PAF, Cree BCA, Hauser SL, Oksenberg JR. Multiple sclerosis susceptibility alleles in African Americans. Genes Immun 2010; 11:343-50. [PMID: 19865102 PMCID: PMC2880217 DOI: 10.1038/gene.2009.81] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease characterized by complex genetics and multifaceted gene-environment interactions. Compared to whites, African Americans have a lower risk for developing MS, but African Americans with MS have a greater risk of disability. These differences between African Americans and whites may represent differences in genetic susceptibility and/or environmental factors. SNPs from 12 candidate genes have recently been identified and validated with MS risk in white populations. We performed a replication study using 918 cases and 656 unrelated controls to test whether these candidate genes are also associated with MS risk in African Americans. CD6, CLEC16a, EVI5, GPC5, and TYK2 contained SNPs that are associated with MS risk in the African American data set. EVI5 showed the strongest association outside the major histocompatibility complex (rs10735781, OR=1.233, 95% CI=1.06-1.43, P-value=0.006). In addition, RGS1 seems to affect age of onset whereas TNFRSF1A seems to be associated with disease progression. None of the tested variants showed results that were statistically inconsistent with the effects established in whites. The results are consistent with shared disease genetic mechanisms among individuals of European and African ancestry.
Collapse
Affiliation(s)
- B A Johnson
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore. Biophys J 2010; 97:2894-903. [PMID: 19948118 DOI: 10.1016/j.bpj.2009.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/20/2009] [Accepted: 09/04/2009] [Indexed: 11/21/2022] Open
Abstract
A mechanism of how polyanions influence the channel formed by Staphylococcus aureus alpha-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC(50), nearly 10(4)-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the zeta-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca(2+)-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of alpha-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.
Collapse
|
76
|
Takatoh J, Hanaoka K. Spatially and temporally regulated expression of specific heparan sulfate epitopes in the developing mouse olfactory system. Dev Growth Differ 2009; 52:169-80. [PMID: 20039927 DOI: 10.1111/j.1440-169x.2009.01151.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure-specific monoclonal antibodies (HepSS-1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS-1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin-A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events.
Collapse
Affiliation(s)
- Jun Takatoh
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | |
Collapse
|
77
|
Bhattacharya R, Townley RA, Berry KL, Bülow HE. The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans. J Cell Sci 2009; 122:4492-504. [PMID: 19920077 PMCID: PMC2787461 DOI: 10.1242/jcs.050732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2009] [Indexed: 02/03/2023] Open
Abstract
Sulfations of sugars, such as heparan sulfates (HS), or tyrosines require the universal sulfate donor 3'-phospho-adenosine-5'-phosphosulfate (PAPS) to be transported from the cytosol into the Golgi. Metazoan genomes encode two putative PAPS transporters (PAPST1 and PAPST2), which have been shown in vitro to preferentially transport PAPS across membranes. We have identified the C. elegans orthologs of PAPST1 and PAPST2 and named them pst-1 and pst-2, respectively. We show that pst-1 is essential for viability in C. elegans, functions non-redundantly with pst-2, and can act non-autonomously to mediate essential functions. Additionally, pst-1 is required for specific aspects of nervous system development rather than for formation of the major neuronal ganglia or fascicles. Neuronal defects correlate with reduced complexity of HS modification patterns, as measured by direct biochemical analysis. Our results suggest that pst-1 functions in metazoans to establish the complex HS modification patterns that are required for the development of neuronal connectivity.
Collapse
Affiliation(s)
- Raja Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
| | - Robert A. Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
| | - Katherine L. Berry
- Department of Biochemistry and Molecular Biophysics, Columbia University
Medical Center, New York, NY 10032, USA
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of
Medicine, Bronx, NY 10461, USA
| |
Collapse
|
78
|
Arungundram S, Al-Mafraji K, Asong J, Leach FE, Amster IJ, Venot A, Turnbull JE, Boons GJ. Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies. J Am Chem Soc 2009; 131:17394-405. [PMID: 19904943 PMCID: PMC2820250 DOI: 10.1021/ja907358k] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although hundreds of heparan sulfate binding proteins have been identified and implicated in a myriad of physiological and pathological processes, very little information is known about the ligand requirements for binding and mediating biological activities by these proteins. This difficulty results from a lack of technology for establishing structure-activity relationships, which in turn is due to the structural complexity of natural heparan sulfate (HS) and difficulties of preparing well-defined HS oligosaccharides. To address this deficiency, we developed a modular approach for the parallel combinatorial synthesis of HS oligosaccharides that utilizes a relatively small number of selectively protected disaccharide building blocks, which can easily be converted into glycosyl donors and acceptors. The utility of the modular building blocks has been demonstrated by the preparation of a library of 12 oligosaccharides, which has been employed to probe the structural features of HS for inhibiting the protease, BACE-1. The complex variations in activity with structural changes support the view that important functional information is embedded in HS sequences. Furthermore, the most active derivative provides an attractive lead compound for the preparation of more potent compounds, which may find use as a therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Sailaja Arungundram
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Kanar Al-Mafraji
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
| | - Jinkeng Asong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Franklin E. Leach
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - I. Jonathan Amster
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
| | - Jeremy E. Turnbull
- Center for Glycobiology, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, Tel: (+1) 706-542-916
- Department of Chemistry, The University of Georgia, Athens, Georgia, GA 30602-2556
| |
Collapse
|
79
|
Abstract
CNS synapse assembly typically follows after stable contacts between "appropriate" axonal and dendritic membranes are made. We show that presynaptic boutons selectively form de novo following neuronal fiber adhesion to beads coated with poly-d-lysine (PDL), an artificial cationic polypeptide. As demonstrated by atomic force and live confocal microscopy, functional presynaptic boutons self-assemble as rapidly as 1 h after bead contact, and are found to contain a variety of proteins characteristic of presynaptic endings. Interestingly, presynaptic compartment assembly does not depend on the presence of a biological postsynaptic membrane surface. Rather, heparan sulfate proteoglycans, including syndecan-2, as well as others possibly adsorbed onto the bead matrix or expressed on the axon surface, are required for assembly to proceed by a mechanism dependent on the dynamic reorganization of F-actin. Our results indicate that certain (but not all) nonspecific cationic molecules like PDL, with presumably electrostatically mediated adhesive properties, can effectively bypass cognate and natural postsynaptic ligands to trigger presynaptic assembly in the absence of specific target recognition. In contrast, we find that postsynaptic compartment assembly depends on the prior presence of a mature presynaptic ending.
Collapse
|
80
|
Rushton E, Rohrbough J, Broadie K. Presynaptic secretion of mind-the-gap organizes the synaptic extracellular matrix-integrin interface and postsynaptic environments. Dev Dyn 2009; 238:554-71. [PMID: 19235718 PMCID: PMC2677818 DOI: 10.1002/dvdy.21864] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mind-the-Gap (MTG) is required during synaptogenesis of the Drosophila glutamatergic neuromuscular junction (NMJ) to organize the postsynaptic domain. Here, we generate MTG::GFP transgenic animals to demonstrate MTG is synaptically targeted, secreted, and localized to punctate domains in the synaptic extracellular matrix (ECM). Drosophila NMJs form specialized ECM carbohydrate domains, with carbohydrate moieties and integrin ECM receptors occupying overlapping territories. Presynaptically secreted MTG recruits and reorganizes secreted carbohydrates, and acts to recruit synaptic integrins and ECM glycans. Transgenic MTG::GFP expression rescues hatching, movement, and synaptogenic defects in embryonic-lethal mtg null mutants. Targeted neuronal MTG expression rescues mutant synaptogenesis defects, and increases rescue of adult viability, supporting an essential neuronal function. These results indicate that presynaptically secreted MTG regulates the ECM-integrin interface, and drives an inductive mechanism for the functional differentiation of the postsynaptic domain of glutamatergic synapses. We suggest that MTG pioneers a novel protein family involved in ECM-dependent synaptic differentiation.
Collapse
Affiliation(s)
| | | | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
81
|
Bülow HE, Tjoe N, Townley RA, Didiano D, van Kuppevelt TH, Hobert O. Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices. Curr Biol 2008; 18:1978-85. [PMID: 19062279 DOI: 10.1016/j.cub.2008.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 10/28/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Heparan sulfates (HSs) are extraordinarily complex extracellular sugar molecules that are critical components of multiple signaling systems controlling neuronal development. The molecular complexity of HSs arises through a series of specific modifications, including sulfations of sugar residues and epimerizations of their glucuronic acid moieties. The modifications are introduced nonuniformly along protein-attached HS polysaccharide chains by specific enzymes. Genetic analysis has demonstrated the importance of specific HS-modification patterns for correct neuronal development. However, it remains unclear whether HS modifications provide a merely permissive substrate or whether they provide instructive patterning information during development. We show here with single-cell resolution that highly stereotyped motor axon projections in C. elegans depend on specific HS-modification patterns. By manipulating extracellular HS-modification patterns, we can cell specifically reroute axons, indicating that HS modifications are instructive. This axonal rerouting is dependent on the HS core protein lon-2/glypican and both the axon guidance cue slt-1/Slit and its receptor eva-1. These observations suggest that a changed sugar environment instructs slt-1/Slit-dependent signaling via eva-1 to redirect axons. Our experiments provide genetic in vivo evidence for the "HS code" hypothesis which posits that specific combinations of HS modifications provide specific and instructive information to mediate the specificity of ligand/receptor interactions.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, Radue EW, Lindberg RLP, Uitdehaag BMG, Johnson MR, Angelakopoulou A, Hall L, Richardson JC, Prinjha RK, Gass A, Geurts JJG, Kragt J, Sombekke M, Vrenken H, Qualley P, Lincoln RR, Gomez R, Caillier SJ, George MF, Mousavi H, Guerrero R, Okuda DT, Cree BAC, Green AJ, Waubant E, Goodin DS, Pelletier D, Matthews PM, Hauser SL, Kappos L, Polman CH, Oksenberg JR. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 2008; 18:767-78. [PMID: 19010793 DOI: 10.1093/hmg/ddn388] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS), a chronic disorder of the central nervous system and common cause of neurological disability in young adults, is characterized by moderate but complex risk heritability. Here we report the results of a genome-wide association study performed in a 1000 prospective case series of well-characterized individuals with MS and group-matched controls using the Sentrix HumanHap550 BeadChip platform from Illumina. After stringent quality control data filtering, we compared allele frequencies for 551 642 SNPs in 978 cases and 883 controls and assessed genotypic influences on susceptibility, age of onset, disease severity, as well as brain lesion load and normalized brain volume from magnetic resonance imaging exams. A multi-analytical strategy identified 242 susceptibility SNPs exceeding established thresholds of significance, including 65 within the MHC locus in chromosome 6p21.3. Independent replication confirms a role for GPC5, a heparan sulfate proteoglycan, in disease risk. Gene ontology-based analysis shows a functional dichotomy between genes involved in the susceptibility pathway and those affecting the clinical phenotype.
Collapse
Affiliation(s)
- Sergio E Baranzini
- Department of Neurology, University of California, San Francisco, CA 94143-0435, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bani-Yaghoub M, Tremblay RG, Ajji A, Nzau M, Gangaraju S, Chitty D, Zurakowski B, Sikorska M. Neuroregenerative strategies in the brain: emerging significance of bone morphogenetic protein 7 (BMP7). Biochem Cell Biol 2008; 86:361-9. [DOI: 10.1139/o08-116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Every year thousands of people suffer from brain injuries and stroke, and develop motor, sensory, and cognitive problems as a result of neuronal loss in the brain. Unfortunately, the damaged brain has a limited ability to enact repair and current modes of treatment are not sufficient to offset the damage. An extensive list of growth factors, neurotrophic factors, cytokines, and drugs has been explored as potential therapies. However, only a limited number of them may actually have the potential to effectively offset the brain injury or stroke-related problems. One of the treatments considered for future brain repair is bone morphogenetic protein 7 (BMP7), a factor currently used in patients to treat non-neurological diseases. The clinical application of BMP7 is based on its neuroprotective role in stroke animal models. This paper reviews the current approaches considered for brain repair and discusses the novel convergent strategies by which BMP7 potentially can induce neuroregeneration.
Collapse
Affiliation(s)
- Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Roger G. Tremblay
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Abdellah Ajji
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Munyao Nzau
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Sandhya Gangaraju
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - David Chitty
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Bogdan Zurakowski
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Marianna Sikorska
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Rd., Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada
- Division of Neurosurgery, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
84
|
Abstract
Drosophila Slit and its vertebrate orthologues Slit1-Slit3 are secreted glycoproteins that play important roles in the development of the nervous system and other organs. Human Slits are also involved in a number of pathological situations, such as cancer and inflammation. Slits exert their effects by activating receptors of the Robo (Roundabout) family, which resemble cell adhesion molecules in their ectodomains and have large, mainly unstructured cytosolic domains. HS (heparan sulfate) is required for Slit-Robo signalling. The hallmark of Slit proteins is a tandem of four LRR (leucine-rich repeat) domains, which mediate binding to the IG (immunoglobulin-like) domains of Robos. A major question is how Slit binding is translated into the recruitment of effector molecules to the cytosolic domain of Robo. Detailed structure-function studies have shown that the second LRR domain of Slit (D2) binds to the first two IG domains of Robo, and that HS serves to stabilize the Slit-Robo interaction and is required for biological activity of Slit D2. Very recently, the crystal structure of a minimal Slit-Robo complex revealed that the IG1 domain of Robo is bound by the concave face of Slit D2, confirming earlier mutagenesis data. To define the mechanism of Robo transmembrane signalling, these structural insights will have to be complemented by new cell biology and microscopy approaches.
Collapse
Affiliation(s)
- Erhard Hohenester
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
85
|
Strochlic L, Dwivedy A, van Horck FPG, Falk J, Holt CE. A role for S1P signalling in axon guidance in the Xenopus visual system. Development 2008; 135:333-42. [PMID: 18077591 PMCID: PMC3682207 DOI: 10.1242/dev.009563] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingosine 1-phosphate (S1P), a lysophospholipid, plays an important chemotactic role in the migration of lymphocytes and germ cells, and is known to regulate aspects of central nervous system development such as neurogenesis and neuronal migration. Its role in axon guidance, however, has not been examined. We show that sphingosine kinase 1, an enzyme that generates S1P, is expressed in areas surrounding the Xenopus retinal axon pathway, and that gain or loss of S1P function in vivo causes errors in axon navigation. Chemotropic assays reveal that S1P elicits fast repulsive responses in retinal growth cones. These responses require heparan sulfate, are sensitive to inhibitors of proteasomal degradation, and involve RhoA and LIM kinase activation. Together, the data identify downstream components that mediate S1P-induced growth cone responses and implicate S1P signalling in axon guidance.
Collapse
Affiliation(s)
- Laure Strochlic
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Francisca P. G. van Horck
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Julien Falk
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
86
|
Abstract
Semaphorin proteins, although initially characterized as repulsive neuronal guidance cues, are now appreciated as major contributors to morphogenesis and homeostasis for a wide range of tissue types. Semaphorin-mediated long- and short-range repulsive, and attractive, guidance has profound influences on cellular morphology. The diversity of semaphorin receptor complexes utilized by various semaphorin ligands, the ability of semaphorins themselves to serve as receptors, and the myriad of intracellular signaling components that comprise semaphorin signaling cascades all contribute to cell-type-specific responses to semaphorins. Analysis of the molecular and cellular mechanisms underlying semaphorin function in neural and vascular systems provides insight into principles governing how this large protein family contributes to organogenesis, function, and disease.
Collapse
Affiliation(s)
- Tracy S Tran
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
87
|
Xiao T, Baier H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat Neurosci 2007; 10:1529-37. [PMID: 17982451 DOI: 10.1038/nn2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying the precise targeting of tectal layers by ingrowing retinal axons are largely unknown. In zebrafish, individual axons choose one of four retinorecipient layers upon entering the tectum and remain restricted to this layer, despite continual remodeling and shifting of their terminal arbors. In dragnet mutants, by contrast, a large fraction of retinal axons aberrantly trespass between layers or form terminal arbors that span two layers. The dragnet gene, drg, encodes collagen IV(alpha5) (Col4a5), a basement membrane component lining the surface of the tectum. Heparan sulfate proteoglycans (HSPGs) are normally associated with the tectal basement membrane but are dispersed in the dragnet mutant tectum. Zebrafish boxer (extl3) mutants, which are deficient in HSPG synthesis, show laminar targeting defects similar to those in dragnet. Our results show that the collagen IV sheet anchors secreted factors at the surface of the tectum, which serve as guidance cues for retinal axons.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Physiology, Programs in Neuroscience, Genetics, and Developmental Biology, University of California, San Francisco, California 94158-2324, USA
| | | |
Collapse
|
88
|
Zisman S, Marom K, Avraham O, Rinsky-Halivni L, Gai U, Kligun G, Tzarfaty-Majar V, Suzuki T, Klar A. Proteolysis and membrane capture of F-spondin generates combinatorial guidance cues from a single molecule. ACTA ACUST UNITED AC 2007; 178:1237-49. [PMID: 17875744 PMCID: PMC2064656 DOI: 10.1083/jcb.200702184] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of neuronal networks is governed by a limited number of guidance molecules, yet it is immensely complex. The complexity of guidance cues is augmented by posttranslational modification of guidance molecules and their receptors. We report here that cleavage of the floor plate guidance molecule F-spondin generates two functionally opposing fragments: a short-range repellent protein deposited in the membrane of floor plate cells and an adhesive protein that accumulates at the basement membrane. Their coordinated activity, acting respectively as a short-range repellant and a permissive short-range attractant, constricts commissural axons to the basement membrane beneath the floor plate cells. We further demonstrate that the repulsive activity of the inhibitory fragment of F-spondin requires its presentation by the lipoprotein receptor–related protein (LRP) receptors apolipoprotein E receptor 2, LRP2/megalin, and LRP4, which are expressed in the floor plate. Thus, proteolysis and membrane interaction coordinate combinatorial guidance signaling originating from a single guidance cue.
Collapse
Affiliation(s)
- Sophie Zisman
- Department of Anatomy and Cell Biology, Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 2007; 50:871-92. [PMID: 17905401 DOI: 10.1016/j.toxicon.2007.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/13/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
An important group of toxins, whose action at the molecular level is still a matter of debate, is secreted phospholipases A(2) (sPLA(2)s) endowed with presynaptic or beta-neurotoxicity. The current belief is that these beta-neurotoxins (beta-ntxs) exert their toxicity primarily due to their extracellular enzymatic action on the plasma membrane of motoneurons at the neuromuscular junction. However, the discovery of several extra- and intracellular proteins, with high binding affinity for snake venom beta-ntxs, has raised the question as to whether this explanation is adequate to account for all the observed phenomena in the process of presynaptic toxicity. The purpose of this review is to critically examine the various published studies, including the most recent results on internalization of a beta-ntx into motor nerve terminals, in order to contribute to a better understanding of the molecular mechanism of beta-neurotoxicity. As a result, we propose that presynaptic neurotoxicity of sPLA(2)s is a result of both extra- and intracellular actions of beta-ntxs, involving enzymatic activity as well as interaction of the toxins with intracellular proteins affecting the cycling of synaptic vesicles in the axon terminals of vertebrate motoneurons.
Collapse
Affiliation(s)
- Joze Pungercar
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
90
|
Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007; 8:583-96. [PMID: 17637802 DOI: 10.1038/nrn2189] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.
Collapse
Affiliation(s)
- Ivor Mason
- MRC Centre for Developmental Neurobiology, King's College London, Fourth floor New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
91
|
Lawrence R, Yabe T, HajMohammadi S, Rhodes J, McNeely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW. The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 2007; 26:442-55. [PMID: 17482450 PMCID: PMC1993827 DOI: 10.1016/j.matbio.2007.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Tomio Yabe
- Department Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sassan HajMohammadi
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - John Rhodes
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - Melissa McNeely
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jian Liu
- Department of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC , United States
| | - Edward D. Lamperti
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Paul A. Toselli
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Miroslaw Lech
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patricia G. Spear
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D. Rosenberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Nicholas W. Shworak
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
- *Address correspondence to: Nicholas W. Shworak, Angiogenesis Research Center, Section of Cardiology, Borwell Building 540W, HB7504, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire 03756, Tel. 603 650-6401; Fax. 603 653-0510; E-Mail:
| |
Collapse
|
92
|
Abstract
The olfactory system is a remarkable model for investigating the factors that influence the guidance of sensory axon populations to specific targets in the CNS. Since the initial discovery of the vast odorant receptor (ORs) gene family in rodents and the subsequent finding that these molecules directly influence targeting, several additional olfactory axon guidance cues have been identified. Two of these, ephrins and semaphorins, have well-established functions in patterning axon connections in other systems. In addition, lactosamine-containing glycans are also required for proper targeting and maintenance of olfactory axons, and may also function in other sensory regions. It is now apparent that these and likely other additional molecules are required along with ORs to orchestrate the complex pattern of convergence and divergence that is unique to the olfactory system.
Collapse
Affiliation(s)
- Timothy R Henion
- Shriver Center and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 02452, USA
| | | |
Collapse
|
93
|
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CLR, Dierks T. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 2007; 129:290-307. [PMID: 17337080 DOI: 10.1016/j.jbiotec.2007.01.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/22/2006] [Accepted: 01/26/2007] [Indexed: 12/24/2022]
Abstract
Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".
Collapse
Affiliation(s)
- William C Lamanna
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Hur EM, Kim KT. A role of local signalling in the establishment and maintenance of the asymmetrical architecture of a neuron. J Neurochem 2007; 101:600-10. [PMID: 17217410 DOI: 10.1111/j.1471-4159.2006.04372.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Significant progress has been made in the identification of intrinsic and extrinsic factors involved in the development of nervous system. It is remarkable that the establishment and maintenance of the asymmetrical architecture of a neuron is coordinated by a limited repertoire of signalling machineries. However, the details of signalling mechanisms responsible for creating specificity and diversity required for proper development of the nervous system remain largely to be investigated. An emerging body of evidence suggests that specificity and diversity can be achieved by differential regulation of signalling components at distinct subcellular localizations. Many aspects of neuronal polarization and morphogenesis are attributed to localized signalling. Further diversity and specificity of receptor signalling can be achieved by the regulation of molecules outside the cell. Recent evidence suggests that extracellular matrix molecules are essential extrinsic cues that function to foster the growth of neurons. Therefore, it is important to understand where the signalling machineries are activated and how they are combined with other factors in order to understand the molecular mechanism underlying neuronal development.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Life Science and Division of Molecular and Life Sciences, Systems Biodynamics NCRC, Pohang University of Science and Technology, Pohang, South Korea
| | | |
Collapse
|
95
|
Cadman SM, Kim SH, Hu Y, González-Martínez D, Bouloux PM. Molecular pathogenesis of Kallmann's syndrome. HORMONE RESEARCH 2006; 67:231-42. [PMID: 17191030 DOI: 10.1159/000098156] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypogonadotrophic hypogonadism (HH) is characterized by delayed or absent pubertal development secondary to gonadotrophin deficiency. HH can result from mutations of the gonadotrophin-releasing hormone receptor 1, the gonadotrophin beta-subunits, or various transcription factors involved in pituitary gland development. HH occurs in DAX1 mutations when associated with adrenal insufficiency (adrenal hypoplasia congenita), and is also linked with obesity in patients with mutations of leptin and its receptor, as well as mutations in prohormone convertase 1. Rarely, HH has resulted from kisspeptin receptor (GPR54) mutations, a gene implicated in the regulation of pubertal onset. When occurring with anosmia (a lack of sense of smell), HH is referred to as Kallmann's syndrome (KS). Two KS-related loci are currently known: KAL1, encoding anosmin-1, responsible for X-linked KS, and KAL2, encoding the fibroblast growth factor receptor 1 (FGFR1), mutated in autosomal dominant KS. Anosmin-1 is an extracellular glycoprotein with some unique structural characteristics; it interacts with both urokinase-type plasminogen activator and FGFR1. It has previously been shown that anosmin-1 enhances FGFR1 signalling in a heparan sulphate-dependent manner, and proposed that anosmin-1 fine-tunes FGFR1 signalling during olfactory and GnRH neuronal development. Here, we review the known normosmic causes of HH, and discuss novel developmental and molecular mechanisms underlying KS; finally, we introduce three novel genes (NELF, PKR2, and CHD7) that may be associated with some phenotypic features of KS.
Collapse
MESH Headings
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Genes, Dominant
- Genes, X-Linked
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Gonadotropin-Releasing Hormone/physiology
- Heparan Sulfate Proteoglycans/physiology
- Humans
- Kallmann Syndrome/etiology
- Kallmann Syndrome/genetics
- Models, Biological
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Olfactory Bulb/embryology
- Olfactory Bulb/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Receptors, LHRH/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Steven Mark Cadman
- Centre for Neuroendocrinology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | | | |
Collapse
|
96
|
Abstract
Proteoglycans (PGs), molecules in which glycosaminoglycans (GAGs) are covalently linked to a protein core, are components of the extracellular matrix of all multicellular organisms. Sugar moieties in GAGs are often extensively modified, which make these molecules enormously complex. We discuss here the role of PGs during animal development, emphasizing the in vivo significance of sugar modifications. We explore a model in which the modification patterns of GAG chains may provide a specific code that contributes to the correct development of a multicellular organism.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
97
|
Alete DE, Weeks ME, Hovanession AG, Hawadle M, Stoker AW. Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-sigma. FEBS J 2006; 273:4668-81. [PMID: 16995858 PMCID: PMC1866192 DOI: 10.1111/j.1742-4658.2006.05471.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.
Collapse
Affiliation(s)
- Daniel E. Alete
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Mark E. Weeks
- Molecular Oncology, CRUK, Barts and The London School of Medicine and Dentistry, John Vane Centre, Charter House Square, London EC1M 6BQ, UK
| | - Ara G. Hovanession
- UPR 2228 CNRS, UFR Biomedicale-Universite Rene Descartes, 45 rue des Saints Peres, 75270 Paris Cedex 6, France
| | | | - Andrew W. Stoker
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
98
|
Piechotta K, Dudanova I, Missler M. The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules. Cell Tissue Res 2006; 326:617-42. [PMID: 16855838 DOI: 10.1007/s00441-006-0267-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/31/2006] [Indexed: 01/05/2023]
Abstract
Synaptic cell adhesion molecules (SCAMs) are mostly membrane-anchored molecules with extracellular domains that extend into the synaptic cleft. Prototypical SCAMs interact with homologous or heterologous molecules on the surface of adjacent cells, ensuring the precise apposition of pre- and postsynaptic elements. More recent definitions of SCAMs often include molecules involved in axon pathfinding, cell recognition and synaptic differentiation events, making SCAMs functionally and molecularly a highly diverse group. In this review, we summarize the proposed in vivo functions of a large variety of SCAMs. We mainly focus on results obtained from analyses of genetic model organisms, mostly mouse knockout mutants, lacking expression of the respective candidate genes. In contrast to the substantial effect yielded by some knockouts of molecules involved in synaptic vesicle release, no SCAM mutant has been reported thus far that shows a prominently altered structure of the majority of synapses or even lacks synapses altogether. This surprising resilience of synaptic structure might be explained by a high redundancy between different SCAMs, by the assumption that the crucial molecular players in synapse structure have yet to be discovered or by a grand variability in the mechanisms of synapse formation that underlies the diversity of synapses. Whatever the final answer turns out to be, the genetic dissection of the SCAM superfamilies has led to a much better understanding of the different steps required to form, differentiate and modify a synapse.
Collapse
Affiliation(s)
- Kerstin Piechotta
- Center for Physiology and Pathophysiology, Georg-August University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
99
|
Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL, Flanagan JG, Van Vactor D. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006; 49:517-31. [PMID: 16476662 DOI: 10.1016/j.neuron.2006.01.026] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/07/2005] [Accepted: 01/23/2006] [Indexed: 12/28/2022]
Abstract
The formation and plasticity of synaptic connections rely on regulatory interactions between pre- and postsynaptic cells. We show that the Drosophila heparan sulfate proteoglycans (HSPGs) Syndecan (Sdc) and Dallylike (Dlp) are synaptic proteins necessary to control distinct aspects of synaptic biology. Sdc promotes the growth of presynaptic terminals, whereas Dlp regulates active zone form and function. Both Sdc and Dlp bind at high affinity to the protein tyrosine phosphatase LAR, a conserved receptor that controls both NMJ growth and active zone morphogenesis. These data and double mutant assays showing a requirement of LAR for actions of both HSPGs lead to a model in which presynaptic LAR is under complex control, with Sdc promoting and Dlp inhibiting LAR in order to control synapse morphogenesis and function.
Collapse
Affiliation(s)
- Karl G Johnson
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|