51
|
Shaik RA, Ahmad MS, Alzahrani M, Alzerwi NAN, Alnemare AK, Reyzah M, Albar HM, Alshagrawi S, Elkhalifa AME, Alzahrani R, Alrohaimi Y, Mahfoz TMB, Ahmad RK, Alahmdi RA, Al-baradie NRS. Comprehensive Highlights of the Universal Efforts towards the Development of COVID-19 Vaccine. Vaccines (Basel) 2022; 10:vaccines10101689. [PMID: 36298554 PMCID: PMC9611897 DOI: 10.3390/vaccines10101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The world has taken proactive measures to combat the pandemic since the coronavirus disease 2019 (COVID-19) outbreak, which was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). These measures range from increasing the production of personal protective equipment (PPE) and highlighting the value of social distancing to the emergency use authorization (EUA) of therapeutic drugs or antibodies and their appropriate use; nonetheless, the disease is still spreading quickly and is ruining people’s social lives, the economy, and public health. As a result, effective vaccines are critical for bringing the pandemic to an end and restoring normalcy in society. Several potential COVID-19 vaccines are now being researched, developed, tested, and reviewed. Since the end of June 2022, several vaccines have been provisionally approved, whereas others are about to be approved. In the upcoming years, a large number of new medications that are presently undergoing clinical testing are anticipated to hit the market. To illustrate the advantages and disadvantages of their technique, to emphasize the additives and delivery methods used in their creation, and to project potential future growth, this study explores these vaccines and the related research endeavors, including conventional and prospective approaches.
Collapse
Affiliation(s)
- Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Correspondence:
| | - Mohammed Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mansour Alzahrani
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Musaed Reyzah
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Haitham M. Albar
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Salah Alshagrawi
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
| | - Raed Alzahrani
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Pediatrics, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Turki M. Bin Mahfoz
- Department of Otolaryngology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ritu Kumar Ahmad
- Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Riyadh Ahmed Alahmdi
- Department of Family Medicine, King Abdullah Bin Abdulaziz University Hospital (KAAUH), Princess Nourah Bin Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
52
|
Xu Z, Wu Y, Lin Y, Cao M, Liang Z, Li L, Lin J, Chen Q, Liu J, Liu H. Effect of inactivated COVID-19 vaccination on intrauterine insemination cycle success: A retrospective cohort study. Front Public Health 2022; 10:966826. [PMID: 36172215 PMCID: PMC9510616 DOI: 10.3389/fpubh.2022.966826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023] Open
Abstract
Background Vaccine hesitancy was found in couples seeking artificial reproductive technology (ART) services. As the main vaccine used in China, investigations into the influence of inactivated coronavirus disease 2019 (COVID-19) vaccines on human fertility is needed. Methods This retrospective cohort study included data on COVID-19 vaccination, clinical characteristics, and reproductive outcome of 1,000 intrauterine insemination (IUI) cycles in 653 couples from March 2021 to March 2022 in a single university hospital-based center for reproductive medicine. The IUI cycles were divided into two categories based on sperm source, including 725 cycles in 492 women undergoing artificial insemination with their husband's sperm (AIH) and 275 cycles in 161 women undergoing artificial insemination with donor sperm (AID). Women were then divided into two groups. The vaccine exposed group included women vaccinated prior to insemination and the unexposed group included women who were not vaccinated or vaccinated after insemination. Reproductive outcomes including ongoing pregnancy rate, clinical pregnancy rate, and miscarriage rate were assessed. Results Inactivated COVID-19 vaccinated women prior to intrauterine insemination in AIH cycles have comparable ongoing pregnancy rate (11.1 vs. 10.3%, P = 0.73), clinical pregnancy rate (12.5 vs. 11.3%, P = 0.60) as compared with unvaccinated counterparts. Similarly, there were no significant differences in ongoing pregnancy rate (20.9 vs. 28.1%, P = 0.17), clinical pregnancy rate (21.7 vs. 28.8%, P = 0.19) between vaccine exposed and unexposed groups in AID cycles. Multivariable logistic regression analyses showed that inactivated COVID-19 vaccination status cannot independently influence the reproductive outcomes of AIH and AID cycles. Subgroup analysis of vaccine exposed cycles showed that doses of vaccination and Interval between the last dose of vaccination and insemination have no influence on the reproductive outcomes of AIH cycles. Conclusions No negative effects were found on female fertility in IUI cycles following exposure to the inactivated COVID-19 vaccine. These findings indirectly reflect the safety of inactivated COVID-19 vaccine toward reproductive health and help to mitigate vaccine hesitancy among people planning to conceive.
Collapse
Affiliation(s)
- Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanshan Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiali Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Jianqiao Liu
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Haiying Liu
| |
Collapse
|
53
|
Duan Q, Hu T, Zhu Q, Jin X, Chi F, Chen X. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front Immunol 2022; 13:974433. [PMID: 36172353 PMCID: PMC9510989 DOI: 10.3389/fimmu.2022.974433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
mRNA products are therapies that are regulated from the post-transcriptional, pre-translational stage of a gene and act upstream of protein synthesis. Compared with traditional small molecule drugs and antibody drugs, mRNA drugs had the advantages of simple design, short development cycle, strong target specificity, wide therapeutic field, and long-lasting effect. mRNA drugs were now widely used in the treatment of genetic diseases, tumors, and viral infections, and are expected to become the third major class of drugs after small molecule drugs and antibody drugs. The delivery system technology was the key to ensuring the efficacy and safety of mRNA drugs, which plays an important role in protecting RNA structure, enhancing targeting ability, reducing the dose of drug delivery, and reducing toxic side effects. Lipid nanoparticles (LNP) were the most common delivery system for mRNA drugs. In recent years, mRNA drugs have seen rapid development, with the number of drugs on the market increasing each year. The success of commercializing mRNA vaccines has driven a wave of nucleic acid drug development. mRNA drugs were clinically used in genetic diseases, oncology, and infectious diseases worldwide, while domestic mRNA clinical development was focused on COVID-19 vaccines, with more scope for future indication expansion.
Collapse
|
54
|
Magdy R, Khedr D, Yacoub O, Attia A, Abdelrahman MA, Mekkawy D. Epidemiological aspects of headache after different types of
COVID
‐19 vaccines: An online survey. Headache 2022; 62:1046-1052. [PMID: 36005277 PMCID: PMC9538602 DOI: 10.1111/head.14374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Rehab Magdy
- Department of Neurology, Kasr Al‐Ainy Faculty of Medicine Cairo University Cairo Egypt
| | - Diana Khedr
- Department of Neurology, Kasr Al‐Ainy Faculty of Medicine Cairo University Cairo Egypt
| | - Osama Yacoub
- Department of Neurology, Kasr Al‐Ainy Faculty of Medicine Cairo University Cairo Egypt
| | - Abeer Attia
- Department of Public Health and Community Medicine, Faculty of Medicine Cairo University Cairo Egypt
| | | | - Doaa Mekkawy
- Department of Neurology, Kasr Al‐Ainy Faculty of Medicine Cairo University Cairo Egypt
| |
Collapse
|
55
|
COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation. Life (Basel) 2022; 12:life12091358. [PMID: 36143394 PMCID: PMC9505388 DOI: 10.3390/life12091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with phenotypic and functional changes in the immune system, followed by detrimental clinical consequences, such as severe infections and defective response to vaccination. Two years of the pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have undoubtedly changed the world; however, all efforts to confront infection and provide new generation vaccines tremendously improved our understanding of the mechanisms of the immune response against infections and after vaccination. Humoral and cellular responses to vaccines, including mRNA vaccines, are apparently affected in CKD patients, as elimination of recent thymic emigrant and naïve lymphocytes and regulatory T-cells, together with contraction of T-cell repertoire and homeostatic proliferation rate, which characterized CKD patients are responsible for impaired immune activation. Successful renal transplantation will restore some of these changes, although several epigenetic changes are irreversible and even accelerated by the induction of immunosuppression. Response to vaccination is definitely impaired among both CKD and RT patients. In the present review, we analyzed the differences in immune response after vaccination between these patients and healthy individuals and depicted specific parameters, such as alterations in the immune system, predisposing to this deficient response.
Collapse
|
56
|
Farshidi H, Farshidi N, Ghaedi T, Hassaniazad M, Eftekhar E, Gouklani H, Asadi Karam MR, Shahbazi B, Kalani M, Ahmadi K. Preparation and pre-clinical evaluation of flagellin-adjuvanted NOM vaccine candidate formulated with Spike protein against SARS-CoV-2 in mouse model. Microb Pathog 2022; 171:105736. [PMID: 36030048 PMCID: PMC9400380 DOI: 10.1016/j.micpath.2022.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 10/25/2022]
Abstract
From December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was started as a cluster of pneumonia cases in Wuhan, Hubei Province, China. The disturbing statistics of SARS-CoV-2 promoted scientists to develop an effective vaccine against this infection. NOM protein is a multi-epitope protein that designed based on Nucleocapsid, ORF3a, and Membrane proteins of SARS-CoV-2. Flagellin is a structural protein that binds to the Toll-like receptor 5 and can enhance the immune response to a particular antigen. In this study, NOM protein as vaccine candidate was linked to the carboxyl and amino terminals of flagellin adjuvant derived from Salmonella enterica subsp. enterica serovar Dublin. Then, informatics evaluations were performed for both NOM protein and NOM protein linked to flagellin (FNOM). The interaction between the NOM and FNOM proteins with the TLR5 were assessed using docking analysis. The FNOM protein, which compared to the NOM protein, had a more suitable 3D structure and a stronger interaction with TLR5, was selected for experimental study. The FNOM and Spike (S) proteins expressed and then purified by Ni-NTA column as vaccine candidates. For analysis of immune response, anti-FNOM and anti-S proteins total IgG and IFN-γ, TNF-α, IL-6, IL-10, IL-22 and IL-17 cytokines were evaluated after vaccination of mice with vaccine candidates. The results indicated that the specific antisera (Total IgG) raised in mice that received FNOM protein formulated with S protein were higher than mice that received FNOM and S proteins alone. Also, IFN-γ and TNF-α levels after the spleen cells stimulation were significantly increased in mice that received the FNOM protein formulated with S protein compared to other groups. Immunogenic evaluations showed that, the FNOM chimeric protein could simultaneously elicit humoral and cell-mediated immune responses. Finally, it could be concluded that the FNOM protein formulated with S protein could be considered as potential vaccine candidate for protection against SARS-CoV-2 in the near future.
Collapse
Affiliation(s)
- Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tayebeh Ghaedi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center، Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Kalani
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
57
|
Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné MÈ, Blanchette LJ, Garneau C, Fillion M, Savard P, Dubuc I, Flamand L, Farnòs O, Xu X, Kamen A, Gilbert M, Rabezanahary H, Scarrone M, Couture C, Baz M, Leclerc D. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 44:102584. [PMID: 35850421 PMCID: PMC9287509 DOI: 10.1016/j.nano.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
A vaccine candidate to SARS-CoV-2 was constructed by coupling the viral receptor binding domain (RBD) to the surface of the papaya mosaic virus (PapMV) nanoparticle (nano) to generate the RBD-PapMV vaccine. Immunization of mice with the coupled RBD-PapMV vaccine enhanced the antibody titers and the T-cell mediated immune response directed to the RBD antigen as compared to immunization with the non-coupled vaccine formulation (RBD + PapMV nano). Anti-RBD antibodies, generated in vaccinated animals, neutralized SARS-CoV-2 infection in vitro against the ancestral, Delta and the Omicron variants. At last, immunization of mice susceptible to the infection by SARS-CoV-2 (K18-hACE2 transgenic mice) with the RBD-PapMV vaccine induced protection to the ancestral SARS-CoV-2 infectious challenge. The induction of the broad neutralization against SARS-CoV-2 variants induced by the RBD-PapMV vaccine demonstrate the potential of the PapMV vaccine platform in the development of efficient vaccines against viral respiratory infections.
Collapse
|
58
|
Shati AA, Al-Qahtani SM, Alsabaani AA, Mahmood SE, Alqahtani YA, AlQahtani KM, Aldarami MS, AlAmri FD, Alqahtani AS, AlHadi AM, Ahmad A, Riaz FA. Perceptions of Parents towards COVID-19 Vaccination in Children, Aseer Region, Southwestern Saudi Arabia. Vaccines (Basel) 2022; 10:vaccines10081222. [PMID: 36016110 PMCID: PMC9414894 DOI: 10.3390/vaccines10081222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Vaccines are an important part of the COVID-19 pandemic response plan. This cross-sectional study aims to assess the attitude and perception levels of parents toward COVID-19 vaccines for children aged 0–18 years in the Aseer region of Saudi Arabia. Data were analyzed using SPSS version 16.0. Out of a total of 1463 parents, 30.6% assumed that COVID-19 vaccination may be more dangerous for children than adults. Nearly 36.5% parents don’t have any concern about children’s vaccination. About 12.8% of children have not received the vaccination, 55% of parents have some sort of hesitation and 32.2% of parents did not hesitate before vaccinating their children against COVID-19. Only 15.4% of parents expect that the COVID-19 vaccine affects their child’s genes. About 23.4% parents strongly agreed and 35.1% agreed about the importance of getting their children vaccinated. About 22.1% of parents strongly agreed and 33.3% agreed regarding their willingness to get their children vaccinated to prevent Coronavirus disease. More than 80% of parents recommended rushing to receive the COVID-19 vaccine. Health professionals and policymakers should implement and support strategies to ensure children are vaccinated for COVID-19. They also need to educate parents and families regarding childhood vaccination.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia or (A.A.S.); (S.M.A.-Q.); (Y.A.A.)
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia or (A.A.S.); (S.M.A.-Q.); (Y.A.A.)
| | - Abdullah A. Alsabaani
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (F.A.R.)
| | - Syed E. Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (F.A.R.)
- Correspondence: ; Tel.: +966-5504-84344
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia or (A.A.S.); (S.M.A.-Q.); (Y.A.A.)
| | - Khalid M. AlQahtani
- Medical Intern, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (K.M.A.); (M.S.A.)
| | - Mohammed S. Aldarami
- Medical Intern, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (K.M.A.); (M.S.A.)
| | - Fahad D. AlAmri
- Medical Student, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (F.D.A.); (A.S.A.); (A.M.A.)
| | - Abdulrahman Saad Alqahtani
- Medical Student, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (F.D.A.); (A.S.A.); (A.M.A.)
| | - Abdulrahman M. AlHadi
- Medical Student, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (F.D.A.); (A.S.A.); (A.M.A.)
| | - Ausaf Ahmad
- Department of Community Medicine, Integral University, Kursi Road, Lucknow 226026, India;
| | - Fatima A. Riaz
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (F.A.R.)
| |
Collapse
|
59
|
Tuning Design Parameters of ICAM-1-Targeted 3DNA Nanocarriers to Optimize Pulmonary Targeting Depending on Drug Type. Pharmaceutics 2022; 14:pharmaceutics14071496. [PMID: 35890393 PMCID: PMC9316040 DOI: 10.3390/pharmaceutics14071496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.
Collapse
|
60
|
Vega-Magaña N, Muñoz-Valle JF, Peña-Rodríguez M, Viera-Segura O, Pereira-Suárez AL, Hernández-Bello J, García-Chagollan M. Specific T-Cell Immune Response to SARS-CoV-2 Spike Protein over Time in Naïve and SARS-CoV-2 Previously Infected Subjects Vaccinated with BTN162b2. Vaccines (Basel) 2022; 10:vaccines10071117. [PMID: 35891281 PMCID: PMC9319730 DOI: 10.3390/vaccines10071117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the COVID-19 pandemic, the rapid development of vaccines against SARS-CoV-2 has been promoted. BNT162b2 is a lipid-nanoparticle mRNA vaccine with 95% efficacy and is the most administered vaccine globally. Nevertheless, little is known about the cellular immune response triggered by vaccination and the immune behavior over time. Therefore, we evaluated the T-cell immune response against the SARS-CoV-2 spike protein and neutralization antibodies (nAbs) in naïve and SARS-CoV-2 previously infected subjects vaccinated with BTN162b2. Methods: Forty-six BTN162b2 vaccinated subjects were included (twenty-six naïve and twenty SARS-CoV-2 previously infected subjects vaccinated with BTN162b2). Blood samples were obtained at basal (before vaccination), 15 days after the first dose, and 15 days after the second dose, to evaluate cellular immune response upon PBMC’s stimulation and cytokine levels. The nAbs were determined one and six months after the second dose. Results: SARS-CoV-2 previously infected subjects vaccinated with BTN162b2 showed the highest proportion of nAbs compared to naïve individuals one month after the second dose. However, women were more prone to lose nAbs percentages over time significantly. Furthermore, a diminished CD154+ IFN-γ+ CD4+ T-cell response was observed after the second BTN162b2 dose in those with previous SARS-CoV-2 infection. In contrast, naïve participants showed an overall increased CD8+ IFN-γ+ TNF-α+ T-cell response to the peptide stimulus. Moreover, a significant reduction in IP-10, IFN-λI, and IL-10 cytokine levels was found in both studied groups. Additionally, the median fluorescence intensity (MFI) levels of IL-6, IFNλ-2/3, IFN-𝛽, and GM-CSF (p < 0.05) were significantly reduced over time in the naïve participants. Conclusion: We demonstrate that a previous SARS-CoV-2 infection can also impact cellular T-cell response, nAbs production, and serum cytokine concentration. Therefore, the study of T-cell immune response is essential for vaccination scheme recommendations; future vaccine boost should be carefully addressed as continued stimulation by vaccination might impact the T-cell response.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Marcela Peña-Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Jorge Hernández-Bello
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Mariel García-Chagollan
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
- Correspondence:
| |
Collapse
|
61
|
Current Evidence in SARS-CoV-2 mRNA Vaccines and Post-Vaccination Adverse Reports: Knowns and Unknowns. Diagnostics (Basel) 2022; 12:diagnostics12071555. [PMID: 35885461 PMCID: PMC9316835 DOI: 10.3390/diagnostics12071555] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
The novel mRNA vaccinations against COVID-19 are gaining worldwide attention for their potential efficacy, as well as for the diagnosis of some post-vaccination-reported adverse reactions. In this state-of-the-art review article, we present the current evidence regarding mainly the diagnosis of spontaneous allergic reactions, the skin occurrences, the vascular, blood, endocrine and heart events, the respiratory reports, the gastrointestinal, hepatic and kidney events, the reproductive and pregnancy issues and the muscle events, as well as the ear, eye, neurologic and psychiatric events following mRNA vaccination against COVID-19. We further present some evidence regarding the mRNA strategies, we provide important information for side effects associated with the spike protein based LNP-mRNA vaccine and its adjuvants, as well as evidence for all the possible dangerous roles of the spike protein, and we discuss our expert opinion on the knowns and the unknowns towards the topic.
Collapse
|
62
|
Kovpak AA, Piniaeva AN, Gerasimov OA, Tcelykh IO, Ermakova MY, Zyrina AN, Danilov DV, Ivin YY, Kozlovskaya LI, Ishmukhametov AA. Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography. Vaccines (Basel) 2022; 10:vaccines10060949. [PMID: 35746557 PMCID: PMC9228843 DOI: 10.3390/vaccines10060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Various types of COVID-19 vaccines, including adenovirus, mRNA, and inactivated ones, have been developed and approved for clinical use worldwide. Inactivated vaccines are produced using a proven technology that is widely used for the production of vaccines for the prevention and control of infectious diseases, including influenza and poliomyelitis. The development of inactivated whole-virion vaccines commonly includes several stages: the production of cellular and viral biomass in cell culture; inactivation of the virus; filtration and ultrafiltration; chromatographic purification of the viral antigen; and formulation with stabilizers and adjuvants. In this study, the suitability of four resins for Size-Exclusion Chromatography was investigated for the purification of a viral antigen for the human COVID-19 vaccine.
Collapse
Affiliation(s)
- Anastasia A. Kovpak
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
- Correspondence:
| | - Anastasia N. Piniaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Oleg A. Gerasimov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Irina O. Tcelykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Mayya Y. Ermakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Anna N. Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Dmitry V. Danilov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Yury Y. Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
| | - Liubov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, 119991 Moscow, Russia
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (A.N.P.); (O.A.G.); (I.O.T.); (M.Y.E.); (A.N.Z.); (D.V.D.); (Y.Y.I.); (L.I.K.); (A.A.I.)
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
63
|
Correlation Analysis of Anti-SARS-CoV-2 RBD IgG and Neutralizing Antibody against SARS-CoV-2 Omicron Variants after Vaccination. Diagnostics (Basel) 2022; 12:diagnostics12061315. [PMID: 35741126 PMCID: PMC9221553 DOI: 10.3390/diagnostics12061315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/14/2023] Open
Abstract
Various vaccines have been developed to control the COVID-19 pandemic, but the available vaccines were developed using ancestral SARS-CoV-2 wild-type (WT) strains. Commercial anti-SARS-CoV-2 receptor binding domain (RBD) antibody assays have been established and employed for validation of vaccine efficacy. However, these assays were developed before the SARS-CoV-2 variants of concern (VOCs) emerged. It is unclear whether anti-RBD IgG levels can predict immunity against VOCs. In this study, we determined the correlations between the levels of anti-RBD IgG and neutralizing antibodies (NAbs) against SARS-CoV-2 variants in vaccinated subjects. After vaccination, 100% of subjects showed an anti-RBD IgG response, whereas 82, 79, 30, 75, and 2% showed NAb responses against WT, Alpha, Beta, Delta, and Omicron variants, respectively. A high correlation was observed between anti-RBD IgG and NAbs against WT, Alpha, Beta, and Delta, but not so for the Omicron NAbs. Among subjects with high levels of anti-RBD IgG, 93, 93, 71, 93, and 0% of them had NAbs against WT, Alpha, Beta, Delta, and Omicron variants, respectively. These results indicate that anti-RBD IgG levels cannot be used as a predictor for the presence of NAbs against the globally dominant SARS-CoV-2 Omicron variant.
Collapse
|
64
|
Kaewborisuth C, Wanitchang A, Koonpaew S, Srisutthisamphan K, Saenboonrueng J, Im-Erbsin R, Inthawong M, Sunyakumthorn P, Thaweerattanasinp T, Tanwattana N, Jantraphakorn Y, Reed MC, Lugo-Roman LA, Hunsawong T, Klungthong C, Jones AR, Fernandez S, Teeravechyan S, Lombardini ED, Jongkaewwattana A. Chimeric Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection against SARS-CoV-2 Viremia in K18-hACE2 Mice. Vaccines (Basel) 2022; 10:vaccines10050786. [PMID: 35632541 PMCID: PMC9143195 DOI: 10.3390/vaccines10050786] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice.
Collapse
Affiliation(s)
- Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Asawin Wanitchang
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Surapong Koonpaew
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Janya Saenboonrueng
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Manutsanun Inthawong
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Theeradej Thaweerattanasinp
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Matthew C. Reed
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Taweewun Hunsawong
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Chonticha Klungthong
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Anthony R. Jones
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Eric D. Lombardini
- U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand;
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
- Correspondence:
| |
Collapse
|
65
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
66
|
Kubas A, Malecka-Wojciesko E. COVID-19 Vaccination in Inflammatory Bowel Disease (IBD). J Clin Med 2022; 11:2676. [PMID: 35566802 PMCID: PMC9104993 DOI: 10.3390/jcm11092676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines against SARS-CoV-2 are believed to play a key role in the suppression of the COVID-19 pandemic. However, patients suffering from inflammatory bowel diseases (IBD) were excluded from SARS-CoV-2 vaccines trials. Therefore, concerns regarding vaccination efficacy and safety among those patients were raised. Overall, vaccination is well tolerated in the IBD population, and different gastroenterological societies recommend vaccinating patients with IBD at the earliest opportunity to do so. Nevertheless, very little is known about the safety of COVID-19 vaccines in special IBD populations such as pregnant and breastfeeding women or pediatric patients, and further research on this matter is crucial. The available data on vaccine efficacy are promising and show high seroconversion rates in IBD patients on different immune-modifying therapies. However, patients treated with high doses of systemic corticosteroids, infliximab or infliximab and immunomodulators may have a blunted response to the vaccination. The data on COVID-19 vaccination willingness among patients with IBD are conflicting. Nevertheless, vaccine effectiveness and safety are reported to be the most common reasons for hesitancy. This review examines the effectiveness and safety of COVID-19 vaccines and describes vaccination willingness and the reasons for potential hesitancy among patients with IBD.
Collapse
Affiliation(s)
| | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
67
|
Lee HJ, Jung J, Lee JH, Lee DG, Kim YB, Oh EJ. Comparison of Six Serological Immunoassays for the Detection of SARS-CoV-2 Neutralizing Antibody Levels in the Vaccinated Population. Viruses 2022; 14:946. [PMID: 35632688 PMCID: PMC9147836 DOI: 10.3390/v14050946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Neutralizing antibody (NAb) detection is critical for evaluating herd immunity and monitoring the efficacy of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, quantitative SARS-CoV-2 antibody levels after vaccination were measured by chemiluminescent immunoassays, enzyme immunoassays, and surrogate virus neutralization tests (sVNTs), as well as plaque reduction neutralization tests (PRNT). Sequential blood samples were collected before and 1 and 3 months after vaccination in 30 healthy participants (two doses of Oxford-AstraZeneca [AZ] or Pfizer-BioNTech [BNT]). After vaccination, all sera tested positive for PRNT, with NAb titers ranging from 1:10 to 1:723. Median NAb titers were higher in the BNT vaccine group than in the AZ vaccine group at both one and three months post-vaccination. Excellent overall concordance rates were observed between serological assays and PRNT. In a quantitative correlation analysis, the results of sVNTs showed a strong correlation with those of PRNT. Results of the four binding antibody assays showed a significant correlation with those of PRNT. The serologic assays evaluated in this study could be used as sVNTs to evaluate the efficacy of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea;
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul 06591, Korea
| | - Ji Hyun Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea;
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea;
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
68
|
Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022; 11:pathogens11050516. [PMID: 35631037 PMCID: PMC9144800 DOI: 10.3390/pathogens11050516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.
Collapse
Affiliation(s)
- Raluca Dumache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Alexandra Enache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Victor Dumitrascu
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Alexandra Mihailescu
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
- Genetics, Genomic Medicine Research Center, Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology, Discipline of Molecular and Cell Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Cristian Sebastian Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Camelia Muresan
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| |
Collapse
|
69
|
Pisani D, Gioacchini FM, Viola P, Scarpa A, Astorina A, Re M, Marcianò G, Manti F, Anzivino R, Chiarella G. Audiovestibular Disorders after COVID-19 Vaccine: Is There an Association? Audiol Res 2022; 12:212-223. [PMID: 35645194 PMCID: PMC9149883 DOI: 10.3390/audiolres12030024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The SARS-CoV-2 vaccination campaign is probably one of the most historic public hygiene measures in modern medicine. The drama of the pandemic has forced the scientific community to accelerate the development and commercialization of vaccines, thereby enhancing the phases of active surveillance. Among the adverse events following immunization (AEFI) reported, those of an audiovestibular interest, such as sudden sensorineural hearing loss (SSNHL), tinnitus, dizziness, and vertigo, constitute a very small percentage. There are many plausible etiological hypotheses, and scientific research needs to pay more attention to the correct collection of data, which up until now have often been inadequate and fragmented, on which to base future studies. SSNHL, new onset tinnitus, vertigo, and dizziness require a prompt evaluation, while the proposed treatment is the same as it is for events unrelated to vaccination. These are uncommon adverse events, and the risk rates for these diseases have not increased in conjunction with the COVID-19 vaccinations, therefore there is no justification of any hesitation towards the vaccination campaign.
Collapse
Affiliation(s)
- Davide Pisani
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.P.); (A.A.); (G.C.)
| | - Federico Maria Gioacchini
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Conca 71, 60020 Ancona, Italy; (F.M.G.); (M.R.)
| | - Pasquale Viola
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.P.); (A.A.); (G.C.)
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy;
| | - Alessia Astorina
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.P.); (A.A.); (G.C.)
| | - Massimo Re
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Conca 71, 60020 Ancona, Italy; (F.M.G.); (M.R.)
| | - Gianmarco Marcianò
- Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Manti
- U.O.C. Radiodiagnostics, Magna Graecia University, 88100 Catanzaro, Italy;
| | | | - Giuseppe Chiarella
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.P.); (A.A.); (G.C.)
| |
Collapse
|
70
|
Tian X, Zhang Y, He Z, Li S, Yan D, Zhu Z, Wan Y, Wang W. Successive Site Translocating Inoculation Improved T Cell Responses Elicited by a DNA Vaccine Encoding SARS-CoV-2 S Protein. Front Immunol 2022; 13:875236. [PMID: 35514964 PMCID: PMC9062103 DOI: 10.3389/fimmu.2022.875236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
A variety of methods have been explored to increase delivery efficiencies for DNA vaccine. However, the immunogenicity of DNA vaccines has not been satisfactorily improved. Unlike most of the previous attempts, we provided evidence suggesting that changing the injection site successively (successively site-translocated inoculation, SSTI) could significantly enhance the immunogenicity of DNA vaccines in a previous study. To simplify the strategy and to evaluate its impact on candidate SARS-CoV-2 vaccines, we immunized mice with either a SARS-CoV-2 spike-based DNA vaccine or a spike protein subunit vaccine via three different inoculation strategies. Our data demonstrated that S protein specific antibody responses elicited by the DNA vaccine or the protein subunit vaccine showed no significant difference among different inoculation strategies. Of interest, compared with the conventional site fixed inoculation (SFI), both successive site-translocating inoculation (SSTI) and the simplified translocating inoculation (STI) strategy improved specific T cell responses elicited by the DNA vaccine. More specifically, the SSTI strategy significantly improved both the monofunctional (IFN-γ+IL-2-TNF-α-CD8+) and the multifunctional (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses, while the simplified translocating inoculation (STI) strategy significantly improved the multifunctional CD8+ (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2+TNF-α+CD8+) and CD4+ (IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses. The current study confirmed that changing the site of intra muscular injection can significantly improve the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Xiangxiang Tian
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yifan Zhang
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Zhangyufan He
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoshuai Li
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Dongmei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Wanhai Wang
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
71
|
Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clin Immunol 2022; 237:108958. [PMID: 35218966 PMCID: PMC8865932 DOI: 10.1016/j.clim.2022.108958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
The development of COVID-19 vaccines was promptly regulated to ensure the best possible approach. By January 2022, 75 candidates reached preclinical evaluation in various animal models, 114 vaccines were in clinical trials on humans, and 48 were in the final testing stages. Vaccine platforms range from whole virus vaccines to nucleic acid vaccines, which are the most promising in prompt availability and safety. The USA and Europe have approved vaccines developed by Pfizer-BioNTech (BNT162b2) and Moderna (mRNa1273). So far, Pfizer-BioNTech, Moderna, Johnson & Johnson, AstraZeneca-University of Oxford, Sinopharm, Sinovac Biotech Gamaleya, Bharat Biotech, and Novavax have documented effective vaccines. Even with technological advances and a fast-paced development approach, many limitations and problems need to be overcome before a large-scale production of new vaccines can start. The Key is to ensure equal and fair distribution globally through regulatory measures. Recent studies link Bacillus Calmette-Guérin (BCG) vaccination programs and lower disease severity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Shvetha Srinath
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | - Asma Gasmi Benahmed
- Université Claude Bernard, Villeurbanne, France; Académie Internationale de Médecine Dentaire Intégrative, Paris, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
72
|
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022; 60:321-334. [PMID: 35157221 PMCID: PMC8853094 DOI: 10.1007/s12275-022-1621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Collapse
|
73
|
Hernández RM, Esteban RFC, Mamani-Benito O, Chaparro JET, Saavedra-López MA, Calle-Ramirez XM, Wong-Fajardo M, Campos-Ugaz O. Latin American Scientific Production on COVID-19 Vaccines. Ethiop J Health Sci 2022; 32:235-242. [PMID: 35693566 PMCID: PMC9175231 DOI: 10.4314/ejhs.v32i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Currently, there is a worldwide health crisis due to the COVID-19 pandemic; consequently, it is necessary to find effective vaccines in order to immunize the population and prevent the transmission of the disease. Likewise, it is important to know vaccine progress and efficacy research, mainly in Latin American countries where no studies have been conducted yet to know the scientific production on COVID-19. Methods A retrospective and descriptive study was carried out and COVID-19 vaccine publications in Scopus-indexed journals were considered as a unit of analysis for the period between 2020 and June 2021, with authors affiliated to Latin American institutions. Results We found 141 published Scopus-indexed COVID-19 vaccine articles with authors affiliated to Latin American institutions. Brazil has the highest scientific production with 33.33%, followed by Mexico, Colombia, Argentina and Chile. Regarding productivity by institution, 137 international institutions have participated in the Latin American COVID-19 vaccine production. The journals with the highest number of published articles are Vaccines and Vaccine. Both journals are located in Q1 of the SJR. The most frequently used descriptor was coronavirus disease 2019. Conclusion The Latin American scientific production on COVID-19 vaccines included 141 published Scopus-indexed articles. Likewise, Brazil is the Latin American country with the highest scientific production.
Collapse
|
74
|
Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, Phalke S, Velu GSK. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med (Lausanne) 2022; 9:815389. [PMID: 35273977 PMCID: PMC8902153 DOI: 10.3389/fmed.2022.815389] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
With the high rate of COVID-19 infections worldwide, the emergence of SARS-CoV-2 variants was inevitable. Several mutations have been identified in the SARS-CoV-2 genome, with the spike protein as one of the mutational hot spots. Specific amino acid substitutions such as D614G and N501Y were found to alter the transmissibility and virulence of the virus. The WHO has classified the variants identified with fitness-enhancing mutations as variants of concern (VOC), variants of interest (VOI) or variants under monitoring (VUM). The VOCs pose an imminent threat as they exhibit higher transmissibility, disease severity and ability to evade vaccine-induced and natural immunity. Here we review the mutational landscape on the SARS-CoV-2 structural and non-structural proteins and their impact on diagnostics, therapeutics and vaccines. We also look at the effectiveness of approved vaccines, antibody therapy and convalescent plasma on the currently prevalent VOCs, which are B.1.17, B.1.351, P.1, B.1.617.2 and B.1.1.529. We further discuss the possible factors influencing mutation rates and future directions.
Collapse
Affiliation(s)
- Suresh Thakur
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - Shalitha Sasi
- Blue Horizon International Therapeutic Sciences, Hackensack, NJ, United States
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Disease, New Delhi, India
| | - Sameer Phalke
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - G. S. K. Velu
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| |
Collapse
|
75
|
Ju JH, Lee N, Kim SH, Chang S, Yang M, Shin J, Lee E, Sung S, Kim JH, Hong JT, Oh HJ. Points to consider for COVID-19 vaccine quality control and national lot release in Republic of Korea: focus on a viral vector platform. Osong Public Health Res Perspect 2022; 13:4-14. [PMID: 35255674 PMCID: PMC8907614 DOI: 10.24171/j.phrp.2021.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Due to the global public health crisis caused by the coronavirus disease 2019 (COVID-19) pandemic, the importance of vaccine development has increased. In particular, a rapid supply of vaccines and prompt deployment of vaccination programs are essential to prevent and overcome the spread of COVID-19. As a part of the vaccine regulations, national lot release is regulated by the responsible authorities, and this process involves the assessment of the lot before a vaccine is marketed. A lot can be released for use when both summary protocol (SP) review and quality control testing are complete. Accelerated lot release is required to distribute COVID-19 vaccines in a timely manner. In order to expedite the process by simultaneously undertaking the verification of quality assessment and application for approval, it is necessary to prepare the test methods before marketing authorization. With the prolonged pandemic and controversies regarding the effectiveness of the COVID-19 vaccine against new variants, public interest for the development of a new vaccine are increasing. Domestic developers have raised the need to establish standard guidance on the requirements for developing COVID-19 vaccine. This paper presents considerations for quality control in the manufacturing process, test items, and SP content of viral vector vaccines.
Collapse
|
76
|
Cheng X, Chen Q, Tang L, Wu Y, Wang H, Wang G. Rapid Response in an Uncertain Environment: Study of COVID-19 Scientific Research Under the Parallel Model. Healthc Policy 2022; 15:339-349. [PMID: 35250320 PMCID: PMC8896189 DOI: 10.2147/rmhp.s351261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The rapid response of COVID-19 scientific research played a significant role in pandemic prevention and control but failed to block the spread of the pandemic rapidly. Besides the complexity of the virus, the effectiveness of control and prevention measures, and other factors, the adaptation of the mode of conducting scientific research is also crucial for the prevention and control of COVID-19. In this study, a parallel model was used to explore the effects of the rapid scientific response on COVID-19 to assess why pandemics continue to spread under rapid response. Analysis This study presents the response of scientific research based on country/region and publication dimensions after analyzing COVID-19 studies in the Web of Science and PubMed databases. Co-occurrence analysis of items was used to determine the generation rate of COVID-19 research under different topics to identify the reflected innovation model. Results More manifestations on rapid response of COVID-19 research, especially compared with the linear model of SARS research, showed that the COVID-19 research followed a parallel or concurrent innovation model. Conclusion Early multi-stakeholder partnership, convenient information sharing, and improved research competence promote the parallel model in COVID-19. Meanwhile, the uncertainty of the COVID-19 virus and the adverse effect of rapid response may limit the time efficiency of the parallel model. In conclusion, the rapid prevention and control of the pandemic cannot fully rely on scientific research but requires more combined effort under an uncertain global setting.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China
| | - Qiyuan Chen
- Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China
| | - Li Tang
- Department of Public Administration, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Yue Wu
- Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China
| | - Haoran Wang
- Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China
| | - Guoyan Wang
- Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China
- Correspondence: Guoyan Wang, Department of Digital Communication, Soochow University, Soochow, Jiangsu, 215123, People’s Republic of China, Tel +86-19951313650, Email
| |
Collapse
|
77
|
Jiang Y, Wu Q, Song P, You C. The Variation of SARS-CoV-2 and Advanced Research on Current Vaccines. Front Med (Lausanne) 2022; 8:806641. [PMID: 35118097 PMCID: PMC8804231 DOI: 10.3389/fmed.2021.806641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 2 years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) and rapidly spread worldwide. In the process of evolution, new mutations of SARS-CoV-2 began to appear to be more adaptable to the diverse changes of various cellular environments and hosts. Generally, the emerging SARS-CoV-2 variants are characterized by high infectivity, augmented virulence, and fast transmissibility, posing a serious threat to the prevention and control of the global epidemic. At present, there is a paucity of effective measurements to cure COVID-19. It is extremely crucial to develop vaccines against SARS-CoV-2 and emerging variants to enhance individual immunity, but it is not yet known whether they are approved by the authority. Therefore, we systematically reviewed the main characteristics of the emerging various variants of SARS-CoV-2, including their distribution, mutations, transmissibility, severity, and susceptibility to immune responses, especially the Delta variant and the new emerging Omicron variant. Furthermore, we overviewed the suitable crowd, the efficacy, and adverse events (AEs) of current vaccines.
Collapse
Affiliation(s)
| | | | | | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
78
|
Oluwagbemi OO, Oladipo EK, Dairo EO, Ayeni AE, Irewolede BA, Jimah EM, Oyewole MP, Olawale BM, Adegoke HM, Ogunleye AJ. Computational construction of a glycoprotein multi-epitope subunit vaccine candidate for old and new South-African SARS-CoV-2 virus strains. INFORMATICS IN MEDICINE UNLOCKED 2022; 28:100845. [PMID: 35071728 PMCID: PMC8760845 DOI: 10.1016/j.imu.2022.100845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022] Open
Abstract
The discovery of a new SARS-CoV-2 virus strain in South Africa presents a major public health threat, therefore contributing to increased infections and transmission rates during the second wave of the global pandemic. This study lays the groundwork for the development of a novel subunit vaccine candidate from the circulating strains of South African SARS-CoV-2 and provides an understanding of the molecular epidemiological trend of the circulating strains. A total of 475 whole-genome nucleotide sequences from South Africa submitted between December 1, 2020 and February 15, 2021 available at the GISAID database were retrieved based on its size, coverage level and hosts. To obtain the distribution of the clades and lineages of South African SARS-CoV-2 circulating strains, the metadata of the sequence retrieved were subjected to an epidemiological analysis. There was a prediction of the cytotoxic T lymphocytes (CTL), Helper T cells (HTL) and B-cell epitopes. Furthermore, there was allergenicity, antigenicity and toxicity predictions on the epitopes. The analysis of the physicochemical properties of the vaccine construct was performed; the secondary structure, tertiary structure and B-cell 3D conformational structure of the vaccine construct were predicted. Also, molecular binding simulations and dynamics simulations were adopted in the prediction of the vaccine construct's stability and binding affinity with TLRs. Result obtained from the metadata analysis indicated lineage B.1.351 to be in higher circulation among various circulating strains of SARS-CoV-2 in South Africa and GH has the highest number of circulating clades. The construct of the novel vaccine was antigenic, non-allergenic and non-toxic. The Instability index (II) score and aliphatic index were estimated as 41.74 and 78.72 respectively. The computed half-life in mammalian reticulocytes was 4.4 h in vitro, for yeast and in E. coli was >20 h and >10 h in vivo respectively. The grand average of hydropathicity (GRAVY) score is estimated to be -0.129, signifying the hydrophilic nature of the protein. The molecular docking indicates that the vaccine construct has a high binding affinity towards the TLRs with TLR 3 having the highest binding energy (-1203.2 kcal/mol) and TLR 9 with the lowest (-1559.5 kcal/mol). These results show that the vaccine construct is promising and should be evaluated using animal model.
Collapse
Affiliation(s)
- Olugbenga Oluseun Oluwagbemi
- Department of Computer Science and Information Technology, Sol Plaatje University, 8301, Kimberley, South Africa
- Department of Mathematical Sciences, Stellenbosch University, 7602, Matieland, South Africa
- National Institute of Theoretical and Computational Sciences (NiTheCS), South Africa
| | - Elijah Kolawole Oladipo
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Emmanuel Oluwatobi Dairo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Ayodele Eugene Ayeni
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Esther Moradeyo Jimah
- Department of Medical Microbiology and Parasitology, University of Ilorin, Kwara State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Moyosoluwa Precious Oyewole
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife Mary Olawale
- Reproduction and Bioinformatics Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Adewale Joseph Ogunleye
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Oblast, Russian Federation
| |
Collapse
|
79
|
Ismail II, Salama S. A systematic review of cases of CNS demyelination following COVID-19 vaccination. J Neuroimmunol 2022; 362:577765. [PMID: 34839149 PMCID: PMC8577051 DOI: 10.1016/j.jneuroim.2021.577765] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Since the emergency use approval of different types of COVID-19 vaccines, several safety concerns have been raised regarding its early and delayed impact on the nervous system. OBJECTIVE This study aims to systematically review the reported cases of CNS demyelination in association with COVID-19 vaccination, which has not been performed, to our knowledge. METHODS A systematic review was performed by screening published articles and preprints of cases of CNS demyelination in association with COVID-19 vaccines in PubMed, SCOPUS, EMBASE, Google Scholar, Ovid and medRxiv databases, until September 30, 2021. This study followed PRISMA guidelines. Descriptive findings of reported cases were reviewed and stratified by demographic and clinical findings, diagnostic work-up, management, and overall outcome. RESULTS A total of 32 cases were identified, with female predominance (68.8%) and median age of 44 years. Eleven cases were reported after Pfizer vaccine, 8 following AstraZeneca vaccine, 6 following Moderna, 5 following Sinovac/ Sinopharm vaccines, and one following each of Sputnik and Johnson&Johnson vaccines. The majority of cases (71.8%) occurred after the first dose of the vaccine, with neurological symptoms manifesting after a median of 9 days. The most common reported presentations were transverse myelitis (12/32) and MS-like pictures (first diagnosis or a relapse) in another 12/32 cases, followed by ADEM- like (5/32), and NMOSD- like (3/32) presentations. History of a previous immune-mediated disease was reported in 17/32 (53.1%) cases. The mRNA-based vaccines resulted in the greatest number of demyelinating syndromes (17/32), followed by viral vector vaccines (10/32), and inactivated vaccines (5/32). Most MS-like episodes (9/12) were triggered by mRNA-based vaccines, while TM occurred following both viral vector and mRNA-based vaccines. Management included high dose methylprednisolone, PLEX, IVIg, or a combination of those, with a favorable outcome in the majority of case; marked/complete improvement (25/32) or stabilized/ partial recovery in the remaining cases. CONCLUSION This systematic review identified few cases of CNS demyelination following all types of approved COVID-19 vaccines so far. Clinical presentation was heterogenous, mainly following the first dose, however, half of the reported cases had a history of immune-mediated disease. Favorable outcome was observed in most cases. We suggest long-term post-marketing surveillance for these cases, to assess for causality, and ensure the safety of COVID-19 vaccines.
Collapse
Affiliation(s)
- Ismail Ibrahim Ismail
- Department of Neurology, Ibn Sina Hospital, Kuwait,Corresponding author at: Ibn Sina Hospital, Gamal Abdel Nasser Street, Sabah Medical Area, Safat, Kuwait
| | - Sara Salama
- Department of Neurology and Psychiatry, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
80
|
Kantarcioglu B, Iqbal O, Lewis J, Carter CA, Singh M, Lievano F, Ligocki M, Jeske W, Adiguzel C, Gerotziafas GT, Fareed J. An Update on the Status of Vaccine Development for SARS-CoV-2 Including Variants. Practical Considerations for COVID-19 Special Populations. Clin Appl Thromb Hemost 2022; 28:10760296211056648. [PMID: 35167393 PMCID: PMC8851053 DOI: 10.1177/10760296211056648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The progress in the development of various vaccine platforms against SARS-CoV-2 have been rather remarkable owing to advancement in molecular and biologic sciences. Most of the current vaccines and those in development focus on targeting the viral spike proteins by generating antibodies of varying spectrum. These vaccines represent a variety of platforms including whole virus vaccines, viral vector vaccines, nucleic acid vaccines representing RNA, DNA, and their hybrid forms.The therapeutic efficacy of these vaccines varies owing to their pharmacodynamic individualities. COVID-19 variants are capable of inducing different pathologic responses and some of which may be resistant to antibodies generated by current vaccines. The current clinical use of these vaccines has been through emergency use authorization until recently. Moreover, the efficacy and safety of these vaccines have been tested in substantial numbers of individuals but studies in special populations that better reflect the global population are pending results. These specialized populations include young children, immunocompromised patients, pregnant individuals, and other specialized groups. Combination approaches, molecularly modified vaccination approaches, and vaccines conferring longer periods of immunity are being currently being investigated, as well as pharmacovigilance studies.The continual transformation of SARS-CoV-2 and its variants are of concern along with the breakthrough infections. These considerations pose new challenges for the development of vaccination platforms. For this purpose, booster doses, combination vaccine approaches, and other modalities are being discussed. This review provides an updated account of currently available vaccines and those in advanced development with reference to their composition and mechanisms of action.A discussion on the use of vaccines in special populations including immunocompromised patients, pregnant women and other specialized populations are also included.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Omer Iqbal
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Joseph Lewis
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Charles A. Carter
- Campbell University College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA
| | - Meharvan Singh
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | | | - Grigoris T. Gerotziafas
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Thrombosis Center, Service D’Hématologie Biologique Hôpital Tenon, Paris, France
| | - Jawed Fareed
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
81
|
Hong SM, Park YW, Choi EJ. Steroid injections in pain management: influence on coronavirus disease 2019 vaccines. Korean J Pain 2022; 35:14-21. [PMID: 34966008 PMCID: PMC8728555 DOI: 10.3344/kjp.2022.35.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which has been rampant since the end of 2019, has evidently affected pain management in clinical practice. Fortunately, a COVID-19 vaccination program is currently in progress worldwide. There is an ongoing discussion that pain management using steroid injections can decrease COVID-19 vaccine efficacy, although currently there is no direct evidence to support this statement. As such, the feeling of pain in patients is doubled in addition to the co-existing ill-effects of social isolation associated with the pandemic. Thus, in the COVID-19 era, it has become necessary that physicians be able to provide high quality pain management without negatively impacting COVID-19 vaccine efficacy. Steroids can alter the entire process involved in the generation of adaptive immunity after vaccination. The period of hypophysis-pituitary-adrenal axis suppression is known to be 1 to 4 weeks after steroid injection, and although the exact timing for peak efficacy of COVID-19 vaccines is slightly different for each vaccine, the average is approximately 2 weeks. It is suggested to avoid steroid injections for a total of 4 weeks (1 week before and after the two vaccine doses) for the double-shot vaccines, and for 2 weeks in total (1 week before and after vaccination) for a single-shot vaccine. This review focuses on the basic concepts of the various COVID-19 vaccines, the effect of steroid injections on vaccine efficacy, and suggestions regarding an appropriate interval between the administration of steroid injections and the COVID-19 vaccine.
Collapse
Affiliation(s)
- Sung Man Hong
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeon Wook Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Joo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
82
|
Vanhoutte F, Liu W, Wiedmann RT, Haspeslagh L, Cao X, Boundy K, Aliprantis A, Davila M, Hartzel J, Li J, McGuire M, Ramsauer K, Tomberger Y, Tschismarov R, Brown DD, Xu W, Sachs JR, Russell K, Stoch SA, Lai E. Safety and immunogenicity of the measles vector-based SARS-CoV-2 vaccine candidate, V591, in adults: results from a phase 1/2 randomised, double-blind, placebo-controlled, dose-ranging trial. EBioMedicine 2022; 75:103811. [PMID: 35042081 PMCID: PMC8759950 DOI: 10.1016/j.ebiom.2021.103811] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We report on the safety and immunogenicity of V591, a measles vector-based SARS-CoV-2 vaccine candidate. METHODS In this multicentre, randomised, placebo-controlled, double-blind, phase 1/2 trial, healthy adults with no history of COVID-19 disease were assigned to intramuscular injection of V591 or placebo (4:1 ratio). In part 1, younger adults (18-55 years) received V591 median tissue culture infectious dose (TCID50)-levels of 1×105 or 1×106 or placebo, 56 days apart. In part 2, younger and older (>55 years) adults received a single dose of one of four (104/105/106/107) or one of two (105/106) V591 TCID50 levels, respectively, or placebo. PRIMARY OUTCOME safety/tolerability. Secondary outcome: humoral immunogenicity. ClinicalTrials.gov: NCT04498247. FINDINGS From August-December 2020, 444 participants were screened and 263 randomised (210 V591; 53 placebo); 262 received at least one and 10 received two doses of V591 or placebo. Adverse events were experienced by 140/209 (67.0%) V591 dose-group participants and 37/53 (69.8%) placebo-group participants following injection 1; most frequent were fatigue (57 [27.3%] vs 20 [37.7%]), headache (57 [27.3%] vs 19 [35.8%]), myalgia (35 [16.7%] vs 10 [18.9%]), and injection-site pain (35 [16.7%] vs 4 [7.5%]). No deaths nor vaccine-related serious adverse events occurred. At Day 29, no anti-SARS-CoV-2 spike serum neutralising antibody and IgG-responses were identified in placebo or the three lower V591 dose-groups; responses were detected with V591 1×107 TCID50, although titres were lower than convalescent serum. INTERPRETATION V591 was generally well tolerated, but immunogenicity was insufficient to warrant continued development. FUNDING Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
Collapse
Affiliation(s)
| | - Wen Liu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Xin Cao
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Keith Boundy
- Merck & Co., Inc., Kenilworth, NJ, USA; Currently at AlloVir, Inc., Cambridge, MA, USA
| | - Antonios Aliprantis
- Merck & Co., Inc., Kenilworth, NJ, USA; Currently at Flagship Pioneering, Boston, MA, USA
| | | | | | | | | | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yvonne Tomberger
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | - Eseng Lai
- Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
83
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
84
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
85
|
Maffei M, Montemiglio LC, Vitagliano G, Fedele L, Sellathurai S, Bucci F, Compagnone M, Chiarini V, Exertier C, Muzi A, Roscilli G, Vallone B, Marra E. The Nuts and Bolts of SARS-CoV-2 Spike Receptor-Binding Domain Heterologous Expression. Biomolecules 2021; 11:1812. [PMID: 34944456 PMCID: PMC8699011 DOI: 10.3390/biom11121812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight the current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful "tool" to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.
Collapse
Affiliation(s)
- Mariano Maffei
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Grazia Vitagliano
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Luigi Fedele
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Shaila Sellathurai
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Federica Bucci
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | | | - Valerio Chiarini
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Cécile Exertier
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Alessia Muzi
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Giuseppe Roscilli
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Beatrice Vallone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Emanuele Marra
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| |
Collapse
|
86
|
Humoral Immune Response to SARS-CoV-2 Vaccination after a Booster Vaccine Dose in Two Kidney Transplant Recipients with Fabry Disease and Variable Secondary Immunosuppressive Regimens. Vaccines (Basel) 2021; 9:vaccines9121412. [PMID: 34960158 PMCID: PMC8708799 DOI: 10.3390/vaccines9121412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
The urgent need to fight the COVID-19 pandemic has accelerated the development of vaccines against SARS-CoV-2 and approval processes. Initial analysis of two-dose regimens with mRNA vaccines reported up to 95% efficacy against the original strain of the SARS-CoV-2 virus. Challenges arose with the appearance of new strains of the virus, and reports that solid organ transplant recipients may have reduced vaccination success rates after a two-dose mRNA vaccination regimen encouraged health authorities to recommend a booster in immunocompromised patients. Fabry disease is an X-linked inherited lysosomal disorder, which may lead to chronic end-stage renal disease. We report on two patients with advanced Fabry disease, renal graft and adjunctive immunosuppressive therapies who exhibited variable humoral vaccination-related immune responses against SARS-CoV-2 after three vaccine doses. The first patient developed mild COVID-19 infection, while the second patient did not seroconvert after three shots of an mRNA vaccine. Both cases emphasize that patients with Fabry disease and renal graft are susceptible to develop a weak response to COVID-19 vaccination and highlight the importance of maintaining barrier protection measures. Vaccination of family members should be encouraged to lower the risk of viral transmission to immunocompromised, transplanted patients, including vaccinated ones.
Collapse
|
87
|
Bimonte S, Forte CA, Cuomo M, Esposito G, Cascella M, Cuomo A. An Overview on the Potential Roles of EGCG in the Treatment of COVID-19 Infection. Drug Des Devel Ther 2021; 15:4447-4454. [PMID: 34737551 PMCID: PMC8560077 DOI: 10.2147/dddt.s314666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) pandemic is currently ongoing worldwide and causes a lot of deaths in many countries. Although different vaccines for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have been developed and are now available, there are no effective antiviral drugs to treat the disease, except for Remdesivir authorized by the US FDA to counteract the emergency. Thus, it can be useful to find alternative therapies based on the employment of natural compounds, with antiviral features, to circumvent SARS-CoV-2 infection. Pre-clinical studies highlighted the antiviral activities of epigallocatechin-3-gallate (EGCG), a catechin primarily found in green tea, against various viruses, including SARS-CoV-2. In this review, we summarize this experimental evidence and highlight the potential use of EGCG as an alternative therapeutic choice for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Massimiliano Cuomo
- S.C. Project Management e Formazione, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
88
|
Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. mBio 2021; 12:e0181321. [PMID: 34634927 PMCID: PMC8510518 DOI: 10.1128/mbio.01813-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 μg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19.
Collapse
|
89
|
Watts I, Smith D, Mounter S, Baker EH, Hitchings AW, Gill D. A case series of vaccine-induced thrombotic thrombocytopenia in a London teaching hospital. Br J Clin Pharmacol 2021; 88:1935-1941. [PMID: 34694650 PMCID: PMC8652623 DOI: 10.1111/bcp.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
The ChAdOx1 nCoV‐19 vaccine has been associated with increased risk of thrombosis. Understanding of the management of these rare events is evolving, and currently recommended treatments include human normal immunoglobulin and nonheparin anticoagulation such as direct oral anticoagulants. Our report describes three consecutive patients presenting to a London teaching hospital with vaccine‐induced thrombotic thrombocytopenia (VITT), also referred to as vaccine‐induced prothrombotic immune thrombocytopenia. The patients ranged in age from 40 to 54 years and two had no known previous medical comorbidities. Two patients had cerebral venous sinus thrombosis and one had a deep vein thrombosis. Two were treated with anticoagulation, one with oral rivaroxaban and the other with an intravenous argotraban infusion that was later converted to oral apixaban. One patient received three doses of human normal immunoglobulin and 5 days of therapeutic plasma exchange. This case series may be used to improve understanding of the clinical course and management of VITT.
Collapse
Affiliation(s)
- Isabella Watts
- Clinical Pharmacology and Therapeutics Section, St George's University of London, London, UK.,Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
| | - David Smith
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Sarah Mounter
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Emma H Baker
- Clinical Pharmacology and Therapeutics Section, St George's University of London, London, UK.,Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK.,Institute of Infection and Immunity, St George's University of London, London, UK
| | - Andrew W Hitchings
- Clinical Pharmacology and Therapeutics Section, St George's University of London, London, UK.,Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK.,Adult Critical Care Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Dipender Gill
- Clinical Pharmacology and Therapeutics Section, St George's University of London, London, UK.,Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK.,Institute of Infection and Immunity, St George's University of London, London, UK
| |
Collapse
|
90
|
Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice. Sci Rep 2021; 11:15799. [PMID: 34349145 PMCID: PMC8339061 DOI: 10.1038/s41598-021-95086-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
The SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A and smallpox proved to be reliable approaches for immunization for prolonged periods. In this study, a gamma-irradiated inactivated virus vaccine does not require an extra purification process, unlike the chemically inactivated vaccines. Hence, the novelty of our vaccine candidate (OZG-38.61.3) is that it is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. Efficiency and safety dose (either 1013 or 1014 viral RNA copy per dose) of OZG-38.61.3 was initially determined in BALB/c mice. This was followed by testing the immunogenicity and protective efficacy of the vaccine. Human ACE2-encoding transgenic mice were immunized and then infected with the SARS-CoV-2 virus for the challenge test. This study shows that vaccinated mice have lowered SARS-CoV-2 viral RNA copy numbers both in oropharyngeal specimens and in the histological analysis of the lung tissues along with humoral and cellular immune responses, including the neutralizing antibodies similar to those shown in BALB/c mice without substantial toxicity. Subsequently, plans are being made for the commencement of Phase 1 clinical trial of the OZG-38.61.3 vaccine for the COVID-19 pandemic.
Collapse
|
91
|
Abstract
COVID-19 is a pandemic of unprecedented proportions in recent human history. Less than 18 months since the onset of the pandemic, there are close to two hundred million confirmed cases and four million deaths worldwide. There have also been massive efforts geared towards finding safe and effective vaccines. By July 2021 there were 184 COVID-19 vaccine candidates in pre-clinical development, 105 in clinical development, and 18 vaccines approved for emergency use by at least one regulatory authority. These vaccines include whole virus live attenuated or inactivated, protein-based, viral vector, and nucleic acid vaccines. By mid-2021 three billion doses of COVID-19 vaccine have been administered around the world, mostly in high-income countries. COVID-19 vaccination provides hope for an end to the pandemic, if and only if there would be equal access and optimal uptake in all countries around the world.
Collapse
Affiliation(s)
- Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Parow Valley, 7501, Cape Town, South Africa.
| | - Charles S Wiysonge
- Cochrane South Africa, South African Medical Research Council, Parow Valley, 7501, Cape Town, South Africa; Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa; School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|