51
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
52
|
Francis AP, Dominguez-Bello MG. Early-Life Microbiota Perturbations and Behavioral Effects. Trends Microbiol 2019; 27:567-569. [PMID: 31103277 DOI: 10.1016/j.tim.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
The maternal environment, during the prenatal and postnatal periods, is a determinant of offspring development and health. Perturbations during these periods can affect maternal behaviors and maternal-infant bonding, and also impair transmission of maternal microbiota to the offspring. Impaired microbiota has been associated with alterations of offspring cognitive development and behavior.
Collapse
Affiliation(s)
- Antonia P Francis
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | | |
Collapse
|
53
|
Zhang R, Pan Y, Ahmed L, Block E, Zhang Y, Batista VS, Zhuang H. A Multispecific Investigation of the Metal Effect in Mammalian Odorant Receptors for Sulfur-Containing Compounds. Chem Senses 2019; 43:357-366. [PMID: 29659735 DOI: 10.1093/chemse/bjy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal-coordinating compounds are generally known to have strong smells, a phenomenon that can be attributed to the fact that odorant receptors for intense-smelling compounds, such as those containing sulfur, may be metalloproteins. We previously identified a mouse odorant receptor (OR), Olfr1509, that requires copper ions for sensitive detection of a series of metal-coordinating odorants, including (methylthio)methanethiol (MTMT), a strong-smelling component of male mouse urine that attracts female mice. By combining mutagenesis and quantum mechanics/molecular mechanics (QM/MM) modeling, we identified candidate binding sites in Olfr1509 that may bind to the copper-MTMT complex. However, whether there are other receptors utilizing metal ions for ligand-binding and other sites important for receptor activation is still unknown. In this study, we describe a second mouse OR for MTMT with a copper effect, namely Olfr1019. In an attempt to investigate the functional changes of metal-coordinating ORs in multiple species and to decipher additional sites involved in the metal effect, we cloned various mammalian orthologs of the 2 mouse MTMT receptors, and a third mouse MTMT receptor, Olfr15, that does not have a copper effect. We found that the function of all 3 MTMT receptors varies greatly among species and that the response to MTMT always co-occurred with the copper effect. Furthermore, using ancestral reconstruction and QM/MM modeling combined with receptor functional assay, we found that the amino acid residue R260 in Olfr1509 and the respective R261 site in Olfr1019 may be important for receptor activation.
Collapse
Affiliation(s)
- Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, NY, USA
| | - Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | | | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
- Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Xuhui District, Shanghai, P. R. China
| |
Collapse
|
54
|
Aleksandrov AA, Polyakova NV, Vinogradova EP, Gainetdinov RR, Knyazeva VM. The TAAR5 agonist α-NETA causes dyskinesia in mice. Neurosci Lett 2019; 704:208-211. [PMID: 30986441 DOI: 10.1016/j.neulet.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
It is known that trace amine-associated receptor 5 (TAAR5) is expressed in various regions of the central nervous system. However, very limited information is available on the behavioral effects of TAAR5 activation and the TAAR5 functional role, in general. We studied the effect of TAAR5 agonist (2-(alpha-naphthoyl) ethyltrimethylammonium iodide) systemic administration on animal behavior. The study was performed on male C57BL/6 mice. It was observed that α-NETA in 10 mg/kg dose caused specific impairment of motor behavior, similar to the manifestations of tardive dyskinesia in humans. It can be assumed that trace amines and TAAR5 may be involved in the human tardive dyskinesia pathogenesis.
Collapse
Affiliation(s)
- Aleksander A Aleksandrov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Nadezhda V Polyakova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Ekaterina P Vinogradova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Veronika M Knyazeva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia.
| |
Collapse
|
55
|
Abstract
Olfaction is the primary sense used by most animals to perceive the external world. The mouse olfactory system is composed of several sensory structures, the largest of which is the main olfactory epithelium (MOE). Olfactory sensory neurons (OSNs) located within the MOE detect odors and pheromones using dedicated seven-transmembrane G protein-coupled receptors (GPCRs). Two families of GPCRs are expressed in the MOE and are conserved in humans and other vertebrates: odorant receptors (ORs) and trace amine-associated receptors (TAARs). TAARs are distantly related to biogenic amine receptors, such as dopamine and serotonin receptors. Several TAARs detect volatile amines including ethological odors that evoke innate animal behavioral responses. Mouse TAAR4 recognizes the aversive predator odor 2-phenylethylamine, while mouse TAAR5 detects the attractive male mouse odor trimethylamine. In zebrafish, TAAR13c detects the foul death-associated odor cadaverine that mediates innate avoidance behavior. TAARs thus provide an excellent model subsystem to study odor valence. And identification of additional high-affinity ligands for TAARs will provide extra tools for such study. Therefore, this chapter focuses on the so-called SEAP assay that has been successfully applied for TAAR deorphanization in different species.
Collapse
Affiliation(s)
- Qian Li
- Neuroscience Division, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
56
|
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol Rev 2019; 71:198-224. [DOI: 10.1124/pr.118.015768] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
57
|
Leclaire S, Strandh M, Dell'Ariccia G, Gabirot M, Westerdahl H, Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol Ecol 2019; 28:833-846. [PMID: 30582649 DOI: 10.1111/mec.14993] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour-producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent-producing body surfaces. Here, using high-throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC-based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical-producing microbiota in birds.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), Toulouse, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Gaia Dell'Ariccia
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Marianne Gabirot
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | | | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| |
Collapse
|
58
|
Abstract
Olfaction plays a critical role in several aspects of life. Olfactory disorders are very common in the general population, and can lead to malnutrition, weight loss, food poisoning, depression, and other disturbances. Odorants are first detected in the upper region of the nose by the main olfactory epithelium (OE). In this region, millions of olfactory sensory neurons (OSNs) interact with odor molecules through the odorant receptors (ORs), which belong to the superfamily of G protein-coupled receptors. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb of the brain. The information is then transmitted to other regions of the brain, leading to odorant perception and emotional and behavioral responses. In the OE, OSNs die and are continuously replaced from stem cells localized in the epithelium's basal region. Damage to this epithelium can be caused by multiple factors, leading to anosmia (smell loss). In this chapter, we introduce the basic organization of the OE and focus on the molecular mechanisms involved in odorant perception. We also describe recent experiments that address the mechanisms of OSNs regeneration in response to neuronal injury.
Collapse
Affiliation(s)
- Isaías Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
59
|
Leclaire S, Chatelain M, Pessato A, Buatois B, Frantz A, Gasparini J. Pigeon odor varies with experimental exposure to trace metal pollution. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:76-85. [PMID: 30506322 DOI: 10.1007/s10646-018-2001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Trace metals are chemical pollutants that have well-known noxious effects on wildlife and that are current major environmental issues in urban habitats. Previous studies have demonstrated their negative (e.g. lead) or positive (e.g. zinc) effects on body condition, immunity and reproductive success. Because of their effects on condition, trace metals are likely to influence the production of condition-dependent ornaments. The last decade has revealed that bird odors, like mammal odors, can convey information on individual quality and might be used as secondary sexual ornaments. Here, we used solid-phase microextraction headspace sampling with gas chromatography-mass spectrometry to investigate whether plumage scent varied with experimental supplementation in lead and/or zinc in feral pigeons. Zinc supplementation (alone or in combination with lead) changed the proportion of several volatiles, including an increase in the proportion of hydroxy-esters. The production of these esters, that most likely originate from preen gland secretions, may be costly and might thus be reduced by stress induced by zinc deficiency. Although lead is known to negatively impact pigeon condition, it did not statistically affect feather scent, despite most of the volatiles that increased with zinc exposure tended to be decreased in lead-supplemented pigeons. Further studies should evaluate the functions of plumage volatiles to predict how trace metals can impact bird fitness.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), 118 route de Narbonne, Toulouse, 31062, France.
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France.
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France.
| | - Marion Chatelain
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
- Wild Urban Evolution and Ecology Lab, Center of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-097, Poland
| | - Anaïs Pessato
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
- Centre for Integrative Ecology, Deakin University, Geelong Waurn Ponds Campus, Victoria, 3217, Australia
| | - Bruno Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
| | - Adrien Frantz
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| | - Julien Gasparini
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| |
Collapse
|
60
|
Block E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13346-13366. [PMID: 30453735 DOI: 10.1021/acs.jafc.8b04471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry , University at Albany, SUNY , Albany , New York 12222 , United States
| |
Collapse
|
61
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
62
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
63
|
Sexual rejection via a vomeronasal receptor-triggered limbic circuit. Nat Commun 2018; 9:4463. [PMID: 30367054 PMCID: PMC6203846 DOI: 10.1038/s41467-018-07003-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Mating drive is balanced by a need to safeguard resources for offspring, yet the neural basis for negative regulation of mating remains poorly understood. In rodents, pheromones critically regulate sexual behavior. Here, we observe suppression of adult female sexual behavior in mice by exocrine gland-secreting peptide 22 (ESP22), a lacrimal protein from juvenile mice. ESP22 activates a dedicated vomeronasal receptor, V2Rp4, and V2Rp4 knockout eliminates ESP22 effects on sexual behavior. Genetic tracing of ESP22-responsive neural circuits reveals a critical limbic system connection that inhibits reproductive behavior. Furthermore, V2Rp4 counteracts a highly related vomeronasal receptor, V2Rp5, that detects the male sex pheromone ESP1. Interestingly, V2Rp4 and V2Rp5 are encoded by adjacent genes, yet couple to distinct circuits and mediate opposing effects on female sexual behavior. Collectively, our study reveals molecular and neural mechanisms underlying pheromone-mediated sexual rejection, and more generally, how inputs are routed through olfactory circuits to evoke specific behaviors. Sex pheromones that increase mating have been reported across a number of different species, yet there is little known about pheromones that suppress female mating drive. This study reports that juvenile female mice release a pheromone, ESP22, which suppresses sexual receptivity of adult female mice by evoking a robust rejection behavior upon male mounting.
Collapse
|
64
|
Jackson MD, Keyzers RA, Linklater WL. Single compounds elicit complex behavioural responses in wild, free-ranging rats. Sci Rep 2018; 8:12588. [PMID: 30135461 PMCID: PMC6105672 DOI: 10.1038/s41598-018-30953-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
There is mounting evidence that single compounds can act as signals and cues for mammals and that when presented at their optimal concentration they can elicit behavioural responses that replicate those recorded for complex mixtures like gland secretions and foods. We designed a rapid bioassay to present nine compounds that we had previously identified in foods, each at seven different concentrations (63 treatments), to wild, free-ranging rats and scored each treatment for attraction and three behavioural responses. Nine treatments (taken from five compounds) statistically outperformed the current standard rat attractant, peanut butter. Attraction to treatments was highest at the two lowest concentrations (0.1 and 0.01 μg g−1) and a statistically significant relationship of increasing attraction with decreasing treatment concentration was identified. Our study identified five compounds not previously associated with behavioural responses by rats that elicit equivalent or more intense behavioural responses than those obtained with peanut butter. Moreover, attraction to treatments was driven by a concentration-dependent relationship not previously reported. This is the first study to identify isopentanol, 1-hexanol, acetoin, isobutyl acetate and 2-methylbutyl acetate as possible semiochemicals/cues for rats. More broadly, our findings provide important guidance to researchers in the ongoing search for mammalian semiochemicals and cues.
Collapse
Affiliation(s)
- Michael D Jackson
- Centre for Biodiversity & Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand. .,School of Biological Sciences and Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand.
| | - Robert A Keyzers
- Centre for Biodiversity & Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand.,School of Chemical and Physical Sciences and Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand
| | - Wayne L Linklater
- Centre for Biodiversity & Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
65
|
Harmeier A, Meyer CA, Staempfli A, Casagrande F, Petrinovic MM, Zhang YP, Künnecke B, Iglesias A, Höner OP, Hoener MC. How Female Mice Attract Males: A Urinary Volatile Amine Activates a Trace Amine-Associated Receptor That Induces Male Sexual Interest. Front Pharmacol 2018; 9:924. [PMID: 30158871 PMCID: PMC6104183 DOI: 10.3389/fphar.2018.00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/26/2018] [Indexed: 11/27/2022] Open
Abstract
Individuals of many species rely on odors to communicate, find breeding partners, locate resources and sense dangers. In vertebrates, odorants are detected by chemosensory receptors of the olfactory system. One class of these receptors, the trace amine-associated receptors (TAARs), was recently suggested to mediate male sexual interest and mate choice. Here we tested this hypothesis in mice by generating a cluster deletion mouse (Taar2-9−/−) lacking all TAARs expressed in the olfactory epithelium, and evaluating transduction pathways from odorants to TAARs, neural activity and behaviors reflecting sexual interest. We found that a urinary volatile amine, isobutylamine (IBA), was a potent ligand for TAAR3 (but not TAAR1, 4, 5, and 6). When males were exposed to IBA, brain regions associated with sexual behaviors were less active in Taar2-9−/− than in wild type males. Accordingly, Taar2-9−/− males spent less time sniffing both the urine of females and pure IBA than wild type males. This is the first demonstration of a comprehensive transduction pathway linking odorants to TAARs and male sexual interest. Interestingly, the concentration of IBA in female urine varied across the estrus cycle with a peak during estrus. This variation in IBA concentration may represent a simple olfactory cue for males to recognize receptive females. Our results are consistent with the hypothesis that IBA and TAARs play an important role in the recognition of breeding partners and mate choice.
Collapse
Affiliation(s)
- Anja Harmeier
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Claas A Meyer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas Staempfli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabio Casagrande
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marija M Petrinovic
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yan-Ping Zhang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Basil Künnecke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Oliver P Höner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marius C Hoener
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Neurosymptomatic Domains, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
66
|
Luo SX, Huang J, Li Q, Mohammad H, Lee CY, Krishna K, Kok AMY, Tan YL, Lim JY, Li H, Yeow LY, Sun J, He M, Grandjean J, Sajikumar S, Han W, Fu Y. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science 2018; 361:76-81. [PMID: 29976824 DOI: 10.1126/science.aar4983] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/08/2018] [Indexed: 12/28/2022]
Abstract
The tuberal nucleus (TN) is a surprisingly understudied brain region. We found that somatostatin (SST) neurons in the TN, which is known to exhibit pathological or cytological changes in human neurodegenerative diseases, play a crucial role in regulating feeding in mice. GABAergic tuberal SST (TNSST) neurons were activated by hunger and by the hunger hormone, ghrelin. Activation of TNSST neurons promoted feeding, whereas inhibition reduced it via projections to the paraventricular nucleus and bed nucleus of the stria terminalis. Ablation of TNSST neurons reduced body weight gain and food intake. These findings reveal a previously unknown mechanism of feeding regulation that operates through orexigenic TNSST neurons, providing a new perspective for understanding appetite changes.
Collapse
Affiliation(s)
- Sarah Xinwei Luo
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Ju Huang
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 200025
| | - Qin Li
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667.,Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China 430071
| | - Hasan Mohammad
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Chun-Yao Lee
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Kumar Krishna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Alison Maun-Yeng Kok
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Yu Lin Tan
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Joy Yi Lim
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Hongyu Li
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Ling Yun Yeow
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Jingjing Sun
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 200025
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China 200032
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667
| | - Yu Fu
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
67
|
Maraci Ö, Engel K, Caspers BA. Olfactory Communication via Microbiota: What Is Known in Birds? Genes (Basel) 2018; 9:E387. [PMID: 30065222 PMCID: PMC6116157 DOI: 10.3390/genes9080387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Animal bodies harbour a complex and diverse community of microorganisms and accumulating evidence has revealed that microbes can influence the hosts' behaviour, for example by altering body odours. Microbial communities produce odorant molecules as metabolic by-products and thereby modulate the biochemical signalling profiles of their animal hosts. As the diversity and the relative abundance of microbial species are influenced by several factors including host-specific factors, environmental factors and social interactions, there are substantial individual variations in the composition of microbial communities. In turn, the variations in microbial communities would consequently affect social and communicative behaviour by influencing recognition cues of the hosts. Therefore, microbiota studies have a great potential to expand our understanding of recognition of conspecifics, group members and kin. In this review, we aim to summarize existing knowledge of the factors influencing the microbial communities and the effect of microbiota on olfactory cue production and social and communicative behaviour. We concentrate on avian taxa, yet we also include recent research performed on non-avian species when necessary.
Collapse
Affiliation(s)
- Öncü Maraci
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Kathrin Engel
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
68
|
Abstract
In many species, survival depends on olfaction, yet the mechanisms that underlie olfactory sensitivity are not well understood. Here we examine how a conserved subset of olfactory receptors, the trace amine-associated receptors (TAARs), determine odor detection thresholds of mice to amines. We find that deleting all TAARs, or even single TAARs, results in significant odor detection deficits. This finding is not limited to TAARs, as the deletion of a canonical odorant receptor reduced behavioral sensitivity to its preferred ligand. Remarkably, behavioral threshold is set solely by the most sensitive receptor, with no contribution from other highly sensitive receptors. In addition, increasing the number of sensory neurons (and glomeruli) expressing a threshold-determining TAAR does not improve detection, indicating that sensitivity is not limited by the typical complement of sensory neurons. Our findings demonstrate that olfactory thresholds are set by the single highest affinity receptor and suggest that TAARs are evolutionarily conserved because they determine the sensitivity to a class of biologically relevant chemicals. Odorous chemicals broadly activate subsets of olfactory receptors in the nose, but how individual receptors contribute to behavioral sensitivity is not clear. Here, the authors demonstrate that detection thresholds in mice are set solely by the highest affinity receptor for a given odorant.
Collapse
|
69
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
70
|
Behavioral readout of spatio-temporal codes in olfaction. Curr Opin Neurobiol 2018; 52:18-24. [PMID: 29694923 DOI: 10.1016/j.conb.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022]
Abstract
Neural recordings performed at an increasing scale and resolution have revealed complex, spatio-temporally precise patterns of activity in the olfactory system. Multiple models may explain the functional consequences of the spatio-temporal olfactory code, but the link to behavior remains unclear. Recent evidence in the field suggests a behavioral sensitivity to both fine spatial and temporal features in the code. How these features and combinations of features give rise to olfactory behavior is the subject of active research in the field. Modern genetic and optogenetic methods show great promise in testing the link between olfactory codes and behavior.
Collapse
|
71
|
Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, Brown AL, Gromovsky AD, Heine M, Chatterjee A, Li L, Li XS, Wang Z, Willard B, Meng Y, Kim H, Che N, Pan C, Lee RG, Crooke RM, Graham MJ, Morton RE, Langefeld CD, Das SK, Rudel LL, Zein N, McCullough AJ, Dasarathy S, Tang WHW, Erokwu BO, Flask CA, Laakso M, Civelek M, Naga Prasad SV, Heeren J, Lusis AJ, Hazen SL, Brown JM. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Rep 2018. [PMID: 28636934 DOI: 10.1016/j.celrep.2017.05.077] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diana M Shih
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manya Warrier
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert N Helsley
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Ferguson
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Lin Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - YongHong Meng
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hanjun Kim
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nam Che
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Richard E Morton
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Swapan K Das
- Department of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Lawrence L Rudel
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Nizar Zein
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Arthur J McCullough
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bernadette O Erokwu
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
72
|
Abstract
Although diet has long been known to contribute to the pathogenesis of cardiovascular disease (CVD), research over the past decade has revealed an unexpected interplay between nutrient intake, gut microbial metabolism and the host to modify the risk of developing CVD. Microbial-associated molecular patterns are sensed by host pattern recognition receptors and have been suggested to drive CVD pathogenesis. In addition, the host microbiota produces various metabolites, such as trimethylamine-N-oxide, short-chain fatty acids and secondary bile acids, that affect CVD pathogenesis. These recent advances support the notion that targeting the interactions between the host and microorganisms may hold promise for the prevention or treatment of CVD. In this Review, we summarize our current knowledge of the gut microbial mechanisms that drive CVD, with special emphasis on therapeutic interventions, and we highlight the need to establish causal links between microbial pathways and CVD pathogenesis.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, NC-10, Cleveland, Ohio 44195, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, NC-10, Cleveland, Ohio 44195, USA
| |
Collapse
|
73
|
Schugar RC, Willard B, Wang Z, Brown JM. Postprandial gut microbiota-driven choline metabolism links dietary cues to adipose tissue dysfunction. Adipocyte 2018; 7:49-56. [PMID: 29172946 DOI: 10.1080/21623945.2017.1398295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is an integrated circuit between microbial symbionts and our Homo sapien genome, which communicate bi-directionally to maintain homeostasis within the human meta-organism. There is now strong evidence that microbes resident in the human intestine can directly contribute to the pathogenesis of obesity and associated cardiometabolic disorders. In fact, gut microbes represent a filter of our greatest environmental exposure - the foods we consume. It is now clear that we each experience a given meal differently, based on our unique gut microbial communities. Biologically active gut microbe-derived metabolites, such as short chain fatty acids, secondary bile acids, and trimethylamine-N-oxide (TMAO), are now uniquely recognized as contributors to obesity and related cardiometabolic disorders. However, mechanistic insights into how microbe-derived metabolites promote obesity are largely unknown. Recent work has demonstrated that the meta-organismal production of the bacterial co-metabolite TMAO is linked to suppression of beiging of white adipose tissue in mice and humans. Furthermore, the TMAO pathway is becoming an increasingly attractive therapeutic target in obesity-associated diseases such as type 2 diabetes, kidney failure, and cardiovascular disease. In this commentary we discuss recent findings linking the TMAO pathway to obesity-associated disorders, and provide additional insights into potential mechanisms driving this microbe-host interaction.
Collapse
Affiliation(s)
- Rebecca C. Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - J. Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
74
|
Abstract
Olfaction is a fundamental sense in most animal species. In mammals, the olfactory system comprises several subpopulations of sensory neurons located throughout the nasal cavity, which detect a variety of chemostimuli, including odorants, intraspecies and interspecies chemical communication cues. Some of these compounds are important for regulating innate and learned behaviors, and endocrine changes in response to other animals in the environment. With a particular focus on laboratory rodent species, this chapter provides a comprehensive description of the most important behavioral assays used for studying the olfactory system, and is meant to be a practical guide for those who study olfaction-mediated behaviors or who have an interest in deciphering the molecular, cellular, or neural mechanisms through which the sense of smell controls the generation of adaptive behavioral outputs.
Collapse
Affiliation(s)
- Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Antonio P Camargo
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
75
|
Abstract
Evolution sculpts the olfactory nervous system in response to the unique sensory challenges facing each species. In vertebrates, dramatic and diverse adaptations to the chemical environment are possible because of the hierarchical structure of the olfactory receptor (OR) gene superfamily: expansion or contraction of OR subfamilies accompanies major changes in habitat and lifestyle; independent selection on OR subfamilies can permit local adaptation or conserved chemical communication; and genetic variation in single OR genes can alter odor percepts and behaviors driven by precise chemical cues. However, this genetic flexibility contrasts with the relatively fixed neural architecture of the vertebrate olfactory system, which requires that new olfactory receptors integrate into segregated and functionally distinct neural pathways. This organization allows evolution to couple critical chemical signals with selectively advantageous responses, but also constrains relationships between olfactory receptors and behavior. The coevolution of the OR repertoire and the olfactory system therefore reveals general principles of how the brain solves specific sensory problems and how it adapts to new ones.
Collapse
|
76
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
77
|
Vargas-Barroso V, Peña-Ortega F, Larriva-Sahd JA. Olfaction and Pheromones: Uncanonical Sensory Influences and Bulbar Interactions. Front Neuroanat 2017; 11:108. [PMID: 29187814 PMCID: PMC5695156 DOI: 10.3389/fnana.2017.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
The rodent main and accessory olfactory systems (AOS) are considered functionally and anatomically segregated information-processing pathways. Each system is devoted to the detection of volatile odorants and pheromones, respectively. However, a growing number of evidences supports a cooperative interaction between them. For instance, at least four non-canonical receptor families (i.e., different from olfactory and vomeronasal receptor families) have been recently discovered. These atypical receptor families are expressed in the sensory organs of the nasal cavity and furnish parallel processing-pathways that detect specific stimuli and mediate specific behaviors as well. Aside from the receptor and functional diversity of these sensory modalities, they converge into a poorly understood bulbar area at the intersection of the main- main olfactory bulb (MOB) and accessory olfactory bulb (AOB) that has been termed olfactory limbus (OL). Given the intimate association the OL with specialized glomeruli (i.e., necklace and modified glomeruli) receiving uncanonical sensory afferences and its interactions with the MOB and AOB, the possibility that OL is a site of non-olfactory and atypical vomeronasal sensory decoding is discussed.
Collapse
Affiliation(s)
- Víctor Vargas-Barroso
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Jorge A Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
78
|
Veeravalli S, Karu K, Scott F, Fennema D, Phillips IR, Shephard EA. Effect of Flavin-Containing Monooxygenase Genotype, Mouse Strain, and Gender on Trimethylamine N-oxide Production, Plasma Cholesterol Concentration, and an Index of Atherosclerosis. Drug Metab Dispos 2017; 46:20-25. [PMID: 29070510 PMCID: PMC5733448 DOI: 10.1124/dmd.117.077636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022] Open
Abstract
The objectives of the study were to determine the contribution, in mice, of members of the flavin-containing monooxygenase (FMO) family to the production of trimethylamine (TMA) N-oxide (TMAO), a potential proatherogenic molecule, and whether under normal dietary conditions differences in TMAO production were associated with changes in plasma cholesterol concentration or with an index of atherosclerosis (Als). Concentrations of urinary TMA and TMAO and plasma cholesterol were measured in 10-week-old male and female C57BL/6J and CD-1 mice and in mouse lines deficient in various Fmo genes (Fmo1−/−, 2−/−, 4−/−, and Fmo5−/−). In female mice most TMA N-oxygenation was catalyzed by FMO3, but in both genders 11%–12% of TMA was converted to TMAO by FMO1. Gender-, Fmo genotype-, and strain-related differences in TMAO production were accompanied by opposite effects on plasma cholesterol concentration. Plasma cholesterol was negatively, but weakly, correlated with TMAO production and urinary TMAO concentration. Fmo genotype had no effect on Als. There was no correlation between Als and either TMAO production or urinary TMAO concentration. Our results indicate that under normal dietary conditions TMAO does not increase plasma cholesterol or act as a proatherogenic molecule.
Collapse
Affiliation(s)
- Sunil Veeravalli
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Kersti Karu
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Flora Scott
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Diede Fennema
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Ian R Phillips
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| | - Elizabeth A Shephard
- Institute of Structural and Molecular Biology (S.V., F.S., D.F., I.R.P., E.A.S.) and Mass Spectrometry Facility, Department of Chemistry (K.K.), University College London, London, United Kingdom; and School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.)
| |
Collapse
|
79
|
Yang T, Yang CF, Chizari MD, Maheswaranathan N, Burke KJ, Borius M, Inoue S, Chiang MC, Bender KJ, Ganguli S, Shah NM. Social Control of Hypothalamus-Mediated Male Aggression. Neuron 2017; 95:955-970.e4. [PMID: 28757304 PMCID: PMC5648542 DOI: 10.1016/j.neuron.2017.06.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/13/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.
Collapse
Affiliation(s)
- Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Cindy F Yang
- Program in Neuroscience, UC San Francisco, San Francisco, CA 94158, USA
| | - M Delara Chizari
- Department of Anatomy, UC San Francisco, San Francisco, CA 94158, USA
| | | | - Kenneth J Burke
- Program in Neuroscience, UC San Francisco, San Francisco, CA 94158, USA
| | - Maxim Borius
- Department of Anatomy, UC San Francisco, San Francisco, CA 94158, USA
| | - Sayaka Inoue
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael C Chiang
- Department of Anatomy, UC San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Department of Neurology, UC San Francisco, San Francisco, CA 94158, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
80
|
Bienenstock J, Kunze WA, Forsythe P. Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biol Rev Camb Philos Soc 2017; 93:390-403. [DOI: 10.1111/brv.12348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Pathology and Molecular Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Wolfgang A. Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Psychiatry & Behavioural Sciences; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Firestone Institute for Respiratory Health; Hamilton 50 Charlton Ave. E., Room T3302 L8N 4A6 Canada
- Department of Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| |
Collapse
|
81
|
Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci Rep 2017; 7:3240. [PMID: 28607369 PMCID: PMC5468246 DOI: 10.1038/s41598-017-03356-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
The fermentation hypothesis for animal signalling posits that bacteria dwelling in an animal’s scent glands metabolize the glands’ primary products into odorous compounds used by the host to communicate with conspecifics. There is, however, little evidence of the predicted covariation between an animal’s olfactory cues and its glandular bacterial communities. Using gas chromatography-mass spectrometry, we first identified the volatile compounds present in ‘pure’ versus ‘mixed’ anal-gland secretions (‘paste’) of adult meerkats (Suricata suricatta) living in the wild. Low-molecular-weight chemicals that likely derive from bacterial metabolism were more prominent in mixed than pure secretions. Focusing thereafter on mixed secretions, we showed that chemical composition varied by sex and was more similar between members of the same group than between members of different groups. Subsequently, using next-generation sequencing, we identified the bacterial assemblages present in meerkat paste and documented relationships between these assemblages and the host’s sex, social status and group membership. Lastly, we found significant covariation between the volatile compounds and bacterial assemblages in meerkat paste, particularly in males. Together, these results are consistent with a role for bacteria in the production of sex- and group-specific scents, and with the evolution of mutualism between meerkats and their glandular microbiota.
Collapse
|
82
|
Rodents and humans are able to detect the odour of L-Lactate. PLoS One 2017; 12:e0178478. [PMID: 28542639 PMCID: PMC5444829 DOI: 10.1371/journal.pone.0178478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 01/26/2023] Open
Abstract
L-Lactate (LL) is an essential cellular metabolite which can be used to generate energy. In addition, accumulating evidence suggests that LL is used for inter-cellular signalling. Some LL-sensitive receptors have been identified but we recently proposed that there may be yet another unknown G-protein coupled receptor (GPCR) sensitive to LL in the brain. Olfactory receptors (ORs) represent the largest family of GPCRs and some of them are expressed outside the olfactory system, including brain, making them interesting candidates for non-olfactory LL signalling. One of the “ectopically” expressed ORs, Olfr78 in mice (Olr59 in rats and OR51E2 in humans), reportedly can be activated by LL. This implies that both rodents and humans should be able to detect the LL odour. Surprisingly, this has never been demonstrated. Here we show that mice can detect the odour of LL in odour detection and habituation-dishabituation tasks, and discriminate it from peppermint and vanilla odours. Behaviour of the Olfr78 null mice and wildtype mice in odour detection task was not different, indicating that rodents are equipped with more than one LL-sensitive OR. Rats were also able to use the smell of LL as a cue in an odour-reward associative learning task. When presented to humans, more than 90% of participants detected a smell of LL in solution. Interestingly, LL was perceived differently than acetate or propionate—LL was preferentially reported as a pleasant sweet scent while acetate and propionate were perceived as repulsive sour/acid smells. Subjective perception of LL smell was different in men and women. Taken together, our data demonstrate that both rodents and humans are able to detect the odour of LL. Moreover, in mice, LL perception is not purely mediated by Olfr78. Discovery of further LL-sensitive OR might shed the light on their contribution to LL signalling in the body.
Collapse
|
83
|
Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J Biol Chem 2017; 292:8560-8568. [PMID: 28389555 DOI: 10.1074/jbc.r116.765388] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent advances in metabolomic and genome mining approaches have uncovered a poorly understood metabolome that originates solely or in part from bacterial enzyme sources. Whether living on exposed surfaces or within our intestinal tract, our microbial inhabitants produce a remarkably diverse set of natural products and small molecule metabolites that can impact human health and disease. Highlighted here, the gut microbe-derived metabolite trimethylamine N-oxide has been causally linked to the development of cardiovascular diseases. Recent studies reveal drugging this pathway can inhibit atherosclerosis development in mice. Building on this example, we discuss challenges and untapped potential of targeting bacterial enzymology for improvements in human health.
Collapse
Affiliation(s)
- J Mark Brown
- From the Departments of Cellular and Molecular Medicine and .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L Hazen
- From the Departments of Cellular and Molecular Medicine and .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Cardiovascular Medicine and
| |
Collapse
|
84
|
Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z. Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus. Biochim Biophys Acta Gen Subj 2016; 1861:644-651. [PMID: 27773705 DOI: 10.1016/j.bbagen.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Channel catfish (Ictalurus punctatus) live in turbid waters with limited visibility to chase prey within a certain distance. This can be compensated through detecting specific water-soluble substances by the olfactory receptors (ORs) and trace amine associated receptors (TAARs) expressed on the olfactory epithelium. METHODS We identified the OR and TAAR repertoires in channel catfish, and characterized the genomic organizations of these two gene families by data mining available genomic resources. RESULTS A total of 47 putative OR genes and 36 putative TAAR genes were identified in the channel catfish genome, including 27 functional OR genes and 28 functional TAAR genes. Phylogenetic and orthogroup analyses were conducted to illustrate the evolutionary dynamics of the vertebrate ORs and TAARs. Collinear analysis revealed the presence of two conserved orthologous blocks that contain OR genes between the catfish genome and zebrafish genome. The complete loss of a conserved motif in fish OR family H may contribute to the divergence of family H from other families. The dN/dS analysis indicated that the highest degree of selection pressure was imposed on TAAR subfamily 14 among all fish ORs and TAARs. CONCLUSIONS The present study provides understanding of the evolutionary dynamics of the two gene families (OR and TAAR) associated with olfaction in channel catfish. GENERAL SIGNIFICANCE This is the first systematic study of ORs and TAARs in catfish, which could provide valuable genomic resources for further investigation of olfactory mechanisms in teleost fish.
Collapse
Affiliation(s)
- Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
85
|
Abstract
The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another's behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors.
Collapse
|
86
|
Yang T, Shah NM. Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol 2016; 38:89-95. [PMID: 27162162 DOI: 10.1016/j.conb.2016.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023]
Abstract
Sexually reproducing animals exhibit sex differences in behavior. Sexual dimorphisms in mating, aggression, and parental care directly contribute to reproductive success of the individual and survival of progeny. In this review, we discuss recent advances in our understanding of the molecular and neural network mechanisms underlying these behaviors in mice. Notable advances include novel insights into the sensory control of social interactions and the identification of molecularly-specified neuronal populations in the brain that control mating, aggression, and parental behaviors. In the case of the latter, these advances mark a watershed because scientists can now focus on discrete neural pathways in an effort to understand how the brain encodes these fundamental social behaviors.
Collapse
Affiliation(s)
- Taehong Yang
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, United States
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, United States; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
87
|
Stowers L, Liberles SD. State-dependent responses to sex pheromones in mouse. Curr Opin Neurobiol 2016; 38:74-9. [PMID: 27093585 DOI: 10.1016/j.conb.2016.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
Abstract
A single sensory cue can evoke different behaviors that vary by recipient. Responses may be influenced by sex, internal state, experience, genotype, and coincident environmental stimuli. Pheromones are powerful inducers of mouse behavior, yet pheromone responses are not always stereotyped. For example, male and female mice respond differently to sex pheromones while mothers and virgin females respond differently to pup cues. Here, we review the origins of variability in responses to reproductive pheromones. Recent advances have indicated how response variability may arise through modulation at different levels of pheromone-processing circuitry, from sensory neurons in the periphery to central neurons in the vomeronasal amygdala. Understanding mechanisms underlying conditional pheromone responses should reveal how neural circuits can be flexibly sculpted to alter behavior.
Collapse
Affiliation(s)
- Lisa Stowers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 02037, United States.
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
88
|
Abstract
Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.
Collapse
|
89
|
Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc 2016; 5:JAHA.115.002767. [PMID: 26903003 PMCID: PMC4802459 DOI: 10.1161/jaha.115.002767] [Citation(s) in RCA: 574] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The choline‐derived metabolite trimethylamine N‐oxide (TMAO) has been demonstrated to contribute to atherosclerosis and is associated with coronary artery disease risk. Methods and Results We explored the impact of TMAO on endothelial and smooth muscle cell function in vivo, focusing on disease‐relevant outcomes for atherogenesis. Initially, we observed that aortas of LDLR−/− mice fed a choline diet showed elevated inflammatory gene expression compared with controls. Acute TMAO injection at physiological levels was sufficient to induce the same inflammatory markers and activate the well‐known mitogen‐activated protein kinase, extracellular signal–related kinase, and nuclear factor‐κB signaling cascade. These observations were recapitulated in primary human aortic endothelial cells and vascular smooth muscle cells. We also found that TMAO promotes recruitment of activated leukocytes to endothelial cells. Through pharmacological inhibition, we further showed that activation of nuclear factor‐κB signaling was necessary for TMAO to induce inflammatory gene expression in both of these relevant cell types as well as endothelial cell adhesion of leukocytes. Conclusions Our results suggest a likely contributory mechanism for TMAO‐dependent enhancement in atherosclerosis and cardiovascular risks.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Medicine, Cardiology Division at the University of California, Los Angeles, CA
| | - Yonghong Meng
- Department of Medicine, Cardiology Division at the University of California, Los Angeles, CA
| | - Hongxiu Qi
- Department of Medicine, Cardiology Division at the University of California, Los Angeles, CA
| | - WeiFei Zhu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Aldons J Lusis
- Department of Medicine, Cardiology Division at the University of California, Los Angeles, CA
| | - Diana M Shih
- Department of Medicine, Cardiology Division at the University of California, Los Angeles, CA
| |
Collapse
|
90
|
|
91
|
The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map. J Neurosci 2016; 35:13807-18. [PMID: 26446231 DOI: 10.1523/jneurosci.2247-15.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. SIGNIFICANCE STATEMENT The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system.
Collapse
|
92
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
93
|
Wallrabenstein I, Singer M, Panten J, Hatt H, Gisselmann G. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans. PLoS One 2015; 10:e0144704. [PMID: 26684881 PMCID: PMC4684214 DOI: 10.1371/journal.pone.0144704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022] Open
Abstract
In mice, trace amine-associated receptors (TAARs) are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5) is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans.
Collapse
Affiliation(s)
| | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
94
|
Tan L, Li Q, Xie XS. Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol Syst Biol 2015; 11:844. [PMID: 26646940 PMCID: PMC4704490 DOI: 10.15252/msb.20156639] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammals, each olfactory sensory neuron randomly expresses one, and only one, olfactory receptor (OR)--a phenomenon called the "one-neuron-one-receptor" rule. Although extensively studied, this rule was never proven for all ~1,000 OR genes in one cell at once, and little is known about its dynamics. Here, we directly tested this rule by single-cell transcriptomic sequencing of 178 cells from the main olfactory epithelium of adult and newborn mice. To our surprise, a subset of cells expressed multiple ORs. Most of these cells were developmentally immature. Our results illustrated how the "one-neuron-one-receptor" rule may have been established: At first, a single neuron temporarily expressed multiple ORs--seemingly violating the rule--and then all but one OR were eliminated. This work provided experimental evidence that epigenetic regulation in the olfactory system selects a single OR by suppressing a few transiently expressed ORs in a single cell during development.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Qian Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
95
|
|
96
|
Ebrahim SAM, Dweck HKM, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biol 2015; 13:e1002318. [PMID: 26674493 PMCID: PMC4687525 DOI: 10.1371/journal.pbio.1002318] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
Collapse
Affiliation(s)
| | | | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John E. Hofferberth
- Department of Chemistry, Kenyon College, Gambier, Ohio, United States of America
| | - Federica Trona
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jürgen Rybak
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoichi Seki
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
97
|
CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway. Brain Behav Immun 2015; 50:125-140. [PMID: 26173174 DOI: 10.1016/j.bbi.2015.06.184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.
Collapse
|
98
|
Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD. Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 2015; 4:e10441. [PMID: 26519734 PMCID: PMC4695389 DOI: 10.7554/elife.10441] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation. Chemical screens de-orphaned eleven zebrafish TAARs, with agonists including serotonin, histamine, tryptamine, 2-phenylethylamine, putrescine, and agmatine. Receptors from different clades contact ligands through aspartates on transmembrane α-helices III (canonical Asp3.32) or V (non-canonical Asp5.42), and diamine receptors contain both aspartates. Non-classical monoamine recognition evolved in two steps: an ancestral TAAR acquired Asp5.42, gaining diamine sensitivity, and subsequently lost Asp3.32. Through this transformation, the fish olfactory system dramatically expanded its capacity to detect amines, ecologically significant aquatic odors. The evolution of a second, alternative solution for amine detection by olfactory receptors highlights the tremendous structural versatility intrinsic to GPCRs. DOI:http://dx.doi.org/10.7554/eLife.10441.001 Many organisms make molecules called biogenic amines. These molecules, which include the human hormones adrenaline and histamine, have important roles in regulating the biology and behaviour of many animals. Some biogenic amines bind to receptor proteins called GPCRs on the surface of cells. Many drugs can affect the activity of GPCRs, so understanding how different GPCRs work is an important goal of the pharmaceutical industry. Like all proteins, GPCRs are made of chains of molecules called amino acids. The GPCRs that can detect biogenic amines use a particular amino acid named Asp3.32, and when this amino acid is mutated, these GPCRs become unable to bind to their target amine. Trace amine-associated receptors (TAARs) are a type of GPCR that are found in many animals to detect odors. Most TAARs in mammals contain the Asp3.32 residue, and recognize amine odors. However, many fish TAARs do not contain Asp3.32, and it was not clear what molecules these fish receptors detect. Here Li et al. find that these fish TAARs also recognize amines, and use a different amino acid called Asp5.42. Also, some TAARs contain both Asp3.32 and Asp5.42, and recognize chemicals with two amines named diamines. Some diamines that bind to TAARs are foul smelling odors; for example, cadaverine and putrescine are repulsive smells emitted by decomposing flesh. In total, the experiments identified amines that can bind to eleven zebrafish TAARs that previously had no odor partner. Li et al. propose that some fish TAARs lost the Asp3.32 during the course of evolution to leave the Asp5.42 as the main interaction site for amines. This change dramatically altered how these TAARs interact with amines, which probably expanded the number of different amines that fish can detect. These findings open up new ways to study how the fish brain processes information about its surroundings. DOI:http://dx.doi.org/10.7554/eLife.10441.002
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yaw Tachie-Baffour
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Zhikai Liu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Maude W Baldwin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
99
|
Ehrhardt A, Wang B, Leung MJ, Schrader JW. Absence of M-Ras modulates social behavior in mice. BMC Neurosci 2015; 16:68. [PMID: 26490652 PMCID: PMC4618870 DOI: 10.1186/s12868-015-0209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background The molecular mechanisms that determine social behavior are poorly understood. Pheromones play a critical role in social recognition in most animals, including mice, but how these are converted into behavioral responses is largely unknown. Here, we report that the absence of the small GTPase M-Ras affects social behavior in mice. Results In their interactions with other males, Mras−/− males exhibited high levels of territorial aggression and social investigations, and increased fear-related behavior. They also showed increased mating behavior with females. Curiously, increased aggression and mating behaviors were only observed when Mras−/− males were paired with Mras−/− partners, but were significantly reduced when paired with wild-type (WT) mice. Since mice use pheromonal cues to identify other individuals, we explored the possibility that pheromone detection may be altered in Mras−/− mice. Unlike WT mice, Mras−/− did not show a preference for exploring unfamiliar urinary pheromones or unfamiliar isogenic mice. Although this could indicate that vomeronasal function and/or olfactory learning may be compromised in Mras−/− mice, these observations were not fully consistent with the differential behavioral responses to WT and Mras−/− interaction partners by Mras−/− males. In addition, induction of c-fos upon pheromone exposure or in response to mating was similar in WT and Mras−/− mice, as was the ex vivo expansion of neural progenitors with EGF. This indicated that acute pheromone detection and processing was likely intact. However, urinary metabolite profiles differed between Mras−/− and WT males. Conclusions The changes in behaviors displayed by Mras−/− mice are likely due to a complex combination of factors that may include an inherent predisposition to increased aggression and sexual behavior, and the production of distinct pheromones that could override the preference for unfamiliar social odors. Olfactory and/or social learning processes may thus be compromised in Mras−/− mice. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0209-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Bin Wang
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Marie J Leung
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - John W Schrader
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
100
|
Abstract
Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward, while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and how innate and learned odor responses are related. Here, we review odors, receptors and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions.
Collapse
|