51
|
Shekhar S, Maria A, Kotilahti K, Huotilainen M, Heiskala J, Tuulari JJ, Hirvi P, Karlsson L, Karlsson H, Nissilä I. Hemodynamic responses to emotional speech in two-month-old infants imaged using diffuse optical tomography. Sci Rep 2019; 9:4745. [PMID: 30894569 PMCID: PMC6426868 DOI: 10.1038/s41598-019-39993-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Emotional speech is one of the principal forms of social communication in humans. In this study, we investigated neural processing of emotional speech (happy, angry, sad and neutral) in the left hemisphere of 21 two-month-old infants using diffuse optical tomography. Reconstructed total hemoglobin (HbT) images were analysed using adaptive voxel-based clustering and region-of-interest (ROI) analysis. We found a distributed happy > neutral response within the temporo-parietal cortex, peaking in the anterior temporal cortex; a negative HbT response to emotional speech (the average of the emotional speech conditions < baseline) in the temporo-parietal cortex, neutral > angry in the anterior superior temporal sulcus (STS), happy > angry in the superior temporal gyrus and posterior superior temporal sulcus, angry < baseline in the insula, superior temporal sulcus and superior temporal gyrus and happy < baseline in the anterior insula. These results suggest that left STS is more sensitive to happy speech as compared to angry speech, indicating that it might play an important role in processing positive emotions in two-month-old infants. Furthermore, happy speech (relative to neutral) seems to elicit more activation in the temporo-parietal cortex, thereby suggesting enhanced sensitivity of temporo-parietal cortex to positive emotional stimuli at this stage of infant development.
Collapse
Affiliation(s)
- Shashank Shekhar
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland.,University of Mississippi Medical Center, Department of Neurology, Jackson, MS, USA
| | - Ambika Maria
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Kalle Kotilahti
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Minna Huotilainen
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland.,CICERO Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland.,Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Heiskala
- Department of Clinical Neurophysiology, Helsinki University Central Hospital, Turku, Finland
| | - Jetro J Tuulari
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Pauliina Hirvi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Linnea Karlsson
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland.,University of Turku and Turku University Hospital, Department of Child Psychiatry, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland.,University of Turku and Turku University Hospital, Department of Psychiatry, Turku, Finland
| | - Ilkka Nissilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland.
| |
Collapse
|
52
|
Opendak M, Sullivan RM. Unique infant neurobiology produces distinctive trauma processing. Dev Cogn Neurosci 2019; 36:100637. [PMID: 30889546 PMCID: PMC6969239 DOI: 10.1016/j.dcn.2019.100637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as critical, with trauma experienced within species-atypical aberrations in caregiving quality as particularly detrimental. Using data from primarily rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased towards forming robust attachments regardless of the quality of care. Understanding the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
53
|
Zhang H, Shen D, Lin W. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts. Neuroimage 2019; 185:664-684. [PMID: 29990581 PMCID: PMC6289773 DOI: 10.1016/j.neuroimage.2018.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) is one of the most prevalent brain functional imaging modalities. Previous rs-fMRI studies have mainly focused on adults and elderly subjects. Recently, infant rs-fMRI studies have become an area of active research. After a decade of gap filling studies, many facets of the brain functional development from early infancy to toddler has been uncovered. However, infant rs-fMRI is still in its infancy. The image analysis tools for neonates and young infants can be quite different from those for adults. From data analysis to result interpretation, more questions and issues have been raised, and new hypotheses have been formed. With the anticipated availability of unprecedented high-resolution rs-fMRI and dedicated analysis pipelines from the Baby Connectome Project (BCP), it is important now to revisit previous findings and hypotheses, discuss and comment existing issues and problems, and make a "to-do-list" for the future studies. This review article aims to comprehensively review a decade of the findings, unveiling hidden jewels of the fields of developmental neuroscience and neuroimage computing. Emphases will be given to early infancy, particularly the first few years of life. In this review, an end-to-end summary, from infant rs-fMRI experimental design to data processing, and from the development of individual functional systems to large-scale brain functional networks, is provided. A comprehensive summary of the rs-fMRI findings in developmental patterns is highlighted. Furthermore, an extensive summary of the neurodevelopmental disorders and the effects of other hazardous factors is provided. Finally, future research trends focusing on emerging dynamic functional connectivity and state-of-the-art functional connectome analysis are summarized. In next decade, early infant rs-fMRI and developmental connectome study could be one of the shining research topics.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA.
| |
Collapse
|
54
|
Gao W, Grewen K, Knickmeyer RC, Qiu A, Salzwedel A, Lin W, Gilmore JH. A review on neuroimaging studies of genetic and environmental influences on early brain development. Neuroimage 2019; 185:802-812. [PMID: 29673965 PMCID: PMC6191379 DOI: 10.1016/j.neuroimage.2018.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions.
Collapse
Affiliation(s)
- Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States; Department of Medicine, University of California, Los Angeles, CA, United States.
| | - Karen Grewen
- Department of Psychiatry, Neurobiology, and Psychology, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| |
Collapse
|
55
|
Rasmussen JM, Graham AM, Entringer S, Gilmore JH, Styner M, Fair DA, Wadhwa PD, Buss C. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. Neuroimage 2019; 185:825-835. [PMID: 29654875 PMCID: PMC6181792 DOI: 10.1016/j.neuroimage.2018.04.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Maternal inflammation during pregnancy can alter the trajectory of fetal brain development and increase risk for offspring psychiatric disorders. However, the majority of relevant research to date has been conducted in animal models. Here, in humans, we focus on the structural connectivity of frontolimbic circuitry as it is both critical for socioemotional and cognitive development, and commonly altered in a range of psychiatric disorders associated with intrauterine inflammation. Specifically, we test the hypothesis that elevated maternal concentration of the proinflammatory cytokine interleukin-6 (IL-6) during pregnancy will be associated with variation in microstructural properties of this circuitry in the neonatal period and across the first year of life. Pregnant mothers were recruited in early pregnancy and maternal blood samples were obtained for assessment of maternal IL-6 concentrations in early (12.6 ± 2.8 weeks [S.D.]), mid (20.4 ± 1.5 weeks [S.D.]) and late (30.3 ± 1.3 weeks [S.D.]) gestation. Offspring brain MRI scans were acquired shortly after birth (N = 86, scan age = 3.7 ± 1.7 weeks [S.D.]) and again at 12-mo age (N = 32, scan age = 54.0 ± 3.1 weeks [S.D.]). Diffusion Tensor Imaging (DTI) was used to characterize fractional anisotropy (FA) along the left and right uncinate fasciculus (UF), representing the main frontolimbic fiber tract. In N = 30 of the infants with serial MRI data at birth and 12-mo age, cognitive and socioemotional developmental status was characterized using the Bayley Scales of Infant Development. All analyses tested for potentially confounding influences of household income, prepregnancy Body-Mass-Index, obstetric risk, smoking during pregnancy, and infant sex, and outcomes at 12-mo age were additionally adjusted for the quality of the postnatal caregiving environment. Maternal IL-6 concentration (averaged across pregnancy) was prospectively and inversely associated with FA (suggestive of reduced integrity under high inflammatory conditions) in the newborn offspring (bi-lateral, p < 0.01) in the central portion of the UF proximal to the amygdala. Furthermore, maternal IL-6 concentration was positively associated with rate of FA increase across the first year of life (bi-lateral, p < 0.05), resulting in a null association between maternal IL-6 and UF FA at 12-mo age. Maternal IL-6 was also inversely associated with offspring cognition at 12-mo age, and this association was mediated by FA growth across the first year of postnatal life. Findings from the current study support the premise that susceptibility for cognitive impairment and potentially psychiatric disorders may be affected in utero, and that maternal inflammation may constitute an intrauterine condition of particular importance in this context.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA.
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Martin Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, 27599, North Carolina, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, 92697, Irvine, CA, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, 92697, Irvine, CA, USA; Department of Pediatrics, University of California, 92697, Irvine, CA, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.
| |
Collapse
|
56
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
57
|
McKinnon CJ, Eggebrecht AT, Todorov A, Wolff JJ, Elison JT, Adams CM, Snyder AZ, Estes AM, Zwaigenbaum L, Botteron KN, McKinstry RC, Marrus N, Evans A, Hazlett HC, Dager SR, Paterson SJ, Pandey J, Schultz RT, Styner MA, Gerig G, Schlaggar BL, Petersen SE, Piven J, Pruett JR. Restricted and Repetitive Behavior and Brain Functional Connectivity in Infants at Risk for Developing Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:50-61. [PMID: 30446435 PMCID: PMC6557405 DOI: 10.1016/j.bpsc.2018.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/01/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Restricted and repetitive behaviors (RRBs), detectable by 12 months in many infants in whom autism spectrum disorder (ASD) is later diagnosed, may represent some of the earliest behavioral markers of ASD. However, brain function underlying the emergence of these key behaviors remains unknown. METHODS Behavioral and resting-state functional connectivity (fc) magnetic resonance imaging data were collected from 167 children at high and low familial risk for ASD at 12 and 24 months (n = 38 at both time points). Twenty infants met criteria for ASD at 24 months. We divided RRBs into four subcategories (restricted, stereotyped, ritualistic/sameness, self-injurious) and used a data-driven approach to identify functional brain networks associated with the development of each RRB subcategory. RESULTS Higher scores for ritualistic/sameness behavior were associated with less positive fc between visual and control networks at 12 and 24 months. Ritualistic/sameness and stereotyped behaviors were associated with less positive fc between visual and default mode networks at 12 months. At 24 months, stereotyped and restricted behaviors were associated with more positive fc between default mode and control networks. Additionally, at 24 months, stereotyped behavior was associated with more positive fc between dorsal attention and subcortical networks, whereas restricted behavior was associated with more positive fc between default mode and dorsal attention networks. No significant network-level associations were observed for self-injurious behavior. CONCLUSIONS These observations mark the earliest known description of functional brain systems underlying RRBs, reinforce the construct validity of RRB subcategories in infants, and implicate specific neural substrates for future interventions targeting RRBs.
Collapse
Affiliation(s)
- Claire J McKinnon
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Biological Sciences Division, University of Chicago, Chicago, Illinois.
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Chloe M Adams
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | | | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heather C Hazlett
- The Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carborro, North Carolina
| | - Stephen R Dager
- Department of Radiology and Bioengineering, University of Washington, Seattle, Washington
| | - Sarah J Paterson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin A Styner
- The Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carborro, North Carolina
| | - Guido Gerig
- Tandon School of Engineering, New York University, Brooklyn, New York
| | - Bradley L Schlaggar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- The Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carborro, North Carolina
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
58
|
Abstract
The human brain is organized into specialized functional brain networks. Some networks are dedicated to early sensory processing, and others to generating motor outputs. Yet, the bulk of the human brain's functional networks is actually dedicated to control processes. The two control networks most important for the impressive repertoire of control-related behaviors that humans are able to instantiate and maintain are the frontoparietal and cinguloopercular networks. We provide evidence that these two control networks largely contribute to nonoverlapping domains of control. These networks largely have been studied using fMRI, which is sensitive only to infraslow activity. Complementary electrophysiological techniques have provided evidence that these networks manifest at substantially faster frequencies (delta-alpha band), supporting their role in coordination of whole-brain functional network activity. Both the frontoparietal and cinguloopercular networks demonstrate protracted development, supporting increases in control-related performance. Recent studies from our lab indicate these control networks exhibit measurable individual specificity, highlighting the importance of individualized paradigms in neuroimaging studies to advance our understanding of typical and atypical control network function throughout the life span.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
59
|
Abstract
Research in cultural neuroscience and development examines the processes and mechanisms underlying the interaction of cultural systems with environmental and biological systems with a life course approach. Culture interacts with environmental and biological factors to shape the mind, brain and behavior across stages of development. Theoretical and empirical approaches in cultural neuroscience investigate how culture influences psychological and neurobiological mechanisms during developmental periods. Methodological approaches in cultural neuroscience and development illustrate the opportunities and challenges with observation and measurement of psychological and biological processes across cultures throughout development. This review examines empirical findings in cultural neuroscience on emotional, cognitive and social development. Implications of theoretical and methodological advances in cultural neuroscience and development for global mental health will be discussed.
Collapse
|
60
|
|
61
|
Gabard-Durnam LJ, O'Muircheartaigh J, Dirks H, Dean DC, Tottenham N, Deoni S. Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Dev Cogn Neurosci 2018; 34:63-74. [PMID: 30075348 PMCID: PMC6252269 DOI: 10.1016/j.dcn.2018.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Although the amygdala's role in shaping social behavior is especially important during early post-natal development, very little is known of amygdala functional development before childhood. To address this gap, this study uses resting-state fMRI to examine early amygdalar functional network development in a cross-sectional sample of 80 children from 3-months to 5-years of age. Whole brain functional connectivity with the amygdala, and its laterobasal and superficial sub-regions, were largely similar to those seen in older children and adults. Functional distinctions between sub-region networks were already established. These patterns suggest many amygdala functional circuits are intact from infancy, especially those that are part of motor, visual, auditory and subcortical networks. Developmental changes in connectivity were observed between the laterobasal nucleus and bilateral ventral temporal and motor cortex as well as between the superficial nuclei and medial thalamus, occipital cortex and a different region of motor cortex. These results show amygdala-subcortical and sensory-cortex connectivity begins refinement prior to childhood, though connectivity changes with associative and frontal cortical areas, seen after early childhood, were not evident in this age range. These findings represent early steps in understanding amygdala network dynamics across infancy through early childhood, an important period of emotional and cognitive development.
Collapse
Affiliation(s)
- L J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard University, Boston, MA, 02115, USA
| | - J O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - H Dirks
- Advanced Baby Imaging Lab, Brown University School of Engineering, Providence, USA
| | - D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53702, USA; Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53702, USA
| | - N Tottenham
- Department of Psychology, Columbia University, New York, NY, 10027, USA
| | - S Deoni
- Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, USA
| |
Collapse
|
62
|
Dégeilh F, Bernier A, Leblanc É, Daneault V, Beauchamp MH. Quality of maternal behaviour during infancy predicts functional connectivity between default mode network and salience network 9 years later. Dev Cogn Neurosci 2018; 34:53-62. [PMID: 30056292 PMCID: PMC6969303 DOI: 10.1016/j.dcn.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
The relation between parenting and children’s brain networks connectivity was examined. Higher-quality maternal behaviour during infancy predicted child DMN-SN connectivity. Maternal behaviour may affect brain maturation via experience-dependent processes. Experiences provided by positive maternal behaviour may promote DMN-SN connectivity.
Infants’ experiences are considered to determine to a large degree the strength and effectiveness of neural connections and fine tune the development of brain networks. As one of the most pervasive and potent relational experiences of infancy, parent-child relationships appear to be prime candidates to account for experience-driven differences in children’s brain development. Yet, studies linking parenting and functional connectivity are surprisingly scarce, and restricted to the connectivity of limbic structures. Accordingly, this longitudinal study explored whether normative variation in the quality of early maternal behaviour predicts the functional connectivity of large-scale brain networks in late childhood. Maternal mind-mindedness and autonomy support were assessed with 28 children when they were 13 and 15 months old respectively. When children were 10 years of age, children underwent a resting-state functional MRI exam. Functional connectivity was assessed between key regions of the default mode network (DMN), salience network (SN), and frontal-parietal central executive network (CEN). Results revealed that higher mind-mindedness and autonomy support predicted stronger negative connectivity between DMN and SN regions. These findings are the first to provide preliminary evidence suggestive of a long-lasting impact of variation within the normative range of early maternal behaviour on functional connectivity between large-scale brain networks.
Collapse
Affiliation(s)
- Fanny Dégeilh
- Department of Psychology, University of Montreal, Quebec, Canada; Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Quebec, Canada.
| | - Élizabel Leblanc
- Department of Psychology, University of Montreal, Quebec, Canada
| | - Véronique Daneault
- Department of Psychology, University of Montreal, Quebec, Canada; Functional Neuroimaging Unit, Montreal Geriatric University Institute, Quebec, Canada; Center for Advanced Research in Sleep Medicine, Montreal Sacré-Cœur Hospital, Quebec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Quebec, Canada; Sainte-Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|
63
|
Hegdé J. Neural Mechanisms of High-Level Vision. Compr Physiol 2018; 8:903-953. [PMID: 29978891 DOI: 10.1002/cphy.c160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The last three decades have seen major strides in our understanding of neural mechanisms of high-level vision, or visual cognition of the world around us. Vision has also served as a model system for the study of brain function. Several broad insights, as yet incomplete, have recently emerged. First, visual perception is best understood not as an end unto itself, but as a sensory process that subserves the animal's behavioral goal at hand. Visual perception is likely to be simply a side effect that reflects the readout of visual information processing that leads to behavior. Second, the brain is essentially a probabilistic computational system that produces behaviors by collectively evaluating, not necessarily consciously or always optimally, the available information about the outside world received from the senses, the behavioral goals, prior knowledge about the world, and possible risks and benefits of a given behavior. Vision plays a prominent role in the overall functioning of the brain providing the lion's share of information about the outside world. Third, the visual system does not function in isolation, but rather interacts actively and reciprocally with other brain systems, including other sensory faculties. Finally, various regions of the visual system process information not in a strict hierarchical manner, but as parts of various dynamic brain-wide networks, collectively referred to as the "connectome." Thus, a full understanding of vision will ultimately entail understanding, in granular, quantitative detail, various aspects of dynamic brain networks that use visual sensory information to produce behavior under real-world conditions. © 2017 American Physiological Society. Compr Physiol 8:903-953, 2018.
Collapse
Affiliation(s)
- Jay Hegdé
- Brain and Behavior Discovery Institute, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,The Graduate School, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
64
|
Mohammadi-Nejad AR, Mahmoudzadeh M, Hassanpour MS, Wallois F, Muzik O, Papadelis C, Hansen A, Soltanian-Zadeh H, Gelovani J, Nasiriavanaki M. Neonatal brain resting-state functional connectivity imaging modalities. PHOTOACOUSTICS 2018; 10:1-19. [PMID: 29511627 PMCID: PMC5832677 DOI: 10.1016/j.pacs.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 05/12/2023]
Abstract
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Collapse
Affiliation(s)
- Ali-Reza Mohammadi-Nejad
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| | - Mahdi Mahmoudzadeh
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | | | - Fabrice Wallois
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | - Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christos Papadelis
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anne Hansen
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Mohammadreza Nasiriavanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
65
|
Miranda-Dominguez O, Feczko E, Grayson DS, Walum H, Nigg JT, Fair DA. Heritability of the human connectome: A connectotyping study. Netw Neurosci 2018; 2:175-199. [PMID: 30215032 PMCID: PMC6130446 DOI: 10.1162/netn_a_00029] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 11/04/2022] Open
Abstract
Recent progress in resting-state neuroimaging demonstrates that the brain exhibits highly individualized patterns of functional connectivity-a "connectotype." How these individualized patterns may be constrained by environment and genetics is unknown. Here we ask whether the connectotype is familial and heritable. Using a novel approach to estimate familiality via a machine-learning framework, we analyzed resting-state fMRI scans from two well-characterized samples of child and adult siblings. First we show that individual connectotypes were reliably identified even several years after the initial scanning timepoint. Familial relationships between participants, such as siblings versus those who are unrelated, were also accurately characterized. The connectotype demonstrated substantial heritability driven by high-order systems including the fronto-parietal, dorsal attention, ventral attention, cingulo-opercular, and default systems. This work suggests that shared genetics and environment contribute toward producing complex, individualized patterns of distributed brain activity, rather than constraining local aspects of function. These insights offer new strategies for characterizing individual aberrations in brain function and evaluating heritability of brain networks.
Collapse
Affiliation(s)
- Oscar Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - David S Grayson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
66
|
Wakschlag LS, Perlman SB, Blair RJ, Leibenluft E, Briggs-Gowan MJ, Pine DS. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars. Am J Psychiatry 2018; 175:114-130. [PMID: 29145753 PMCID: PMC6075952 DOI: 10.1176/appi.ajp.2017.17010045] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].
Collapse
Affiliation(s)
- Lauren S Wakschlag
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| | - Susan B Perlman
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| | - R James Blair
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| | - Ellen Leibenluft
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| | - Margaret J Briggs-Gowan
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| | - Daniel S Pine
- From the Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, and the Institute for Policy Research, Northwestern University, Chicago; the Department of Psychiatry, University of Pittsburgh, Pittsburgh; the Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebr.; the Department of Psychiatry, University of Connecticut, Farmington, Conn.; and the National Institute of Mental Health, Bethesda, Md
| |
Collapse
|
67
|
Marrus N, Eggebrecht AT, Todorov A, Elison JT, Wolff JJ, Cole L, Gao W, Pandey J, Shen MD, Swanson MR, Emerson RW, Klohr CL, Adams CM, Estes AM, Zwaigenbaum L, Botteron KN, McKinstry RC, Constantino JN, Evans AC, Hazlett HC, Dager SR, Paterson SJ, Schultz RT, Styner MA, Gerig G, Schlaggar BL, Piven J, Pruett JR. Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers. Cereb Cortex 2018; 28:750-763. [PMID: 29186388 PMCID: PMC6057546 DOI: 10.1093/cercor/bhx313] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 11/14/2022] Open
Abstract
Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction.
Collapse
Affiliation(s)
- Natasha Marrus
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Alexandre Todorov
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN 55455,USA
| | - Jason J Wolff
- Department of Educational Psychology,University of Minnesota, 56 East River Road, Minneapolis, MN 55455, USA
| | - Lyndsey Cole
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Juhi Pandey
- Children’s Hospital of Philadelphia,University of Pennsylvania, Civic Center Blvd, Philadelphia, PA 19104,USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Meghan R Swanson
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Robert W Emerson
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Cheryl L Klohr
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Chloe M Adams
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, 1701 NE Columbia Rd., Seattle, WA 98195-7920, USA
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), 8440 112 St NW, Edmonton, Alberta, Canada T6G 2B7
| | - Kelly N Botteron
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - John N Constantino
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Alan C Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St, Montreal, Quebec, Canada H3A 2B4
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, 1410 NE Campus Parkway, Seattle, WA 98195,USA
| | - Sarah J Paterson
- Department of Psychology, Temple University, 1801 N. Broad St., Philadelphia, PA 19122,USA
| | - Robert T Schultz
- Children’s Hospital of Philadelphia,University of Pennsylvania, Civic Center Blvd, Philadelphia, PA 19104,USA
| | - Martin A Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Guido Gerig
- Tandon School of Engineering, New York University, 6 Metro Tech Center, Brooklyn, NY 11201, USA
| | | | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110,USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - John R Pruett
- Department of Psychiatry,Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
68
|
Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci 2017; 11:685. [PMID: 29311770 PMCID: PMC5733053 DOI: 10.3389/fnins.2017.00685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michael M Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R L Mongerson
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
69
|
Stephen JM, Flynn L, Kabella D, Schendel M, Cano S, Savage DD, Rayburn W, Leeman LM, Lowe J, Bakhireva LN. Hypersynchrony in MEG spectral amplitude in prospectively-identified 6-month-old infants prenatally exposed to alcohol. NEUROIMAGE-CLINICAL 2017. [PMID: 29527487 PMCID: PMC5842663 DOI: 10.1016/j.nicl.2017.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Early identification of children who experience developmental delays due to prenatal alcohol exposure (PAE) remains a challenge for individuals who do not exhibit facial dysmorphia. It is well-established that children with PAE may still exhibit the cognitive and behavioral difficulties, and individuals without facial dysmorphia make up the majority of individuals affected by PAE. This study employed a prospective cohort design to capture alcohol consumption patterns during pregnancy and then followed the infants to 6 months of age. Infants were assessed using magnetoencephalography to capture neurophysiological indicators of brain development and the Bayley Scales of Infant Development-III to measure behavioral development. To account for socioeconomic and family environmental factors, we employed a two-by-two design with pregnant women who were or were not using opioid maintenance therapy (OMT) and did or did not consume alcohol during pregnancy. Based on prior studies, we hypothesized that infants with PAE would exhibit broad increased spectral amplitude relative to non-PAE infants. We also hypothesized that the developmental shift from low to high frequency spectral amplitude would be delayed in infants with PAE relative to controls. Our results demonstrated broadband increased spectral amplitude, interpreted as hypersynchrony, in PAE infants with no significant interaction with OMT. Unlike prior EEG studies in neonates, our results indicate that this hypersynchrony was highly lateralized to left hemisphere and primarily focused in temporal/lateral frontal regions. Furthermore, there was a significant positive correlation between estimated number of drinks consumed during pregnancy and spectral amplitude revealing a dose-response effect of increased hypersynchrony corresponding to greater alcohol consumption. Contrary to our second hypothesis, we did not see a significant group difference in the contribution of low frequency to high frequency amplitude at 6 months of age. These results provide new evidence that hypersynchrony, previously observed in neonates prenatally exposed to high levels of alcohol, persists until 6 months of age and this measure is detectable with low to moderate exposure of alcohol with a dose-response effect. These results indicate that hypersynchrony may provide a sensitive early marker of prenatal alcohol exposure in infants up to 6 months of age.
Collapse
Affiliation(s)
- Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Danielle Kabella
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Megan Schendel
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Sandra Cano
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - William Rayburn
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lawrence M Leeman
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Family and Community Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jean Lowe
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Family and Community Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
70
|
Tuulari JJ, Scheinin NM, Lehtola S, Merisaari H, Saunavaara J, Parkkola R, Sehlstedt I, Karlsson L, Karlsson H, Björnsdotter M. Neural correlates of gentle skin stroking in early infancy. Dev Cogn Neurosci 2017; 35:36-41. [PMID: 29241822 PMCID: PMC6968958 DOI: 10.1016/j.dcn.2017.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
The infant brain is sensitive to gentle skin stroking within the first weeks of age. The postcentral gyrus and posterior insular cortex are responsive to stroking. Social touch activates both somatosensory and socio-affective brain areas in infancy.
Physical expressions of affection play a foundational role in early brain development, but the neural correlates of affective touch processing in infancy remain unclear. We examined brain responses to gentle skin stroking, a type of tactile stimulus associated with affectionate touch, in young infants. Thirteen term-born infants aged 11–36 days, recruited through the FinnBrain Birth Cohort Study, were included in the study. Soft brush strokes, which activate brain regions linked to somatosensory as well as socio-affective processing in children and adults, were applied to the skin of the right leg during functional magnetic resonance imaging. We examined infant brain responses in two regions-of-interest (ROIs) known to process gentle skin stroking – the postcentral gyrus and posterior insular cortex – and found significant responses in both ROIs. These results suggest that the neonate brain is responsive to gentle skin stroking within the first weeks of age, and that regions linked to primary somatosensory as well as socio-affective processing are activated. Our findings support the notion that social touch may play an important role in early life sensory processing. Future research will elucidate the significance of these findings for human brain development.
Collapse
Affiliation(s)
- Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Isac Sehlstedt
- Center for Social and Affective Neuroscience, Linköping University, Sweden; Department of Psychology, University of Gothenburg, Sweden
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Malin Björnsdotter
- Center for Social and Affective Neuroscience, Linköping University, Sweden; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| |
Collapse
|
71
|
Grayson DS, Fair DA. Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. Neuroimage 2017; 160:15-31. [PMID: 28161313 PMCID: PMC5538933 DOI: 10.1016/j.neuroimage.2017.01.079] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
The development of human cognition results from the emergence of coordinated activity between distant brain areas. Network science, combined with non-invasive functional imaging, has generated unprecedented insights regarding the adult brain's functional organization, and promises to help elucidate the development of functional architectures supporting complex behavior. Here we review what is known about functional network development from birth until adulthood, particularly as understood through the use of resting-state functional connectivity MRI (rs-fcMRI). We attempt to synthesize rs-fcMRI findings with other functional imaging techniques, with macro-scale structural connectivity, and with knowledge regarding the development of micro-scale structure. We highlight a number of outstanding conceptual and technical barriers that need to be addressed, as well as previous developmental findings that may need to be revisited. Finally, we discuss key areas ripe for future research in order to (1) better characterize normative developmental trajectories, (2) link these trajectories to biologic mechanistic events, as well as component behaviors and (3) better understand the clinical implications and pathophysiological basis of aberrant network development.
Collapse
Affiliation(s)
- David S Grayson
- The MIND Institute, University of California Davis, Sacramento, CA 95817, USA; Center for Neuroscience, University of California Davis, Davis, CA 95616, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA; Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
72
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
73
|
Meimani N, Abani N, Gelovani J, Avanaki MR. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging. PHOTOACOUSTICS 2017; 7:27-35. [PMID: 28702357 PMCID: PMC5487250 DOI: 10.1016/j.pacs.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 05/04/2023]
Abstract
In the application of photoacoustic human infant brain imaging, debubbled ultrasound gel or water is commonly used as a couplant for ultrasonic transducers due to their acoustic properties. The main challenge in using such a couplant is its discomfort for the patient. In this study, we explore the feasibility of a semi-dry coupling configuration to be used in photoacoustic computed tomography (PACT) systems. The coupling system includes an inflatable container consisting of a thin layer of Aqualene with ultrasound gel or water inside of it. Finite element method (FEM) is used for static and dynamic structural analysis of the proposed configuration to be used in PACT for infant brain imaging. The outcome of the analysis is an optimum thickness of Aqualene in order to meet the weight tolerance requirement with the least attenuation and best impedance match to recommend for an experimental setting.
Collapse
Affiliation(s)
- Najme Meimani
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
- Basir Eye Health Research Center, Tehran, Iran
| | - Nina Abani
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammad R.N Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
74
|
Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, Jacokes Z. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin 2017; 16:355-368. [PMID: 28861337 PMCID: PMC5568883 DOI: 10.1016/j.nicl.2017.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/30/2023]
Abstract
Perinatal care advances emerging over the past twenty years have helped to diminish the mortality and severe neurological morbidity of extremely and very preterm neonates (e.g., cystic Periventricular Leukomalacia [c-PVL] and Germinal Matrix Hemorrhage - Intraventricular Hemorrhage [GMH-IVH grade 3-4/4]; 22 to < 32 weeks of gestational age, GA). However, motor and/or cognitive disabilities associated with mild-to-moderate white and gray matter injury are frequently present in this population (e.g., non-cystic Periventricular Leukomalacia [non-cystic PVL], neuronal-axonal injury and GMH-IVH grade 1-2/4). Brain research studies using magnetic resonance imaging (MRI) report that 50% to 80% of extremely and very preterm neonates have diffuse white matter abnormalities (WMA) which correspond to only the minimum grade of severity. Nevertheless, mild-to-moderate diffuse WMA has also been associated with significant affectations of motor and cognitive activities. Due to increased neonatal survival and the intrinsic characteristics of diffuse WMA, there is a growing need to study the brain of the premature infant using non-invasive neuroimaging techniques sensitive to microscopic and/or diffuse lesions. This emerging need has led the scientific community to try to bridge the gap between concepts or ideas from different methodologies and approaches; for instance, neuropathology, neuroimaging and clinical findings. This is evident from the combination of intense pre-clinical and clinicopathologic research along with neonatal neurology and quantitative neuroimaging research. In the following review, we explore literature relating the most frequently observed neuropathological patterns with the recent neuroimaging findings in preterm newborns and infants with perinatal brain injury. Specifically, we focus our discussions on the use of neuroimaging to aid diagnosis, measure morphometric brain damage, and track long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Manuel Hinojosa-Rodríguez
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Cristina Carrillo-Prado
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Carinna Torgerson
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Zachary Jacokes
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| |
Collapse
|
75
|
Eggebrecht AT, Elison JT, Feczko E, Todorov A, Wolff JJ, Kandala S, Adams CM, Snyder AZ, Lewis JD, Estes AM, Zwaigenbaum L, Botteron KN, McKinstry RC, Constantino JN, Evans A, Hazlett HC, Dager S, Paterson SJ, Schultz RT, Styner MA, Gerig G, Das S, Kostopoulos P, Schlaggar BL, Petersen SE, Piven J, Pruett JR. Joint Attention and Brain Functional Connectivity in Infants and Toddlers. Cereb Cortex 2017; 27:1709-1720. [PMID: 28062515 PMCID: PMC5452276 DOI: 10.1093/cercor/bhw403] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023] Open
Abstract
Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development.
Collapse
Affiliation(s)
- Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health & Sciences, Portland, OR 97239, USA
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Chloe M Adams
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John D Lewis
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, 1E1 Walter Mackenzie Health Sciences Centre (WMC), Edmonton, AB T6G 2B7, Canada
| | - Kelly N Botteron
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Heather C Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Sarah J Paterson
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Robert T Schultz
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Guido Gerig
- Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Samir Das
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Penelope Kostopoulos
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110,USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110,USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
76
|
Buss C, Entringer S, Moog NK, Toepfer P, Fair DA, Simhan HN, Heim CM, Wadhwa PD. Intergenerational Transmission of Maternal Childhood Maltreatment Exposure: Implications for Fetal Brain Development. J Am Acad Child Adolesc Psychiatry 2017; 56:373-382. [PMID: 28433086 PMCID: PMC5402756 DOI: 10.1016/j.jaac.2017.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Growing evidence suggests the deleterious consequences of exposure to childhood maltreatment (CM) not only might endure over the exposed individual's lifespan but also might be transmitted across generations. The time windows, mechanisms, and targets of such intergenerational transmission are poorly understood. The prevailing paradigm posits that mother-to-child transmission of the effects of maternal CM likely occurs after her child's birth. The authors seek to extend this paradigm and advance a transdisciplinary framework that integrates the concepts of biological embedding of life experiences and fetal origins of health and disease risk. METHOD The authors posit that the period of embryonic and fetal life represents a particularly sensitive time for intergenerational transmission; that the developing brain represents a target of particular interest; and that stress-sensitive maternal-placental-fetal biological (endocrine, immune) pathways represent leading candidate mechanisms of interest. RESULTS The plausibility of this model is supported by theoretical considerations and empirical findings in humans and animals. The authors synthesize several research areas and identify important knowledge gaps that might warrant further study. CONCLUSION The scientific and public health relevance of this effort relates to achieving a better understanding of the "when," "what," and "how" of intergenerational transmission of CM, with implications for early identification of risk, prevention, and intervention.
Collapse
Affiliation(s)
- Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH); the University of California-Irvine; and the University of California-Irvine Development, Health and Disease Research Program, Orange, CA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci 2017; 25:145-159. [PMID: 28254197 PMCID: PMC5478471 DOI: 10.1016/j.dcn.2017.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 02/06/2023] Open
Abstract
Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
78
|
Neonatal Amygdala Functional Connectivity at Rest in Healthy and Preterm Infants and Early Internalizing Symptoms. J Am Acad Child Adolesc Psychiatry 2017; 56:157-166. [PMID: 28117062 PMCID: PMC5302247 DOI: 10.1016/j.jaac.2016.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Alterations in the normal developmental trajectory of amygdala resting state functional connectivity (rs-FC) have been associated with atypical emotional processes and psychopathology. Little is known, however, regarding amygdala rs-FC at birth or its relevance to outcomes. This study examined amygdala rs-FC in healthy, full-term (FT) infants and in very preterm (VPT) infants, and tested whether variability of neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years. METHOD Resting state fMRI data were obtained shortly after birth from 65 FT infants (gestational age [GA] ≥36 weeks) and 57 VPT infants (GA <30 weeks) at term equivalent. Voxelwise correlation analyses were performed using individual-specific bilateral amygdala regions of interest. Total internalizing symptoms and the behavioral inhibition, depression/withdrawal, general anxiety, and separation distress subdomains were assessed in a subset (n = 44) at age 2 years using the Infant Toddler Social Emotional Assessment. RESULTS In FT and VPT infants, the amygdala demonstrated positive correlations with subcortical and limbic structures and negative correlations with cortical regions, although magnitudes were decreased in VPT infants. Neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years with regional specificity consistent with known pathophysiology in older populations: connectivity with the anterior insula related to depressive symptoms, with the dorsal anterior cingulate related to generalized anxiety, and with the medial prefrontal cortex related to behavioral inhibition. CONCLUSION Amygdala rs-FC is well established in neonates. Variability in regional neonatal amygdala rs-FC predicted internalizing symptoms at 2 years, suggesting that risk for internalizing symptoms may be established in neonatal amygdala functional connectivity patterns.
Collapse
|
79
|
Hostinar CE, Nusslock R, Miller GE. Future Directions in the Study of Early-Life Stress and Physical and Emotional Health: Implications of the Neuroimmune Network Hypothesis. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2017; 47:142-156. [PMID: 28107039 DOI: 10.1080/15374416.2016.1266647] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early-life stress is associated with increased vulnerability to physical and emotional health problems across the lifespan. The recently developed neuroimmune network hypothesis proposes that one of the underlying mechanisms for these associations is that early-life stress amplifies bidirectional crosstalk between the brain and the immune system, contributing to several mental and physical health conditions that have inflammatory underpinnings, such as depression and coronary heart disease. Neuroimmune crosstalk is thought to perpetuate inflammation and neural alterations linked to early-life stress exposure, and also foster behaviors that can further compromise health, such as smoking, drug abuse and consumption of high-fat diets. The goal of the present review is to briefly summarize the neuroimmune network hypothesis and use it as a starting point for generating new questions about the role of early-life stress in establishing a dysregulated relationship between neural and immune signaling, with consequences for lifespan physical and emotional health. Specifically, we aim to discuss implications and future directions for theory and empirical research on early-life stress, as well as for interventions that may improve the health and well-being of children and adolescents living in adverse conditions.
Collapse
|
80
|
Blankenship SL, Redcay E, Dougherty LR, Riggins T. Development of hippocampal functional connectivity during childhood. Hum Brain Mapp 2017; 38:182-201. [PMID: 27585371 PMCID: PMC6866850 DOI: 10.1002/hbm.23353] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 07/09/2016] [Accepted: 08/09/2016] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is a medial temporal lobe structure involved in memory, spatial navigation, and regulation of stress responses, making it a structure critical to daily functioning. However, little is known about the functional development of the hippocampus during childhood due to methodological challenges of acquiring neuroimaging data in young participants. This is a critical gap given evidence that hippocampally-mediated behaviors (e.g., episodic memory) undergo rapid and important changes during childhood. To address this gap, the present investigation collected resting-state fMRI scans in 97, 4- to 10-year-old children. Whole brain seed-based analyses of anterior, posterior, and whole hippocampal connectivity were performed to identify regions demonstrating stable (i.e., age-controlled) connectivity profiles as well as age-related differences in connectivity. Results reveal that the hippocampus is a highly connected structure of the brain and that most of the major components of the adult network are evident during childhood, including both unique and overlapping connectivity between anterior and posterior regions. Despite widespread age-controlled connectivity, the strength of hippocampal connectivity with regions of lateral temporal lobes and the anterior cingulate increased throughout the studied age range. These findings have implications for future investigations of the development of hippocampally-mediated behaviors and methodological applications for the appropriateness of whole versus segmented hippocampal seeds in connectivity analyses. Hum Brain Mapp 38:182-201, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah L. Blankenship
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland
- Department of PsychologyUniversity of MarylandCollege ParkMaryland
| | - Lea R. Dougherty
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland
- Department of PsychologyUniversity of MarylandCollege ParkMaryland
| | - Tracy Riggins
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland
- Department of PsychologyUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
81
|
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatr Res 2017; 81:214-226. [PMID: 27673421 PMCID: PMC5313513 DOI: 10.1038/pr.2016.197] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Human neurodevelopment requires the organization of neural elements into complex structural and functional networks called the connectome. Emerging data suggest that prenatal exposure to maternal stress plays a role in the wiring, or miswiring, of the developing connectome. Stress-related symptoms are common in women during pregnancy and are risk factors for neurobehavioral disorders ranging from autism spectrum disorder, attention deficit hyperactivity disorder, and addiction, to major depression and schizophrenia. This review focuses on structural and functional connectivity imaging to assess the impact of changes in women's stress-based physiology on the dynamic development of the human connectome in the fetal brain.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut,Department of Child Study, Yale School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Sarah N. Cross
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Soo Hyun Kwon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Laura R. Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut,Department of Neurology, Yale School of Medicine, New Haven, Connecticut,()
| |
Collapse
|
82
|
Mongerson CRL, Jennings RW, Borsook D, Becerra L, Bajic D. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality. Front Pediatr 2017; 5:159. [PMID: 28856131 PMCID: PMC5557740 DOI: 10.3389/fped.2017.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/04/2017] [Indexed: 11/02/2022] Open
Abstract
Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.
Collapse
Affiliation(s)
- Chandler R L Mongerson
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Russell W Jennings
- Department of Surgery, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
83
|
Fitch A, Smith H, Guillory SB, Kaldy Z. Off to a Good Start: The Early Development of the Neural Substrates Underlying Visual Working Memory. Front Syst Neurosci 2016; 10:68. [PMID: 27587999 PMCID: PMC4989029 DOI: 10.3389/fnsys.2016.00068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Current neuroscientific models describe the functional neural architecture of visual working memory (VWM) as an interaction of the frontal-parietal control network and more posterior areas in the ventral visual stream (Jonides et al., 2008; D'Esposito and Postle, 2015; Eriksson et al., 2015). These models are primarily based on adult neuroimaging studies. However, VWM undergoes significant development in infancy and early childhood, and the goal of this mini-review is to examine how recent findings from neuroscientific studies of early VWM development can be reconciled with this model. We surveyed 29 recent empirical reports that present neuroimaging findings in infants, toddlers, and preschoolers (using EEG, fNIRS, rs-fMRI) and neonatal lesion studies in non-human primates. We conclude that (1) both the frontal-parietal control network and the posterior cortical storage areas are active from early infancy; (2) this system undergoes focalization and some reorganization during early development; (3) and the MTL plays a significant role in this process as well. Motivated by both theoretical and methodological considerations, we offer some recommendations for future directions for the field.
Collapse
Affiliation(s)
- Allison Fitch
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Hayley Smith
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Sylvia B Guillory
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Zsuzsa Kaldy
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| |
Collapse
|
84
|
Holschneider DP, Guo Y, Mayer EA, Wang Z. Early life stress elicits visceral hyperalgesia and functional reorganization of pain circuits in adult rats. Neurobiol Stress 2016; 3:8-22. [PMID: 26751119 PMCID: PMC4700548 DOI: 10.1016/j.ynstr.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Early life stress (ELS) is a risk factor for developing functional gastrointestinal disorders, and has been proposed to be related to a central amplification of sensory input and resultant visceral hyperalgesia. We sought to characterize ELS-related changes in functional brain responses during acute noxious visceral stimulation. Neonatal rats (males/females) were exposed to limited bedding (ELS) or standard bedding (controls) on postnatal days 2–9. Age 10–11 weeks, animals were implanted with venous cannulas and transmitters for abdominal electromyography (EMG). Cerebral blood flow (rCBF) was mapped during colorectal distension (CRD) using [14C]-iodoantipyrine autoradiography, and analyzed in three-dimensionally reconstructed brains by statistical parametric mapping and functional connectivity. EMG responses to CRD were increased after ELS, with no evidence of a sex difference. ELS rats compared to controls showed a greater significant positive correlation of EMG with amygdalar rCBF. Factorial analysis revealed a significant main effect of ‘ELS’ on functional activation of nodes within the pain pathway (somatosensory, insular, cingulate and prefrontal cortices, locus coeruleus/lateral parabrachial n. [LC/LPB], periaqueductal gray, sensory thalamus), as well as in the amygdala, hippocampus and hypothalamus. In addition, ELS resulted in an increase in the number of significant functional connections (i.e. degree centrality) between regions within the pain circuit, including the amygdala, LC/LPB, insula, anterior ventral cingulate, posterior cingulate (retrosplenium), and stria terminalis, with decreases noted in the sensory thalamus and the hippocampus. Sex differences in rCBF were less broadly expressed, with significant differences noted at the level of the cortex, amygdala, dorsal hippocampus, raphe, sensory thalamus, and caudate-putamen. ELS showed a sexually dimorphic effect (‘Sex x ELS’ interaction) at the LC/LPB complex, globus pallidus, hypothalamus, raphe, septum, caudate-putamen and cerebellum. Our results suggest that ELS alters functional activation of the thalamo-cortico-amydala pathway, as well as the emotional-arousal network (amygdala, locus coeruleus), with evidence that ELS may additionally show sexually dimorphic effects on brain function. Early life stress (ELS) elicits visceral hyperalgesia in adult offspring. ELS alters functional activation of the thalamo-cortico-amydala pathway. ELS shows a sexually dimorphic effects on brain function. Functional imaging-based endpoints promise improved animal-to-human translation.
Collapse
Affiliation(s)
- D P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Departments of Neurology, Cell and Neurobiology, Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Center for Neurobiology of Stress, Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Y Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - E A Mayer
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America; Center for Neurobiology of Stress, Department of Medicine, University of California Los Angeles, Los Angeles, California, USA; Departments of Physiology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Z Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Center for Neurobiology of Stress, Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
85
|
Kozberg M, Hillman E. Neurovascular coupling and energy metabolism in the developing brain. PROGRESS IN BRAIN RESEARCH 2016; 225:213-42. [PMID: 27130418 DOI: 10.1016/bs.pbr.2016.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations.
Collapse
Affiliation(s)
- M Kozberg
- Columbia University, New York, NY, United States.
| | - E Hillman
- Columbia University, New York, NY, United States; Kavli Institute for Brain Science, Columbia University, New York, NY, United States; Mortimer B. Zuckerman Institute for Mind Brain and Behavior, Columbia University, New York, NY, United States.
| |
Collapse
|
86
|
Opendak M, Sullivan RM. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing. Eur J Psychotraumatol 2016; 7:31276. [PMID: 27837581 PMCID: PMC5106868 DOI: 10.3402/ejpt.v7.31276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. METHODS Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. RESULTS Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. CONCLUSION An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA;
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
87
|
Graham AM, Pfeifer JH, Fisher PA, Carpenter S, Fair DA. Early life stress is associated with default system integrity and emotionality during infancy. J Child Psychol Psychiatry 2015; 56:1212-22. [PMID: 25809052 PMCID: PMC4580514 DOI: 10.1111/jcpp.12409] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Extensive animal research has demonstrated the vulnerability of the brain to early life stress (ELS) with consequences for emotional development and mental health. However, the influence of moderate and common forms of stress on early human brain development is less well-understood and precisely characterized. To date, most work has focused on severe forms of stress, and/or on brain functioning years after stress exposure. METHODS In this report we focused on conflict between parents (interparental conflict), a common and relatively moderate form of ELS that is highly relevant for children's mental health outcomes. We used resting state functional connectivity MRI to examine the coordinated functioning of the infant brain (N = 23; 6-12-months-of-age) in the context of interparental conflict. We focused on the default mode network (DMN) due to its well-characterized developmental trajectory and implications for mental health. We further examined DMN strength as a mediator between conflict and infants' negative emotionality. RESULTS Higher interparental conflict since birth was associated with infants showing stronger connectivity between two core DMN regions, the posterior cingulate cortex (PCC) and the anterior medial prefrontal cortex (aMPFC). PCC to amygdala connectivity was also increased. Stronger PCC-aMPFC connectivity mediated between higher conflict and higher negative infant emotionality. CONCLUSIONS The developing DMN may be an important marker for effects of ELS with relevance for emotional development and subsequent mental health. Increasing understanding of the associations between common forms of family stress and emerging functional brain networks has potential to inform intervention efforts to improve mental health outcomes.
Collapse
Affiliation(s)
- Alice M. Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | | - Philip A. Fisher
- University of Oregon, Department of Psychology, Portland, OR, United States,Oregon Social Learning Center, Portland, OR, United States
| | - Samuel Carpenter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Damien A. Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|