51
|
Papandréou MJ, Leterrier C. The functional architecture of axonal actin. Mol Cell Neurosci 2018; 91:151-159. [PMID: 29758267 DOI: 10.1016/j.mcn.2018.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton builds and supports the complex architecture of neurons. It orchestrates the specification, growth, and compartmentation of the axon: axon initial segment, axonal shaft, presynapses. The cytoskeleton must then maintain this intricate architecture for the whole life of its host, but also drive its adaptation to new network demands and changing physiological conditions. Microtubules are readily visible inside axon shafts by electron microscopy, whereas axonal actin study has long been focused on dynamic structures of the axon such as growth cones. Super-resolution microscopy and live-cell imaging have recently revealed new actin-based structures in mature axons: rings, hotspots and trails. This has caused renewed interest for axonal actin, with efforts underway to understand the precise organization and cellular functions of these assemblies. Actin is also present in presynapses, where its arrangement is still poorly defined, and its functions vigorously debated. Here we review the organization of axonal actin, focusing on recent advances and current questions in this rejuvenated field.
Collapse
|
52
|
Fassier C, Fréal A, Gasmi L, Delphin C, Ten Martin D, De Gois S, Tambalo M, Bosc C, Mailly P, Revenu C, Peris L, Bolte S, Schneider-Maunoury S, Houart C, Nothias F, Larcher JC, Andrieux A, Hazan J. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics. J Cell Biol 2018. [PMID: 29535193 PMCID: PMC5940295 DOI: 10.1083/jcb.201604108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fassier et al. identify Fidgetin-like 1 (Fignl1) as a key growth cone (GC)-enriched microtubule (MT)-associated protein in motor circuit wiring. They show that Fignl1 modulates motor GC morphology and steering behavior by down-regulating EB binding at MT plus ends and promoting MT depolymerization beneath the cell cortex. During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.
Collapse
Affiliation(s)
- Coralie Fassier
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Amélie Fréal
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christian Delphin
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Daniel Ten Martin
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Monica Tambalo
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christophe Bosc
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Philippe Mailly
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Leticia Peris
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Susanne Bolte
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London, England, UK
| | - Fatiha Nothias
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Jean-Christophe Larcher
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Jamilé Hazan
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
53
|
Choi JH, Wang W, Park D, Kim SH, Kim KT, Min KT. IRES-mediated translation of cofilin regulates axonal growth cone extension and turning. EMBO J 2018; 37:embj.201695266. [PMID: 29440227 DOI: 10.15252/embj.201695266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022] Open
Abstract
In neuronal development, dynamic rearrangement of actin promotes axonal growth cone extension, and spatiotemporal translation of local mRNAs in response to guidance cues directs axonal growth cone steering, where cofilin plays a critical role. While regulation of cofilin activity is well studied, regulatory mechanism for cofilin mRNA translation in neurons is unknown. In eukaryotic cells, proteins can be synthesized by cap-dependent or cap-independent mechanism via internal ribosome entry site (IRES)-mediated translation. IRES-mediated translation has been reported in various pathophysiological conditions, but its role in normal physiological environment is poorly understood. Here, we report that 5'UTR of cofilin mRNA contains an IRES element, and cofilin is predominantly translated by IRES-mediated mechanism in neurons. Furthermore, we show that IRES-mediated translation of cofilin is required for both axon extension and axonal growth cone steering. Our results provide new insights into the function of IRES-mediated translation in neuronal development.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Wei Wang
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea.,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Dongkeun Park
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea.,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sung-Hoon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan, Korea .,National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
54
|
Etxebeste O, Espeso EA. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 2017; 40:610-24. [PMID: 27587717 DOI: 10.1093/femsre/fuw021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future.
Collapse
Affiliation(s)
- Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
55
|
The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. J Neurosci 2017; 38:291-307. [PMID: 29167405 DOI: 10.1523/jneurosci.2281-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proper organization and dynamics of the actin and microtubule (MT) cytoskeleton are essential for growth cone behaviors during axon growth and guidance. The MT-associated protein tau is known to mediate actin/MT interactions in cell-free systems but the role of tau in regulating cytoskeletal dynamics in living neurons is unknown. We used cultures of cortical neurons from postnatal day (P)0-P2 golden Syrian hamsters (Mesocricetus auratus) of either sex to study the role of tau in the organization and dynamics of the axonal growth cone cytoskeleton. Here, using super resolution microscopy of fixed growth cones, we found that tau colocalizes with MTs and actin filaments and is also located at the interface between actin filament bundles and dynamic MTs in filopodia, suggesting that tau links these two cytoskeletons. Live cell imaging in concert with shRNA tau knockdown revealed that reducing tau expression disrupts MT bundling in the growth cone central domain, misdirects trajectories of MTs in the transition region and prevents single dynamic MTs from extending into growth cone filopodia along actin filament bundles. Rescue experiments with human tau expression restored MT bundling, MT penetration into the growth cone periphery and close MT apposition to actin filaments in filopodia. Importantly, we found that tau knockdown reduced axon outgrowth and growth cone turning in Wnt5a gradients, likely due to disorganized MTs that failed to extend into the peripheral domain and enter filopodia. These results suggest an important role for tau in regulating cytoskeletal organization and dynamics during growth cone behaviors.SIGNIFICANCE STATEMENT Growth cones are the motile tips of growing axons whose guidance behaviors require interaction of the dynamic actin and microtubule cytoskeleton. Tau is a microtubule-associated protein that stabilizes microtubules in neurons and in cell-free systems regulates actin-microtubule interaction. Here, using super resolution microscopy, live-cell imaging, and tau knockdown, we show for the first time in living axonal growth cones that tau is important for microtubule bundling and microtubule exploration of the actin-rich growth cone periphery. Importantly tau knockdown reduced axon outgrowth and growth cone turning, due to disorganized microtubules that fail to enter filopodia and co-align with actin filaments. Understanding normal tau functions will be important for identifying mechanisms of tau in neurodegenerative diseases such as Alzheimer's.
Collapse
|
56
|
Bendella H, Rink S, Grosheva M, Sarikcioglu L, Gordon T, Angelov DN. Putative roles of soluble trophic factors in facial nerve regeneration, target reinnervation, and recovery of vibrissal whisking. Exp Neurol 2017; 300:100-110. [PMID: 29104116 DOI: 10.1016/j.expneurol.2017.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
It is well-known that, after nerve transection and surgical repair, misdirected regrowth of regenerating motor axons may occur in three ways. The first way is that the axons enter into endoneurial tubes that they did not previously occupy, regenerate through incorrect fascicles and reinnervate muscles that they did not formerly supply. Consequently the activation of these muscles results in inappropriate movements. The second way is that, in contrast with the precise target-directed pathfinding by elongating motor nerves during embryonic development, several axons rather than a single axon grow out from each transected nerve fiber. The third way of misdirection occurs by the intramuscular terminal branching (sprouting) of each regenerating axon to culminate in some polyinnervation of neuromuscular junctions, i.e. reinnervation of junctions by more than a single axon. Presently, "fascicular" or "topographic specificity" cannot be achieved and hence target-directed nerve regeneration is, as yet, unattainable. Nonetheless, motor and sensory reinnervation of appropriate endoneurial tubes does occur and can be promoted by brief nerve electrical stimulation. This review considers the expression of neurotrophic factors in the neuromuscular system and how this expression can promote functional recovery, with emphasis on the whisking of vibrissae on the rat face in relationship to the expression of the factors. Evidence is reviewed for a role of neurotrophic factors as short-range diffusible sprouting stimuli in promoting complete functional recovery of vibrissal whisking in blind Sprague Dawley (SD)/RCS rats but not in SD rats with normal vision, after facial nerve transection and surgical repair. Briefly, a complicated time course of growth factor expression in the nerves and denervated muscles include (1) an early increase in FGF2 and IGF2, (2) reduced NGF between 2 and 14days after nerve transection and surgical repair, (3) a late rise in BDNF and (4) reduced IGF1 protein in the denervated muscles at 28days. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of nerve injury-associated neurotrophic factors and cytokines at the neuromuscular junctions of denervated muscles. In particular, the increase of FGF2 and concomittant decrease of NGF during the first week after facial nerve-nerve anastomosis in SD/RCS blind rats may prevent intramuscular axon sprouting and, in turn, reduce poly-innervation of the neuromuscular junction.
Collapse
Affiliation(s)
- Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
57
|
Basheer WA, Xiao S, Epifantseva I, Fu Y, Kleber AG, Hong T, Shaw RM. GJA1-20k Arranges Actin to Guide Cx43 Delivery to Cardiac Intercalated Discs. Circ Res 2017; 121:1069-1080. [PMID: 28923791 DOI: 10.1161/circresaha.117.311955] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023]
Abstract
RATIONALE Delivery of Cx43 (connexin 43) to the intercalated disc is a continuous and rapid process critical for intercellular coupling. By a pathway of targeted delivery involving microtubule highways, vesicles of Cx43 hemichannels are efficiently trafficked to adherens junctions at intercalated discs. It has also been identified that actin provides rest stops for Cx43 forward trafficking and that Cx43 has a 20 kDa internally translated small C terminus isoform, GJA1-20k (Gap Junction Protein Alpha 1- 20 kDa), which is required for full-length Cx43 trafficking, but by an unknown mechanism. OBJECTIVE We explored the mechanism by which the GJA1-20k isoform is required for full-length Cx43 forward trafficking to intercalated discs. METHODS AND RESULTS Using an in vivo Adeno-associated virus serotype 9-mediated gene transfer system, we confirmed in whole animal that GJA1-20k markedly increases endogenous myocardial Cx43 gap junction plaque size at the intercalated discs. In micropatterned cell pairing systems, we found that exogenous GJA1-20k expression stabilizes filamentous actin without affecting actin protein expression and that GJA1-20k complexes with both actin and tubulin. We also found that filamentous actin regulates microtubule organization as inhibition of actin polymerization with a low dose of latrunculin A disrupts the targeting of microtubules to cell-cell junctions. GJA1-20k protects actin filament from latrunculin A disruption, preserving microtubule trajectory to the cell-cell border. For therapeutic implications, we found that prior in vivo Adeno-associated virus serotype 9-mediated gene delivery of GJA1-20k to the heart protects Cx43 localization to the intercalated discs against acute ischemic injury. CONCLUSIONS The internally translated GJA1-20k isoform stabilizes actin filaments, which guides growth trajectories of the Cx43 microtubule trafficking machinery, increasing delivery of Cx43 hemichannels to cardiac intercalated discs. Exogenous GJA1-20k helps to maintain cell-cell coupling in instances of anticipated myocardial ischemia.
Collapse
Affiliation(s)
- Wassim A Basheer
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - Shaohua Xiao
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - Irina Epifantseva
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - Ying Fu
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - Andre G Kleber
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - TingTing Hong
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.)
| | - Robin M Shaw
- From the Cedars-Sinai Heart Institute (W.A.B., S.X., I.E., Y.F., T.H., R.M.S.) and Department of Medicine (T.H., R.M.S.), Cedars-Sinai Medical Center and UCLA, Los Angeles, CA; and Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (A.G.K.).
| |
Collapse
|
58
|
Mogessie B, Schuh M. Actin protects mammalian eggs against chromosome segregation errors. Science 2017; 357:357/6353/eaal1647. [DOI: 10.1126/science.aal1647] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/28/2017] [Indexed: 11/02/2022]
|
59
|
Zheng C, Diaz-Cuadros M, Nguyen KCQ, Hall DH, Chalfie M. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans. Mol Biol Cell 2017; 28:2786-2801. [PMID: 28835377 PMCID: PMC5638583 DOI: 10.1091/mbc.e17-06-0424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Different tubulin isotypes perform different functions in the regulation of microtubule (MT) structure and neurite growth, and missense mutations of tubulin genes have three types of distinct effects on MT stability and neurite growth. One α-tubulin isotype appears to induce relative instability due to the lack of potential posttranslational modification sites. Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
60
|
Li X, Xu L, Sun G, Wu X, Bai X, Li J, Strauss JF, Zhang Z, Wang H. Spag6 Mutant Mice Have Defects in Development and Function of Spiral Ganglion Neurons, Apoptosis, and Higher Sensitivity to Paclitaxel. Sci Rep 2017; 7:8638. [PMID: 28819108 PMCID: PMC5561245 DOI: 10.1038/s41598-017-08739-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Mammalian Sperm Associated Antigen 6 (SPAG6) is the orthologue of Chlamydomonas PF16, a protein localized in the axoneme central apparatus. Recent studies showed that Spag6 has a role in brain neuronal proliferation and differentiation. The mammalian spiral ganglion neurons (SGNs) are specialzed bipolar neurons in the inner ear. However, the role of SPAG6 in SGN has not been elucidated. Therefore, We hypothesized that a Spag6 knockout would affect the development and function of SGNs. We utilized Spag6-deficient mice and SGN explants to define the role of SPAG6. On postnatal day 30 (P30) mutant mice had lower SGN density compared to their wild-type littermates, and more apoptosis was evident in the mutants. Increased Bax expression, a disturbed distribution of cytochrome c, and cleaved caspase-3 positive staining indicated that increased apoptosis involved a mitochondrial pathway. Transmission electron microscopy revealed abnormalities in the ultrastructure of mutant SGNs as early as P7. In vitro, lack of SPAG6 affected the growth of neurites and growth cones. Additionally, SPAG6 deficiency decreased synapse density in SGN explants. Finally, Spag6 mutant SGNs were more sensitive to the microtubule stabilizing agent, paclitaxel. These findings suggest that Spag6 plays a crucial role in SGN development and function.
Collapse
Affiliation(s)
- Xiaofei Li
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
| | - Lei Xu
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Gaoying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
| | - Xianmin Wu
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China.
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China.
| |
Collapse
|
61
|
Athamneh AIM, He Y, Lamoureux P, Fix L, Suter DM, Miller KE. Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci Rep 2017; 7:7292. [PMID: 28779177 PMCID: PMC5544698 DOI: 10.1038/s41598-017-07402-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
During the development of the nervous system and regeneration following injury, microtubules (MTs) are required for neurite elongation. Whether this elongation occurs primarily through tubulin assembly at the tip of the axon, the transport of individual MTs, or because MTs translocate forward in bulk is unclear. Using fluorescent speckle microscopy (FSM), differential interference contrast (DIC), and phase contrast microscopy, we tracked the movement of MTs, phase dense material, and docked mitochondria in chick sensory and Aplysia bag cell neurons growing rapidly on physiological substrates. In all cases, we find that MTs and other neuritic components move forward in bulk at a rate that on average matches the velocity of neurite elongation. To better understand whether and why MT assembly is required for bulk translocation, we disrupted it with nocodazole. We found this blocked the forward bulk advance of material along the neurite and was paired with a transient increase in axonal tension. This indicates that disruption of MT dynamics interferes with neurite outgrowth, not by disrupting the net assembly of MTs at the growth cone, but rather because it alters the balance of forces that power the bulk forward translocation of MTs.
Collapse
Affiliation(s)
- Ahmad I M Athamneh
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Phillip Lamoureux
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lucas Fix
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
62
|
Hosseinibarkooie S, Schneider S, Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017. [PMID: 28635376 DOI: 10.1080/14789450.2017.1345631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood. Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field. Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.
Collapse
Affiliation(s)
- Seyyedmohsen Hosseinibarkooie
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Svenja Schneider
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Brunhilde Wirth
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany.,d Center for Rare Diseases Cologne , University Hospital of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|
63
|
Szikora S, Földi I, Tóth K, Migh E, Vig A, Bugyi B, Maléth J, Hegyi P, Kaltenecker P, Sanchez-Soriano N, Mihály J. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones. J Cell Sci 2017; 130:2506-2519. [PMID: 28606990 DOI: 10.1242/jcs.203455] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
Directed axonal growth depends on correct coordination of the actin and microtubule cytoskeleton in the growth cone. However, despite the relatively large number of proteins implicated in actin-microtubule crosstalk, the mechanisms whereby actin polymerization is coupled to microtubule stabilization and advancement in the peripheral growth cone remained largely unclear. Here, we identified the formin Dishevelled-associated activator of morphogenesis (DAAM) as a novel factor playing a role in concerted regulation of actin and microtubule remodeling in Drosophilamelanogaster primary neurons. In vitro, DAAM binds to F-actin as well as to microtubules and has the ability to crosslink the two filament systems. Accordingly, DAAM associates with the neuronal cytoskeleton, and a significant fraction of DAAM accumulates at places where the actin filaments overlap with that of microtubules. Loss of DAAM affects growth cone and microtubule morphology, and several aspects of microtubule dynamics; and biochemical and cellular assays revealed a microtubule stabilization activity and binding to the microtubule tip protein EB1. Together, these data suggest that, besides operating as an actin assembly factor, DAAM is involved in linking actin remodeling in filopodia to microtubule stabilization during axonal growth.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Andrea Vig
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary.,Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary.,Institute for Translational Medicine, Department of Pathophysiology, University of Pécs, Pécs H-7624, Hungary
| | - Péter Kaltenecker
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Natalia Sanchez-Soriano
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
64
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
65
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
66
|
Sun X, Zhou Z, Man C, Leung A, Ngan A. Cell-structure specific necrosis by optical-trap induced intracellular nuclear oscillation. J Mech Behav Biomed Mater 2017; 66:58-67. [DOI: 10.1016/j.jmbbm.2016.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
|
67
|
Buck KB, Schaefer AW, Schoonderwoert VT, Creamer MS, Dufresne ER, Forscher P. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation. Mol Biol Cell 2016; 28:98-110. [PMID: 27852899 PMCID: PMC5221634 DOI: 10.1091/mbc.e16-04-0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
In growth cones, local Arp 2/3-dependent actin assembly mechanically buffers apCAM adhesions from retrograde flow–associated traction forces. The resulting propulsive forces drive the exploratory motility of inductopodia. Increasing the stiffness of apCAM targets induces an extensive 3D actin cup to form at the adhesion during evoked growth responses. Homophilic binding of immunoglobulin superfamily molecules such as the Aplysia cell adhesion molecule (apCAM) leads to actin filament assembly near nascent adhesion sites. Such actin assembly can generate significant localized forces that have not been characterized in the larger context of axon growth and guidance. We used apCAM-coated bead substrates applied to the surface of neuronal growth cones to characterize the development of forces evoked by varying stiffness of mechanical restraint. Unrestrained bead propulsion matched or exceeded rates of retrograde network flow and was dependent on Arp2/3 complex activity. Analysis of growth cone forces applied to beads at low stiffness of restraint revealed switching between two states: frictional coupling to retrograde flow and Arp2/3-dependent propulsion. Stiff mechanical restraint led to formation of an extensive actin cup matching the geometric profile of the bead target and forward growth cone translocation; pharmacological inhibition of the Arp2/3 complex or Rac attenuated F-actin assembly near bead binding sites, decreased the efficacy of growth responses, and blocked accumulation of signaling molecules associated with nascent adhesions. These studies introduce a new model for regulation of traction force in which local actin assembly forces buffer nascent adhesion sites from the mechanical effects of retrograde flow.
Collapse
Affiliation(s)
- Kenneth B Buck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Andrew W Schaefer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Vincent T Schoonderwoert
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Eric R Dufresne
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
68
|
Substrate Deformation Predicts Neuronal Growth Cone Advance. Biophys J 2016; 109:1358-71. [PMID: 26445437 DOI: 10.1016/j.bpj.2015.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 10(0)-10(2) nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant.
Collapse
|
69
|
Pacheco A, Gallo G. Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull 2016; 126:300-310. [PMID: 27491623 DOI: 10.1016/j.brainresbull.2016.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Neurons begin life as spherical cells. A major hallmark of neuronal development is the formation of elongating processes from the cell body which subsequently differentiate into dendrites and the axon. The formation and later development of neuronal processes is achieved through the concerted organization of actin filaments and microtubules. Here, we review the literature regarding recent advances in the understanding of cytoskeletal interactions in neurons focusing on the initiation of processes from neuronal cell bodies and the collateral branching of axons. The complex crosstalk between cytoskeletal elements is mediated by a cohort of proteins that either bind both cytoskeletal systems or allow one to regulate the other. Recent studies have highlighted the importance of microtubule plus-tip proteins in the regulation of the dynamics and organization of actin filaments, while also providing a mechanism for the subcellular capture and guidance of microtubule tips by actin filaments. Although the understanding of cytoskeletal crosstalk and interactions in neuronal morphogenesis has advanced significantly in recent years the appreciation of the neuron as an integrated cytoskeletal system remains a frontier.
Collapse
Affiliation(s)
- Almudena Pacheco
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States.
| |
Collapse
|
70
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
71
|
Kilinc D, Dennis CL, Lee GU. Bio-Nano-Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5672-80. [PMID: 26780501 PMCID: PMC5536250 DOI: 10.1002/adma.201504845] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles are promising new tools for therapeutic applications, such as magnetic nanoparticle hyperthermia therapy and targeted drug delivery. Recent in vitro studies have demonstrated that a force application with magnetic tweezers can also affect cell fate, suggesting a therapeutic potential for magnetically modulated mechanical stimulation. The magnetic properties of nanoparticles that induce physical responses and the subtle responses that result from mechanically induced membrane damage and/or intracellular signaling are evaluated. Magnetic particles with various physical, geometric, and magnetic properties and specific functionalization can now be used to apply mechanical force to specific regions of cells, which permit the modulation of cellular behavior through the use of spatially and time controlled magnetic fields. On one hand, mechanochemical stimulation has been used to direct the outgrowth on neuronal growth cones, indicating a therapeutic potential for neural repair. On the other hand, it has been used to kill cancer cells that preferentially express specific receptors. Advances made in the synthesis and characterization of magnetic nanomaterials and a better understanding of cellular mechanotransduction mechanisms may support the translation of mechanochemical stimulation into the clinic as an emerging therapeutic approach.
Collapse
Affiliation(s)
- Devrim Kilinc
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - Cindi L. Dennis
- Material Measurement Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Gaithersburg, MD 20899–8552, USA
| | - Gil U. Lee
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| |
Collapse
|
72
|
Kahn OI, Baas PW. Microtubules and Growth Cones: Motors Drive the Turn. Trends Neurosci 2016; 39:433-440. [PMID: 27233682 DOI: 10.1016/j.tins.2016.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023]
Abstract
Navigation of the growth cone at the tip of the developing axon is crucial for the proper wiring of the nervous system. Mechanisms of actin-dependent growth cone steering, via signaling cascades, are well documented. Microtubules are also important in growth cone guidance, because their polarized invasion into the peripheral domain on one side of the growth cone is essential for it to turn in that direction. Classically, microtubules have been considered secondary players, invading the peripheral domain only where the actin cytoskeleton permits them to go. Presented here is evidence for an underappreciated mechanism by which signaling cascades can potentially affect growth cone turning, namely through regulatable forces imposed on the microtubules by molecular motor proteins.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
73
|
Zhu X, Efimova N, Arnette C, Hanks SK, Kaverina I. Podosome dynamics and location in vascular smooth muscle cells require CLASP-dependent microtubule bending. Cytoskeleton (Hoboken) 2016; 73:300-15. [PMID: 27105779 DOI: 10.1002/cm.21302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 11/07/2022]
Abstract
Extracellular matrix (ECM) remodeling during physiological processes is mediated by invasive protrusions called podosomes. Positioning and dynamics of podosomes define the extent of ECM degradation. Microtubules are known to be involved in podosome regulation, but the role of microtubule (MT) network configuration in podosome dynamics and positioning is not well understood. Here, we show that the arrangement of the microtubule network defines the pattern of podosome formation and relocation in vascular smooth muscle cells (VSMCs). We show that microtubule plus-end targeting facilitates de novo formation of podosomes, in addition to podosome remodeling. Moreover, specialized bent microtubules with plus ends reversed towards the cell center promote relocation of podosomes from the cell edge to the cell center, resulting in an evenly distributed podosome pattern. Microtubule bending is induced downstream of protein kinase C (PKC) activation and requires microtubule-stabilizing proteins known as cytoplasmic linker associated proteins (CLASPs) and retrograde actin flow. Similar to microtubule depolymerization, CLASP depletion by siRNA blocks microtubule bending and eliminates centripetal relocation of podosomes. Podosome relocation also coincides with translocation of podosome-stimulating kinesin KIF1C, which is known to move preferentially along CLASP-associated microtubules. These findings indicate that CLASP-dependent microtubule network configuration is critical to the cellular location and distribution of KIF1C-dependent podosomes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Nadia Efimova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Christopher Arnette
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
74
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
75
|
Wang W, Rai A, Hur EM, Smilansky Z, Chang KT, Min KT. DSCR1 is required for both axonal growth cone extension and steering. J Cell Biol 2016; 213:451-62. [PMID: 27185837 PMCID: PMC4878092 DOI: 10.1083/jcb.201510107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/22/2016] [Indexed: 11/26/2022] Open
Abstract
Wang et al. identify that DSCR1, a gene on chromosome 21 that is associated with Down syndrome, controls both the rate and direction of axon growth in response to extrinsic cues by regulating cytoskeletal dynamics and local protein synthesis in the growth cone. Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor–induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Asit Rai
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun-Mi Hur
- Brain Science Institute-Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| | | | - Karen T Chang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089 Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
76
|
Rao AN, Falnikar A, O'Toole ET, Morphew MK, Hoenger A, Davidson MW, Yuan X, Baas PW. Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. J Cell Biol 2016; 213:329-41. [PMID: 27138250 PMCID: PMC4862329 DOI: 10.1083/jcb.201506140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Aditi Falnikar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mary K Morphew
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Andreas Hoenger
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 Department of Biological Science, Florida State University, Tallahassee, FL 32310
| | - Xiaobing Yuan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
77
|
Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate. Neural Plast 2016; 2016:3497901. [PMID: 27274874 PMCID: PMC4870373 DOI: 10.1155/2016/3497901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022] Open
Abstract
Several important discoveries in growth cone cell biology were made possible by the use of growth cones derived from cultured Aplysia bag cell neurons, including the characterization of the organization and dynamics of the cytoskeleton. The majority of these Aplysia studies focused on large growth cones induced by poly-L-lysine substrates at early stages in cell culture. Under these conditions, the growth cones are in a steady state with very little net advancement. Here, we offer a comprehensive cellular analysis of the motile behavior of Aplysia growth cones in culture beyond this pausing state. We found that average growth cone size decreased with cell culture time whereas average growth rate increased. This inverse correlation of growth rate and growth cone size was due to the occurrence of large growth cones with a peripheral domain larger than 100 μm(2). The large pausing growth cones had central domains that were less consistently aligned with the direction of growth and could be converted into smaller, faster-growing growth cones by addition of a three-dimensional collagen gel. We conclude that the significant lateral expansion of lamellipodia and filopodia as observed during these culture conditions has a negative effect on neurite growth.
Collapse
|
78
|
Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 2016; 14:18. [PMID: 26955876 PMCID: PMC4784317 DOI: 10.1186/s12951-016-0171-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. Results Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. Conclusion Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Schulte
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Martino Alfredo Cappelluti
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Luca Puricelli
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Elisa Maffioli
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Francesca Borghi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Armando Negri
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Elisa Sogne
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Massimiliano Galluzzi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Claudio Piazzoni
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Alessandro Podestà
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Gabriella Tedeschi
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Cristina Lenardi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Paolo Milani
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|
79
|
Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci Rep 2016; 6:22086. [PMID: 26912170 PMCID: PMC4766534 DOI: 10.1038/srep22086] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 01/20/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are implicated in aging-related neurodegenerative disorders. 8-Oxoguanine (8-oxoG), a common oxidised base lesion, is often highly accumulated in brains from patients with neurodegenerative disorders. MTH1 hydrolyses 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dGTP) to 8-oxo-dGMP and pyrophosphate in nucleotide pools, while OGG1 excises 8-oxoG paired with cytosine in DNA, thereby minimising the accumulation of 8-oxoG in DNA. Mth1/Ogg1-double knockout (TO-DKO) mice are highly susceptible to neurodegeneration under oxidative conditions and show increased accumulation of 8-oxoG in mitochondrial DNA (mtDNA) in neurons, suggesting that 8-oxoG accumulation in mtDNA causes mitochondrial dysfunction. Here, we evaluated the contribution of MTH1 and OGG1 to the prevention of mitochondrial dysfunction during neuritogenesis in vitro. We isolated cortical neurons from adult wild-type and TO-DKO mice and maintained them with or without antioxidants for 2 to 5 days and then examined neuritogenesis. In the presence of antioxidants, both TO-DKO and wild-type neurons exhibited efficient neurite extension and arborisation. However, in the absence of antioxidants, the accumulation of 8-oxoG in mtDNA of TO-DKO neurons was increased resulting in mitochondrial dysfunction. Cells also exhibited poor neurite outgrowth with decreased complexity of neuritic arborisation, indicating that MTH1 and OGG1 are essential for neuritogenesis under oxidative conditions.
Collapse
Affiliation(s)
- Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Erika Castillo
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Zijing Sheng
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
80
|
Cammarata GM, Bearce EA, Lowery LA. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken) 2016; 73:461-76. [PMID: 26783725 DOI: 10.1002/cm.21272] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/08/2022]
Abstract
The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.
| |
Collapse
|
81
|
Turney SG, Ahmed M, Chandrasekar I, Wysolmerski RB, Goeckeler ZM, Rioux RM, Whitesides GM, Bridgman PC. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Mol Biol Cell 2016; 27:500-17. [PMID: 26631553 PMCID: PMC4751601 DOI: 10.1091/mbc.e15-09-0636] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.
Collapse
Affiliation(s)
- Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Mostafa Ahmed
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Indra Chandrasekar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert B Wysolmerski
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Zoe M Goeckeler
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Robert M Rioux
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Paul C Bridgman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
82
|
Ketschek A, Spillane M, Dun XP, Hardy H, Chilton J, Gallo G. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Dev Neurobiol 2016; 76:1092-110. [PMID: 26731339 DOI: 10.1002/dneu.22377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/10/2022]
Abstract
Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA-mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch-inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092-1110, 2016.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, United Kingdom
| | - Holly Hardy
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - John Chilton
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
83
|
Ding Y, Li Y, Lu L, Zhang R, Zeng L, Wang L, Zhang X. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity. PLoS One 2015; 10:e0144948. [PMID: 26670864 PMCID: PMC4682924 DOI: 10.1371/journal.pone.0144948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons.
Collapse
Affiliation(s)
- Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yuying Li
- Department of Physiology, School of Medicine, Quzhou College of Technology, Quzhou, 324000, China
| | - Lingchao Lu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Ruyi Zhang
- Department of Pathology, Jiaxing Second Hospital, Jiaxing, 314000, China
| | - Linghui Zeng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Linlin Wang
- Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- * E-mail: (XZ); (LW)
| | - Xiong Zhang
- Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- * E-mail: (XZ); (LW)
| |
Collapse
|
84
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
85
|
Athamneh AIM, Suter DM. Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci 2015; 9:359. [PMID: 26441530 PMCID: PMC4584967 DOI: 10.3389/fncel.2015.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight: (1) standing questions concerning the role of mechanical force in axonal growth and guidance; and (2) different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.
Collapse
Affiliation(s)
- Ahmad I M Athamneh
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| | - Daniel M Suter
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
86
|
Dingyu W, Fanjie M, Zhengzheng D, Baosheng H, Chao Y, Yi P, Huiwen W, Jun G, Gang H. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration. Mol Neurobiol 2015; 53:4582-95. [DOI: 10.1007/s12035-015-9394-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023]
|
87
|
Kilinc D, Blasiak A, Lee GU. Microtechnologies for studying the role of mechanics in axon growth and guidance. Front Cell Neurosci 2015; 9:282. [PMID: 26283918 PMCID: PMC4515553 DOI: 10.3389/fncel.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
The guidance of axons to their proper targets is not only a crucial event in neurodevelopment, but also a potential therapeutic target for neural repair. Axon guidance is mediated by various chemo- and haptotactic cues, as well as the mechanical interactions between the cytoskeleton and the extracellular matrix (ECM). Axonal growth cones, dynamic ends of growing axons, convert external stimuli to biochemical signals, which, in turn, are translated into behavior, e.g., turning or retraction, via cytoskeleton-matrix linkages. Despite the inherent mechanical nature of the problem, the role of mechanics in axon guidance is poorly understood. Recent years has witnessed the application of a range of microtechnologies in neurobiology, from microfluidic circuits to single molecule force spectroscopy. In this mini-review, we describe microtechnologies geared towards dissecting the mechanical aspects of axon guidance, divided into three categories: controlling the growth cone microenvironment, stimulating growth cones with externally applied forces, and measuring forces exerted by the growth cones. A particular emphasis is given to those studies that combine multiple techniques, as dictated by the complexity of the problem.
Collapse
Affiliation(s)
- Devrim Kilinc
- Bionanosciences Group, School of Chemisty and Chemical Biology, University College Dublin Belfield, Dublin, Ireland
| | - Agata Blasiak
- Bionanosciences Group, School of Chemisty and Chemical Biology, University College Dublin Belfield, Dublin, Ireland
| | - Gil U Lee
- Bionanosciences Group, School of Chemisty and Chemical Biology, University College Dublin Belfield, Dublin, Ireland
| |
Collapse
|
88
|
Bearce EA, Erdogan B, Lowery LA. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front Cell Neurosci 2015; 9:241. [PMID: 26175669 PMCID: PMC4485311 DOI: 10.3389/fncel.2015.00241] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.
Collapse
Affiliation(s)
| | - Burcu Erdogan
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | | |
Collapse
|
89
|
Zaidel-Bar R, Zhenhuan G, Luxenburg C. The contractome – a systems view of actomyosin contractility in non-muscle cells. J Cell Sci 2015; 128:2209-17. [DOI: 10.1242/jcs.170068] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Actomyosin contractility is a highly regulated process that affects many fundamental biological processes in each and every cell in our body. In this Cell Science at a Glance article and the accompanying poster, we mined the literature and databases to map the contractome of non-muscle cells. Actomyosin contractility is involved in at least 49 distinct cellular functions that range from providing cell architecture to signal transduction and nuclear activity. Containing over 100 scaffolding and regulatory proteins, the contractome forms a highly complex network with more than 230 direct interactions between its components, 86 of them involving phosphorylation. Mapping these interactions, we identify the key regulatory pathways involved in the assembly of actomyosin structures and in activating myosin to produce contractile forces within non-muscle cells at the exact time and place necessary for cellular function.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Guo Zhenhuan
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
90
|
Tamariz E, Varela-Echavarría A. The discovery of the growth cone and its influence on the study of axon guidance. Front Neuroanat 2015; 9:51. [PMID: 26029056 PMCID: PMC4432662 DOI: 10.3389/fnana.2015.00051] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/13/2015] [Indexed: 11/25/2022] Open
Abstract
For over a century, there has been a great deal of interest in understanding how neural connectivity is established during development and regeneration. Interest in the latter arises from the possibility that knowledge of this process can be used to re-establish lost connections after lesion or neurodegeneration. At the end of the XIX century, Santiago Ramón y Cajal discovered that the distal tip of growing axons contained a structure that he called the growth cone. He proposed that this structure enabled the axon's oriented growth in response to attractants, now known as chemotropic molecules. He further proposed that the physical properties of the surrounding tissues could influence the growth cone and the direction of growth. This seminal discovery afforded a plausible explanation for directed axonal growth and has led to the discovery of axon guidance mechanisms that include diffusible attractants and repellants and guidance cues anchored to cell membranes or extracellular matrix. In this review the major events in the development of this field are discussed.
Collapse
Affiliation(s)
- Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad VeracruzanaXalapa, Mexico
| | | |
Collapse
|
91
|
Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J Neurosci 2015; 35:2559-71. [PMID: 25673849 DOI: 10.1523/jneurosci.2125-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thyroid receptor-interacting protein 6 (Trip6), a multifunctional protein belonging to the zyxin family of LIM proteins, is involved in various physiological and pathological processes, including cell migration and tumorigenesis. However, the role of Trip6 in neurons remains unknown. Here, we show that Trip6 is expressed in mouse hippocampal neurons and promotes dendritic morphogenesis. Through interaction with the glutamate receptor-interacting protein 1 (GRIP1) and myosin VI, Trip6 is crucial for the total dendritic length and the number of primary dendrites in cultured hippocampal neurons. Trip6 depletion reduces F-actin content and impairs dendritic morphology, and this phenocopies GRIP1 or myosin VI knockdown. Furthermore, phosphorylation of GRIP1(956T) by AKT1 inhibits the interaction between GRIP1 and myosin VI, but facilitates GRIP1 binding to 14-3-3 protein, which is required for regulating F-actin organization and dendritic morphogenesis. Thus, the Trip6-GRIP1-myosin VI interaction and its regulation on F-actin network play a significant role in dendritic morphogenesis.
Collapse
|
92
|
Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M, Stramer BM. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 2015; 161:361-73. [PMID: 25799385 PMCID: PMC4398973 DOI: 10.1016/j.cell.2015.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/24/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.
Collapse
Affiliation(s)
- John R Davis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Andrei Luchici
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Mechanical Engineering, University College London, London WC2R 2LS, UK
| | - Fuad Mosis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Thackery
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jesus A Salazar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Graham A Dunn
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Timo Betz
- Centre de Recherche, Institut Curie, Paris, UMR168, France
| | - Mark Miodownik
- Department of Mechanical Engineering, University College London, London WC2R 2LS, UK.
| | - Brian M Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
93
|
Shaye DD, Greenwald I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 2015; 32:743-55. [PMID: 25771894 DOI: 10.1016/j.devcel.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We investigate how outgrowth at the basolateral cell membrane is coordinated with apical lumen formation in the development of a biological tube by characterizing exc-6, a gene required for C. elegans excretory cell (EC) tubulogenesis. We show that EXC-6 is orthologous to the human formin INF2, which polymerizes filamentous actin (F-actin) and binds microtubules (MTs) in vitro. Dominant INF2 mutations cause focal segmental glomerulosclerosis (FSGS), a kidney disease, and FSGS+Charcot-Marie-Tooth neuropathy. We show that activated INF2 can substitute for EXC-6 in C. elegans and that disease-associated mutations cause constitutive activity. Using genetic analysis and live imaging, we show that exc-6 regulates MT and F-actin accumulation at EC tips and dynamics of basolateral-localized MTs, indicating that EXC-6 organizes F-actin and MT cytoskeletons during tubulogenesis. The pathology associated with INF2 mutations is believed to reflect misregulation of F-actin, but our results suggest alternative or additional mechanisms via effects on MT dynamics.
Collapse
Affiliation(s)
- Daniel D Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
94
|
Speranza L, Giuliano T, Volpicelli F, De Stefano ME, Lombardi L, Chambery A, Lacivita E, Leopoldo M, Bellenchi GC, di Porzio U, Crispino M, Perrone-Capano C. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Front Behav Neurosci 2015; 9:62. [PMID: 25814944 PMCID: PMC4356071 DOI: 10.3389/fnbeh.2015.00062] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Teresa Giuliano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy ; Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - M Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Loredana Lombardi
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples Naples, Italy ; IRCCS, Multimedica Milano, Italy
| | - Enza Lacivita
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Marcello Leopoldo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Gian C Bellenchi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Carla Perrone-Capano
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| |
Collapse
|
95
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
96
|
Kilinc D, Blasiak A, O'Mahony JJ, Lee GU. Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep 2014; 4:7128. [PMID: 25417891 PMCID: PMC4241520 DOI: 10.1038/srep07128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.
Collapse
Affiliation(s)
- Devrim Kilinc
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agata Blasiak
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - James J O'Mahony
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- UCD Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
97
|
Chen K, Ye Y, Ji Z, Tan M, Li S, Zhang J, Guo G, Lin H. Katanin p60 promotes neurite growth and collateral formation in the hippocampus. Int J Clin Exp Med 2014; 7:2463-2470. [PMID: 25356098 PMCID: PMC4211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of Katanin p60 on the neurite growth and collateral formation in the hippocampus. METHODS Gene cloning was performed to construct the Katanin p60 eukaryotic vector. The microtubule cutting effect and protein expression of Katanin p60 were investigated in 293T cells. Then, these vectors were transfected into hippocampal neurons of rats, and the effects of Katanin p60 on the neurite growth and collateral formation were observed. RESULTS In the present study, we successfully constructed Katanin p60-GFP recombinant plasmids. After transfecting into 293T cells, the Katanin p60 was over-expressed in these cells, the mesh-like structure of microtubules was disrupted, the residual microtubules circled the nucleus, the expression microtubule proteins reduced, and the tapered protrusions disappeared. In hippocampal neurons with Katanin p60 over-expression, the neural neurite growth was obvious, and a lot of dendrites arose from cell bodies. In cells without Katanin p60 expression, the neurites were small, and the number and length of dendrites reduced significantly when compared with Katanin p60 over-expressing cells (P < 0.05). In addition, in Katanin p60 over-expressing cells, the number of collaterals from the neurites and dendrites increased markedly when compared with cells without Katanin p60 expression (P < 0.05). CONCLUSION Katanin p60 can promote the neurite growth and collateral formation of hippocampal neurons.
Collapse
Affiliation(s)
- Keen Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan UniversityGuangzhou, China
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Yongheng Ye
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou, China
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou, China
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Minghui Tan
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Sumei Li
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Jifeng Zhang
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
- Center for Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| | - Guoqing Guo
- Department of Anatomy, School of Medicine of Jinan UniversityGuangzhou, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan UniversityGuangzhou, China
| |
Collapse
|
98
|
Booth AJR, Blanchard GB, Adams RJ, Röper K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev Cell 2014; 29:562-576. [PMID: 24914560 PMCID: PMC4064686 DOI: 10.1016/j.devcel.2014.03.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
Abstract
The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. Large-scale rearrangement of microtubules accompanies early tube formation Loss of microtubules leads to loss of apical constriction during tube formation During tubulogenesis, apical constriction is driven by pulsatile medial actomyosin Microtubules and the cytolinker Shot stabilize the medial actomyosin
Collapse
Affiliation(s)
- Alexander J R Booth
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Richard J Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
99
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
100
|
Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons. Sci Rep 2014; 4:4961. [PMID: 24825441 PMCID: PMC4019958 DOI: 10.1038/srep04961] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022] Open
Abstract
Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance.
Collapse
|