51
|
Alsanius BW, Vaas L, Gharaie S, Karlsson ME, Rosberg AK, Wohanka W, Khalil S, Windstam S. Dining in Blue Light Impairs the Appetite of Some Leaf Epiphytes. Front Microbiol 2021; 12:725021. [PMID: 34733247 PMCID: PMC8558677 DOI: 10.3389/fmicb.2021.725021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The phyllosphere is subjected to fluctuating abiotic conditions. This study examined the phenotypic plasticity (PP) of four selected non-phototrophic phyllosphere bacteria [control strain: Pseudomonas sp. DR 5-09; Pseudomonas agarici, Bacillus thuringiensis serovar israeliensis (Bti), and Streptomyces griseoviridis (SG)] regarding their respiration patterns and surfactant activity as affected by light spectrum and nutrient supply. Methods: The PP of the strains was examined under four light regimes [darkness (control); monochromatic light-emitting diodes (LED) at 460 nm (blue) and 660 nm (red); continuously polychromatic white LEDs], in the presence of 379 substrates and conditions. Results: Light treatment affected the studied bacterial strains regarding substrate utilization (Pseudomonas strains > SG > Bti). Blue LEDs provoked the most pronounced impact on the phenotypic reaction norms of the Pseudomonas strains and Bti. The two Gram-positive strains Bti and SG, respectively, revealed inconsistent biosurfactant formation in all cases. Biosurfactant formation by both Pseudomonas strains was supported by most substrates incubated in darkness, and blue LED exposure altered the surface activity profoundly. Blue and white LEDs enhanced biofilm formation in PA in highly utilized C-sources. Putative blue light receptor proteins were found in both Pseudomonas strains, showing 91% similarity with the sequence from NCBI accession number WP_064119393. Conclusion: Light quality–nutrient interactions affect biosurfactant activity and biofilm formation of some non-phototrophic phyllosphere bacteria and are, thus, crucial for dynamics of the phyllosphere microbiome.
Collapse
Affiliation(s)
- Beatrix W Alsanius
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Lea Vaas
- Fraunhofer IME, Computational Biology, Screening Port, Hamburg, Germany
| | - Samareh Gharaie
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Maria E Karlsson
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anna Karin Rosberg
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Walter Wohanka
- Department of Phytomedicine, Geisenheim University, Geisenheim, Germany
| | - Sammar Khalil
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sofia Windstam
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
52
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
53
|
Rathnasinghe R, Jangra S, Miorin L, Schotsaert M, Yahnke C, Garcίa-Sastre A. The virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus. Sci Rep 2021; 11:19470. [PMID: 34593848 PMCID: PMC8484654 DOI: 10.1038/s41598-021-97797-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
The germicidal potential of specific wavelengths within the electromagnetic spectrum is an area of growing interest. While ultra-violet (UV) based technologies have shown satisfactory virucidal potential, the photo-toxicity in humans coupled with UV associated polymer degradation limit their use in occupied spaces. Alternatively, longer wavelengths with less irradiation energy such as visible light (405 nm) have largely been explored in the context of bactericidal and fungicidal applications. Such studies indicated that 405 nm mediated inactivation is caused by the absorbance of porphyrins within the organism creating reactive oxygen species which result in free radical damage to its DNA and disruption of cellular functions. The virucidal potential of visible-light based technologies has been largely unexplored and speculated to be ineffective given the lack of porphyrins in viruses. The current study demonstrated increased susceptibility of lipid-enveloped respiratory pathogens of importance such as SARS-CoV-2 (causative agent of COVID-19) and influenza A virus to 405 nm, visible light in the absence of exogenous photosensitizers thereby indicating a potential alternative porphyrin-independent mechanism of visible light mediated viral inactivation. These results were obtained using less than expected irradiance levels which are considered safe for humans and commercially achievable. Our results support further exploration of the use of visible light technology for the application of continuous decontamination in occupied areas within hospitals and/or infectious disease laboratories, specifically for the inactivation of respiratory pathogens such as SARS-CoV-2 and Influenza A.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Adolfo Garcίa-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
54
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
55
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
56
|
Hu X, Zhang X, Luo S, Wu J, Sun X, Liu M, Wang X, Wang X. Enhanced Sensitivity of Salmonella to Antimicrobial Blue Light Caused by Inactivating rfaC Gene Involved in Lipopolysaccharide Biosynthesis. Foodborne Pathog Dis 2021; 18:599-606. [PMID: 34403268 DOI: 10.1089/fpd.2020.2888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella is a global foodborne pathogen that causes human diseases ranging from mild gastroenteritis to severe systemic infections. Recently, antimicrobial blue light (aBL) showed effective bactericidal activity against a variety of bacteria (e.g., Salmonella) with varying efficiency. However, the antimicrobial mechanism of aBL has not been fully elucidated. Our previous report showed that the outer membrane (OM) is a key target of aBL. The major component of the OM, lipopolysaccharide (LPS), may play a role in aBL bactericidal effect. Therefore, the influence of LPS truncation on the sensitivity of Salmonella Typhimurium SL1344 to aBL was investigated for the first time. First, the rfaC gene in the SL1344 strain likely involved in linking lipid A to the core region of LPS was inactivated and the influence on LPS structure was verified in the mutant strain SL1344ΔrfaC. SL1344ΔrfaC showed a significant increase in sensitivity to aBL, and the bactericidal efficiency exceeded 8 log CFU at an aBL dose of 383 J/cm2, while that of its parental SL1344 strain approached 4 log CFU. To discover the possible mechanism of higher sensitivity, the permeability of OM was determined. Compared to SL1344, SL1344ΔrfaC showed 2.7-fold higher permeability of the OM at 20 J/cm2, this may explain the higher vulnerability of the OM to aBL. Furthermore, the fatty acid profile was analyzed to reveal the detailed changes in the OM and inner membrane of the mutant. Results showed that the membrane lipids of SL1344ΔrfaC were markedly different to SL1344, indicating that change in fatty acid profile might mediate the enhancement of OM permeability and the increased sensitivity to aBL in SL1344ΔrfaC. Hence, we concluded that disruption of rfaC in Salmonella Typhimurium led to the formation of truncated LPS and thus enhanced the permeability of the OM, which contributed to the increased sensitivity to aBL.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiujuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuanghua Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
57
|
Gardner A, Ghosh S, Dunowska M, Brightwell G. Virucidal Efficacy of Blue LED and Far-UVC Light Disinfection against Feline Infectious Peritonitis Virus as a Model for SARS-CoV-2. Viruses 2021; 13:1436. [PMID: 34452302 PMCID: PMC8402852 DOI: 10.3390/v13081436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.
Collapse
Affiliation(s)
- Amanda Gardner
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Corner University Ave and Library Road, Palmerston North 4442, New Zealand;
| | - Sayani Ghosh
- School of Veterinary Science, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand; (S.G.); (M.D.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand; (S.G.); (M.D.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Corner University Ave and Library Road, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
58
|
Sadowska M, Narbutt J, Lesiak A. Blue Light in Dermatology. Life (Basel) 2021; 11:670. [PMID: 34357042 PMCID: PMC8307003 DOI: 10.3390/life11070670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Phototherapy is an important method of dermatological treatments. Ultraviolet (280-400 nm) therapy is of great importance; however, there are concerns of its long-term use, as it can lead to skin aging and carcinogenesis. This review aims to evaluate the role and the mechanism of action of blue light (400-500 nm), a UV-free method. The main mediators of cellular responses to blue light are nitric oxide (NO) and reactive oxygen species (ROS). However, the detailed mechanism is still not fully understood. It was demonstrated that blue light induces an anti-inflammatory and antiproliferative effect; thus, it may be beneficial for hyperproliferative and chronic inflammatory skin diseases such as atopic dermatitis, eczema, and psoriasis. It was also found that blue light might cause the reduction of itching. It may be beneficial on hair growth and may be used in the treatment of acne vulgaris by reducing follicular colonization of Propionibacterium acnes. Further studies are needed to develop accurate protocols, as the clinical effects depend on the light parameters as well as the treatment length. There are no major adverse effects observed yet, but long-term safety should be monitored as there are no studies considering the long-term effects of blue light on the skin.
Collapse
Affiliation(s)
- Magdalena Sadowska
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Łódź, 90-419 Łódź, Poland; (J.N.); (A.L.)
| | | | | |
Collapse
|
59
|
Lo CW, Matsuura R, Iimura K, Wada S, Shinjo A, Benno Y, Nakagawa M, Takei M, Aida Y. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci Rep 2021; 11:13804. [PMID: 34226623 PMCID: PMC8257663 DOI: 10.1038/s41598-021-93231-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a pandemic threat worldwide and causes severe health and economic burdens. Contaminated environments, such as personal items and room surfaces, are considered to have virus transmission potential. Ultraviolet C (UVC) light has demonstrated germicidal ability and removes environmental contamination. UVC has inactivated SARS-CoV-2; however, the underlying mechanisms are not clear. It was confirmed here that UVC 253.7 nm, with a dose of 500 μW/cm2, completely inactivated SARS-CoV-2 in a time-dependent manner and reduced virus infectivity by 10-4.9-fold within 30 s. Immunoblotting analysis for viral spike and nucleocapsid proteins showed that UVC treatment did not damage viral proteins. The viral particle morphology remained intact even when the virus completely lost infectivity after UVC irradiation, as observed by transmission electronic microscopy. In contrast, UVC irradiation-induced genome damage was identified using the newly developed long reverse-transcription quantitative-polymerase chain reaction (RT-qPCR) assay, but not conventional RT-qPCR. The six developed long RT-PCR assays that covered the full-length viral genome clearly indicated a negative correlation between virus infectivity and UVC irradiation-induced genome damage (R2 ranging from 0.75 to 0.96). Altogether, these results provide evidence that UVC inactivates SARS-CoV-2 through the induction of viral genome damage.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
| | - Kazuki Iimura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
- Farmroid Co.,Ltd., 3-22-4 Funado, Itabashi-ku, Tokyo, 174-0041, Japan
| | - Satoshi Wada
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shinjo
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshimi Benno
- Benno Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-Cho, Itabashi, Tokyo, 173-8610, Japan.
- Benno Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
60
|
In vitro inactivation effect of blue light emitting diode (LED) on Shiga-toxin-producing Escherichia coli (STEC). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Keshri GK, Kumar G, Sharma M, Bora K, Kumar B, Gupta A. Photobiomodulation effects of pulsed-NIR laser (810 nm) and LED (808 ± 3 nm) with identical treatment regimen on burn wound healing: A quantitative label-free global proteomic approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
62
|
Ebrahiminaseri A, Sadeghizadeh M, Moshaii A, Asgaritarghi G, Safari Z. Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter TGF-β, VEGF, TNF-α and IL-6 expressions involved in wound healing process. PLoS One 2021; 16:e0247098. [PMID: 33956815 PMCID: PMC8101758 DOI: 10.1371/journal.pone.0247098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pressure ulcer (PU) is known as the third most costly disorder usually caused by prolonged pressure and stagnation in various parts of the body. Although several therapeutic approaches are employing, obstacles in appropriate healing for skin lesions still exist which necessitates new practical alternative or adjunctive treatments. Low level laser therapy (LLLT) as one of the mentioned new strategies have gained attention. Besides, curcumin is an herbal medicine extracted from turmeric with anti-inflammatory and antioxidative properties with promising beneficial therapeutic effects in wound healing. Employing dendrosomal nanoparticles, we overcome the hydrophobicity of curcumin in the present study. We hypothesized that combination treatment of DNC+LLLT (450 nm) simultaneously may promote the wound healing process. MATERIAL AND METHODS MTT assay, PI staining followed by flowcytometry, scratch assay and intracellular ROS measurement were used to investigate the effects caused by DNC and LLLT (450 nm) alone and in combination, on proliferation, cell cycle, migration and oxidative stress mouse embryonic fibroblast cells, respectively. The levels of growth factors and pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. RESULTS Our results indicated that combination exposure with DNC and LLLT leads to increased proliferation and migration of MEFs as well as being more efficient in significantly upregulating growth factors (TGF-β, VEGF) and decline in inflammatory cytokines (TNF-α, IL-6). Moreover, findings of this research provide persuasive support for the notion that DNC could reduce the LLLT-induced enhancement in intracellular ROS in mouse embryonic fibroblasts. CONCLUSION Concurrent exposure to anti-oxidant concentrations of DNC and LLLT enriched S phase entry and therefor increased proliferation as well as migration on MEFs through regulating the expression levels growth factors and shortening the inflammatory phase by modulating of cytokines. It should be noted that DNC were able to reduce the laser-induced oxidative stress, during wound healing, representing an informative accompaniment with LLLT.
Collapse
Affiliation(s)
- Afsaneh Ebrahiminaseri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran, Iran
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
63
|
Plattfaut I, Demir E, Fuchs PC, Schiefer JL, Stürmer EK, Brüning AKE, Opländer C. Characterization of Blue Light Treatment for Infected Wounds: Antibacterial Efficacy of 420, 455, and 480 nm Light-Emitting Diode Arrays Against Common Skin Pathogens Versus Blue Light-Induced Skin Cell Toxicity. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:339-348. [PMID: 33961502 DOI: 10.1089/photob.2020.4932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: To determine effective treatment strategies against bacterial infections of chronic wounds, we tested different blue light (BL)-emitting light-emitting diode arrays (420, 455, and 480 nm) against wound pathogens and investigated in parallel BL-induced toxic effects on human dermal fibroblasts. Background: Wound infection is a major factor for delayed healing. Infections with Pseudomonas aeruginosa and Staphylococcus aureus are clinically relevant caused by their ability of biofilm formation and their quickly growing antibiotics resistance. BL has demonstrated antimicrobial properties against various microbes. Methods: Determination of antibacterial and cell toxic effects by colony-forming units (CFUs)/biofilm/cell viability assays, and live cell imaging. Results: A single BL irradiation (180 J/cm2), of P. aeruginosa at both 420 and 455 nm resulted in a bacterial reduction (>5 log10 CFU), whereas 480 nm revealed subantimicrobial effects (2 log10). All tested wavelengths of BL also revealed bacteria reducing effects on Staphylococcus epidermidis and Escherichia coli (maximum 1-2 log10 CFU) but not on S. aureus. Dealing with biofilms, all wavelengths using 180 J/cm2 were able to reduce significantly the number of P. aeruginosa, E. coli, and S. epidermidis. Here, BL420nm achieved reductions up to 99%, whereas BL455nm and BL480nm were less effective (60-83%). Biofilm-growing S. aureus was more BL sensitive than in the planktonic phase showing a reduction by 63-75%. A significant number of cell toxic events (>40%) could be found after applying doses (>30 J/cm2) of BL420nm. BL455nm showed only slight cell toxicity (180 J/cm2), whereas BL480nm was nontoxic at any dose. Conclusions: BL treatment can be effective against bacterial infections of chronic wounds. Nevertheless, using longer wavelengths >455 nm should be preferred to avoid possible toxic effects on skin and skin cells. To establish BL therapy for infected chronic wounds, further studies concerning biofilm formation and tissue compatibility are necessary.
Collapse
Affiliation(s)
- Isabell Plattfaut
- Chair, Department of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| | - Erhan Demir
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Cologne, Germany
| | - Paul C Fuchs
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Cologne, Germany
| | - Jennifer L Schiefer
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Cologne, Germany
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center, Hamburg, Germany
| | - Anne K E Brüning
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Christian Opländer
- Chair, Department of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany.,Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, Witten, Germany
| |
Collapse
|
64
|
Combining Visible Light and Non-Focused Ultrasound Significantly Reduces Propionibacterium acnes Biofilm While Having Limited Effect on Host Cells. Microorganisms 2021; 9:microorganisms9050929. [PMID: 33925936 PMCID: PMC8146519 DOI: 10.3390/microorganisms9050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial biofilms are highly resistant to antibiotics and have been implicated in the etiology of 60%–80% of chronic microbial infections. We tested a novel combination of low intensity ultrasound and blue light against biofilm and planktonic bacteria. A laboratory prototype was built which produced both energies uniformly and coincidently from a single treatment head, impinging upon a 4.45 cm2 target. To demonstrate proof of concept, Propionibacterium acnes biofilms were cultured on Millicell hanging inserts in 6-well plates. Hanging inserts with biofilms were treated in a custom exposure chamber designed to minimize unwanted ultrasound reflections. Coincident delivery of both energies demonstrated synergy over either alone, killing both stationary planktonic and biofilm cultures of P. acnes. Reduction in biofilm bacteria was dose dependent on exposure time (i.e., energy delivered). P. acnes biofilms were significantly reduced by dual energy treatment (p < 0.0001), with a >1 log10 reduction after a 5 min (9 J/cm2) and >3 log10 reduction after a 30 min (54 J/cm2) treatment (p < 0.05). Mammalian cells were found to be unaffected by the treatment. Both the light and the ultrasound energies are at levels previously cleared by the FDA. Therefore, this combination treatment could be used as a safe, efficacious method to treat biofilm related syndromes.
Collapse
|
65
|
Mellergaard M, Fauverghe S, Scarpa C, Pozner VL, Skov S, Hebert L, Nielsen M, Bassetto F, Téot L. Evaluation of Fluorescent Light Energy for the Treatment of Acute Second-degree Burns. Mil Med 2021; 186:416-423. [PMID: 33499452 DOI: 10.1093/milmed/usaa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The use of photobiomodulation has been proposed to improve wound healing for the last two decades. Recent development in photobiomodulation has led to the development of a novel biophotonic platform that utilizes fluorescent light energy (FLE) within the visible spectrum of light for healing of skin inflammation and wounds. MATERIALS AND METHODS In this article, FLE was used in preliminary analysis on 18 case studies of acute second-degree burns and in a pilot study using an ex vivo human skin model. Efficacy of FLE on wound healing and tissue remodeling was evaluated by monitoring improvements in the treated tissues, assessing pain for the patients, and by performing human genome microarray analysis of FLE-treated human skin samples. RESULTS Healing was reported for all 18 patients treated with FLE for acute second-degree burns without reported adverse effects or development of infections. Furthermore, preliminary ex vivo skin model data suggest that FLE impacts different cellular pathways including essential immune-modulatory mechanisms. CONCLUSIONS The results presented in this article are encouraging and suggest that FLE balances different stages of wound healing, which opens the door to initiating randomized controlled clinical trials for establishing the efficacy of FLE treatment in different phases of wound healing of second-degree burns.
Collapse
Affiliation(s)
- Maiken Mellergaard
- Klox Technologies, 2750 Ballerup, Denmark.,Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, Padova University-Hospital, 35121 Padova, Italy
| | - Vladimir Luca Pozner
- Plastic Surgery Department, Burn Unit, University-Hospital Montpellier, 34295 Montpellier, France
| | - Søren Skov
- Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Lise Hebert
- Klox Technologies, Inc., Laval, Quebec H7V 4A7, Canada
| | | | - Franco Bassetto
- Clinic of Plastic and Reconstructive Surgery, Padova University-Hospital, 35121 Padova, Italy
| | - Luc Téot
- Plastic Surgery Department, Burn Unit, University-Hospital Montpellier, 34295 Montpellier, France
| |
Collapse
|
66
|
Zupin L, Gratton R, Fontana F, Clemente L, Pascolo L, Ruscio M, Crovella S. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202000496. [PMID: 33619888 PMCID: PMC7995021 DOI: 10.1002/jbio.202000496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 05/24/2023]
Abstract
The study of any intervention able to counteract SARS-CoV-2 pandemic is considerably envisaged. It was previously shown, in in vitro models of infections, that the LED blue light is able to decrease the viral load of HSV-1 and ZIKV. In our study, LED photobiomodulation therapy (PBMT) at blue wavelengths (450, 454 and 470 nm) was tested in an in vitro model of SARS-CoV-2 infection, employing three experimental settings: SARS-CoV-2 was irradiated and then transferred to cells; already infected cells were irradiated; cells were irradiated prior to infection. A decrement of the viral load was observed when previously infected cells were irradiated with all three tested wavelengths and relevant effects were registered especially at 48 hours post-infection, possibly suggesting that the blue light could interfere with the intracellular viral replication machinery. Our in vitro findings could represent the starting point for translational applications of PBMT as a supportive approach to fight SARS-CoV-2.
Collapse
Affiliation(s)
- Luisa Zupin
- Medical Genetics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Rossella Gratton
- Medical Genetics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Francesco Fontana
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Libera Clemente
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Lorella Pascolo
- Obstetrics and GynecologyInstitute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Maurizio Ruscio
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and SciencesUniversity of QatarDohaQatar
| |
Collapse
|
67
|
Bacteria-specific pro-photosensitizer kills multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Commun Biol 2021; 4:408. [PMID: 33767385 PMCID: PMC7994569 DOI: 10.1038/s42003-021-01956-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
The emergence of multidrug-resistant bacteria has become a real threat and we are fast running out of treatment options. A combinatory strategy is explored here to eradicate multidrug-resistant Staphlococcus aureus and Pseudomonas aeruginosa including planktonic cells, established biofilms, and persisters as high as 7.5 log bacteria in less than 30 min. Blue-laser and thymol together rapidly sterilized acute infected or biofilm-associated wounds and successfully prevented systematic dissemination in mice. Mechanistically, blue-laser and thymol instigated oxidative bursts exclusively in bacteria owing to abundant proporphyrin-like compounds produced in bacteria over mammalian cells, which transformed harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitations of thymoquinone and thymohydroquinone augmented reactive oxygen species production and initiated a torrent of cytotoxic events in bacteria while completely sparing the host tissue. The investigation unravels a previously unappreciated property of thymol as a pro-photosensitizer analogous to a prodrug that is activated only in bacteria. Multidrug-resistant bacteria are a real threat to human health. Here, the authors investigate a combinatory strategy using blue-laser and thymol against Staphylococcus aureus and Pseudomonas aeruginosa. Blue-laser and thymol succesfully sterilized acute infected or biofilm-associated wounds and prevented systematic dissemination in mice. Compared with mammalian cells, bacteria contain abundant proporphyrin-like compounds that transform harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitation of thymoquinone and thymohydroquinone augmented reactive oxygen species production in bacteria while completely sparing the host tissue.
Collapse
|
68
|
Bapat P, Singh G, Nobile CJ. Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms 2021; 9:microorganisms9030500. [PMID: 33652865 PMCID: PMC7996876 DOI: 10.3390/microorganisms9030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.
Collapse
Affiliation(s)
- Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Gurbinder Singh
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
69
|
Rapacka-Zdonczyk A, Wozniak A, Nakonieczna J, Grinholc M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int J Mol Sci 2021; 22:2224. [PMID: 33672375 PMCID: PMC7926562 DOI: 10.3390/ijms22042224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Due to rapidly growing antimicrobial resistance, there is an urgent need to develop alternative, non-antibiotic strategies. Recently, numerous light-based approaches, demonstrating killing efficacy regardless of microbial drug resistance, have gained wide attention and are considered some of the most promising antimicrobial modalities. These light-based therapies include five treatments for which high bactericidal activity was demonstrated using numerous in vitro and in vivo studies: antimicrobial blue light (aBL), antimicrobial photodynamic inactivation (aPDI), pulsed light (PL), cold atmospheric plasma (CAP), and ultraviolet (UV) light. Based on their multitarget activity leading to deleterious effects to numerous cell structures-i.e., cell envelopes, proteins, lipids, and genetic material-light-based treatments are considered to have a low risk for the development of tolerance and/or resistance. Nevertheless, the most recent studies indicate that repetitive sublethal phototreatment may provoke tolerance development, but there is no standard methodology for the proper evaluation of this phenomenon. The statement concerning the lack of development of resistance to these modalities seem to be justified; however, the most significant motivation for this review paper was to critically discuss existing dogma concerning the lack of tolerance development, indicating that its assessment is more complex and requires better terminology and methodology.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Agata Wozniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| |
Collapse
|
70
|
Maliszewska I, Wanarska E, Thompson AC, Samuel IDW, Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy. Molecules 2021; 26:molecules26030623. [PMID: 33504099 PMCID: PMC7865674 DOI: 10.3390/molecules26030623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a growing concern that is driving the exploration of alternative ways of killing bacteria. Here we show that gold nanoparticles synthesized by the mycelium of Mucor plumbeus are an effective medium for antimicrobial photodynamic therapy (PDT). These particles are spherical in shape, uniformly distributed without any significant agglomeration, and show a single plasmon band at 522–523 nm. The nanoparticle sizes range from 13 to 25 nm, and possess an average size of 17 ± 4 nm. In PDT, light (from a source consisting of nine LEDs with a peak wavelength of 640 nm and FWMH 20 nm arranged in a 3 × 3 array), a photosensitiser (methylene blue), and oxygen are used to kill undesired cells. We show that the biogenic nanoparticles enhance the effectiveness of the photosensitiser, methylene blue, and so can be used to kill both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The enhanced effectiveness means that we could kill these bacteria with a simple, small LED-based light source. We show that the biogenic gold nanoparticles prevent fast photobleaching, thereby enhancing the photoactivity of the methylene blue (MB) molecules and their bactericidal effect.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| | - Ewelina Wanarska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Alex C. Thompson
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| |
Collapse
|
71
|
Lusche I, Dirk C, Frentzen M, Meister J. Cavity Disinfection With a 445 nm Diode Laser Within the Scope of Restorative Therapy - A Pilot Study. J Lasers Med Sci 2021; 11:417-426. [PMID: 33425292 DOI: 10.34172/jlms.2020.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cavity disinfection is necessary to prevent a progressive infection of the crown dentin and pulp. Increasing intolerance and resistance to antiseptics and antibiotics as well as the controversy over the effects of those on the dental hard tissue and composite have prompted the investigation of alternative treatment options. The objective of this pilot study is to evaluate the antibacterial potential of a diode laser with a wavelength of 445 nm in the cavity preparation using the bacterium Streptococcus salivarius associated with caries in conjunction with the characteristics and influences of dentin on light transmission. Methods: The bactericidal effect of the laser irradiation was determined in culture experiments by using caries-free human dentin samples on bacteria-inoculated agar. For this, dentin discs (horizontally cut coronal dentin) of 500 µm and 1000 µm thicknesses were produced and irradiated with the laser with irradiation parameters of 0.7-1 W in a cw-mode and exposure times of between 5-30 s. Based on the different sample thicknesses, the penetration depth effect of the irradiation was ascertained after the subsequent incubation of the bacteria-inoculated agar. Additional influential parameters on the irradiation transmission were investigated, including surface moisture, tooth color as well as the presence of a smear layer on the dentin surface. Results: The optical transmission values of the laser radiation for dentin were significantly dependent on the sample thickness (P = 0.006) as well as its moisture content (P = 0.013) and were independent of the presence of a smear layer. There was a 40% reduction in bacteria after the radiography of the 500-µm-thick dentin samples, which was shown as the lowest laser dose (443 J/cm2). Conclusion: These findings indicate that the diode laser with light emission at a wavelength of 445 nm is interesting for the supportive cavity disinfection within the scope of caries therapy and show potential for clinical applications.
Collapse
Affiliation(s)
- Inés Lusche
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Cornelius Dirk
- Oral Technology, Bonn University, Wilhelmsplatz 5, 53111 Bonn, Germany
| | - Matthias Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany
| | - Jörg Meister
- Center of Dento-Maxillo-Facial Medicine, Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO), Bonn University, Welschnonnenstrasse 17, D-53111 Bonn, Germany.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Jahani Sherafat S, Mokmeli S, Rostami-Nejad M, Razaghi Z, Rezaei Tavirani M, Razzaghi M. The Effectiveness of Photobiomudulation Therapy (PBMT) in COVID-19 Infection. J Lasers Med Sci 2020; 11:S23-S29. [PMID: 33995965 DOI: 10.34172/jlms.2020.s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Currently, the COVID-19 pandemic is an important health challenge worldwide. Due to the cytokine storm, the mortality rate in acute respiratory distress syndrome (ARDS) is high, but until now no therapy for these patients was approved. The aim of this review was to discuss the possible anti-inflammatory effect of photobiomodulation therapy (PBMT) on ARSD patients and present the potential role of low-level laser therapy (LLLT) in the improvement of respiratory symptoms associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: Studies about PBMT in inflammation and ARSD patients were examined. A primary search with reviewing English-language citations between 2005 and 2020 using the keywords COVID-19, ADRS, cytokine storm, low-level laser therapy, anti-inflammatory, and photobiomodulation was performed. The initial search yielded 818 articles; however, 60 articles were selected and discussed in the present study. Results: The results of the selected studies showed the usefulness of PBMT in the treatment of inflammation and ARSD in patients with COVID-19 infection. This therapy is non-invasive and safe to modulate the immune responses in ARSD patients. Conclusion: PBMT can potentially reduce the viral load and bacterial super-infections in patients with COVID-19 infection and control the inflammatory response. Therefore, the use of PBMT could be an efficient strategy for preventing severe and critical illness in SARS-COV2 infection.
Collapse
Affiliation(s)
- Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Mokmeli
- Canadian Optic and Laser Center (Training Institute), Victoria, BC, Canada
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
López-López N, Muñoz Resta I, de Llanos R, Miravet JF, Mikhaylov M, Sokolov MN, Ballesta S, García-Luque I, Galindo F. Photodynamic Inactivation of Staphylococcus aureus Biofilms Using a Hexanuclear Molybdenum Complex Embedded in Transparent polyHEMA Hydrogels. ACS Biomater Sci Eng 2020; 6:6995-7003. [DOI: 10.1021/acsbiomaterials.0c00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Noelia López-López
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Ignacio Muñoz Resta
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F. Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Sofía Ballesta
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel García-Luque
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
74
|
Sabino CP, Ball AR, Baptista MS, Dai T, Hamblin MR, Ribeiro MS, Santos AL, Sellera FP, Tegos GP, Wainwright M. Light-based technologies for management of COVID-19 pandemic crisis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 212:111999. [PMID: 32855026 PMCID: PMC7435279 DOI: 10.1016/j.jphotobiol.2020.111999] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
The global dissemination of the novel coronavirus disease (COVID-19) has accelerated the need for the implementation of effective antimicrobial strategies to target the causative agent SARS-CoV-2. Light-based technologies have a demonstrable broad range of activity over standard chemotherapeutic antimicrobials and conventional disinfectants, negligible emergence of resistance, and the capability to modulate the host immune response. This perspective article identifies the benefits, challenges, and pitfalls of repurposing light-based strategies to combat the emergence of COVID-19 pandemic.
Collapse
Affiliation(s)
- Caetano P Sabino
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil; BioLambda, Scientific and Commercial LTD, São Paulo, SP, Brazil.
| | - Anthony R Ball
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil..
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear, and Energy Research Institute, National Commission for Nuclear Energy, São Paulo, SP, Brazil
| | - Ana L Santos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Department of Chemistry Rice University, Houston, TX, USA; IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - George P Tegos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Micromoria LLC, Marlborough, USA
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
75
|
Barroso RA, Navarro R, Tim CR, de Paula Ramos L, de Oliveira LD, Araki ÂT, Fernandes KGC, Macedo D, Assis L. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study. Lasers Med Sci 2020; 36:1235-1240. [PMID: 33083912 DOI: 10.1007/s10103-020-03163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Acne vulgaris is the most recurring skin condition in the world, causing great harm to the physical and psychological well-being of many patients. Antimicrobial photodynamic therapy (aPDT) has broad therapeutic applicability. The purpose was to evaluate in vitro the photodynamic inactivation against Propionibacterium acnes (P. acnes) biofilms by using different concentrations of hypericin (Hypericum perforatum) photosensitizer associated with different energies of low-level laser. The biofilms were placed in 96-well microplates with a 6.4-mm diameter surface, by using standard suspensions (2 × 107 CFU/mL) and grown in brain heart infusion broth (BHI) for 48 h in anaerobic chamber. Subsequently, the control group received application of 0.9% sterile saline solution for 3 min; the photosensitising groups received hypericin at concentrations of 5 and 15 μg/mL for 3 min; the laser groups received irradiation of energies of 3 and 5 J (660 nm, continuous output, 100 mW, 30 and 50 s and 100 J/cm2 and 166 J/cm2, respectively); the aPDT groups received 5 and 15 μg/mL concentrations of hypericin associated with energies of 3 and 5 J of low-level laser irradiation. After the biofilms were broken up and seeded for CFU counting. The results showed a reduction in P. acnes biofilms after aPDT emphasising that 15 μg/mL hypericin associated with 3 and 5 J laser irradiation reduced biofilms by 14.1 and 27.9%, respectively. In addition, all groups of aPDT demostrated statistically significant reductions. In vitro photodynamic inactivation against P. acnes biofilms using different concentration of hypericin photosensitizer associated with different energies of low-level laser promoted effective antimicrobial action.
Collapse
Affiliation(s)
- Rosmeire Aparecida Barroso
- Scientific and Technological Institute, Biomedical Engineering Graduate Program, Universidade Brasil, São Paulo, SP, Brazil
| | - Ricardo Navarro
- Scientific and Technological Institute, Biomedical Engineering Graduate Program, Universidade Brasil, São Paulo, SP, Brazil
| | - Carla Roberta Tim
- Scientific and Technological Institute, Biomedical Engineering Graduate Program, Universidade Brasil, São Paulo, SP, Brazil
| | - Lucas de Paula Ramos
- Institute of Science and Technology, Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- Institute of Science and Technology, Department of Biosciences and Oral Diagnosis, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Ângela Toshie Araki
- Dentistry Graduate Program, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | | | - Daniela Macedo
- Scientific and Technological Institute, Biomedical Engineering Graduate Program, Universidade Brasil, São Paulo, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Biomedical Engineering Graduate Program, Universidade Brasil, São Paulo, SP, Brazil. .,Instituto Científico e Tecnológico da Universidade Brasil, Programa de Pós Graduação em Engenharia Biomédica, Universidade Brasil, Carolina Fonseca 236, São Paulo, SP, Brazil.
| |
Collapse
|
76
|
Lafuente MT, Romero P, Ballester AR. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chem 2020; 341:128050. [PMID: 33049419 DOI: 10.1016/j.foodchem.2020.128050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
The biochemical changes induced by LED Blue Light (LBL) (450 nm) in Lane Late oranges were investigated. The selected quantum flux (60 µmol m-2 s-1, 2 days) was associated with resistance against Penicillium digitatum, the main postharvest pathogen of citrus fruit. A holistic overview was obtained by a comparative transcriptome profile analysis, which revealed that LBL favored energy metabolism and redirected metabolic pathways toward the synthesis of diverse primary and secondary metabolism products. LBL favored reactive oxygen species homeostasis and metabolic activities involving lipid metabolism, specifically the synthesis of pigments and oxylipins, and the metabolism of carbohydrates, amino acids and indol- and alkaloid-derivatives. LBL also repressed limonene catabolism and triggered phenylpropanoid derivatives-related changes, which increased content in total flavonoids. Transferring fruit from LBL to darkness favored those processes involving amino acids, different phenylpropanoid, alkaloid and terpenoid classes, and ferrochelatase activity.
Collapse
Affiliation(s)
- María T Lafuente
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| | - Paco Romero
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
77
|
Hessling M, Wenzel U, Meurle T, Spellerberg B, Hönes K. Photoinactivation results of Enterococcus moraviensis with blue and violet light suggest the involvement of an unconsidered photosensitizer. Biochem Biophys Res Commun 2020; 533:813-817. [PMID: 32993958 DOI: 10.1016/j.bbrc.2020.09.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Microorganisms can be photoinactivated with 405 and 450 nm irradiation, due to endogenous photosensitizers, which absorb light of these wavelengths and generate reactive oxygen species that destroy the cells from within. The photosensitizers assumed to be responsible are porphyrins in the spectral region around 405 nm and flavins at about 450 nm. The aim of this study was to investigate this hypothesis on enterococci, considering that they do not contain porphyrins. In photoinactivation experiments with Enterococcus moraviensis, 405 nm and 450 nm irradiation both led to a reduction of the bacterial concentration by several orders of magnitude with 405 nm irradiation being much more efficient. The measurement and analysis of the fluorescence spectra revealed no signs of porphyrins whereas flavins seemed to be rapidly converted to lumichrome by 405 nm radiation. Therefore, probably none of the usual suspects, porphyrins and flavins, was responsible for the photoinactivation of Enterococcus moraviensis during 405 nm irradiation. Fluorescence experiments revealed the spectra of lumichrome and NADH, which are both known photosensitizers. Presumably, one of them or both were actually involved here. As NADH and flavins (and therefore their photodegradation product lumichrome) are abundant in all microorganisms, they are probably also involved in 405 nm photoinactivation processes of other species.
Collapse
Affiliation(s)
- Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany.
| | - Ulla Wenzel
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, 89081, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, 89081, Germany
| |
Collapse
|
78
|
Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21197150. [PMID: 32998270 PMCID: PMC7582680 DOI: 10.3390/ijms21197150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/virology
- Curcumin/therapeutic use
- DNA Repair/radiation effects
- DNA, Circular/antagonists & inhibitors
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/drug effects
- Hepatitis B virus/growth & development
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/radiation effects
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/radiotherapy
- Hepatitis B, Chronic/virology
- Humans
- Immunologic Factors/therapeutic use
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver/radiation effects
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/etiology
- Liver Cirrhosis/radiotherapy
- Liver Cirrhosis/virology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/virology
- Low-Level Light Therapy/methods
- Photosensitizing Agents/therapeutic use
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
79
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
80
|
Enhancement of Contact Lens Disinfection by Combining Disinfectant with Visible Light Irradiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176422. [PMID: 32899295 PMCID: PMC7504152 DOI: 10.3390/ijerph17176422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Multiple use contact lenses have to be disinfected overnight to reduce the risk of infections. However, several studies demonstrated that not only microorganisms are affected by the disinfectants, but also ocular epithelial cells, which come into contact via residuals at reinsertion of the lens. Visible light has been demonstrated to achieve an inactivation effect on several bacterial and fungal species. Combinations with other disinfection methods often showed better results compared to separately applied methods. We therefore investigated contact lens disinfection solutions combined with 405 nm irradiation, with the intention to reduce the disinfectant concentration of ReNu Multiplus, OptiFree Express or AOSept while maintaining adequate disinfection results due to combination benefits. Pseudomonads, staphylococci and E. coli were studied with disk diffusion assay, colony forming unit (cfu) determination and growth delay. A log reduction of 4.49 was achieved for P. fluorescens in 2 h for 40% ReNu Multiplus combined with an irradiation intensity of 20 mW/cm2 at 405 nm. For AOSept the combination effect was so strong that 5% of AOSept in combination with light exhibited the same result as 100% AOSept alone. Combination of disinfectants with visible violet light is therefore considered a promising approach, as a reduction of potentially toxic ingredients can be achieved.
Collapse
|
81
|
Sicks B, Hönes K, Spellerberg B, Hessling M. Blue LEDs in Endotracheal Tubes May Prevent Ventilator-Associated Pneumonia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020. [DOI: 10.1089/photob.2020.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ben Sicks
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
82
|
Shin DW. Various biological effects of solar radiation on skin and their mechanisms: implications for phototherapy. Anim Cells Syst (Seoul) 2020; 24:181-188. [PMID: 33029294 PMCID: PMC7473273 DOI: 10.1080/19768354.2020.1808528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The skin protects our body from various external factors, such as chemical and physical stimuli, microorganisms, and sunlight. Sunlight is a representative environmental factor that considerably influences the physiological activity of our bodies. The molecular mechanisms and detrimental effects of ultraviolet rays (UVR) on skin have been thoroughly investigated. Chronic exposure to UVR generally causes skin damage and eventually induces wrinkle formation and reduced elasticity of the skin. Several studies have shown that infrared rays (IR) also lead to the breakdown of collagen fibers in the skin. However, several reports have demonstrated that the appropriate use of UVR or IR can have beneficial effects on skin-related diseases. Additionally, it has been revealed that visible light of different wavelengths has various biological effects on the skin. Interestingly, several recent studies have reported that photoreceptors are also expressed in the skin, similar to those in the eyes. Based on these data, I discuss the various physiological effects of sunlight on the skin and provide insights on the use of phototherapy, which uses a specific wavelength of sunlight as a non-invasive method, to improve skin-related disorders.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
83
|
Park M, Islam S, Kim H, Korostoff J, Blatz MB, Hwang G, Kim A. Human Oral Motion-Powered Smart Dental Implant (SDI) for In Situ Ambulatory Photo-biomodulation Therapy. Adv Healthc Mater 2020; 9:e2000658. [PMID: 32613767 DOI: 10.1002/adhm.202000658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Indexed: 12/27/2022]
Abstract
Peri-implant disease is an inflammatory condition affecting the soft and hard tissues surrounding a dental implant. However, current preventative methods are insufficient due to the limited bioactivity on the dental implant and poor patient compliance. Recently, photo-biomodulation (PBM) therapy that can recover and regenerate peri-implant soft tissue has attracted considerable attention in dentistry. In this paper, a seamless human oral motion-powered dental implant system (called Smart Dental Implant or SDI) is presented as an ambulatory PBM therapy modality. SDI allows the in situ light delivery, which is enabled by the energy harvesting from dynamic human oral motions (chewing and brushing) via an engineered piezoelectric dental crown, an associated circuit, and micro light emitting diodes (LEDs). The SDI also offers adequate mechanical strength as the clinical standards. Using primary human gingival keratinocytes (HGKs) as a model host organism and Pseudomonas aeruginosa lipopolysaccharides (LPS) as a model inflammatory stimulus, effective SDI-mediated PBM therapy is demonstrated. A new class of dental implants could be an ambulatory PBM therapy platform for the prevention of peri-implant disease without patient dependency, warranting long-lasting dental implants.
Collapse
Affiliation(s)
- Moonchul Park
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Sayemul Islam
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Hye‐Eun Kim
- Department of Preventive and Restorative SciencesSchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Jonathan Korostoff
- Department of PeriodonticsSchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Markus B. Blatz
- Department of Preventive and Restorative SciencesSchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Geelsu Hwang
- Department of Preventive and Restorative SciencesSchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
- Center for Innovation & Precision DentistrySchool of Dental MedicineSchool of Engineering and Applied SciencesUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Albert Kim
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| |
Collapse
|
84
|
Light: An Alternative Method for Physical Control of Postharvest Rotting Caused by Fungi of Citrus Fruit. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8821346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Solar light has fundamental roles in vast chemical, biochemical, and physical process in biosphere and hence been declared as “source of life.” Solar light is further classified into a broad range of electromagnetic waves, and each region in the solar spectrum bears its unique actions in the universe or biosphere. Since centuries, solar light is believed as a potent source of killing pathogens causing postharvest losses on food products as well as human skin diseases. Citrus fruit crops are widely produced and consumed across the world, but due to their higher juicy contents, Penicillium italicum (blue mold) and Penicillium digitatum (green mold) make their entry to decay fruits and cause approximately 80% and 30% fruit losses, respectively. Agrochemicals or synthetic fungicides are highly efficient to control these postharvest fungal pathogens but have certain health concerns due to toxic environmental residues. Therefore, the scientific community is ever looking for some physical ways to eradicate such postharvest fungal pathogens and reduce the yield losses along with maintaining the public health concerns. This review article presents and discusses existing available information about the positive and negative impacts of different spectrums of solar light exposure on the postharvest storage of citrus fruits, especially to check citrus postharvest rotting caused by Penicillium italicum (blue mold) and Penicillium digitatum (green mold). Moreover, a special focus shall be paid to blue light (390–500 nm), which efficiently reduces the decay of fruits, while keeping the host tissues/cells healthy with no known cytotoxicity, killing the fungal pathogen probably by ferroptosis, but indepth knowledge is scanty. The study defines how to develop commercial applications of light in the postharvest citrus industry.
Collapse
|
85
|
Ahmed E, El-Gendy AO, Moniem Radi NA, Mohamed T. The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study. Lasers Med Sci 2020; 36:641-647. [PMID: 32725427 DOI: 10.1007/s10103-020-03104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
We investigated the influence of femtosecond laser irradiation on the growth of the two most common infectious bacterial pathogens in wounds; Staphylococcus aureus and Pseudomonas aeruginosa as an attempt to validate optimum parameters for a laser-based bactericidal modality to be used clinically. Bacterial cultures were exposed to femtosecond laser irradiation at different wavelengths, exposure times, and laser powers. The source of femtosecond laser was INSPIRE HF100 laser system, Spectra-Physics, which is pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP, Spectra-Physics. After irradiation, bacterial cells' survival was monitored by observing the clear zones of inhibition in cultured agar plates. Results for all strains indicated that the exposure to femtosecond laser irradiation with a wavelength ranging from ultraviolet (λ > 350 nm) to blue laser light (λ < 480 nm), for a period above 20 min and with a power density of ≈ 0.063 W/cm2, was enough to inhibit both bacterial pathogens with the results maintained for 1 week following irradiation.
Collapse
Affiliation(s)
- Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.,Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Naglaa A Moniem Radi
- Faculty of Medicine, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
86
|
Bhargava S, Listopadzki T, Diletti S, Crane JK, Duquin TR, Boyle KK. Effect of Blue Light and Photosensitizers on Cutibacterium acnes on Shoulder Periprosthetic Joint Infection Isolates. J Bone Jt Infect 2020; 5:187-197. [PMID: 32670773 PMCID: PMC7358969 DOI: 10.7150/jbji.46199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction:Cutibacterium acnes is gaining recognition as a leading pathogen after orthopaedic shoulder procedures. Photodynamic therapy, a combination of light and a photosensitizer, has demonstrated antimicrobial activity against C. acnes in the treatment of acne vulgaris. We sought to evaluate the effect of photodynamic therapy using blue light and photosensitizers on C. acnes isolates from shoulder prosthetic joint infections. Methods:C. acnes strains isolated from 19 patients with shoulder PJI were exposed to blue light alone (415 nm) or in combination with photosensitizers (fluorescein, riboflavin and demeclocycline). C. acnes strains were divided into 4 categories: Highly Sensitive (HS), Sensitive (S), Weakly Sensitive (WS), Resistant to blue light. Results: 13 of 19 C. acnes strains (68%) were S or HS to blue light alone. Of these 19 strains tested, 11 were tested with blue light and fluorescein or blue light plus riboflavin. Fluorescein (1 µg/mL) enhanced the effect of blue light in 6 of 11 strains (55%). Blue light plus riboflavin (10 µg/mL) resulted enhanced killing in 3 of 11 strains (27%), but produced a paradoxical photoprotective effect in 4 of 11 strains (36%), resulting in a net decrease compared to blue light alone. Demeclocycline, however, enhanced the effect of blue light in 16 of 17 strains (94 %). Conclusions: Blue light with the addition of photosensitizers killed C. acnes from periprosthetic shoulder infections in vitro, with demeclocycline having the most pronounced effect.
Collapse
Affiliation(s)
- Swati Bhargava
- Department Medicine, Division of Infectious Disease, University at Buffalo, Buffalo, NY
| | - Thomas Listopadzki
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Sara Diletti
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - John K Crane
- Department Medicine, Division of Infectious Disease, University at Buffalo, Buffalo, NY
| | - Thomas R Duquin
- Department of Orthopaedics, State University of New York at Buffalo, Buffalo, NY
| | - K Keely Boyle
- Department of Orthopaedics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
87
|
Rhee KY, Chawla R, Lele PP. Protein expression-independent response of intensity-based pH-sensitive fluorophores in Escherichia coli. PLoS One 2020; 15:e0234849. [PMID: 32555627 PMCID: PMC7302705 DOI: 10.1371/journal.pone.0234849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Fluorescent proteins that modulate their emission intensities when protonated serve as excellent probes of the cytosolic pH. Since the total fluorescence output fluctuates significantly due to variations in the fluorophore levels in cells, eliminating the dependence of the signal on protein concentration is crucial. This is typically accomplished with the aid of ratiometric fluorescent proteins such as pHluorin. However, pHluorin is excited by blue light, which can complicate pH measurements by adversely impacting bacterial physiology. Here, we characterized the response of intensity-based, pH-sensitive fluorescent proteins that excite at longer wavelengths where the blue light effect is diminished. The pH-response was interpreted in terms of an analytical model that assumed two emission states for each fluorophore: a low intensity protonated state and a high intensity deprotonated state. The model suggested a scaling to eliminate the dependence of the signal on the expression levels as well as on the illumination and photon-detection settings. Experiments successfully confirmed the scaling predictions. Thus, the internal pH can be readily determined with intensity-based fluorophores with appropriate calibrations irrespective of the fluorophore concentration and the signal acquisition setup. The framework developed in this work improves the robustness of intensity-based fluorophores for internal pH measurements in E. coli, potentially extending their applications.
Collapse
Affiliation(s)
- Kathy Y. Rhee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Pushkar P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
88
|
Galo IDC, Lima BED, Santos TG, Braoios A, Prado RP, Santos WGD. Staphylococcus aureus growth delay after exposure to low fluencies of blue light (470 nm). BRAZ J BIOL 2020; 81:370-376. [PMID: 32490986 DOI: 10.1590/1519-6984.226473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is one of the greatest challenges to treat bacterial infections worldwide, leading to increase in medical expenses, prolonged hospital stay and increased mortality. The use of blue light has been suggested as an innovative alternative to overcome this problem. In this study we analyzed the antibacterial effect of blue light using low emission parameters on Staphylococcus aureus cultures. In vitro bacterial cultures were used in two experimental approaches. The first approach included single or fractionated blue light application provided by LED emitters (470 nm), with the following fluencies: 16.29, 27.16 and 54.32 J/cm2. For the second approach a power LED (470 nm) was used to deliver 54.32 J/cm2 fractionated in 3 applications. Our results demonstrated that bacterial cultures exposed to fractionated blue light radiation exhibited significantly smaller sizes colonies than the control group after 24 h incubation, however the affected bacteria were able to adapt and continue to proliferate after prolonged incubation time. We could conclude that the hypothetical clinical use of low fluencies of blue light as an antibacterial treatment is risky, since its action is not definitive and proves to be ineffective at least for the strain used in this study.
Collapse
Affiliation(s)
- I D C Galo
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - B E De Lima
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - T G Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - A Braoios
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| | - R P Prado
- Departamento de Medicina, Universidade Federal de Goiás - UFG, Regional Catalão, Campus II, Av. Castelo Branco, s/n, Setor Universitário, CEP 75704-020, Catalão, GO, Brasil
| | - W G Dos Santos
- Unidade Acadêmica Especial de Ciências da Saúde, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Goiás - UFG, Regional Jataí, Câmpus Jatobá, Cidade Universitária, BR 364, Km 195, 3800, CEP 75801-615, Jataí, GO, Brasil
| |
Collapse
|
89
|
El Najjar N, van Teeseling MCF, Mayer B, Hermann S, Thanbichler M, Graumann PL. Bacterial cell growth is arrested by violet and blue, but not yellow light excitation during fluorescence microscopy. BMC Mol Cell Biol 2020; 21:35. [PMID: 32357828 PMCID: PMC7193368 DOI: 10.1186/s12860-020-00277-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorescence microscopy is a powerful tool in cell biology, especially for the study of dynamic processes. Intensive irradiation of bacteria with UV, blue and violet light has been shown to be able to kill cells, but very little information is available on the effect of blue or violet light during live-cell imaging. RESULTS We show here that in the model bacterium Bacillus subtilis chromosome segregation and cell growth are rapidly halted by standard violet (405 nm) and blue light (CFP) (445-457 nm) excitation, whereas they are largely unaffected by green light (YFP). The stress sigma factor σB and the blue-light receptor YtvA are not involved in growth arrest. Using synchronized B. subtilis cells, we show that the use of blue light for fluorescence microscopy likely induces non-specific toxic effects, rather than a specific cell cycle arrest. Escherichia coli and Caulobacter crescentus cells also stop to grow after 15 one-second exposures to blue light (CFP), but continue growth when imaged under similar conditions in the YFP channel. In the case of E. coli, YFP excitation slows growth relative to white light excitation, whereas CFP excitation leads to cell death in a majority of cells. Thus, even mild violet/blue light excitation interferes with bacterial growth. Analyzing the dose-dependent effects of violet light in B. subtilis, we show that short exposures to low-intensity violet light allow for continued cell growth, while longer exposures do not. CONCLUSIONS Our experiments show that care must be taken in the design of live-cell imaging experiments in that violet or blue excitation effects must be closely controlled during and after imaging. Violet excitation during sptPALM or other imaging studies involving photoactivation has a threshold, below which little effects can be seen, but above which a sharp transition into cell death occurs. YFP imaging proves to be better suited for time-lapse studies, especially when cell cycle or cell growth parameters are to be examined.
Collapse
Affiliation(s)
- Nina El Najjar
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | | | - Benjamin Mayer
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Silke Hermann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Martin Thanbichler
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany.,Max Planck Fellow Group "Bacterial Cell Biology", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Peter L Graumann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany. .,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|
90
|
Blee JA, Roberts IS, Waigh TA. Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Phys Biol 2020; 17:036001. [PMID: 32050190 DOI: 10.1088/1478-3975/ab759a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The majority of chronic infections are caused by biofilms, which have higher levels of antibiotic resistance than planktonic growth. Violet-blue 405 nm light has recently emerged as a novel bactericide, but limited studies have been conducted on its effectiveness against biofilms. We found that in response to 405 nm light both Pseudomonas aeruginosa and Bacillus subtilis biofilms exhibited cell dispersal and membrane potential hyperpolarisations. The response to 405 nm light depended on the stage of biofilm growth. The use of reactive oxygen species scavengers reduced membrane hyperpolarisation and biofilm dispersal in response to 405 nm light. This is the first time that membrane potential hyperpolarisations have been linked with photooxidative stress in bacteria and with biofilm dispersal. These results provide a new insight into the role of membrane potentials in the bacterial stress response and could be used in the development of 405 nm light based biofilm treatments.
Collapse
Affiliation(s)
- J A Blee
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation Immunity & Respiratory Medicine, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom. Biological Physics, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, M13 9PL, United Kingdom. Photon Science Institute, Alan Turing Building, University of Manchester, Oxford Road, M13 9PL, United Kingdom
| | | | | |
Collapse
|
91
|
Liu X, Chang Q, Ferrer-Espada R, Leanse LG, Goh XS, Wang X, Gelfand JA, Dai T. Photoinactivation of Moraxella catarrhalis Using 405-nm Blue Light: Implications for the Treatment of Otitis Media. Photochem Photobiol 2020; 96:611-617. [PMID: 32105346 PMCID: PMC10125262 DOI: 10.1111/php.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022]
Abstract
Moraxella catarrhalis is one of the major otopathogens of otitis media (OM) in childhood. M. catarrhalis tends to form biofilm, which contributes to the chronicity and recurrence of infections, as well as resistance to antibiotic treatment. In this study, we aimed to investigate the effectiveness of antimicrobial blue light (aBL; 405 nm), an innovative nonpharmacological approach, for the inactivation of M. catarrhalis OM. M. catarrhalis either in planktonic suspensions or 24-h old biofilms were exposed to aBL at the irradiance of 60 mW cm-2 . Under an aBL exposure of 216 J cm-2 , a >4-log10 colony-forming units (CFU) reduction in planktonic suspensions and a >3-log10 CFU reduction in biofilms were observed. Both transmission electron microscopy and scanning electron microscopy revealed aBL-induced morphological damage in M. catarrhalis. Ultraperformance liquid chromatography results indicated that protoporphyrin IX and coproporphyrin were the two most abundant species of endogenous photosensitizing porphyrins. No statistically significant reduction in the viability of HaCaT cells was observed after an aBL exposure of up to 216 J cm-2 . Collectively, our results suggest that aBL is potentially an effective and safe alternative therapy for OM caused by M. catarrhalis. Further in vivo studies are warranted before this optical approach can be moved to the clinics.
Collapse
Affiliation(s)
- Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Qihang Chang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Tongji University School of Medicine, Shanghai, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xueping Sharon Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jeffrey A Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
92
|
Tricarico PM, Zupin L, Ottaviani G, Rupel K, Celsi F, Genovese G, Boniotto M, Crovella S, Marzano AV. Photobiomodulation as potential novel third line tool for non-invasive treatment of hidradenitis suppurativa. GIORN ITAL DERMAT V 2020; 155:88-98. [DOI: 10.23736/s0392-0488.19.06247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Kim H, Islam S, Park M, Kim A, Hwang G. A Comprehensive Analysis of Near‐Contact Photobiomodulation Therapy in the Host–Bacteria Interaction Model Using 3D‐Printed Modular LED Platform. ACTA ACUST UNITED AC 2020; 4:e1900227. [DOI: 10.1002/adbi.201900227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hye‐Eun Kim
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Sayemul Islam
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Moonchul Park
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Albert Kim
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Geelsu Hwang
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
94
|
Gnerucci A, Faraoni P, Calusi S, Fusi F, Romano G. Influence of stomach mucosa tissue on the efficacy of intragastric antibacterial PDT. Photochem Photobiol Sci 2020; 19:34-39. [PMID: 31799583 DOI: 10.1039/c9pp00315k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of photodynamic therapy (PDT), optimization of the in vivo therapeutic efficacy needs a comprehensive study of the photo-killing action spectrum that depends on both the photosensitizer (PS) absorption and the tissue optical properties. This is especially true in the case of gastric infections by Helicobacter pylori: PS absorption has been largely investigated in vitro, while the contribution of tissue optical properties and illumination geometry has been poorly studied, despite being parameters that reflect the specific in vivo conditions. To investigate their influence, we focussed on the case of a point-like light source positioned in the antrum. This models a therapeutic device developed by our team which consists of a LED-based ingestible pill. By a simple 3D illumination model, our approach mediates light-tissue interaction over the illuminated stomach wall surface, then calculates its average transmittance T by means of a 1D model representative of the mean gastric mucosa structure. Finally, by merging T(λ) with the photosensitizers' absorption we obtained the in vivo action spectrum. This shows two peaks at about 500 and 630 nm, indicating a noticeable influence of the tissue with respect to in vitro studies, where the action spectrum reflects PS absorption only. Our approach defines one average action spectrum for this specific therapeutic context, which reflects the need to choose one emission spectrum for the light source used. The proposed methodology could be applied to any other illumination geometry of cave organs, provided appropriate model modifications for the light source and tissue characteristics are made.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, Florence, I-50139, Italy
| | - P Faraoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, Florence, I-50139, Italy
| | - S Calusi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, Florence, I-50139, Italy
| | - F Fusi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, Florence, I-50139, Italy.
| | - G Romano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, Florence, I-50139, Italy
| |
Collapse
|
95
|
Bumah VV, Masson-Meyers DS, Tong W, Castel C, Enwemeka CS. Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes - A correlative fluorescence spectroscopy study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111701. [DOI: 10.1016/j.jphotobiol.2019.111701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
|
96
|
Horton L, Torres AE, Narla S, Lyons AB, Kohli I, Gelfand JM, Ozog DM, Hamzavi IH, Lim HW. Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochem Photobiol Sci 2020; 19:1262-1270. [PMID: 32812619 PMCID: PMC8047562 DOI: 10.1039/d0pp00221f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has sparked a demand for safe and highly effective decontamination techniques for both personal protective equipment (PPE) and hospital and operating rooms. The gradual lifting of lockdown restrictions warrants the expansion of these measures into the outpatient arena. Ultraviolet C (UVC) radiation has well-known germicidal properties and is among the most frequently reported decontamination techniques used today. However, there is evidence that wavelengths beyond the traditional 254 nm UVC - namely far UVC (222 nm), ultraviolet B, ultraviolet A, visible light, and infrared radiation - have germicidal properties as well. This review will cover current literature regarding the germicidal effects of wavelengths ranging from UVC through the infrared waveband with an emphasis on their activity against viruses, and their potential applicability in the healthcare setting for general decontamination during an infectious outbreak.
Collapse
Affiliation(s)
- Luke Horton
- Wayne State University School of Medicine, Detroit, MI USA
| | - Angeli Eloise Torres
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| | - Shanthi Narla
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| | - Alexis B. Lyons
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA ,Department of Physics and Astronomy, Wayne State University, Detroit, MI USA
| | - Joel M. Gelfand
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - David M. Ozog
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| | - Iltefat H. Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| | - Henry W. Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, MI USA
| |
Collapse
|
97
|
Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. BIOMEDICAL OPTICS EXPRESS 2020; 11:27-39. [PMID: 32010497 PMCID: PMC6968738 DOI: 10.1364/boe.11.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.
Collapse
Affiliation(s)
- Zeqing Chen
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Wenqi Li
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| |
Collapse
|
98
|
Deep Blue Light Amplification from a Novel Triphenylamine Functionalized Fluorene Thin Film. Molecules 2019; 25:molecules25010079. [PMID: 31878329 PMCID: PMC6983032 DOI: 10.3390/molecules25010079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022] Open
Abstract
The development of high performance optically pumped organic lasers operating in the deep blue still remains a big challenge. In this paper, we have investigated the photophysics and the optical gain characteristics of a novel fluorene oligomer functionalized by four triphenylamine (TPA) groups. By ultrafast spectroscopy we found a large gain spectral region from 420 to 500 nm with a maximum gain cross-section of 1.5 × 10−16 cm2 which makes this molecule a good candidate for photonic applications. Amplified Spontaneous Emission measurements (ASE) under 150 fs and 3 ns pump pulses have revealed a narrow emission at 450 nm with a threshold of 5.5 μJcm−2 and 21 μJcm−2 respectively. Our results evidence that this new fluorene molecule is an interesting material for photonic applications, indeed the inclusion of TPA as a lateral substituent leads to a high gain and consequently to a low threshold blue organic ASE.
Collapse
|
99
|
Felix Gomez GG, Lippert F, Ando M, Zandona AF, Eckert GJ, Gregory RL. Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light. Dent J (Basel) 2019; 7:dj7040113. [PMID: 31835833 PMCID: PMC6960986 DOI: 10.3390/dj7040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers.
Collapse
Affiliation(s)
- Grace Gomez Felix Gomez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Masatoshi Ando
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Andrea F. Zandona
- Department of Comprehensive Care, Tufts School of Dental Medicine, Boston, MA 02111, USA;
| | - George J. Eckert
- Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9949
| |
Collapse
|
100
|
Masson-Meyers DS, Bumah VV, Castel C, Castel D, Enwemeka CS. Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111719. [PMID: 31770705 DOI: 10.1016/j.jphotobiol.2019.111719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Infection with Propionibacterium acnes is ubiquitous, and drug resistant strains have been on the rise as the use of pharmaceutical antimicrobials continues to engender the emergence of further resistant strains. In previous studies, we showed that treatment with blue light serves as an alternative to pharmaceutical intervention. As a part of our ongoing effort to improve the antimicrobial efficacy of blue light, we studied the effect of pulsed 450 nm light on P. acnes in vitro and compared two pulsed rates with continuous wave irradiation. We irradiated cultures of P. acnes at various irradiances and radiant energies either singly or repeatedly at various time intervals, using printed micro-LEDs, with the goal of finding the lowest combination of irradiance and radiant energy that would yield 100% bacterial suppression. Our results show that treatment with 33% pulsed light gave the best result compared to 20% pulsed wave or continuous wave. Timing irradiation to coincide with the replication cycle of P. acnes produced a significantly better antimicrobial effect. Furthermore, repeated irradiation at 3-h or 4-h interval enabled significant bacterial suppression even at lower irradiances; thus, making single irradiation at high irradiances unnecessary. Moreover, combining repeated irradiation with appropriate duration of treatment and 33% irradiation pulse rate gave optimal 100% [7 log10] bacterial suppression.
Collapse
Affiliation(s)
| | - Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182. USA.
| | - Chris Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Dawn Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182. USA.
| |
Collapse
|