51
|
Kadiyala SB, Papandrea D, Herron BJ, Ferland RJ. Segregation of seizure traits in C57 black mouse substrains using the repeated-flurothyl model. PLoS One 2014; 9:e90506. [PMID: 24594686 PMCID: PMC3940897 DOI: 10.1371/journal.pone.0090506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Identifying the genetic basis of epilepsy in humans is difficult due to its complexity, thereby underlying the need for preclinical models with specific aspects of seizure susceptibility that are tractable to genetic analyses. In the repeated-flurothyl model, mice are given 8 flurothyl-induced seizures, once per day (the induction phase), followed by a 28-day rest period (incubation phase) and final flurothyl challenge. This paradigm allows for the tracking of multiple phenotypes including: initial generalized seizure threshold, decreases in generalized seizure threshold with repeated flurothyl exposures, and changes in the complexity of seizures over time. Given the responses we previously reported in C57BL/6J mice, we analyzed substrains of the C57BL lineage to determine if any of these phenotypes segregated in these substrains. We found that the generalized seizure thresholds of C57BL/10SNJ and C57BL/10J mice were similar to C57BL/6J mice, whereas C57BL/6NJ and C57BLKS/J mice showed lower generalized seizure thresholds. In addition, C57BL/6J mice had the largest decreases in generalized seizure thresholds over the induction phase, while the other substrains were less pronounced. Notably, we observed only clonic seizures during the induction phase in all substrains, but when rechallenged with flurothyl after a 28-day incubation phase, ∼80% of C57BL/6J and 25% of C57BL/10SNJ and C57BL/10J mice expressed more complex seizures with tonic manifestations with none of the C57BL/6NJ and C57BLKS/J mice having complex seizures with tonic manifestations. These data indicate that while closely related, the C57BL lineage has significant diversity in aspects of epilepsy that are genetically controlled. Such differences further highlight the importance of genetic background in assessing the effects of targeted deletions of genes in preclinical epilepsy models.
Collapse
Affiliation(s)
- Sridhar B. Kadiyala
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Dominick Papandrea
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Bruce J. Herron
- Wadsworth Center, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, New York, United States of America
| | - Russell J. Ferland
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
- Department of Neurology, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
52
|
Ferraro TN. The relationship between genes affecting the development of epilepsy and approaches to epilepsy therapy. Expert Rev Neurother 2014; 14:329-52. [DOI: 10.1586/14737175.2014.888651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
53
|
Genetic association of KCNJ10 rs1130183 with seizure susceptibility and computational analysis of deleterious non-synonymous SNPs of KCNJ10 gene. Gene 2014; 536:247-53. [DOI: 10.1016/j.gene.2013.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022]
|
54
|
Winawer MR, Klassen TL, Teed S, Shipman M, Leung EH, Palmer AA. A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and in silico candidate gene analysis. GENES BRAIN AND BEHAVIOR 2014; 13:341-9. [PMID: 24373497 DOI: 10.1111/gbb.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine-susceptible congenics for 6-Hz ECT (electroconvulsive threshold), another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. The ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line 1 (starting at rs13480828), was not susceptible, thus defining a 1.0 Mb critical region that was unique to Line 1. Bioinformatic approaches identified 45 human orthologs within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2 and Cs, which are involved in neural cell differentiation, cellular remodeling and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes.
Collapse
Affiliation(s)
- M R Winawer
- Department of Neurology; G.H. Sergievsky Center, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
55
|
Nwaobi SE, Lin E, Peramsetty SR, Olsen ML. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development. Glia 2014; 62:411-27. [PMID: 24415225 DOI: 10.1002/glia.22613] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Kir4.1, a glial-specific K+ channel, is critical for normal CNS development. Studies using both global and glial-specific knockout of Kir4.1 reveal abnormal CNS development with the loss of the channel. Specifically, Kir4.1 knockout animals are characterized by ataxia, severe hypomyelination, and early postnatal death. Additionally, Kir4.1 has emerged as a key player in several CNS diseases. Notably, decreased Kir4.1 protein expression occurs in several human CNS pathologies including CNS ischemic injury, spinal cord injury, epilepsy, ALS, and Alzheimer's disease. Despite the emerging significance of Kir4.1 in normal and pathological conditions, its mechanisms of regulation are unknown. Here, we report the first epigenetic regulation of a K+ channel in the CNS. Robust developmental upregulation of Kir4.1 expression in rats is coincident with reductions in DNA methylation of the Kir4.1 gene, KCNJ10. Chromatin immunoprecipitation reveals a dynamic interaction between KCNJ10 and DNA methyltransferase 1 during development. Finally, demethylation of the KCNJ10 promoter is necessary for transcription. These findings indicate DNA methylation is a key regulator of Kir4.1 transcription. Given the essential role of Kir4.1 in normal CNS development, understanding the regulation of this K+ channel is critical to understanding normal glial biology.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
56
|
Zdebik AA, Mahmood F, Stanescu HC, Kleta R, Bockenhauer D, Russell C. Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings. PLoS One 2013; 8:e79765. [PMID: 24244558 PMCID: PMC3828195 DOI: 10.1371/journal.pone.0079765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022] Open
Abstract
We aimed to develop and validate a reliable method for stable long-term recordings of EEG activity in zebrafish, which is less prone to artifacts than current invasive techniques. EEG activity was recorded with a blunt electrolyte-filled glass pipette placed on the zebrafish head mimicking surface EEG technology in man. In addition, paralysis of agarose-embedded fish using D-tubocurarine excluded movement artifacts associated with epileptic activity. This non-invasive recording technique allowed recordings for up to one hour and produced less artifacts than impaling the zebrafish optic tectum with a patch pipette. Paralyzed fish survived, and normal heartbeat could be monitored for over 1h. Our technique allowed the demonstration of specific epileptic activity in kcnj10a morphant fish (a model for EAST syndrome) closely resembling epileptic activity induced by pentylenetetrazol. This new method documented that seizures in the zebrafish EAST model were ameliorated by pentobarbitone, but not diazepam, validating its usefulness. In conclusion, non-invasive recordings in paralyzed EAST syndrome zebrafish proved stable, reliable and robust, showing qualitatively similar frequency spectra to those obtained from pentylenetetrazol-treated fish. This technique may prove particularly useful in zebrafish epilepsy models that show infrequent or conditional seizure activity.
Collapse
Affiliation(s)
- Anselm A. Zdebik
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
- * E-mail:
| | - Fahad Mahmood
- Department of Comparative Biological Sciences, Royal Veterinary College, London, United Kingdom
| | - Horia C. Stanescu
- Centre for Nephrology, University College London, London, United Kingdom
| | - Robert Kleta
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Claire Russell
- Department of Comparative Biological Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
57
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|
58
|
Stivaros S. How the imaging investigation of EAST syndrome points towards the future of radiological multi-parametric phenotyping of a genetic disease. Dev Med Child Neurol 2013; 55:783-4. [PMID: 23924081 DOI: 10.1111/dmcn.12189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stavros Stivaros
- Royal Manchester Children's Hospital, Academic Department of Paediatric Neuroradiology & The University of Manchester, UK
| |
Collapse
|
59
|
Cross JH, Arora R, Heckemann RA, Gunny R, Chong K, Carr L, Baldeweg T, Differ AM, Lench N, Varadkar S, Sirimanna T, Wassmer E, Hulton SA, Ognjanovic M, Ramesh V, Feather S, Kleta R, Hammers A, Bockenhauer D. Neurological features of epilepsy, ataxia, sensorineural deafness, tubulopathy syndrome. Dev Med Child Neurol 2013; 55:846-56. [PMID: 23924083 PMCID: PMC4298033 DOI: 10.1111/dmcn.12171] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2013] [Indexed: 01/30/2023]
Abstract
AIM Recently, we reported a previously unrecognized symptom constellation comprising epilepsy, ataxia, sensorineural deafness, and tubulopathy (EAST syndrome) associated with recessive mutations in the KCNJ10 gene. Here, we provide a detailed characterization of the clinical features of the syndrome to aid patient management with respect to diagnosis, prognostic counselling, and identification of best treatment modalities. METHOD We conducted a retrospective review of the detailed neurological and neuroradiological features of nine children (four females, five males; age range at last examination 6-20y) with genetically proven EAST syndrome. RESULTS All children presented with tonic-clonic seizures in infancy. Later, non-progressive, cerebellar ataxia and hearing loss were noted. Whilst seizures mostly responded well to treatment, ataxia proved to be the most debilitating feature, with three patients non-ambulant. All available magnetic resonance imaging (MRI) revealed subtle symmetrical signal changes in the cerebellar dentate nuclei. Moreover, four patients had a small corpus callosum and brainstem hypoplasia, and three had a small spinal cord. Regional quantitative volumetric analysis of the images confirmed the corpus callosum and brainstem hypoplasia and showed further patterns of variation from the norm. INTERPRETATION The neurological features of EAST syndrome appear to be non-progressive, which is important for prognostic counselling. The spectrum of EAST syndrome includes consistent abnormalities on brain MRI, which may aid diagnosis. Further longitudinal documentation is required to determine the true natural history of the disorder.
Collapse
Affiliation(s)
- J Helen Cross
- Neurosciences Unit, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child Health, London, UK.
| | - Ruchi Arora
- Neurosciences Unit, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | | | - Roxana Gunny
- Department of Radiology, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Kling Chong
- Department of Radiology, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Lucinda Carr
- Neurosciences Unit, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Torsten Baldeweg
- Developmental Cognitive Neuroscience Unit, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Ann-Marie Differ
- Department of Molecular Genetics, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Nicholas Lench
- Department of Molecular Genetics, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Sophie Varadkar
- Neurosciences Unit, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Tony Sirimanna
- Department of Audiology, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | | | | | | | | | - Sally Feather
- Leeds Teaching Hospitals/University of LeedsLeeds, UK
| | - Robert Kleta
- Department of Nephrology, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| | - Alexander Hammers
- The Neurodis FoundationLyon, France,Division of Experimental Medicine, Imperial College LondonLondon, UK
| | - Detlef Bockenhauer
- Department of Nephrology, Great Ormond Street Hospital for Children NHS Trust and UCL-Institute of Child HealthLondon, UK
| |
Collapse
|
60
|
Landa P, Differ AM, Rajput K, Jenkins L, Bitner-Glindzicz M. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC MEDICAL GENETICS 2013; 14:85. [PMID: 23965030 PMCID: PMC3765178 DOI: 10.1186/1471-2350-14-85] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/11/2022]
Abstract
Background Pendred syndrome is a common autosomal recessive disorder causing deafness. Features include sensorineural hearing impairment, goitre, enlarged vestibular aqueducts (EVA) and occasionally Mondini dysplasia. Hearing impairment and EVA may occur in the absence of goitre or thyroid dyshormonogensis in a condition known as non-syndromic EVA. A significant number of patients with Pendred syndrome and non-syndromic EVA show only one mutation in SLC26A4. Two genes, KCNJ10, encoding an inwardly rectifying potassium channel and FOXI1, a transcriptional factor gene, are thought to play a role in the disease phenotypes. Methods Using Polymerase Chain Reaction and Sanger sequencing, sixty-eight patients with monoallelic mutations of SLC26A4 were tested for mutations in KCNJ10 and FOXI1. Results Two variants were observed in the KCNJ10 gene, p.Arg271Cys in three patients and p.Arg18Gln in one patient; only one variant, p.Arg123Trp was observed in the FOXI1 gene in a single patient. Both p.Arg271Cys and p.Arg18Gln are likely to be polymorphisms as judged by their frequency in the general population. Conclusion Therefore we found no evidence for a significant association between mutations of KCNJ10 and FOXI1 with SLC26A4. It was also observed that the variant, p.Arg271Cys in KCNJ10, previously thought to have a protective effect against seizure susceptibility, was found in a patient with Pendred syndrome with co-existing epilepsy.
Collapse
Affiliation(s)
- Priya Landa
- North East Thames Regional Genetics Service Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, 37 Queen Square,York House, London WC1N 3BH, UK
| | | | | | | | | |
Collapse
|
61
|
Seifert G, Steinhäuser C. Neuron–astrocyte signaling and epilepsy. Exp Neurol 2013; 244:4-10. [DOI: 10.1016/j.expneurol.2011.08.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 12/30/2022]
|
62
|
Suárez LM, Cid E, Gal B, Inostroza M, Brotons-Mas JR, Gómez-Domínguez D, de la Prida LM, Solís JM. Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency. PLoS One 2012; 7:e48128. [PMID: 23118939 PMCID: PMC3485282 DOI: 10.1371/journal.pone.0048128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022] Open
Abstract
Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency.
Collapse
Affiliation(s)
- Luz M. Suárez
- Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Instituto Cajal CSIC, Madrid, Spain
| | | | - Beatriz Gal
- Instituto Cajal CSIC, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Marion Inostroza
- Instituto Cajal CSIC, Madrid, Spain
- Universidad de Chile, Santiago, Chile
| | | | | | | | - José M. Solís
- Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- * E-mail: (JMS); (LMdlP)
| |
Collapse
|
63
|
Talishinsky A, Rosen GD. Systems genetics of the lateral septal nucleus in mouse: heritability, genetic control, and covariation with behavioral and morphological traits. PLoS One 2012; 7:e44236. [PMID: 22952935 PMCID: PMC3432065 DOI: 10.1371/journal.pone.0044236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
The lateral septum has strong efferent projections to hypothalamic and midbrain regions, and has been associated with modulation of social behavior, anxiety, fear conditioning, memory-related behaviors, and the mesolimbic reward pathways. Understanding natural variation of lateral septal anatomy and function, as well as its genetic modulation, may provide important insights into individual differences in these evolutionarily important functions. Here we address these issues by using efficient and unbiased stereological probes to estimate the volume of the lateral septum in the BXD line of recombinant inbred mice. Lateral septum volume is a highly variable trait, with a 2.5-fold difference among animals. We find that this trait covaries with a number of behavioral and physiological phenotypes, many of which have already been associated with behaviors modulated by the lateral septum, such as spatial learning, anxiety, and reward-seeking. Heritability of lateral septal volume is moderate (h(2) = 0.52), and much of the heritable variation is caused by a locus on the distal portion of chromosome (Chr) 1. Composite interval analysis identified a secondary interval on Chr 2 that works additively with the Chr 1 locus to increase lateral septum volume. Using bioinformatic resources, we identified plausible candidate genes in both intervals that may influence the volume of this key nucleus, as well as associated behaviors.
Collapse
Affiliation(s)
- Alexander Talishinsky
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
64
|
Losi G, Cammarota M, Carmignoto G. The role of astroglia in the epileptic brain. Front Pharmacol 2012; 3:132. [PMID: 22807916 PMCID: PMC3395023 DOI: 10.3389/fphar.2012.00132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/23/2012] [Indexed: 11/13/2022] Open
Abstract
Epilepsies comprise a family of multifactorial neurological disorders that affect at least 50 million people worldwide. Despite a long history of neurobiological and clinical studies the mechanisms that lead the brain network to a hyperexcitable state and to the intense, massive neuronal discharges reflecting a seizure episode are only partially defined. Most epilepsies of genetic origin are related to mutations in ionic channels that cause neuronal hyperexcitability. However, idiopathic epilepsies of unclear origin represent the majority of these brain disorders. A large body of evidence suggests that in the epileptic brain neurons are not the only players. Indeed, the glial cell astrocyte is known to be morphologically and functionally altered in different types of epilepsy. Although it is unclear whether these astrocyte dysfunctions can have a causative role in epileptogenesis, the hypothesis that astrocytes contribute to epileptiform activities recently received a considerable experimental support. Notably, currently used antiepileptic drugs, that act mainly on neuronal ion channels, are ineffective in a large group of patients. Clarifying astrocyte functions in the epileptic brain tissue could unveil astrocytes as novel therapeutic targets. In this review we present first a short overview on the role of astrocytes in the epileptic brain starting from the "historical" observations on their fundamental modulation of brain homeostasis, such as the control of water content, ionic equilibrium, and neurotransmitters concentrations. We then focus our review on most recent studies that hint at a distinct contribution of these cells in the generation of focal epileptiform activities.
Collapse
Affiliation(s)
- Gabriele Losi
- Institute of Neuroscience of the National Research Council and Department of Biomedical Sciences, University of Padova Padova, Italy
| | | | | |
Collapse
|
65
|
Bessaïh T, de Yebenes EG, Kirkland K, Higley MJ, Buono RJ, Ferraro TN, Contreras D. Quantitative trait locus on distal chromosome 1 regulates the occurrence of spontaneous spike-wave discharges in DBA/2 mice. Epilepsia 2012; 53:1429-35. [PMID: 22612065 DOI: 10.1111/j.1528-1167.2012.03512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Most common forms of human epilepsy result from a complex combination of polygenetic and environmental factors. Quantitative trait locus (QTL) mapping is a first step toward the nonbiased discovery of epilepsy-related candidate genes. QTL studies of susceptibility to induced seizures in mouse strains have consistently converged on a distal region of chromosome 1 as a major phenotypic determinant; however, its influence on spontaneous epilepsy remains unclear. In the present study we characterized the influence of allelic variations within this QTL, termed Szs1, on the occurrence of spontaneous spike-wave discharges (SWDs) characteristic of absence seizures in DBA/2 (D2) mice. METHODS We analyzed SWD occurrence and patterns in freely behaving D2, C57BL/6 (B6) and the congenic strains D2.B6-Szs1 and B6.D2-Szs1. KEY FINDINGS We showed that congenic manipulation of the Szs1 locus drastically reduced the number and the duration of SWDs in D2.B6-Szs1 mice, which are homozygous for Szs1 from B6 strain on a D2 strain background. However, it failed to induce the full expression of SWDs in the reverse congenic animals B6.D2-Szs1. SIGNIFICANCE Our results demonstrate that the occurrence of SWDs in D2 animals is under polygenic control and, therefore, the D2 and B6 strains might be a useful model to dissect the genetic determinants of polygenic SWDs characteristic of typical absence seizures. Furthermore, we point to the existence of epistatic interactions between at least one modifier gene within Szs1 and genes within unlinked QTLs in regulating the occurrence of spontaneous nonconvulsive forms of epilepsies.
Collapse
Affiliation(s)
- Thomas Bessaïh
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19106-6074, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Ferraro TN. Discovery of epilepsy susceptibility genes: implications for therapy development and pharmacogenomics. Pharmacogenomics 2012; 13:731-4. [DOI: 10.2217/pgs.12.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology & Behavior, Departments of Psychiatry & Pharmacology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
67
|
Cirello V, Bazzini C, Vezzoli V, Muzza M, Rodighiero S, Castorina P, Maffini A, Bottà G, Persani L, Beck-Peccoz P, Meyer G, Fugazzola L. Molecular and functional studies of 4 candidate loci in Pendred syndrome and nonsyndromic hearing loss. Mol Cell Endocrinol 2012; 351:342-50. [PMID: 22285650 DOI: 10.1016/j.mce.2012.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
Patients with PS or non-syndromic deafness were submitted to genetic/functional analyzes of SLC26A4, of its binding domain for FOXI1 (FOXI1-DBD), of the transcription activator FOXI1, and of the potassium channel KCNJ10. SLC26A4 was the most frequently mutated gene. An altered intracellular localization with immunocytochemistry, and a hampered maturation process were demonstrated for two novel SLC26A4 variants. Biochemical and immunocytochemical analyzes led to the development of a more sensitive fluorometric functional assay able to reveal the partial loss-of-function of SLC26A4 mutations. A novel missense variant was found in FOXI1 gene, though functional analysis showed no significant impairment in the transcriptional activation of SLC26A4. Finally, 3 patients were found to harbor a variant in KCNJ10, which was classified as polymorphism. The novelty of the study resides in the analysis of all the 4 candidate genetic loci linked to PS/non-syndromic deafness, and in the precise definition of the thyroid phenotype. PS was invariably associated with biallelic mutations of SLC26A4, whereas the genetic origin of non-syndromic deafness remained largely undetermined, since monoallelic SLC26A4 variants accounted for one fourth of the cases and FOXI1 and KCNJ10 were not involved in this series.
Collapse
|
68
|
Lack of association of SCN2A and KCNJ10 polymorphisms in Korean children with epilepsy: intractability and relapse of epilepsy. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 2012; 60:1192-202. [DOI: 10.1002/glia.22313] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/11/2022]
|
70
|
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: Implications for clinical use. Epilepsia 2012; 53:425-36. [DOI: 10.1111/j.1528-1167.2011.03364.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
71
|
Winawer MR, Gildersleeve SS, Phillips AG, Rabinowitz D, Palmer AA. Mapping a mouse limbic seizure susceptibility locus on chromosome 10. Epilepsia 2011; 52:2076-83. [PMID: 21906048 DOI: 10.1111/j.1528-1167.2011.03256.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Mapping seizure susceptibility loci in mice provides a framework for identifying potentially novel candidate genes for human epilepsy. Using C57BL/6J × A/J chromosome substitution strains (CSS), we previously identified a locus on mouse chromosome 10 (Ch10) conferring susceptibility to pilocarpine, a muscarinic cholinergic agonist that models human temporal lobe epilepsy by inducing initial limbic seizures and status epilepticus (status), followed by hippocampal cell loss and delayed-onset chronic spontaneous limbic seizures. Herein we report further genetic mapping of pilocarpine quantitative trait loci (QTLs) on Ch10. METHODS Seventy-nine Ch10 F(2) mice were used to map QTLs for duration of partial status epilepticus and the highest stage reached in response to pilocarpine. Based on those results we created interval-specific congenic lines to confirm and extend the results, using sequential rounds of breeding selectively by genotype to isolate segments of A/J Ch10 genome on a B6 background. KEY FINDINGS Analysis of Ch10 F(2) genotypes and seizure susceptibility phenotypes identified significant, overlapping QTLs for duration of partial status and severity of pilocarpine-induced seizures on distal Ch10. Interval-specific Ch10 congenics containing the susceptibility locus on distal Ch10 also demonstrated susceptibility to pilocarpine-induced seizures, confirming results from the F(2) mapping population and strongly supporting the presence of a QTL between rs13480781 (117.6 Mb) and rs13480832 (127.7 Mb). SIGNIFICANCE QTL mapping can identify loci that make a quantitative contribution to a trait, and eventually identify the causative DNA-sequence polymorphisms. We have mapped a locus on mouse Ch10 for pilocarpine-induced limbic seizures. Novel candidate genes identified in mice can be investigated in functional studies and tested for their role in human epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
72
|
Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis 2011; 43:239-47. [PMID: 21458570 DOI: 10.1016/j.nbd.2011.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/26/2011] [Accepted: 03/19/2011] [Indexed: 11/21/2022] Open
Abstract
The inwardly-rectifying potassium channel Kir4.1 is a major player in the astrocyte-mediated regulation of [K(+)](o) in the brain, which is essential for normal neuronal activity and synaptic functioning. KCNJ10, encoding Kir4.1, has been recently linked to seizure susceptibility in humans and mice, and is a possible candidate gene for Autism Spectrum Disorders (ASD). In this study, we performed a mutational screening of KCNJ10 in 52 patients with epilepsy of "unknown cause" associated with impairment of either cognitive or communicative abilities, or both. Among them, 14 patients fitted the diagnostic criteria for ASD. We identified two heterozygous KCNJ10 mutations (p.R18Q and p.V84M) in three children (two unrelated families) with seizures, ASD, and intellectual disability. The mutations replaced amino acid residues that are highly conserved throughout evolution and were undetected in about 500 healthy chromosomes. The effects of mutations on channel activity were functionally assayed using a heterologous expression system. These studies indicated that the molecular mechanism contributing to the disorder relates to an increase in either surface-expression or conductance of the Kir4.1 channel. Unlike previous syndromic associations of genetic variants in KCNJ10, the pure neuropsychiatric phenotype in our patients suggests that the new mutations affect K(+) homeostasis mainly in the brain, by acting through gain-of-function defects. Dysfunction in astrocytic-dependent K(+) buffering may contribute to autism/epilepsy phenotype, by altering neuronal excitability and synaptic function, and may represent a new target for novel therapeutic approaches.
Collapse
|
73
|
Dai AI, Bay A, Gorucu S, Sivasli E, Bosnak M. KCNJ10 potassium ion channel single nucleotide polymorphism in pediatric patients with idiopathic generalized epilepsy. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.npbr.2011.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
74
|
Shen Q, Zhang J, Wang Y, Liu B, Li X, Zhao Q, Chen S, Ji J, Yang F, Wan C, Gao L, Xu Y, Feng G, He L, He G. No association between the KCNH1, KCNJ10 and KCNN3 genes and schizophrenia in the Han Chinese population. Neurosci Lett 2011; 487:61-5. [PMID: 20933057 DOI: 10.1016/j.neulet.2010.09.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/15/2010] [Accepted: 09/29/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Qi Shen
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 2010; 285:36040-8. [PMID: 20807765 PMCID: PMC2975226 DOI: 10.1074/jbc.m110.163170] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/27/2010] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying potassium channel Kir4.1 is critical for glial function, control of neuronal excitability, and systemic K(+) homeostasis. Novel mutations in Kir4.1 have been associated with EAST/SeSAME syndrome, characterized by mental retardation, ataxia, seizures, hearing loss, and renal salt waste. Patients are homozygous for R65P, G77R, C140R or T164I; or compound heterozygous for A167V/R297C or R65P/R199Stop, a deletion of the C-terminal half of the protein. We investigated the functional significance of these mutations by radiotracer efflux and inside-out membrane patch clamping in COSm6 cells expressing homomeric Kir4.1 or heteromeric Kir4.1/Kir5.1 channels. All of the mutations compromised channel function, but the underlying mechanisms were different. R65P, T164I, and R297C caused an alkaline shift in pH sensitivity, indicating that these positions are crucial for pH sensing and pore gating. In R297C, this was due to disruption of intersubunit salt bridge Glu(288)-Arg(297). C140R breaks the Cys(108)-Cys(140) disulfide bond essential for protein folding and function. A167V did not affect channel properties but may contribute to decreased surface expression in A167V/R297C. In G77R, introduction of a positive charge within the bilayer may affect channel structure or gating. R199Stop led to a dramatic decrease in surface expression, but channel activity was restored by co-expression with intact subunits, suggesting remarkable tolerance for truncation of the cytoplasmic domain. These results provide an explanation for the molecular defects that underlie the EAST/SeSAME syndrome.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
76
|
Inyushin M, Kucheryavykh LY, Kucheryavykh YV, Nichols CG, Buono RJ, Ferraro TN, Skatchkov SN, Eaton MJ. Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice. Epilepsia 2010; 51:1707-13. [PMID: 20831751 DOI: 10.1111/j.1528-1167.2010.02592.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE KCNJ10 encodes subunits of inward rectifying potassium (Kir) channel Kir4.1 found predominantly in glial cells within the brain. Genetic inactivation of these channels in glia impairs extracellular K(+) and glutamate clearance and produces a seizure phenotype. In both mice and humans, polymorphisms and mutations in the KCNJ10 gene have been associated with seizure susceptibility. The purpose of the present study was to determine whether there are differences in Kir channel activity and potassium- and glutamate-buffering capabilities between astrocytes from seizure resistant C57BL/6 (B6) and seizure susceptible DBA/2 (D2) mice that are consistent with an altered K(+) channel activity as a result of genetic polymorphism of KCNJ10. METHODS Using cultured astrocytes and hippocampal brain slices together with whole-cell patch-clamp, we determined the electrophysiologic properties, particularly K(+) conductances, of B6 and D2 mouse astrocytes. Using a colorimetric assay, we determined glutamate clearance capacity by B6 and D2 astrocytes. RESULTS Barium-sensitive Kir currents elicited from B6 astrocytes are substantially larger than those elicited from D2 astrocytes. In addition, potassium and glutamate buffering by D2 cortical astrocytes is impaired, relative to buffering by B6 astrocytes. DISCUSSION In summary, the activity of Kir4.1 channels differs between seizure-susceptible D2 and seizure-resistant B6 mice. Reduced activity of Kir4.1 channels in astrocytes of D2 mice is associated with deficits in potassium and glutamate buffering. These deficits may, in part, explain the relatively low seizure threshold of D2 mice.
Collapse
Affiliation(s)
- Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico 00960-6032, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Stewart TH, Eastman CL, Groblewski PA, Fender JS, Verley DR, Cook DG, D'Ambrosio R. Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat. J Neurophysiol 2010; 104:3345-60. [PMID: 20861444 DOI: 10.1152/jn.00398.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astrocytic inwardly rectifying K(+) currents (I(KIR)) have an important role in extracellular K(+) homeostasis, which influences neuronal excitability, and serum extravasation has been linked to impaired K(IR)-mediated K(+) buffering and chronic hyperexcitability. Head injury induces acute impairment in astroglial membrane I(KIR) and impaired K(+) buffering in the rat hippocampus, but chronic spontaneous seizures appear in the perilesional neocortex--not the hippocampus--in the early weeks to months after injury. Thus we examined astrocytic K(IR) channel pathophysiology in both neocortex and hippocampus after rostral parasaggital fluid percussion injury (rpFPI). rpFPI induced greater acute serum extravasation and metabolic impairment in the perilesional neocortex than in the underlying hippocampus, and in situ whole cell recordings showed a greater acute loss of astrocytic I(KIR) in neocortex than hippocampus. I(KIR) loss persisted through 1 mo after injury only in the neocortical epileptic focus, but fully recovered in the hippocampus that did not generate chronic seizures. Neocortical cell-attached recordings showed no loss or an increase of I(KIR) in astrocytic somata. Confocal imaging showed depletion of KIR4.1 immunoreactivity especially in processes--not somata--of neocortical astrocytes, whereas hippocampal astrocytes appeared normal. In naïve animals, intracortical infusion of serum, devoid of coagulation-mediating thrombin activity, reproduces the effects of rpFPI both in vivo and at the cellular level. In vivo serum infusion induces partial seizures similar to those induced by rpFPI, whereas bath-applied serum, but not dialyzed albumin, rapidly silenced astrocytic K(IR) membrane currents in whole cell and cell-attached patch-clamp recordings in situ. Thus both acute impairment in astrocytic I(KIR) and chronic spontaneous seizures typical of rpFPI are reproduced by serum extravasation, whereas the chronic impairment in astroglial I(KIR) is specific to the neocortex that develops the epileptic focus.
Collapse
Affiliation(s)
- Tessandra H Stewart
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct. Int J Pediatr Otorhinolaryngol 2010; 74:1049-53. [PMID: 20621367 DOI: 10.1016/j.ijporl.2010.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the implication of SLC26A4, FOXI and KCNJ10 genes in unilateral hearing impairment associated with ipsilateral inner ear malformation (Enlargement of the vestibular aqueduct and/or Mondini dysplasia). METHODS We have gathered 25 patients presenting unilateral hearing impairment and ipsilateral enlarged vestibular aqueduct. For each of the patients, we have analyzed SLC26A4, FOXI1 and KCNJ10 genes sequences. RESULTS The analysis of SLC26A4 revealed only eight heterozygous SLC26A4 sequence variants, three of them being novel (p.Met147Ile, p.Asn538Asn and p.Leu627Arg). None of the patients carried a second mutation on the other allele. Moreover, the SLC26A4 locus was excluded by segregation analysis in two families. No mutations were present in FOXI1 and KCNJ10 genes. CONCLUSIONS Together, these data suggest that SLC26A4, FOXI1 and KCNJ10 are not major determinants in unilateral deafness and enlarged vestibular aqueduct compared with their implication in Pendred syndrome and non-syndromic bilateral enlarged vestibular aqueduct.
Collapse
|
79
|
Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 2010; 40:573-85. [PMID: 20691786 DOI: 10.1016/j.nbd.2010.07.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 01/13/2023] Open
Abstract
Profound astrogliosis coincident with neuronal cell loss is universally described in human and animal models of temporal lobe epilepsy (TLE). In the kainic acid-induced status epilepticus (SE) model of TLE, astrocytes in the hippocampus become reactive soon after SE and before the onset of spontaneous seizures. To determine if astrocytes in the hippocampus exhibit changes in function soon after SE, we recorded from SR101-labeled astrocytes using the whole-cell patch technique in hippocampal brain slices prepared from control and kainic-acid-treated rats. Glutamate transporter-dependent currents were found to have significantly faster decay time kinetics and in addition, dye coupling between astrocytes was substantially increased. Consistent with an increase in dye coupling in reactive astrocytes, immunoblot experiments demonstrated a significant increase in both glial fibrillary acidic protein (GFAP) and connexin 43, a major gap junction protein expressed by astrocytes. In contrast to what has been observed in resected tissue from patients with refractory epilepsy, changes in potassium currents were not observed shortly after KA-induced SE. While many changes in neuronal function have been identified during the initial period of low seizure probability in this model of TLE, the present study contributes to the growing body of literature suggesting a role for astrocytes in the process of epileptogenesis.
Collapse
Affiliation(s)
- D K Takahashi
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
80
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1084] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Heuser K, Nagelhus EA, Taubøll E, Indahl U, Berg PR, Lien S, Nakken S, Gjerstad L, Ottersen OP. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 2009; 88:55-64. [PMID: 19864112 DOI: 10.1016/j.eplepsyres.2009.09.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/09/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The etiopathogenesis of temporal lobe epilepsy (TLE) and its subgroups - mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and TLE with antecedent febrile seizures (TLE-FS) - is poorly understood. It has been proposed that the water channel aquaporin-4 (AQP4) and the potassium channel Kir4.1 (KCNJ10 gene) act in concert to regulate extracellular K(+) homeostasis and that functional alterations of these channels influence neuronal excitability. The current study was designed to identify variants of the AQP4 and KCNJ10 genes associated with TLE and subgroups of this condition. MATERIAL AND METHODS We included 218 Norwegian patients with TLE and 181 ethnically matched healthy controls. An association study was established in which all TLE patients were compared with healthy controls. Additionally, subgroups of 56 MTLE-HS patients were compared with 162 TLE patients without HS, and 102 TLE-FS patients were compared with 105 TLE without FS. RESULTS We found eight single SNPs, seven in KCNJ10 and one between KCNJ10 and KCNJ9, associated with TLE-FS (nominal p-values from 0.009 to 0.041). Seven of the SNPs segregate into one large haplotype block expanding from KCNJ10 to KCNJ9, including the region interposed those genes. One haplotype was overrepresented in the TLE-FS cases (nominal p-value 0.014). These results were confirmed by explorative multivariate analysis indicating that a combination of SNPs from KCNJ10, the region between KCNJ10 and KCNJ9, and the AQP4 gene is associated with TLE-FS. For the TLE cohort as a whole, explorative multivariate analysis indicated a combination of SNPs from the KCNJ10 and AQP4 genes in association with TLE. CONCLUSION Variations in the AQP4 and the KCNJ10/KCNJ9 region are likely to be associated with TLE, particularly TLE-FS, supporting the suggestion that perturbations of water and K(+) transport are involved in the etiopathogenesis of TLE.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 2009; 29:11662-73. [PMID: 19759313 DOI: 10.1523/jneurosci.1413-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.
Collapse
|
83
|
|
84
|
Kilpinen H, Ylisaukko-oja T, Rehnström K, Gaál E, Turunen JA, Kempas E, von Wendt L, Varilo T, Peltonen L. Linkage and linkage disequilibrium scan for autism loci in an extended pedigree from Finland. Hum Mol Genet 2009; 18:2912-21. [PMID: 19454485 PMCID: PMC2708134 DOI: 10.1093/hmg/ddp229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Population isolates, such as Finland, have proved beneficial in mapping rare causative genetic variants due to a limited number of founders resulting in reduced genetic heterogeneity and extensive linkage disequilibrium (LD). We have here used this special opportunity to identify rare alleles in autism by genealogically tracing 20 autism families into one extended pedigree with verified genealogical links reaching back to the 17th century. In this unique pedigree, we performed a dense microsatellite marker genome-wide scan of linkage and LD and followed initial findings with extensive fine-mapping. We identified a putative autism susceptibility locus at 19p13.3 and obtained further evidence for previously identified loci at 1q23 and 15q11-q13. Most promising candidate genes were TLE2 and TLE6 clustered at 19p13 and ATP1A2 at 1q23.
Collapse
Affiliation(s)
- Helena Kilpinen
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Tero Ylisaukko-oja
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Karola Rehnström
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Emilia Gaál
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Joni A. Turunen
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Elli Kempas
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Lennart von Wendt
- Unit of Child Neurology, Hospital for Children and Adolescents, Lastenlinnantie 2, 00029 HUS, Helsinki, Finland
| | - Teppo Varilo
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Leena Peltonen
- Institute for Molecular Medicine, Finland (FIMM) and Department of Molecular Medicine, National Public Health Institute, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00251 Helsinki, Finland
- The Broad Institute, MIT and Harvard University, 7 Cambridge Center, Cambridge, MA 02141-2023, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
85
|
Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van't Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 2009; 360:1960-70. [PMID: 19420365 PMCID: PMC3398803 DOI: 10.1056/nejmoa0810276] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ataxia/genetics
- Child, Preschool
- Chromosomes, Human, Pair 1
- Epilepsy/genetics
- Female
- Genes, Recessive
- Hearing Loss, Sensorineural/genetics
- Humans
- Lod Score
- Male
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutation, Missense
- Pedigree
- Phenotype
- Potassium/metabolism
- Potassium Channels, Inwardly Rectifying/genetics
- Renal Tubular Transport, Inborn Errors/genetics
- Sequence Analysis, DNA
- Sodium/metabolism
- Syndrome
Collapse
Affiliation(s)
- Detlef Bockenhauer
- Great Ormond Street Hospital-University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 2009; 106:5842-7. [PMID: 19289823 DOI: 10.1073/pnas.0901749106] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2-23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K(+) channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K(+) channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K(+) released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K(+) recycling across the basolateral membrane to enable normal activity of the Na(+)-K(+)-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10's role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K(+) channels in renal electrolyte homeostasis.
Collapse
|
87
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
88
|
Zou SB, Weng J, Symons MN, Singh SM. Role of potassium channel gene Kcnj10 in ethanol preference in C57bl/6J and DBA/2J mice. Alcohol Clin Exp Res 2008; 33:394-9. [PMID: 19053975 DOI: 10.1111/j.1530-0277.2008.00848.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inwardly-rectifying potassium channel protein Kir4.1 is encoded by Kcnj10 which maps to a quantitative trait locus on chromosome 1 for the voluntary alcohol consumption phenotype in mice. Kcnj10 brain expression differences have been established between ethanol-preferring C57Bl/6J and ethanol-avoiding BALB/cJ mice, but its differential expression in other tissues and strains have largely been overlooked. A nonsynonymous single nucleotide polymorphism exists between C57Bl/6J and ethanol-avoiding DBA/2J mice which changes amino acid 262 from threonine (C57Bl/6J) to serine (DBA/2J). This Kcnj10 SNP and its expression may serve as valuable markers in predicting the ethanol preference phenotype in mice. METHODS The evolutionary divergence of the Kir gene family was characterized using phylogenetic analysis involving the 16 mouse Kir channels. Kcnj10 expression differences in the brain, liver, lung, heart, spleen, kidney, testes, and muscle of male C57Bl/6J and DBA/2J mice at different developmental stages were examined using semiquantitative RT-PCR analysis. A SNP analysis was conducted to assess the association of Kcnj10 Thr262Ser SNP and the ethanol preference phenotype in F2 mice derived from the reciprocal crosses of the C57Bl/6J and DBA/2J strains. RESULTS Evolutionary analysis supports gene duplication and genetic recombination as likely sources of diversity within the Kir gene family. Semiquantitative RT-PCR analysis revealed significantly higher Kcnj10 expression in the brain, spleen, and kidney of both strains when compared to other tissues from the same strain. There were no significant differences in tissue-specific mRNA levels between strains except in the testes. Genotype distributions of the Kcnj10 Thr262Ser SNP were different between low- and high-drinkers. A significant difference in the average ethanol preference level of each genotype was also observed. CONCLUSION Our results suggest a role for Kcnj10 in ethanol preference determination in mice. However, further experiments are needed to establish if this association is due to the nonsynonymous SNP or other additional factors associated with Kcnj10.
Collapse
Affiliation(s)
- Shicong B Zou
- Molecular Genetics Laboratories, Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
89
|
Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, Williams RW. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet 2008; 4:e1000260. [PMID: 19008955 PMCID: PMC2577893 DOI: 10.1371/journal.pgen.1000260] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel C. Ciobanu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Schikorski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
90
|
Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008; 107:589-601. [PMID: 18691387 PMCID: PMC2581639 DOI: 10.1111/j.1471-4159.2008.05615.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K(+) ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba(2+) sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K(+) and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Michelle L Olsen
- Department of Neurobiology & Center for Glial Biology in Medicine, The University of Alabama Birmingham, Birmingham, Alabama 35294-0021, USA
| | | |
Collapse
|
91
|
Hatada I, Namihira M, Morita S, Kimura M, Horii T, Nakashima K. Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation. PLoS One 2008; 3:e3189. [PMID: 18784832 PMCID: PMC2527128 DOI: 10.1371/journal.pone.0003189] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/19/2008] [Indexed: 11/24/2022] Open
Abstract
Epigenetic changes are thought to lead to alterations in the property of cells, such as differentiation potential. Neural precursor cells (NPCs) differentiate only into neurons in the midgestational brain, yet they become able to generate astrocytes in the late stage of development. This differentiation-potential switch could be explained by epigenetic changes, since the promoters of astrocyte-specific marker genes, glial fibrillary acidic protein (Gfap) and S100β, have been shown to become demethylated in late-stage NPCs prior to the onset of astrocyte differentiation; however, whether demethylation occurs generally in other astrocyctic genes remains unknown. Here we analyzed DNA methylation changes in mouse NPCs between the mid-(E11.5) and late (E14.5) stage of development by a genome-wide DNA methylation profiling method using microarrays and found that many astrocytic genes are demethylated in late-stage NPCs, enabling the cell to become competent to express these genes. Although these genes are already demethylated in late-stage NPCs, they are not expressed until cells differentiate into astrocytes. Thus, late-stage NPCs have epigenetic potential which can be realized in their expression after astrocyte differentiation.
Collapse
Affiliation(s)
- Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | | | | | | | | | |
Collapse
|
92
|
KUCHERYAVYKH YURIYV, SHUBA YAROSLAVM, ANTONOV SERGEIM, INYUSHIN MIKHAILY, CUBANO LUIS, PEARSON WADEL, KURATA HARLEY, REICHENBACH ANDREAS, VEH RÜDIGERW, NICHOLS COLING, EATON MISTYJ, SKATCHKOV SERGUEIN. Complex rectification of Müller cell Kir currents. Glia 2008; 56:775-90. [PMID: 18293411 PMCID: PMC9930535 DOI: 10.1002/glia.20652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+- and glutamate-uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood. Therefore, the present study examined the voltage-dependence of K+ conductance with varying physiological and pathophysiological external [K+] and intrapipette spermine ([SP]) concentrations in Müller glial cells and in tsA201 cells expressing recombinant Kir4.1 channels. Two different types of [SP] block were characterized: "fast" and "slow." Fast block was steeply voltage-dependent, with only a low sensitivity to spermine and strong dependence on extracellular potassium concentration, [K+]o. Slow block had a strong voltage sensitivity that begins closer to resting membrane potential and was essentially [K+]o-independent, but with a higher spermine- and [K+]i-sensitivity. Using a modified Woodhull model and fitting i/V curves from whole cell recordings, we have calculated free [SP](in) in Müller glial cells as 0.81 +/- 0.24 mM. This is much higher than has been estimated previously in neurons. Biphasic block properties underlie a significantly varying extent of rectification with [K+] and [SP]. While confirming similar properties of glial Kir and recombinant Kir4.1, the results also suggest mechanisms underlying K+ buffering in glial cells: When [K+]o is rapidly increased, as would occur during neuronal excitation, "fast block" would be relieved, promoting potassium influx to glial cells. Increase in [K+]in would then lead to relief of "slow block," further promoting K+-influx.
Collapse
Affiliation(s)
- YURIY V. KUCHERYAVYKH
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - YAROSLAV M. SHUBA
- International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kiev, 01024 Ukraine
| | - SERGEI M. ANTONOV
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223 Russia
| | - MIKHAIL Y. INYUSHIN
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - LUIS CUBANO
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - WADE L. PEARSON
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - HARLEY KURATA
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - ANDREAS REICHENBACH
- Paul Flechsig Institute of Brain Research, Leipzig University, D-04109 Leipzig, Germany
| | - RÜDIGER W. VEH
- Institute of Integrative Neuroanatomy, Charité, Philipstrasse 12, Berlin, Germany
| | - COLIN G. NICHOLS
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - MISTY J. EATON
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - SERGUEI N. SKATCHKOV
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR,Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, PR,Correspondence to: S. N. Skatchkov, Departments of Biochemistry and Physiology, School of Medicine, Universidad Central del Caribe, Box 60-327, Bayamón, Puerto Rico, USA 00960-6032.
| |
Collapse
|
93
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chaix Y, Ferraro TN, Lapouble E, Martin B. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis? Epilepsia 2007; 48 Suppl 5:48-52. [PMID: 17910581 DOI: 10.1111/j.1528-1167.2007.01289.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.
Collapse
Affiliation(s)
- Yohan Chaix
- Laboratoire de Neurobiologie, Equipe Génétique des Epilepsies, Université d'Orléans, France
| | | | | | | |
Collapse
|
95
|
Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 2007; 27:11354-65. [PMID: 17942730 DOI: 10.1523/jneurosci.0723-07.2007] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During neuronal activity, extracellular potassium concentration ([K+]out) becomes elevated and, if uncorrected, causes neuronal depolarization, hyperexcitability, and seizures. Clearance of K+ from the extracellular space, termed K+ spatial buffering, is considered to be an important function of astrocytes. Results from a number of studies suggest that maintenance of [K+]out by astrocytes is mediated by K+ uptake through the inward-rectifying Kir4.1 channels. To study the role of this channel in astrocyte physiology and neuronal excitability, we generated a conditional knock-out (cKO) of Kir4.1 directed to astrocytes via the human glial fibrillary acidic protein promoter gfa2. Kir4.1 cKO mice die prematurely and display severe ataxia and stress-induced seizures. Electrophysiological recordings revealed severe depolarization of both passive astrocytes and complex glia in Kir4.1 cKO hippocampal slices. Complex cell depolarization appears to be a direct consequence of Kir4.1 removal, whereas passive astrocyte depolarization seems to arise from an indirect developmental process. Furthermore, we observed a significant loss of complex glia, suggestive of a role for Kir4.1 in astrocyte development. Kir4.1 cKO passive astrocytes displayed a marked impairment of both K+ and glutamate uptake. Surprisingly, membrane and action potential properties of CA1 pyramidal neurons, as well as basal synaptic transmission in the CA1 stratum radiatum appeared unaffected, whereas spontaneous neuronal activity was reduced in the Kir4.1 cKO. However, high-frequency stimulation revealed greatly elevated posttetanic potentiation and short-term potentiation in Kir4.1 cKO hippocampus. Our findings implicate a role for glial Kir4.1 channel subunit in the modulation of synaptic strength.
Collapse
|
96
|
Lucarini N, Verrotti A, Napolioni V, Bosco G, Curatolo P. Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 2007; 37:157-64. [PMID: 17765802 DOI: 10.1016/j.pediatrneurol.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/14/2007] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
In recent years, progress in understanding the genetic basis of idiopathic generalized epilepsies has proven challenging because of their complex inheritance patterns and genetic heterogeneity. Genetic polymorphisms offer a convenient avenue for a better understanding of the genetic basis of idiopathic generalized epilepsy by providing evidence for the involvement of a given gene in these disorders, and by clarifying its pathogenetic mechanisms. Many of these genes encode for some important central nervous system ion channels (KCNJ10, KCNJ3, KCNQ2/KCNQ3, CLCN2, GABRG2, GABRA1, SCN1B, and SCN1A), while many others encode for ubiquitary enzymes that play crucial roles in various metabolic pathways (HP, ACP1, ME2, LGI4, OPRM1, GRIK1, BRD2, EFHC1, and EFHC2). We review the main genetic polymorphisms reported in idiopathic generalized epilepsy, and discusses their possible functional significance in the pathogenesis of seizures.
Collapse
Affiliation(s)
- Nazzareno Lucarini
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, Camerino, Italy.
| | | | | | | | | |
Collapse
|
97
|
Härtel K, Singaravelu K, Kaiser M, Neusch C, Hülsmann S, Deitmer JW. Calcium influx mediated by the inwardly rectifying K+ channel Kir4.1 (KCNJ10) at low external K+ concentration. Cell Calcium 2007; 42:271-80. [PMID: 17284334 DOI: 10.1016/j.ceca.2006.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/10/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
COS-1 cells with heterologeous expression of the Kir4.1 (KCNJ10) channel subunit, possess functional Kir4.1 channels and become capable to generating cytosolic Ca2+ transients, upon lowering of the extracellular K+ concentration to 2 mM or below. These Ca2+ transients are blocked by external Ba2+ (100 microM). Acute brain stem slices from wild-type mice (second post-natal week), which were loaded with the fluorescent Ca2+ indicator Oregon Green BAPTA-1-AM, were exposed to 0.2 mM K+. Under these conditions astrocytes, but not neurons, responded with cytosolic Ca2+ elevations in wild-type mice. This astrocyte-specific response has previously been used to identify astroglial cells type [R. Dallwig, H. Vitten, J.W. Deitmer, A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28 (2000) 247-259]. In Kir4.1 knock-out (Kir4.1-/-) mice, the number of responding cells was dramatically reduced and the Ca2+ transients in responding cells were significantly smaller than in wild-type mice. Our results indicate that Kir4.1 channels are the molecular substrate for the observed Ca2+ influx in astrocytes under conditions of low external K+-concentration.
Collapse
Affiliation(s)
- Kai Härtel
- Department of Neuro- and Sensory Physiology, Georg-August-University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Fernandez F, Curtain RP, Colson NJ, Ovcaric M, MacMillan J, Griffiths LR. Association analysis of chromosome 1 migraine candidate genes. BMC MEDICAL GENETICS 2007; 8:57. [PMID: 17727731 PMCID: PMC2034370 DOI: 10.1186/1471-2350-8-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 08/29/2007] [Indexed: 12/29/2022]
Abstract
BACKGROUND Migraine with aura (MA) is a subtype of typical migraine. Migraine with aura (MA) also encompasses a rare severe subtype Familial Hemiplegic Migraine (FHM) with several known genetic loci. The type 2 FHM (FHM-2) susceptibility locus maps to chromosome 1q23 and mutations in the ATP1A2 gene at this site have recently been implicated. We have previously provided evidence of linkage of typical migraine (predominantly MA) to microsatellite markers on chromosome 1, in the 1q31 and 1q23 regions. In this study, we have undertaken a large genomic investigation involving candidate genes that lie within the chromosome 1q23 and 1q31 regions using an association analysis approach. METHODS We have genotyped a large population of case-controls (243 unrelated Caucasian migraineurs versus 243 controls) examining a set of 5 single nucleotide polymorphisms (SNPs) and the Fas Ligand dinucleotide repeat marker, located within the chromosome 1q23 and 1q31 regions. RESULTS Several genes have been studied including membrane protein (ATP 1 subtype A4 and FasL), cytoplasmic glycoprotein (CASQ 1) genes and potassium (KCN J9 and KCN J10) and calcium (CACNA1E) channel genes in 243 migraineurs (including 85% MA and 15% of migraine without aura (MO)) and 243 matched controls. After correction for multiple testing, chi-square results showed non-significant P values (P > 0.008) across all SNPs (and a CA repeat) tested in these different genes, however results with the KCN J10 marker gave interesting results (P = 0.02) that may be worth exploring further in other populations. CONCLUSION These results do not show a significant role for the tested candidate gene variants and also do not support the hypothesis that a common chromosome 1 defective gene influences both FHM and the more common forms of migraine.
Collapse
Affiliation(s)
- Francesca Fernandez
- Genomics Research Centre, School of Health Science, Griffith University, Gold Coast, Queensland, Australia
| | - Robert P Curtain
- Genomics Research Centre, School of Health Science, Griffith University, Gold Coast, Queensland, Australia
| | | | - Micky Ovcaric
- Genomics Research Centre, School of Health Science, Griffith University, Gold Coast, Queensland, Australia
| | - John MacMillan
- Queensland Clinical Genetics Service, Royal Children's Hospital Health Service District, Brisbane, Queensland, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Health Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
99
|
Abstract
The rapid technical progress made in molecular genetics has provided new strategies to study the molecular pathogenesis of human epilepsy. In particular, the abilities to assay the expression of many thousands of genes simultaneously with cDNA or oligonucleotide arrays and to rapidly screen thousands of DNA basepairs permits exciting insights into how human epilepsy may result from alterations in gene transcription and sequence. These approaches can show how monogenic and even complex genetic disorders lead to network alterations and seizures. Most recently, investigation of single nucleotide polymorphisms (SNPs) has shown that even subtle alterations in gene sequence across the genome can raise or lower seizure threshold. Clearly, there is a complex interplay between gene expression, genetics, and genomics which ultimately leads to seizure onset and epilepsy. Identifying the contribution that each plays in epileptogenesis may help define new therapeutic targets.
Collapse
Affiliation(s)
- Peter B Crino
- Department of Neurology and PENN Epilepsy Center, University of Pennsylvania, 3 West Gates Bldg., 3400 Spruce St., Philadelphia, PA 19104, USA.
| |
Collapse
|
100
|
Ferraro TN, Golden GT, Dahl JP, Smith GG, Schwebel CL, MacDonald R, Lohoff FW, Berrettini WH, Buono RJ. Analysis of a quantitative trait locus for seizure susceptibility in mice using bacterial artificial chromosome-mediated gene transfer. Epilepsia 2007; 48:1667-1677. [PMID: 17521350 DOI: 10.1111/j.1528-1167.2007.01126.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous quantitative trait loci (QTL) mapping studies from our laboratory identified a 6.6 Mb segment of distal chromosome 1 that contains a gene (or genes) having a strong influence on the difference in seizure susceptibility between C57BL/6 (B6) and DBA/2 (D2) mice. A gene transfer strategy involving a bacterial artificial chromosome (BAC) DNA construct that contains several candidate genes from the critical interval was used to test the hypothesis that a strain-specific variation in one (or more) of the genes is responsible for the QTL effect. METHODS Fertilized oocytes from a seizure-sensitive congenic strain (B6.D2-Mtv7a/Ty-27d) were injected with BAC DNA and three independent founder lines of BAC-transgenic mice were generated. Seizure susceptibility was quantified by measuring maximal electroshock seizure threshold (MEST) in transgenic mice and nontransgenic littermates. RESULTS Seizure testing documented significant MEST elevation in all three transgenic lines compared to littermate controls. Allele-specific RT-PCR analysis confirmed gene transcription from genome-integrated BAC DNA and copy-number-dependent phenotypic effects were observed. CONCLUSIONS Results of this study suggest that the gene(s) responsible for the major chromosome 1 seizure QTL is found on BAC RPCI23-157J4 and demonstrate the utility of in vivo gene transfer for studying quantitative trait genes in mice. Further characterization of this transgenic model will provide new insight into mechanisms of seizure susceptibility.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Gregory T Golden
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - John P Dahl
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - George G Smith
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Candice L Schwebel
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ross MacDonald
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Falk W Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Russell J Buono
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|