51
|
Cussenot O, Renard-Penna R, Montagne S, Ondet V, Pilon A, Guechot J, Comperat E, Hamdy F, Lamb A, Cancel-Tassin G. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk. BJU Int 2023; 131:745-754. [PMID: 36648168 DOI: 10.1111/bju.15968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To evaluate different scenarios for the management of early diagnosis of cancer (PCa) in men at high genetic risk, using recently developed blood and urinary molecular biomarkers in combination with clinical information alongside multiparametric magnetic resonance imaging (mpMRI). PATIENTS AND METHODS A total of 322 patients with a high genetic risk (familial or personal history of cancers or a predisposing germline variant) were included in this study. The primary outcome was the detection rates of PCa (positive biopsy) or clinically significant PCa (biopsy with International Society of Urological Pathology [ISUP] grade >1). Clinical parameters included age, body mass index, ancestry, and germline mutational status, mpMRI, prostate-specific antigen density (PSAD), Prostate Health Index and urinary markers (Prostate Cancer Associated 3, SelectMdx™ and T2:ERG score) were assessed. Sensitivity (Se) and specificity (Sp) for each marker at their recommended cut-off for clinical practice were calculated. Comparison between diagnoses accuracy of each procedure and scenario was computed using mutual information based and direct effect contribution using a supervised Bayesian network approach. RESULTS A mpMRI Prostate Imaging-Reporting and Data System (PI-RADS) score ≥3 showed higher Se than mpMRI PI-RADS score ≥4 for detection of PCa (82% vs 61%) and for the detection of ISUP grade >1 lesions (96% vs 80%). mpMRI PI-RADS score ≥3 performed better than a PSA level of ≥3 ng/mL (Se 96%, Sp 53% vs Se 91%, Sp 8%) for detection of clinically significant PCa. In case of negative mpMRI results, the supervised Bayesian network approach showed that urinary markers (with the same accuracy for all) and PSAD of ≥0.10 ng/mL/mL were the most useful indicators of decision to biopsy. CONCLUSIONS We found that screening men at high genetic risk of PCa must be based on mpMRI without pre-screening based on a PSA level of >3 ng/mL, to avoid missing too many ISUP grade >1 tumours and to significantly reduce the number of unnecessary biopsies. However, urinary markers or a PSAD of ≥0.10 ng/mL/mL when mpMRI was negative increased the detection of ISUP grade >1 cancers. We suggest that a baseline mpMRI be discussed for men at high genetic risk from the age of 40 years.
Collapse
Affiliation(s)
- Olivier Cussenot
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raphaele Renard-Penna
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Sarah Montagne
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Valerie Ondet
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Antoine Pilon
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Jerome Guechot
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Eva Comperat
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| |
Collapse
|
52
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
53
|
Witjes VM, Ligtenberg MJL, Vos JR, Braspenning JCC, Ausems MGEM, Mourits MJE, de Hullu JA, Adang EMM, Hoogerbrugge N. The most efficient and effective BRCA1/2 testing strategy in epithelial ovarian cancer: Tumor-First or Germline-First? Gynecol Oncol 2023; 174:121-128. [PMID: 37182432 DOI: 10.1016/j.ygyno.2023.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Genetic testing in epithelial ovarian cancer (OC) is essential to identify a hereditary cause like a germline BRCA1/2 pathogenic variant (PV). An efficient strategy for genetic testing in OC is highly desired. We evaluated costs and effects of two strategies; (i) Tumor-First strategy, using a tumor DNA test as prescreen to germline testing, and (ii) Germline-First strategy, referring all patients to the clinical geneticist for germline testing. METHODS Tumor-First and Germline-First were compared in two scenarios; using real-world uptake of testing and setting implementation to 100%. Decision analytic models were built to analyze genetic testing costs (including counseling) per OC patient and per family as well as BRCA1/2 detection probabilities. With a Markov model, the life years gained among female relatives with a germline BRCA1/2 PV was investigated. RESULTS Focusing on real-world uptake, with the Tumor-First strategy more OC patients and relatives with a germline BRCA1/2 PV are detected (70% versus 49%), at lower genetic testing costs (€1898 versus €2502 per patient, and €2511 versus €2930 per family). Thereby, female relatives with a germline BRCA1/2 PV can live on average 0.54 life years longer with Tumor-First compared to Germline-First. Focusing on 100% uptake, the genetic testing costs per OC patient are substantially lower in the Tumor-First strategy (€2257 versus €4986). CONCLUSIONS The Tumor-First strategy in OC patients is more effective in identifying germline BRCA1/2 PV at lower genetic testing costs per patient and per family. Optimal implementation of Tumor-First can further improve detection of heredity in OC patients.
Collapse
Affiliation(s)
- Vera M Witjes
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Janet R Vos
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Jozé C C Braspenning
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of IQ Healthcare, Radboud university medical center, Nijmegen, the Netherlands
| | - Margreet G E M Ausems
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian J E Mourits
- Department of Gynecology, University Medical Center Groningen, Groningen, the Netherlands
| | - Joanne A de Hullu
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Obstetrics and Gynecology, Radboud university medical center, Nijmegen, the Netherlands
| | - Eddy M M Adang
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
54
|
Inoue T, Sekito S, Kageyama T, Sugino Y, Sasaki T. Roles of the PARP Inhibitor in BRCA1 and BRCA2 Pathogenic Mutated Metastatic Prostate Cancer: Direct Functions and Modification of the Tumor Microenvironment. Cancers (Basel) 2023; 15:2662. [PMID: 37174127 PMCID: PMC10177034 DOI: 10.3390/cancers15092662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cells frequently exhibit defects in DNA damage repair (DDR), leading to genomic instability. Mutations in DDR genes or epigenetic alterations leading to the downregulation of DDR genes can result in increased dependency on other DDR pathways. Therefore, DDR pathways could be a treatment target for various cancers. In fact, polyadenosine diphosphatase ribose polymerase (PARP) inhibitors, such as olaparib (Lynparza®), have shown remarkable therapeutic efficacy against BRCA1/2-mutant cancers through synthetic lethality. Recent genomic analytical advancements have revealed that BRCA1/BRCA2 pathogenic variants are the most frequent mutations among DDR genes in prostate cancer. Currently, the PROfound randomized controlled trial is investigating the efficacy of a PARP inhibitor, olaparib (Lynparza®), in patients with metastatic castration-resistant prostate cancer (mCRPC). The efficacy of the drug is promising, especially in patients with BRCA1/BRCA2 pathogenic variants, even if they are in the advanced stage of the disease. However, olaparib (Lynparza®) is not effective in all BRCA1/2 mutant prostate cancer patients and inactivation of DDR genes elicits genomic instability, leading to alterations in multiple genes, which eventually leads to drug resistance. In this review, we summarize PARP inhibitors' basic and clinical mechanisms of action against prostate cancer cells and discuss their effects on the tumor microenvironment.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (S.S.); (T.K.); (Y.S.); (T.S.)
| | | | | | | | | |
Collapse
|
55
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
56
|
Dias A, Brook MN, Bancroft EK, Page EC, Chamberlain A, Saya S, Amin J, Mikropoulos C, Taylor N, Myhill K, Thomas S, Saunders E, Dadaev T, Leongamornlert D, Dyrsø Jensen T, Evans DG, Cybulski C, Liljegren A, Teo SH, Side L, The IMPACT study collaborators and Steering Committee, Kote‐Jarai Z, Eeles RA. Serum testosterone and prostate cancer in men with germline BRCA1/2 pathogenic variants. BJUI COMPASS 2023; 4:361-373. [PMID: 37025481 PMCID: PMC10071088 DOI: 10.1002/bco2.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives The relation of serum androgens and the development of prostate cancer (PCa) is subject of debate. Lower total testosterone (TT) levels have been associated with increased PCa detection and worse pathological features after treatment. However, data from the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) and Prostate Cancer Prevention (PCPT) trial groups indicate no association. The aim of this study is to investigate the association of serum androgen levels and PCa detection in a prospective screening study of men at higher genetic risk of aggressive PCa due to BRCA1/2 pathogenic variants (PVs), the IMPACT study. Methods Men enrolled in the IMPACT study provided serum samples during regular visits. Hormonal levels were calculated using immunoassays. Free testosterone (FT) was calculated from TT and sex hormone binding globulin (SHBG) using the Sodergard mass equation. Age, body mass index (BMI), prostate-specific antigen (PSA) and hormonal concentrations were compared between genetic cohorts. We also explored associations between age and TT, SHBG, FT and PCa, in the whole subset and stratified by BRCA1/2 PVs status. Results A total of 777 participants in the IMPACT study had TT and SHBG measurements in serum samples at annual visits, giving 3940 prospective androgen levels, from 266 BRCA1 PVs carriers, 313 BRCA2 PVs carriers and 198 non-carriers. The median number of visits per patient was 5. There was no difference in TT, SHBG and FT between carriers and non-carriers. In a univariate analysis, androgen levels were not associated with PCa. In the analysis stratified by carrier status, no significant association was found between hormonal levels and PCa in non-carriers, BRCA1 or BRCA2 PVs carriers. Conclusions Male BRCA1/2 PVs carriers have a similar androgen profile to non-carriers. Hormonal levels were not associated with PCa in men with and without BRCA1/2 PVs. Mechanisms related to the particularly aggressive phenotype of PCa in BRCA2 PVs carriers may therefore not be linked with circulating hormonal levels.
Collapse
Affiliation(s)
- Alexander Dias
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Instituto Nacional de Cancer Jose de Alencar Gomes da Silva INCARio de JaneiroBrazil
| | - Mark N. Brook
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | - Elizabeth K. Bancroft
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | | | | | - Sibel Saya
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | - Jan Amin
- Clinical Biochemistry SectionRoyal Marsden NHS Foundation TrustLondonUK
| | - Christos Mikropoulos
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Natalie Taylor
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Kathryn Myhill
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Sarah Thomas
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | | | - Tokhir Dadaev
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | | | | | - D. Gareth Evans
- Genetic Medicine, Manchester Academic Health Sciences CentreCentral Manchester University Hospitals NHS Foundation TrustManchesterUK
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and PathologyPomeranian Medical University in SzczecinSzczecinPoland
| | - Annelie Liljegren
- Karolinska University Hospital and Karolinska InstitutetStockholmSweden
| | - Soo H. Teo
- Cancer Research Initiatives FoundationSubang Jaya Medical CentreSelangorDarul EhsanMalaysia
| | - Lucy Side
- Wessex Clinical Genetics ServicePrincess Anne HospitalSouthamptonUK
| | | | | | - Rosalind A. Eeles
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| |
Collapse
|
57
|
Bratt O, Auvinen A, Arnsrud Godtman R, Hellström M, Hugosson J, Lilja H, Wallström J, Roobol MJ. Screening for prostate cancer: evidence, ongoing trials, policies and knowledge gaps. BMJ ONCOLOGY 2023; 2:e000039. [PMID: 39886507 PMCID: PMC11203092 DOI: 10.1136/bmjonc-2023-000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 02/01/2025]
Abstract
Long-term screening with serum prostate-specific antigen (PSA) and systematic prostate biopsies can reduce prostate cancer mortality but leads to unacceptable overdiagnosis. Over the past decade, diagnostic methods have improved and the indolent nature of low-grade prostate cancer has been established. These advances now enable more selective detection of potentially lethal prostate cancer. This non-systematic review summarises relevant diagnostic advances, previous and ongoing screening trials, healthcare policies and important remaining knowledge gaps. Evidence synthesis and conclusions: The strong association between low serum PSA values and minimal long-term risk of prostate cancer death allows for adjusting screening intervals. Use of risk calculators, biomarkers and MRI to select men with a raised PSA value for biopsy and lesion-targeting rather than systematic prostate biopsies reduce the detection of low-grade cancer and thereby overdiagnosis. These improvements recently led the European Union to recommend its member states to evaluate the feasibility and effectiveness of organised screening programmes for prostate cancer. Nonetheless, important knowledge gaps remain such as the performance of modern diagnostic methods in long-term screening programmes and their impact on mortality. The knowledge gaps are currently being addressed in three large randomised screening trials. Population-based pilot programmes will contribute critical practical experience.
Collapse
Affiliation(s)
- Ola Bratt
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Goteborg, Sweden
- Department of Urology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Anssi Auvinen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Rebecka Arnsrud Godtman
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Goteborg, Sweden
- Department of Urology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Mikael Hellström
- Department of Radiology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Goteborg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Jonas Hugosson
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Goteborg, Sweden
- Department of Urology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Hans Lilja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Translational Medicine, Lund University Faculty of Medicine, Malmö, Sweden
| | - Jonas Wallström
- Department of Radiology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Goteborg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Monique J Roobol
- Department of Urology, Cancer Institute, Erasmus University Rotterdam, Rotterdam, Zuid-Holland, Netherlands
| |
Collapse
|
58
|
Rajwa P, Quhal F, D’Andrea D, Korn S, Petrov P, Yanagisawa T, Kawada T, Motlagh RS, Mostafaei H, Laukhtina E, Aydh A, König F, Pallauf M, Pradere B, Nyirády P, Abufaraj M, Marra G, Gandaglia G, Briganti A, Karakiewicz P, Ye DW, Haydter M, Chlosta P, Comperat E, Enikeev D, Shariat SF. Positive family history as a predictor for disease outcomes after radical prostatectomy for nonmetastatic prostate cancer. Arab J Urol 2023; 21:241-247. [PMID: 38178943 PMCID: PMC10763581 DOI: 10.1080/2090598x.2023.2196911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
Background While family history (FHx) of prostate cancer (PCa) increases the risk of PCa, comparably less is known regarding the impact of FHx on pathologic and oncologic outcomes after radical prostatectomy (RP). Methods We retrospectively reviewed our multicenter database comprising 6,041 nonmetastatic PCa patients treated with RP. Patients with a FHx of PCa in one or more first-degree relatives were considered as FHx positive. We examined the association of FHx with pathologic outcomes and biochemical recurrence (BCR) using logistic and Cox regression models, respectively. Results In total, 1,677 (28%) patients reported a FHx of PCa. Compared to patients without FHx, those with, were younger at RP (median age of 59 vs. 62 years, p < 0.01), and had significantlymore favorable biopsy and RP histopathologic findings. On multivariable logistic regression analysis, positive FHx was associated with extracapsular extension (odds ratio [OR] 0.77, 95% confidence interval [CI] 0.66-0.90, p < 0.01; model AUC 0.73) and upgrading (OR 0.70, 95% CI 0.62-0.80, p < 0.01; model AUC 0.68). Incorporating FHx significantly improved the AUC of the base model for upgrading (p < 0.01). Positive FHx was not associated with BCR in pre- and postoperative multivariable models (p = 0.1 and p = 0.7); c-indexes of Cox multivariable models were: 0.73 and 0.82, respectively. Conclusions We found that patients with clinically nonmetastatic PCa who have positive FHx of PCa undergo RP at a younger age and have more favorable pathologic outcomes. Nevertheless, FHx of PCa did not confer better BCR rates, suggesting that FHx leads to potentially early detection and treatment without impact on BCR.
Collapse
Affiliation(s)
- Pawel Rajwa
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Fahad Quhal
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - David D’Andrea
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Stephan Korn
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Patrik Petrov
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Takafumi Yanagisawa
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsushi Kawada
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Reza Sari Motlagh
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Mostafaei
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ekaterina Laukhtina
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Abdulmajeed Aydh
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, King Faisal Medical City, Abha, Saudi Arabia
| | - Frederik König
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Pallauf
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Paracelsus Medical University Salzburg, University Hospital Salzburg, Salzburg, Austria
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Peter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Mohammad Abufaraj
- Department of Special Surgery, Division of Urology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Giancarlo Marra
- Department of Urology, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Giorgio Gandaglia
- Department of Urology and Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Department of Urology and Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pierre Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, Canada
| | - Ding-wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Martin Haydter
- Department of Urology, Landesklinikum Wiener Neustadt, Vienna, Austria
| | - Piotr Chlosta
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Jagiellonian University, Krakow, Poland
| | - Eva Comperat
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Dmitry Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Division of Urology, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
59
|
Lazzeri M, Fasulo V, Tinterri C. Eve's and Adam's rib for prostate cancer screening. BJU Int 2023; 131:637-638. [PMID: 36919875 DOI: 10.1111/bju.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Massimo Lazzeri
- Department of Urology, IRCCS Humanitas Clinical and Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Vittorio Fasulo
- Department of Urology, IRCCS Humanitas Clinical and Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Corrado Tinterri
- Breast Unit, IRCCS Humanitas Clinical and Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
60
|
Lapini A, Caffo O, Conti GN, Pappagallo G, Del Re M, D'Angelillo RM, Capoluongo ED, Castiglione F, Brunelli M, Iacovelli R, De Giorgi U, Bracarda S. Matching BRCA and prostate cancer in a public health system: Report of the Italian Society for Uro-Oncology (SIUrO) consensus project. Crit Rev Oncol Hematol 2023; 184:103959. [PMID: 36921782 DOI: 10.1016/j.critrevonc.2023.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The recent approval of PARP inhibitors for the treatment of metastatic -castration-resistant prostate cancer (mCRPC) patients with BRCA mutations firstly introduced the possibility of proposing a targeted treatment in this disease. However, the availability of this therapeutic option raises a number of questions concerning the management of prostate cancer in everyday clinical practice: the timing and method of detecting BRCA mutations, the therapeutic implications of the detection, and the screening of the members of the family of a prostate cancer patient with a BRCA alteration. These challenging issues led the Italian Society for Uro-Oncology (SIUrO) to organise a Consensus Conference aimed to develop suggestions capable of supporting clinicians managing prostate cancer patients. The present paper described the development of the statements discussed during the consensus, which involved all of the most important Italian scientific societies engaged in the multi-disciplinary and multi-professional management of the disease.
Collapse
Affiliation(s)
- Alberto Lapini
- Department of Urology, University of Florence, University Hospital of Florence, Largo Brambilla, 3, 50134 Florence, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Largo Medaglie d'Oro, 38122 Trento, Italy.
| | - Giario Natale Conti
- Italian Society for Uro-Oncology (SIURO), Via Dante 17, 40125 Bologna, Italy
| | - Giovanni Pappagallo
- IRCCS "Sacro Cuore - Don Calabria", Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126 Pisa, Italy
| | - Rolando Maria D'Angelillo
- Radiation Oncology, Department of Biomedicine and Prevention University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Pansini 5, 80131 Naples, Italy; Department of Clinical Pathology and Genomics, Azienda Ospedaliera per L'Emergenza Cannizzaro, Via Messina 829, 95126 Catania, Italy
| | - Francesca Castiglione
- Department of Pathology, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy
| | - Matteo Brunelli
- Unit of Pathology, Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Ugo De Giorgi
- Unit of Medical Oncology, IRCCS-Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via Maroncelli 40, 47014 Meldola, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano di Joannuccio, 05100 Terni, Italy
| |
Collapse
|
61
|
Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. Eur Urol 2023; 83:241-248. [PMID: 36609003 DOI: 10.1016/j.eururo.2022.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
CONTEXT Prostate cancer (PCa) is a leading cause of death and partially heritable. Genetic risk prediction might be useful for strategies to reduce PCa mortality through early detection and prevention. OBJECTIVE To review evidence for genetic risk prediction for PCa. EVIDENCE ACQUISITION A collaborative literature review was conducted using PubMed and Google Scholar. Search terms included genetic, risk, prediction, and "prostate cancer". Articles addressing screening, early detection, or prevention were prioritized, as were studies involving diverse populations. EVIDENCE SYNTHESIS Rare pathogenic mutations (RPMs), especially in DNA damage repair genes, increase PCa risk. RPMs in BRCA2 are most clearly deleterious, conferring 2-8.6 times higher risk of PCa and a higher risk of aggressive disease. Common genetic variants can be combined into genetic risk scores (GRSs). A high GRS (top 20-25% of the population) confers two to three times higher risk of PCa than average; a very high GRS (top 1-5%) confers six to eight times higher risk. GRSs are not specific for aggressive PCa, possibly due to methodological limitations and/or a field effect of an elevated risk for both low- and high-grade PCa. It is challenging to disentangle genetics from structural racism and social determinants of health to understand PCa racial disparities. GRSs are independently associated with a lethal PCa risk after accounting for family history and race/ancestry. Healthy lifestyle might partially mitigate the risk of lethal PCa. CONCLUSIONS Genetic risk assessment is becoming more common; implementation studies are needed to understand the implications and to avoid exacerbating healthcare disparities. Men with a high genetic risk of PCa can reasonably be encouraged to adhere to a healthy lifestyle. PATIENT SUMMARY Prostate cancer risk is inherited through rare mutations and through the combination of hundreds of common genetic markers. Some men with a high genetic risk (especially BRCA2 mutations) likely benefit from early screening for prostate cancer. The risk of lethal prostate cancer can be reduced through a healthy lifestyle.
Collapse
|
62
|
Mehra N, Kloots I, Vlaming M, Aluwini S, Dewulf E, Oprea-Lager DE, van der Poel H, Stoevelaar H, Yakar D, Bangma CH, Bekers E, van den Bergh R, Bergman AM, van den Berkmortel F, Boudewijns S, Dinjens WN, Fütterer J, van der Hulle T, Jenster G, Kroeze LI, van Kruchten M, van Leenders G, van Leeuwen PJ, de Leng WW, van Moorselaar RJA, Noordzij W, Oldenburg RA, van Oort IM, Oving I, Schalken JA, Schoots IG, Schuuring E, Smeenk RJ, Vanneste BG, Vegt E, Vis AN, de Vries K, Willemse PPM, Wondergem M, Ausems M. Genetic Aspects and Molecular Testing in Prostate Cancer: A Report from a Dutch Multidisciplinary Consensus Meeting. EUR UROL SUPPL 2023; 49:23-31. [PMID: 36874601 PMCID: PMC9975012 DOI: 10.1016/j.euros.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/27/2023] Open
Abstract
Background Germline and tumour genetic testing in prostate cancer (PCa) is becoming more broadly accepted, but testing indications and clinical consequences for carriers in each disease stage are not yet well defined. Objective To determine the consensus of a Dutch multidisciplinary expert panel on the indication and application of germline and tumour genetic testing in PCa. Design setting and participants The panel consisted of 39 specialists involved in PCa management. We used a modified Delphi method consisting of two voting rounds and a virtual consensus meeting. Outcome measurements and statistical analysis Consensus was reached if ≥75% of the panellists chose the same option. Appropriateness was assessed by the RAND/UCLA appropriateness method. Results and limitations Of the multiple-choice questions, 44% reached consensus. For men without PCa having a relevant family history (familial PCa/BRCA-related hereditary cancer), follow-up by prostate-specific antigen was considered appropriate. For patients with low-risk localised PCa and a family history of PCa, active surveillance was considered appropriate, except in case of the patient being a BRCA2 germline pathogenic variant carrier. Germline and tumour genetic testing should not be done for nonmetastatic hormone-sensitive PCa in the absence of a relevant family history of cancer. Tumour genetic testing was deemed most appropriate for the identification of actionable variants, with uncertainty for germline testing. For tumour genetic testing in metastatic castration-resistant PCa, consensus was not reached for the timing and panel composition. The principal limitations are as follows: (1) a number of topics discussed lack scientific evidence, and therefore the recommendations are partly opinion based, and (2) there was a small number of experts per discipline. Conclusions The outcomes of this Dutch consensus meeting may provide further guidance on genetic counselling and molecular testing related to PCa. Patient summary A group of Dutch specialists discussed the use of germline and tumour genetic testing in prostate cancer (PCa) patients, indication of these tests (which patients and when), and impact of these tests on the management and treatment of PCa.
Collapse
Affiliation(s)
- Niven Mehra
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Iris Kloots
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Michiel Vlaming
- Division Laboratories, Pharmacy and biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Shafak Aluwini
- Department of Radiation Oncology, UMCG, Groningen, The Netherlands
| | - Els Dewulf
- Centre for Decision Analysis & Support, Ismar Healthcare NV, Lier, Belgium
| | - Daniela E. Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Henk van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Herman Stoevelaar
- Centre for Decision Analysis & Support, Ismar Healthcare NV, Lier, Belgium
| | - Derya Yakar
- Department of Radiology, UMCG, Groningen, The Netherlands
- Department of Radiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Elise Bekers
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | - Andries M. Bergman
- Department of Medical Oncology and Oncogenomics, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | - Steve Boudewijns
- Department of Medical Oncology, Bravis Hospital, Roosendaal, The Netherlands
| | | | - Jurgen Fütterer
- Department of Medical Imaging, Radboud UMC, Nijmegen, The Netherlands
| | - Tom van der Hulle
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Michel van Kruchten
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Pim J. van Leeuwen
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | | | - Walter Noordzij
- Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Irma Oving
- Department of Internal Medicine, Ziekenhuis Groep Twente, Almelo, The Netherlands
| | | | - Ivo G. Schoots
- Department of Radiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J. Smeenk
- Department of Radiation Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Ben G.L. Vanneste
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Erik Vegt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Kim de Vries
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Maurits Wondergem
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Margreet Ausems
- Division Laboratories, Pharmacy and biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
63
|
Nyberg T, Brook MN, Ficorella L, Lee A, Dennis J, Yang X, Wilcox N, Dadaev T, Govindasami K, Lush M, Leslie G, Lophatananon A, Muir K, Bancroft E, Easton DF, Tischkowitz M, Kote-Jarai Z, Eeles R, Antoniou AC. CanRisk-Prostate: A Comprehensive, Externally Validated Risk Model for the Prediction of Future Prostate Cancer. J Clin Oncol 2023; 41:1092-1104. [PMID: 36493335 PMCID: PMC9928632 DOI: 10.1200/jco.22.01453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) is highly heritable. No validated PCa risk model currently exists. We therefore sought to develop a genetic risk model that can provide personalized predicted PCa risks on the basis of known moderate- to high-risk pathogenic variants, low-risk common genetic variants, and explicit cancer family history, and to externally validate the model in an independent prospective cohort. MATERIALS AND METHODS We developed a risk model using a kin-cohort comprising individuals from 16,633 PCa families ascertained in the United Kingdom from 1993 to 2017 from the UK Genetic Prostate Cancer Study, and complex segregation analysis adjusting for ascertainment. The model was externally validated in 170,850 unaffected men (7,624 incident PCas) recruited from 2006 to 2010 to the independent UK Biobank prospective cohort study. RESULTS The most parsimonious model included the effects of pathogenic variants in BRCA2, HOXB13, and BRCA1, and a polygenic score on the basis of 268 common low-risk variants. Residual familial risk was modeled by a hypothetical recessively inherited variant and a polygenic component whose standard deviation decreased log-linearly with age. The model predicted familial risks that were consistent with those reported in previous observational studies. In the validation cohort, the model discriminated well between unaffected men and men with incident PCas within 5 years (C-index, 0.790; 95% CI, 0.783 to 0.797) and 10 years (C-index, 0.772; 95% CI, 0.768 to 0.777). The 50% of men with highest predicted risks captured 86.3% of PCa cases within 10 years. CONCLUSION To our knowledge, this is the first validated risk model offering personalized PCa risks. The model will assist in counseling men concerned about their risk and can facilitate future risk-stratified population screening approaches.
Collapse
Affiliation(s)
- Tommy Nyberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mark N. Brook
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Ficorella
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Tokhir Dadaev
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Koveela Govindasami
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth Bancroft
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosalind Eeles
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
64
|
Harper JB, Greenberg SE, Hunt TC, Cooney KA, O’Neil BB. Initial outcomes and insights from a novel high-risk prostate cancer screening clinic. Prostate 2023; 83:151-157. [PMID: 36207779 PMCID: PMC9772159 DOI: 10.1002/pros.24447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Guidelines for germline testing in patients with prostate cancer (PCa) are identifying family members who require additional surveillance given pathogenic variants (PVs) that confer increased PCa risk. We established an interdisciplinary clinic for cancer surveillance in high-risk individuals aimed to implement screening recommendations. This study aimed to characterize the clinical features of this cohort. PATIENTS AND METHODS The Prostate Cancer Risk Clinic (PCRC) was established for unaffected individuals with germline PVs or a strong PCa family history. PCa screening, urine labs, and questionnaires were included in the visit. Individuals with BRCA1/2 PVs underwent clinical breast exam as well. Data from the initial visit were abstracted from the medical record and questionnaires for analysis. RESULTS Thirty-five individuals with increased PCa risk were followed by the PCRC with a median age of 47 years of age. Twenty individuals (57%) had a family history of PCa, and 34 (97%) had a germline PV associated with an increased risk for developing PCa. Four individuals underwent biopsy due to care in the PCRC, with one PCa identified in an individual with TP53 PV. Median patient response scores indicated mild symptoms of an enlarged prostate (AUASS), normal erectile function (SHIM), and relatively low anxiety about developing PCa (MAX-PC). However, there were notable "outlier" scores on each questionnaire. CONCLUSIONS Individuals with prostates and BRCA1/2 PVs, among other germline PVs, can benefit from a comprehensive interdisciplinary approach to high-risk management. PCa was identified in an individual with a non-BRCA PV, emphasizing the importance and need for high-risk screening guidelines across all genes with increased risk for PCa. "Outlier" patient response scores demonstrate that some participants experienced worse symptoms or anxiety than was indicated by median scores alone.
Collapse
Affiliation(s)
- Jonathan B. Harper
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Samantha E. Greenberg
- Genetic Counseling Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Corresponding author: Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA, Tel. +1-801-213-5774; Fax: +1-801-585-5763, (S.E. Greenberg)
| | - Trevor C. Hunt
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- University of Rochester Medical Center, Department of Urology, Rochester, NY, USA
| | - Kathleen A. Cooney
- Department of Medicine, Duke University School of Medicine, and the Duke Cancer Institute, Durham, NC, USA
| | - Brock B. O’Neil
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
65
|
Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nat Rev Urol 2023; 20:205-216. [PMID: 36600087 DOI: 10.1038/s41585-022-00680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 01/05/2023]
Abstract
Mutations in the BRCA1 and BRCA2 tumour suppressor genes are associated with prostate cancer risk; however, optimal screening protocols for individuals with these mutations have been a subject of debate. Several prospective studies of prostate cancer incidence and screening among BRCA1/2 mutation carriers have indicated at least a twofold to fourfold increase in prostate cancer risk among carriers of BRCA2 mutations compared with the general population. Moreover, BRCA2 mutations are associated with more aggressive, high-grade disease characteristics at diagnosis, more aggressive clinical behaviour and greater prostate cancer-specific mortality. The risk for BRCA1 mutations seems to be attenuated compared with BRCA2. Prostate-specific antigen (PSA) measurement or prostate magnetic resonance imaging (MRI) alone is an imperfect indicator of clinically significant prostate cancer; therefore, BRCA1/2 mutation carriers might benefit from refined risk stratification strategies. However, the long-term impact of prostate cancer screening is unknown, and the optimal management of BRCA1/2 carriers with prostate cancer has not been defined. Whether timely localized therapy can improve overall survival in the screened population is uncertain. Long-term results of prospective studies are awaited to confirm the optimal screening strategies and benefits of prostate cancer screening among BRCA1/2 mutation carriers, and whether these approaches ultimately have a positive impact on survival and quality of life in these patients.
Collapse
|
66
|
Sciarra A, Frisenda M, Bevilacqua G, Gentilucci A, Cattarino S, Mariotti G, Del Giudice F, Di Pierro GB, Viscuso P, Casale P, Chung BI, Autorino R, Crivellaro S, Salciccia S. How the Analysis of the Pathogenetic Variants of DDR Genes Will Change the Management of Prostate Cancer Patients. Int J Mol Sci 2022; 24:ijms24010674. [PMID: 36614122 PMCID: PMC9821239 DOI: 10.3390/ijms24010674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Herein, we analyze answers achieved, open questions, and future perspectives regarding the analysis of the pathogenetic variants (PV) of DNA damage response (and repair) (DDR) genes in prostate cancer (PC) patients. The incidence of PVs in homologous recombination repair (HRR) genes among men with metastatic PC varied between 11% and 33%, which was significantly higher than that in non-metastatic PC, and BRCA2 mutations were more frequent when compared to other DDR genes. The determination of the somatic or germline PVs of BRCA2 was able to define a tailored therapy using PARP inhibitors in metastatic castration-resistant prostate cancer (mCRPC) progression after first-line therapy, with significant improvements in the radiologic progression-free survival (rPFS) and overall survival (OS) rates. We propose testing all metastatic PC patients for somatic and germline HRR mutations. Somatic determination on the primary site or on historic paraffin preparations with a temporal distance of no longer than 5 years should be preferred over metastatic site biopsies. The prognostic use of DDR PVs will also be used in selected high-risk cases with non-metastatic stages to better arrange controls and therapeutic primary options. We anticipate that the use of poly-ADP-ribose polymerase (PARP) inhibitors in hormone-sensitive prostate cancer (HSPC) and in combination with androgen receptor signaling inhibitors (ARSI) will be new strategies.
Collapse
Affiliation(s)
- Alessandro Sciarra
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
- Correspondence:
| | - Marco Frisenda
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Giulio Bevilacqua
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Alessandro Gentilucci
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Susanna Cattarino
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Gianna Mariotti
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Francesco Del Giudice
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | | | - Pietro Viscuso
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| | - Paolo Casale
- Department of Urology, Humanitas Center, 20089 Milano, Italy
| | - Benjamin I. Chung
- Department of Urology, University School of Stanford, Stanford, CA 94305, USA
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Simone Crivellaro
- Department of Urology, University of Illinois Hospital, Chicago, IL 60612, USA
| | - Stefano Salciccia
- Department “Materno Infantile e Scienze Urologiche”, University Sapienza, 00161 Rome, Italy
| |
Collapse
|
67
|
Vlaming M, Bleiker EMA, van Oort IM, Kiemeney LALM, Ausems MGEM. Mainstream germline genetic testing in men with metastatic prostate cancer: design and protocol for a multicenter observational study. BMC Cancer 2022; 22:1365. [PMID: 36581909 PMCID: PMC9801568 DOI: 10.1186/s12885-022-10429-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In international guidelines, germline genetic testing is recommended for patients with metastatic prostate cancer. Before undergoing germline genetic testing, these patients should receive pre-test counseling. In the standard genetic care pathway, pre-test counseling is provided by a healthcare professional of a genetics department. Because the number of patients with metastatic prostate cancer is large, the capacity in the genetics departments might be insufficient. Therefore, we aim to implement so-called mainstream genetic testing in the Netherlands for patients with metastatic prostate cancer. In a mainstream genetic testing pathway, non-genetic healthcare professionals discuss and order germline genetic testing. In our DISCOVER study, we will assess the experiences among patients and non-genetic healthcare professionals with this new pathway. METHODS A multicenter prospective observational cohort study will be conducted in 15 hospitals, in different regions of the Netherlands. We developed an online training module on genetics in prostate cancer and the counseling of patients. After completion of this module, non-genetic healthcare professionals will provide pre-test counseling and order germline genetic testing in metastatic prostate cancer patients. Both non-genetic healthcare professionals and patients receive three questionnaires. We will determine the experience with mainstream genetic testing, based on satisfaction and acceptability. Patients with a pathogenic germline variant will also be interviewed. We will determine the efficacy of the mainstreaming pathway, based on time investment for non-genetic healthcare professionals and the prevalence of pathogenic germline variants. DISCUSSION This study is intended to be one of the largest studies on mainstream genetic testing in prostate cancer. The results of this study can improve the mainstream genetic testing pathway in patients with prostate cancer. TRIAL REGISTRATION The study is registered in the WHO's International Clinical Trials Registry Platform (ICTRP) under number NL9617.
Collapse
Affiliation(s)
- Michiel Vlaming
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Eveline M A Bleiker
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
- Family Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud university medical center, Geert Grooteplein Zuid 21, 6525, EZ, Nijmegen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| |
Collapse
|
68
|
Sciarra A, Fiori C, Del Giudice F, DI Pierro G, Bevilacqua G, Gentilucci A, Cattarino S, Mariotti G, Salciccia S. DDR genes analysis and PARP-inhibitors therapy as tailored management in metastatic prostate cancer: achieved answers, open questions and future perspectives. Minerva Urol Nephrol 2022; 74:649-652. [PMID: 36629806 DOI: 10.23736/s2724-6051.22.05185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alessandro Sciarra
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy - .,Department of Urology, University of Turin, Orbassano, Turin, Italy -
| | - Cristian Fiori
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Francesco Del Giudice
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Giovanni DI Pierro
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Giulio Bevilacqua
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Alessandro Gentilucci
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Susanna Cattarino
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Gianna Mariotti
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| | - Stefano Salciccia
- Mother-Child and Urologic Sciences Department, Sapienza University, Rome, Italy.,Department of Urology, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
69
|
Characteristics of BRCA2 Mutated Prostate Cancer at Presentation. Int J Mol Sci 2022; 23:ijms232113426. [PMID: 36362213 PMCID: PMC9659116 DOI: 10.3390/ijms232113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear whether the mutations are associated with any presenting clinical features. We assessed the incidences and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were 107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets. We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with relatively low PSA.
Collapse
|
70
|
French AFU Cancer Committee Guidelines - Update 2022-2024: prostate cancer - Diagnosis and management of localised disease. Prog Urol 2022; 32:1275-1372. [DOI: 10.1016/j.purol.2022.07.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
|
71
|
Successful case of olaparib treatment for castration-resistant prostate cancer with multiple DNA repair gene mutations: Use of comprehensive genome profiling for treatment-refractory cases. Urol Case Rep 2022; 45:102210. [PMID: 36092022 PMCID: PMC9460157 DOI: 10.1016/j.eucr.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, we report a case of a 59-year-old man with advanced castration-resistant prostate cancer with rectal invasion. Multimodal treatment, including drug therapy, surgery, and radiation therapy was sequentially performed; however, lymph node metastases repeatedly occurred. Tumor genomic profiling using FoundationOne CDx identified pathogenic alterations in three DNA repair genes, including BRCA2 frameshift mutation. Olaparib, a poly-ADP ribose polymerase inhibitor, showed marked response. Castration-resistant prostate cancer with multiple DNA repair genes was successfully treated with olaparib; comprehensive genome profiling can lead to its optimal clinical management. Castration-resistant prostate cancer was successfully treated with olaparib. The prostate cancer had pathogenic alterations in three DNA repair genes. Genome profiling can lead to optimal clinical management in prostate cancer.
Collapse
|
72
|
Bernstein-Molho R, Friedman E, Evron E. Controversies and Open Questions in Management of Cancer-Free Carriers of Germline Pathogenic Variants in BRCA1/BRCA2. Cancers (Basel) 2022; 14:cancers14194592. [PMID: 36230512 PMCID: PMC9559251 DOI: 10.3390/cancers14194592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Females harboring germline BRCA1/BRCA2 (BRCA) P/LPV are offered a tight surveillance scheme from the age of 25−30 years, aimed at early detection of specific cancer types, in addition to risk-reducing strategies. Multiple national and international surveillance guidelines have been published and updated over the last two decades from geographically diverse countries. We searched for guidelines published between 1 January 2015 and 1 May 2022. Differences between guidelines on issues such as primary prevention, mammography screening in young (<30 years) carriers, MRI screening in carriers above age 65 years, breast imaging (if any) after risk-reducing bilateral mastectomy, during pregnancy, and breastfeeding, and hormone-replacement therapy, are just a few notable examples. Beyond formal guidelines, BRCA carriers’ concerns also focus on the timing of risk-reducing surgeries, fertility preservation, management of menopausal symptoms in cancer survivors, and pancreatic cancer surveillance, issues that, for some, there are no data to support evidence-based recommendations. This review discusses these unsettled issues, emphasizing the importance of future studies to enable global guideline harmonization for optimal surveillance strategies. Moreover, it raises the unmet need for personalized risk stratification and surveillance in BRCA P/LPV carriers.
Collapse
Affiliation(s)
- Rinat Bernstein-Molho
- The Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5265601, Israel
| | - Eitan Friedman
- Assuta Medical Center, Tel-Aviv, Israel, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 8436322, Israel
| | - Ella Evron
- Oncology, Kaplan Medical Institute, Rehovot, Hadassah Medical School, The Hebrew University, Jerusalem 9190501, Israel
- Correspondence: or ; Tel.: +972-502-056-171
| |
Collapse
|
73
|
Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C, Pavlidis N. BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers (Basel) 2022; 14:cancers14163888. [PMID: 36010882 PMCID: PMC9405840 DOI: 10.3390/cancers14163888] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary DNA damage is one of the hallmarks of cancer. Epithelial ovarian cancer (EOC) —especially the high-grade serous subtype—harbors a defect in at least one DNA damage response (DDR) pathway. Defective DDR results from a variety of lesions affecting homologous recombination (HR) and nonhomologous end joining (NHEJ) for double strand breaks, base excision repair (BER), and nucleotide excision repair (NER) for single strand breaks and mismatch repair (MMR). Apart from the EOC, mutations in the DDR genes, such as BRCA1 and BRCA2, are common in prostate cancer as well. Among them, BRCA2 lesions are found in 12% of metastatic castration-resistant prostate cancers, but very rarely in primary prostate cancer. Better understanding of the DDR pathways is essential in order to optimize the therapeutic choices, and has led to the design of biomarker-driven clinical trials. Poly(ADP-ribose) polymerase (PARP) inhibitors are now a standard therapy for EOC patients, and more recently have been approved for the metastatic castration-resistant prostate cancer with alterations in DDR genes. They are particularly effective in tumours with HR deficiency. Abstract DNA damage repair (DDR) defects are common in different cancer types, and these alterations can be exploited therapeutically. Epithelial ovarian cancer (EOC) is among the tumours with the highest percentage of hereditary cases. BRCA1 and BRCA2 predisposing pathogenic variants (PVs) were the first to be associated with EOC, whereas additional genes comprising the homologous recombination (HR) pathway have been discovered with DNA sequencing technologies. The incidence of DDR alterations among patients with metastatic prostate cancer is much higher compared to those with localized disease. Genetic testing is playing an increasingly important role in the treatment of patients with ovarian and prostate cancer. The development of poly (ADP-ribose) polymerase (PARP) inhibitors offers a therapeutic strategy for patients with EOC. One of the mechanisms of PARP inhibitors exploits the concept of synthetic lethality. Tumours with BRCA1 or BRCA2 mutations are highly sensitive to PARP inhibitors. Moreover, the synthetic lethal interaction may be exploited beyond germline BRCA mutations in the context of HR deficiency, and this is an area of ongoing research. PARP inhibitors are in advanced stages of development as a treatment for metastatic castration-resistant prostate cancer. However, there is a major concern regarding the need to identify reliable biomarkers predictive of treatment response. In this review, we explore the mechanisms of DDR, the potential for genomic analysis of ovarian and prostate cancer, and therapeutics of PARP inhibitors, along with predictive biomarkers.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Michele Moschetta
- Novartis Institutes for BioMedical Research, CH 4033 Basel, Switzerland
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London E1 1BB, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Sola Adeleke
- High Dimensional Neurology Group, UCL Queen’s Square Institute of Neurology, London WC1N 3BG, UK
- Department of Oncology, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Cyrus Chargari
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece
| |
Collapse
|
74
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
75
|
Cresta Morgado P, Mateo J. Clinical implications of homologous recombination repair mutations in prostate cancer. Prostate 2022; 82 Suppl 1:S45-S59. [PMID: 35657156 DOI: 10.1002/pros.24352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Prostate cancer is a disease with significant interpatient genomics, with a proportion of patients presenting mutations in key homologous recombination repair (HRR) gene aberrations, particularly in late-stage disease. A better understanding of the genomic landscape of prostate cancer and the prognostic and predictive value of HRR mutations could lead to more precise care for prostate cancer patients. BRCA1/2 mutations are associated with a more aggressive disease course and higher risk of developing lethal prostate cancer, but also identify patients who could benefit from directed therapeutic strategies with PARP inhibitors. Other HRR mutations are also frequent but their prognostic and predictive value for prostate cancer patients is less clear. Moreover, a proportion of these mutations are associated with inherited germline defects, being relevant for the patients' risk of second malignancies but also to inform their relatives' risk of cancer through cascade testing. In this manuscript, we review current knowledge of the prognostic and predictive value for different HHR alterations across the different prostate cancer disease states. Additionally, we assess the challenges to implement genomic testing in clinical practice for prostate cancer patients.
Collapse
Affiliation(s)
- Pablo Cresta Morgado
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| | - Joaquin Mateo
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| |
Collapse
|
76
|
Jibara GA, Perera M, Vertosick EA, Sjoberg DD, Vickers A, Scardino PT, Eastham JA, Laudone VP, Touijer K, Lin X, Carlo MI, Ehdaie B. Association of Family History of Cancer with Clinical and Pathological Outcomes for Prostate Cancer Patients on Active Surveillance. J Urol 2022; 208:325-332. [PMID: 35377777 PMCID: PMC9283237 DOI: 10.1097/ju.0000000000002668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The impact of germline mutations associated with hereditary cancer syndromes in patients on active surveillance (AS) for prostate cancer is poorly defined. We examined the association between family history of prostate cancer (FHP) or family history of cancer (FHC) and risk of progression or adverse pathology at radical prostatectomy (RP) in patients on AS. MATERIALS AND METHODS Patients on AS at a single tertiary-care center between 2000-2019 were categorized by family history. Disease progression was defined as an increase in Gleason grade on biopsy. Adverse pathology was defined as upgrading/upstaging at RP. Multivariable Cox and logistic regression models were used to assess association between family history and time to progression or adverse pathology, respectively. RESULTS Among 3,211 evaluable patients, 669 (21%) had FHP, 34 (1%) had FHC and 95 (3%) had both; 753 progressed on AS and 481 underwent RP. FHP was associated with increased risk of progression (HR 1.31; 95% CI, 1.11-1.55; p=0.002) but FHC (HR 0.67; 95% CI, 0.30-1.50; p=0.3) or family history of both (HR 1.22; 95% CI, 0.81-1.85; p=0.3) were not. FHP, FHC or both were not associated with adverse pathology at RP (p >0.4). CONCLUSIONS While FHP was associated with an increased risk of progression on AS, wide confidence intervals render this outcome of unclear clinical significance. FHC was not associated with risk of progression on AS. In the absence of known genetically defined hereditary cancer syndrome, we suggest FHP and/or FHC should not be used as a sole trigger to preclude patients from enrolling on AS.
Collapse
Affiliation(s)
- Ghalib A. Jibara
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marlon Perera
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily A. Vertosick
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel D. Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter T. Scardino
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A. Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent P. Laudone
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karim Touijer
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Lin
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria I. Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behfar Ehdaie
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
77
|
The role of prophylactic prostatectomy as a primary prevention strategy in high-risk germline mutation carriers. Curr Opin Urol 2022; 32:445-450. [PMID: 35855558 DOI: 10.1097/mou.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Men with high-risk germline mutations are at significantly higher risk of developing and dying from prostate cancer. Current screening and treatment paradigms may lead to missed opportunities for cure. Herein we review the current literature on prevention, screening and treatment of these carriers and explore the potential role of prophylactic prostatectomy in primary prevention of prostate cancer mortality. RECENT FINDINGS Prostate-specific antigen (PSA)-based screening has demonstrated marginal benefits in prostate cancer (PCa) survival and uncertainty remains on its true benefit among high-risk carriers. Recent results indicate that PCa in BRCA 2 carriers occurs at a higher incidence, younger age and progresses more rapidly compared with noncarriers. An intensified screening protocol of MRI and PSA in young carriers demonstrated how using PSA values alone may be insufficient. Current evidence indicates that high-risk carriers have worse survival outcomes after undergoing radical treatment for screening detected disease when compared with noncarriers. SUMMARY Prophylactic prostatectomy within the context of a clinical trial is a reasonable primary prevention option for discussion with high-risk carriers, especially BRCA2 carriers during the shared decision-making process. Limitations exist in the current strategies of early PSA screening followed by radical treatment in this group.
Collapse
|
78
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
79
|
Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C, Taplin ME. Genetic testing in prostate cancer management: Considerations informing primary care. CA Cancer J Clin 2022; 72:360-371. [PMID: 35201622 DOI: 10.3322/caac.21720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inherited genetic mutations can significantly increase the risk for prostate cancer (PC), may be associated with aggressive disease and poorer outcomes, and can have hereditary cancer implications for men and their families. Germline genetic testing (hereditary cancer genetic testing) is now strongly recommended for patients with advanced/metastatic PC, particularly given the impact on targeted therapy selection or clinical trial options, with expanded National Comprehensive Cancer Network guidelines and endorsement from multiple professional societies. Furthermore, National Comprehensive Cancer Network guidelines recommend genetic testing for men with PC across the stage and risk spectrum and for unaffected men at high risk for PC based on family history to identify hereditary cancer risk. Primary care is a critical field in which providers evaluate men at an elevated risk for PC, men living with PC, and PC survivors for whom germline testing may be indicated. Therefore, there is a critical need to engage and educate primary care providers regarding the role of genetic testing and the impact of results on PC screening, treatment, and cascade testing for family members of affected men. This review highlights key aspects of genetic testing in PC, the role of clinicians, with a focus on primary care, the importance of obtaining a comprehensive family history, current germline testing guidelines, and the impact on precision PC care. With emerging evidence and guidelines, clinical pathways are needed to facilitate integrated genetic education, testing, and counseling services in appropriately selected patients. There is also a need for providers to understand the field of genetic counseling and how best to collaborate to enhance multidisciplinary patient care.
Collapse
Affiliation(s)
- Veda N Giri
- Department of Medical Oncology, Cancer Biology, and Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Todd M Morgan
- Department of Urology, University of Michigan Urology Cancer Center, Ann Arbor, Michigan
| | | | - Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colette Hyatt
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
80
|
Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E, Fleshner N, Akbari MR, Cybulski C, Narod SA. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol 2022; 6:43. [PMID: 35732815 PMCID: PMC9217944 DOI: 10.1038/s41698-022-00282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Most criteria for genetic testing for prostate cancer susceptibility require a prior diagnosis of prostate cancer, in particular cases with metastatic disease are selected. Advances in the field are expected to improve outcomes through tailored treatments for men with advanced prostate cancer with germline pathogenic variants, although these are not currently offered in the curative setting. A better understanding of the value of genetic testing for prostate cancer susceptibility in screening, for early detection and prevention is necessary. We review and summarize the literature describing germline pathogenic variants in genes associated with increased prostate cancer risk and aggressivity. Important questions include: what is our ability to screen for and prevent prostate cancer in a man with a germline pathogenic variant and how does knowledge of a germline pathogenic variant influence treatment of men with nonmetastatic disease, with hormone-resistant disease and with metastatic disease? The frequency of germline pathogenic variants in prostate cancer is well described, according to personal and family history of cancer and by stage and grade of disease. The role of these genes in aggressive prostate cancer is also discussed. It is timely to consider whether or not genetic testing should be offered to all men with prostate cancer. The goals of testing are to facilitate screening for early cancers in unaffected high-risk men and to prevent advanced disease in men with cancer.
Collapse
Affiliation(s)
- Amy Finch
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Roderick Clark
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Division of Urology, University of Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Justin Lorentz
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Thain
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|
81
|
Kensler KH, Baichoo S, Pathania S, Rebbeck TR. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. NPJ Precis Oncol 2022; 6:39. [PMID: 35715489 PMCID: PMC9205939 DOI: 10.1038/s41698-022-00284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
Carriers of germline BRCA2 pathogenic sequence variants have elevated aggressive prostate cancer risk and are candidates for precision oncology treatments. We examined whether BRCA2-deficient (BRCA2d) prostate tumors have distinct genomic alterations compared with BRCA2-intact (BRCA2i) tumors. Among 2536 primary and 899 metastatic prostate tumors from the ICGC, GENIE, and TCGA databases, we identified 138 primary and 85 metastatic BRCA2d tumors. Total tumor mutation burden (TMB) was higher among primary BRCA2d tumors, although pathogenic TMB did not differ by tumor BRCA2 status. Pathogenic and total single nucleotide variant (SNV) frequencies at KMT2D were higher in BRCA2d primary tumors, as was the total SNV frequency at KMT2D in BRCA2d metastatic tumors. Homozygous deletions at NEK3, RB1, and APC were enriched in BRCA2d primary tumors, and RB1 deletions in metastatic BRCA2d tumors as well. TMPRSS2-ETV1 fusions were more common in BRCA2d tumors. These results identify somatic alterations that hallmark etiological and prognostic differences between BRCA2d and BRCA2i prostate tumors.
Collapse
Affiliation(s)
- Kevin H Kensler
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
82
|
Congregado B, Rivero I, Osmán I, Sáez C, Medina López R. PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines 2022; 10:1416. [PMID: 35740437 PMCID: PMC9220343 DOI: 10.3390/biomedicines10061416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The introduction of PARP inhibitors (PARPi) in prostate cancer is a milestone and provides a pathway to hope in fighting this disease. It is the first time that drugs, based on the concept of synthetic lethality, have been approved for prostate cancer. In addition, it is also the first time that genetic mutation tests have been included in the therapeutic algorithm of this disease, representing a significant step forward for precision and personalized treatment of prostate cancer. The objectives of this review are: (1) understanding the mechanism of action of PARPi in monotherapy and combinations; (2) gaining insights on patient selection for PARPi; (3) exposing the pivotal studies that have allowed its approval, and; (4) offering an overview of the ongoing trials. Nevertheless, many unsolved questions remain, such as the number of patients who could potentially benefit from PARPi, whether to use PARPi in monotherapy or in combination, and when is the best time to use them in advanced or localized disease. To answer these and other questions, many clinical trials are underway. Some of them have recently demonstrated promising results that may favor the introduction of new combinations in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Belén Congregado
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Inés Rivero
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Ignacio Osmán
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| | - Carmen Sáez
- Department of Pathology, Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Rafael Medina López
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.R.); (I.O.); (R.M.L.)
| |
Collapse
|
83
|
KARKİN K, VURUŞKAN E. Two-year profile of the records of patients referred to Adana city hospital urology clinic due to PSA high in primary care: a retrospective review. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: To retrospectively evaluate the two-year records of patients referred to Adana City Training and Research Hospital by family physicians because of high prostate specific antigen (PSA), and to reveal the profile and related outcomes for clinical practices of family physicians about prostate cancer screening.
Material and Method: The files of 102 patients, who were referred to our clinic by their family physicians due to high PSA between April 2019 and May 2021, were retrospectively evaluated. Demographic data of patients, presence of additional disease, family history, control serum PSA value examined in family medicine centers and in our hospital at time of first admission, complete urinalysis (TIT), ultrasonography (USG) and multiparametric magnetic resonance (mpMR) findings, transrectal ultrasonographic biopsy (TRUS-BX) results and biopsy were noted. The treatments administered according to the results (radical prostatectomy, radiotherapy, hormone therapy, chemotherapy) were recorded.
Results: The mean age of the patients was 52.8±8.9 years. The PSA value of the patients at time of admission was 8.0±3.8 ng/ml. The mean PSA values measured at the time of admission to primary care and at the time of admission to Adana clinic after referral were 8.0±3.8 ng/ml and 8.0±3.0 ng/ml, respectively. There was no statistically significant difference between these values (p=0.2). Among all the patients presenting with elevated PSA, 36 (35%) patients underwent TRUS Bx, had prostate cancer as a result of pathology and underwent radical prostatectomy, which was the most common definitive treatment method with statistical significance (p
Collapse
Affiliation(s)
- Kadir KARKİN
- Sağlık bilimleri üniversitesi Adana şehir eğitim araştırma hastanesi
| | - Ediz VURUŞKAN
- Sağlık bilimleri üniversitesi Adana şehir eğitim araştırma hastanesi
| |
Collapse
|
84
|
Dong B, Yang B, Chen W, Du X, Fan L, Yao X, Xue W. Olaparib for Chinese metastatic castration-resistant prostate cancer: A real-world study of efficacy and gene predictive analysis. Med Oncol 2022; 39:96. [DOI: 10.1007/s12032-022-01648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|
85
|
Giri VN, Hartman R, Pritzlaff M, Horton C, Keith SW. Germline Variant Spectrum Among African American Men Undergoing Prostate Cancer Germline Testing: Need for Equity in Genetic Testing. JCO Precis Oncol 2022; 6:e2200234. [PMID: 35666082 PMCID: PMC9200399 DOI: 10.1200/po.22.00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Guidelines for prostate cancer (PCA) germline testing (GT) have expanded, with impact on clinical management and hereditary cancer assessment. African American (AA) men have lower engagement in GT, with concern for widening disparities in genetically informed care. We evaluated the germline spectrum in a cohort of men with PCA enriched for AA men who underwent GT to inform tailored genetic evaluation strategies. METHODS Participants included AA and White men with PCA tested with a 14-gene PCA panel: ATM, BRCA1, BRCA2, CHEK2, EPCAM, HOXB13, MLH1, MSH2, MSH6, NBN, PALB2, PMS2, RAD51D, and TP53. Germline analysis was performed per standard clinical testing and variant classification protocols. Data were compared with Fisher's exact, chi-squared, or two sample t-tests, as appropriate. Multivariable analysis was conducted using Akaike's Information Criterion. The significance level was set a priori at .05. RESULTS The data set included 427 men all tested using the 14-gene PCA panel: AA (n = 237, 56%) and White (n = 190, 44%). Overall, the pathogenic/likely pathogenic (P/LP) variant rate was 8.2%, with AA men having lower rates of P/LP variants then White men (5.91% v 11.05%, respectively; P = .05). Borderline associations with P/LP variant status were observed by race (AA v White; odds ratio = 0.51; P = .07) and age (> 50 v ≤ 50 years; odds ratio = 0.48; P = .06). The P/LP spectrum was narrower in AA men (BRCA2, PALB2, ATM, and BRCA1) than White men (BRCA2, ATM, HOXB13, CHEK2, TP53, and NBN). A significant difference was noted in rates of variants of uncertain significance (VUSs) between AA men and White men overall (25.32% v 16.32%; P = .02) and for carrying multiple VUSs (5.1% v 0.53%, P = .008). CONCLUSION Germline evaluation in a cohort enriched for AA men highlights the narrower spectrum of germline contribution to PCA with significantly higher rates of multiple VUSs in DNA repair genes. These results underscore the imperative to engage AA men in GT, the need for larger panel testing in AA men, and the necessity to incorporate novel genomic technologies to clarify VUS to discern the germline contribution to PCA. Furthermore, tailored genetic counseling for AA men is important to ensure understanding of VUS and promote equitable genetics care delivery.
Collapse
Affiliation(s)
- Veda N. Giri
- Departments of Medical Oncology, Cancer Biology, and Urology, Cancer Risk Assessment and Clinical Cancer Genetics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Rebecca Hartman
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| | | | | | - Scott W. Keith
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
86
|
Shore ND, Lenz L, Cogan ES, Iliev D, Spencer L, Flake DD, Meek S, Davis T, Copeland K, Finch R, Schiff W, Korman H, Rao M, Belkoff L, Jalkut M, Mariados N, D'Anna R, Mehlhaff B, Slavin TP, Cohen TD. Hereditary cancer risk assessment and genetic testing in the community urology practice setting. Prostate 2022; 82:850-857. [PMID: 35239202 DOI: 10.1002/pros.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the feasibility of integrating a hereditary cancer risk assessment (HCRA) process in the community urology practice setting for patients with prostate cancer (PCa). METHODS In this prospective intervention, an HCRA process was implemented across six different community urology clinics between May 2019 and April 2020. The intervention included a process integration during which the workflow at each site was refined, a post-integration period during which HCRA was conducted in all patients with PCa, and a follow-up period during which healthcare providers and patients reported their satisfaction with the HCRA and genetic testing process. RESULTS Among patients who completed a family history assessment during the post-integration period, 23.6% met guideline criteria for genetic testing. Of all patients seen at the clinic during the post-integration period, 8.7% completed genetic testing; this was a twofold increase over the period immediately preceding process integration (4.2%), and a sevenfold increase over the same period 1 year prior (1.2%). The majority of providers reported that the HCRA was as important as other regularly performed assessments (61.0%) and planned to continue using the process in their practice (68.3%). Most patients believed that the genetic test results were important for their future cancer care (84.7%) and had already shared their test results with at least one family member (63.2%). CONCLUSIONS This study demonstrated that implementing an HCRA process in the community urology practice setting was feasible, generally favored by providers and patients, and resulted in an increase in the number of patients with PCa who completed genetic testing.
Collapse
Affiliation(s)
- Neal D Shore
- Carolina Urologic Research Center/GenesisCare, Myrtle Beach, South Carolina, USA
| | - Lauren Lenz
- Myriad Genetics, Inc., Salt Lake City, Utah, USA
| | | | - Diana Iliev
- Myriad Genetics, Inc., Salt Lake City, Utah, USA
| | | | - Darl D Flake
- Myriad Genetics, Inc., Salt Lake City, Utah, USA
| | | | | | | | - Robert Finch
- Myriad Genetics, Inc., Salt Lake City, Utah, USA
| | - William Schiff
- Urology Associates of Central California, Fresno, California, USA
| | | | - Manoj Rao
- Urologic Specialists of Northwest Indiana, Merrillville, Indiana, USA
| | | | - Mark Jalkut
- Associated Urologists of North Carolina, Raleigh, North Carolina, USA
| | - Neil Mariados
- Associated Medical Professionals, Syracuse, New York, USA
| | | | | | | | - Todd D Cohen
- Myriad Genetics, Inc., Salt Lake City, Utah, USA
| |
Collapse
|
87
|
Abstract
Genetic testing for prostate cancer is rapidly growing and is increasingly being driven by precision medicine. Rates of germline pathogenic variants have been reported in up to 15% of men with prostate cancer, particularly in metastatic disease, and results of genetic testing could uncover options for precision therapy along with a spectrum of hereditary cancer-predisposition syndromes with unique clinical features that have complex management options. Thus, the pre-test discussion, whether delivered by genetic counsellors or by health-care professionals in hybrid models, involves information on hereditary cancer risk, extent of gene testing, purpose of testing, medical history and family history, potential types of results, additional cancer risks that might be uncovered, genetically based management and effect on families. Understanding precision medicine, personalized cancer risk management and syndrome-related cancer risk management is important in order to develop collaborative strategies with genetic counselling for optimal care of patients and their families. In this Review, Russo and Giri describe and discuss germline testing criteria, genetic testing strategies, genetically informed screening, precision management, delivery of genetic counselling or alternative genetic services and special considerations for men with prostate cancer. Germline (hereditary) genetic testing is rising in importance for treatment, screening and risk assessment of prostate cancer. Multiple hereditary cancer syndromes might be associated with prostate cancer, might confer risk of other cancerous and non-cancerous conditions, and can have hereditary cancer implications for family members. The rates of these syndromes can vary based upon the attributed genetic mutations. Multiple aspects of germline testing should be discussed in the pre-test setting for men to make an informed decision, including the purpose of genetic testing, the benefits and risks of testing, hereditary cancer risk, identification of additional cancer risks, familial implications and the state of genetic discrimination protections. Genetic evaluation can be conducted by genetic counsellors or a hybrid model can be employed, in which health-care providers deliver pre-test informed consent for testing, order testing and then determine referral to genetic counselling for appropriate patients. Precision medicine is increasingly driving decisions for germline testing. Poly(ADP-ribose) polymerase (PARP) inhibitors, immune checkpoint inhibitors and various other agents now in clinical trials have clinical activity in patients with certain hereditary cancer gene mutations, such as in DNA repair genes. Patients’ experiences with germline testing can be variable; taking the patient’s current experience into account, considering referral to genetic counselling when needed and offering germline testing for eligible men at repeated intervals if initially declined are important.
Collapse
Affiliation(s)
- Jessica Russo
- Cancer Risk Assessment and Clinical Cancer Genetics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veda N Giri
- Cancer Risk Assessment and Clinical Cancer Genetics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA. .,Departments of Medical Oncology, Cancer Biology, and Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
88
|
Keisner SV. Rucaparib and olaparib for the treatment of prostate cancer: A clinician's guide to choice of therapy. J Oncol Pharm Pract 2022; 28:1624-1633. [PMID: 35440240 DOI: 10.1177/10781552221094308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This review will provide an overview of the use rucaparib and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC) with the goal to assist the clinician's decision-making process when considering these agents for an individual patient. DATA SOURCES Searches were conducted in PubMed, relevant meeting abstracts, clinicaltrials.gov, and United States Food and Drug Administration (FDA) documents to identify literature published through July 1, 2021, related to use of rucaparib and olaparib for treatment of prostate cancer. DATA SUMMARY In May 2020, the FDA approved rucaparib and olaparib for treatment of mCRPC that is homologous recombination repair (HRR)-deficient. Both agents are approved for previously-treated patients, but there are notable differences in strength of evidence, outcomes studied, required HRR alteration, and required prior therapies. In patients who qualify for therapy, additional factors that may help guide choice of PARP inhibitor include baseline organ function, drug interaction potential, toxicity profiles, and financial factors. CONCLUSIONS Rucaparib and olaparib have the potential to improve outcomes for patients with HRR-deficient mCRPC. Differences in strength of evidence and patient- and drug-specific characteristics will assist the clinician when choosing between agents.
Collapse
Affiliation(s)
- Sidney Veach Keisner
- Department of Pharmacy Practice, College of Pharmacy, 12215University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
89
|
[The IMPACT study-PSA-based prostate screening in Lynch syndrome]. Urologe A 2022; 61:534-536. [PMID: 35403897 DOI: 10.1007/s00120-022-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
90
|
Nyberg T, Tischkowitz M, Antoniou AC. BRCA1 and BRCA2 pathogenic variants and prostate cancer risk: systematic review and meta-analysis. Br J Cancer 2022; 126:1067-1081. [PMID: 34963702 PMCID: PMC8979955 DOI: 10.1038/s41416-021-01675-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND BRCA1 and BRCA2 pathogenic variants (PVs) are associated with prostate cancer (PCa) risk, but a wide range of relative risks (RRs) has been reported. METHODS We systematically searched PubMed, Embase, MEDLINE and Cochrane Library in June 2021 for studies that estimated PCa RRs for male BRCA1/2 carriers, with no time or language restrictions. The literature search identified 27 studies (BRCA1: n = 20, BRCA2: n = 21). RESULTS The heterogeneity between the published estimates was high (BRCA1: I2 = 30%, BRCA2: I2 = 83%); this could partly be explained by selection for age, family history or aggressive disease, and study-level differences in ethnicity composition, use of historical controls, and location of PVs within BRCA2. The pooled RRs were 2.08 (95% CI 1.38-3.12) for Ashkenazi Jewish BRCA2 carriers, 4.35 (95% CI 3.50-5.41) for non-Ashkenazi European ancestry BRCA2 carriers, and 1.18 (95% CI 0.95-1.47) for BRCA1 carriers. At ages <65 years, the RRs were 7.14 (95% CI 5.33-9.56) for non-Ashkenazi European ancestry BRCA2 and 1.78 (95% CI 1.09-2.91) for BRCA1 carriers. CONCLUSIONS These PCa risk estimates will assist in guiding clinical management. The study-level subgroup analyses indicate that risks may be modified by age and ethnicity, and for BRCA2 carriers by PV location within the gene, which may guide future risk-estimation studies.
Collapse
Affiliation(s)
- Tommy Nyberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
91
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
92
|
Lieberman S, Goldvaser H, Levy-Lahad E. Germline Pathogenic Variants in BRCA1 and BRCA2: Malignancies Beyond Female Breast and Ovarian Cancers. J Clin Oncol 2022; 40:1590-1594. [PMID: 35286153 DOI: 10.1200/jco.22.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sari Lieberman
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hadar Goldvaser
- Institute of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
93
|
Menko FH, Monkhorst K, Hogervorst FB, Rosenberg EH, Adank M, Ruijs MW, Bleiker EM, Sonke GS, Russell NS, Oldenburg HS, van der Kolk LE. Challenges in breast cancer genetic testing. A call for novel forms of multidisciplinary care and long-term evaluation. Crit Rev Oncol Hematol 2022; 176:103642. [DOI: 10.1016/j.critrevonc.2022.103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
|
94
|
Abandon the Label of Clinically Insignificant Prostate Cancer. EUR UROL SUPPL 2022; 37:36-37. [PMID: 35106504 PMCID: PMC8787776 DOI: 10.1016/j.euros.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
|
95
|
Bokkers K, Vlaming M, Engelhardt EG, Zweemer RP, van Oort IM, Kiemeney LALM, Bleiker EMA, Ausems MGEM. The Feasibility of Implementing Mainstream Germline Genetic Testing in Routine Cancer Care-A Systematic Review. Cancers (Basel) 2022; 14:cancers14041059. [PMID: 35205807 PMCID: PMC8870548 DOI: 10.3390/cancers14041059] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Germline genetic testing for patients with cancer can have important implications for treatment, preventive options, and for family members. In a mainstream genetic testing pathway, pre-test counseling is performed by non-genetic healthcare professionals, thereby making genetic testing more accessible to all patients who might benefit from it. These mainstream genetic testing pathways are being implemented in different hospitals around the world, and for different cancer types. It is important to evaluate how a mainstream genetic testing pathway can be made sustainable and if quality of genetic care is maintained. We show in this systematic review that it is feasible to incorporate a mainstream genetic testing pathway into routine cancer care while maintaining quality of care. A training procedure for non-genetic healthcare professionals and a close collaboration between genetics and other clinical departments are highly recommended to ensure sustainability. Abstract Background: Non-genetic healthcare professionals can provide pre-test counseling and order germline genetic tests themselves, which is called mainstream genetic testing. In this systematic review, we determined whether mainstream genetic testing was feasible in daily practice while maintaining quality of genetic care. Methods: PubMed, Embase, CINAHL, and PsychINFO were searched for articles describing mainstream genetic testing initiatives in cancer care. Results: Seventeen articles, reporting on 15 studies, met the inclusion criteria. Non-genetic healthcare professionals concluded that mainstream genetic testing was possible within the timeframe of a routine consultation. In 14 studies, non-genetic healthcare professionals completed some form of training about genetics. When referral was coordinated by a genetics team, the majority of patients carrying a pathogenic variant were seen for post-test counseling by genetic healthcare professionals. The number of days between cancer diagnosis and test result disclosure was always lower in the mainstream genetic testing pathway than in the standard genetic testing pathway (e.g., pre-test counseling at genetics department). Conclusions: Mainstream genetic testing seems feasible in daily practice with no insurmountable barriers. A structured pathway with a training procedure is desirable, as well as a close collaboration between genetics and other clinical departments.
Collapse
Affiliation(s)
- Kyra Bokkers
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (K.B.); (M.V.)
| | - Michiel Vlaming
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (K.B.); (M.V.)
| | - Ellen G. Engelhardt
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (E.G.E.); (E.M.A.B.)
| | - Ronald P. Zweemer
- Department of Gynecological Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Inge M. van Oort
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (I.M.v.O.); (L.A.L.M.K.)
| | - Lambertus A. L. M. Kiemeney
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (I.M.v.O.); (L.A.L.M.K.)
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein Zuid 21, 6525 EZ Nijmegen, The Netherlands
| | - Eveline M. A. Bleiker
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (E.G.E.); (E.M.A.B.)
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Family Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Margreet G. E. M. Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (K.B.); (M.V.)
- Correspondence: ; Tel.: +31-88-75-538-00
| |
Collapse
|
96
|
Chen W, Xia W, Xue S, Huang H, Lin Q, Liu Y, Liu T, Zhang Y, Zhang P, Wang J, Yang Y, Dong B, Yu Z. Analysis of BRCA Germline Mutations in Chinese Prostate Cancer Patients. Front Oncol 2022; 12:746102. [PMID: 35251954 PMCID: PMC8892236 DOI: 10.3389/fonc.2022.746102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have indicated that prostate cancer (PCa) with BRCA2 mutations is more aggressive. However, these reports mostly focused on Caucasus populations, and large-scale studies on BRCA mutations in Chinese PCa populations remain limited. Herein, we screened, from multiple centers in China, a total of 172 patients with PCa carrying BRCA1/2 germline mutations. The variant distribution and type, associated somatic variant, and frequency of the BRCA germline variants in these patients were analyzed retrospectively. We found that Chinese patients with PCa carrying BRCA1/2 germline mutations were diagnosed at an earlier age, i.e., 67 years (range, 34–89 years), and most had metastatic castration-resistant PCa (mCRPC) (54.65%, 94/172). The top three BRCA variants were frameshift, missense, and splicing variants. The overall pathogenic rates of the BRCA1 and BRCA2 variants were 17.46% (11/63) and 56.55% (82/145), respectively. Among the somatic mutations associated with BRCA2 germline mutations, the highest frequency was for FOXA1 (circulating tumor DNA [ctDNA] sequencing, 7.4%; tissue samples, 52%) and NCOR2 mutations (ctDNA sequencing, 7.4%; tissue samples, 24%); TP53 was the dominant somatic mutation associated with BRCA1 germline mutations (ctDNA sequencing, 25%; tissue samples, 17%). Ultimately, in Chinese patients, PCa with BRCA1/2 germline mutations tends to be more aggressive. Compared with BRCA1, BRCA2 has a higher frequency of germline pathogenic mutations. FOXA1, NCOR2, and TP53 somatic mutations associated with higher BRCA1/2 germline pathogenic mutations. Our description of BRCA germline mutations in the Chinese PCa patients provides more reference data for the precise diagnosis and treatment of Chinese PCa patients.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Wei Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Song Xue
- Department of Urology, General Hospital of Eastern Theater Command, Nanjing, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Qi Lin
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Tongtong Liu
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Yiqun Zhang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Panwang Zhang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Jianfei Wang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Yining Yang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhixian Yu, ; Baijun Dong,
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
- *Correspondence: Zhixian Yu, ; Baijun Dong,
| |
Collapse
|
97
|
Clark R, Herrera-Caceres J, Kenk M, Fleshner N. Clinical Management of Prostate Cancer in High-Risk Genetic Mutation Carriers. Cancers (Basel) 2022; 14:cancers14041004. [PMID: 35205755 PMCID: PMC8870148 DOI: 10.3390/cancers14041004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Men with certain genetic differences are at much higher risks of developing metastatic and lethal prostate cancer. With the recent introduction of a new class of medications specifically targeted to these gene repair pathways (PARP inhibitors), it is critical to review the state of the literature surrounding the management of men with prostate cancer who have these genetic differences. We review the existing literature to address common clinical questions pertaining to this population. There is an urgent need for further research regarding clinical management in these scenarios as patients are increasingly seeking out genetic testing and consulting healthcare professionals for guidance. Abstract Background: Prostate cancer is a leading cause of death. Approximately one in eight men who are diagnosed with prostate cancer will die of it. Since there is a large difference in mortality between low- and high-risk prostate cancers, it is critical to identify individuals who are at high-risk for disease progression and death. Germline genetic differences are increasingly recognized as contributing to risk of lethal prostate cancer. The objective of this paper is to review prostate cancer management options for men with high-risk germline mutations. Methods: We performed a review of the literature to identify articles regarding management of prostate cancer in individuals with high-risk germline genetic mutations. Results: We identified numerous publications regarding the management of prostate cancer among high-risk germline carriers, but the overall quality of the evidence is low. Conclusions: We performed a review of the literature and compiled clinical considerations for the management of individuals with high-risk germline mutations when they develop prostate cancer. The quality of the evidence is low, and there is an immediate need for further research and the development of consensus guidelines to guide clinical practice for these individuals.
Collapse
Affiliation(s)
- Roderick Clark
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
- Correspondence:
| | | | - Miran Kenk
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
| | - Neil Fleshner
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
| |
Collapse
|
98
|
Recherche d’altérations des gènes de réparation de l’ADN dans le cancer de la prostate : mise au point pratique du Comité de cancérologie de l’association française d’urologie. Prog Urol 2022; 32:155-164. [DOI: 10.1016/j.purol.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
|
99
|
Bieńkowski M, Tomasik B, Braun M, Jassem J. PARP inhibitors for metastatic castration-resistant prostate cancer: Biological rationale and current evidence. Cancer Treat Rev 2022; 104:102359. [DOI: 10.1016/j.ctrv.2022.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
|
100
|
Hinata N, Fujisawa M. Racial Differences in Prostate Cancer Characteristics and Cancer-Specific Mortality: An Overview. World J Mens Health 2022; 40:217-227. [PMID: 35021294 PMCID: PMC8987139 DOI: 10.5534/wjmh.210070] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022] Open
Abstract
Racial differences of prostate cancer incidence and mortality among Asian, Black, and Caucasian men have been known, however, comprehensive update of this topic is not yet reported. In the present review, an overview of the racial differences in prostate cancer characteristics and cancer-specific mortality is collected and reviewed. Regarding racial differences of incidence and mortality, surprising differences in the incidence of prostate cancer are seen among different populations around the world, with some countries having rates that are 60 to 100 times higher than others. African-American men have a higher incidence of prostate cancer, higher prostate cancer mortality, and are diagnosed with prostate cancer at a younger age than Caucasian American men. Furthermore, race is gaining attention as an important factor to consider for planning active surveillance for localized prostate cancer, especially among African-Americans. In addition, the causes of these differences are being elucidated by genomic profiling. Determinants of racial disparities are multifactorial, including socioeconomic and biologic factors. Although race-specific differences in prostate cancer survival estimates appear to be narrowing over time, there is an ongoing need to continue to understand and mitigate racial factors associated with disparities in health care outcomes.
Collapse
Affiliation(s)
- Nobuyuki Hinata
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|