51
|
Freitas A, Aroso M, Rocha S, Ferreira R, Vitorino R, Gomez-Lazaro M. Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders. Eur J Neurosci 2021; 53:4016-4033. [PMID: 34013613 DOI: 10.1111/ejn.15316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer's, Parkinson's, and Huntington's diseases are characterized by selective degeneration of specific brain areas. Although increasing number of studies report alteration of the extracellular matrix on these diseases, an exhaustive characterization at the brain's matrix level might contribute to the development of more efficient cell restoration therapies. In that regard, proteomics-based studies are a powerful approach to uncover matrix changes. However, to date, the majority of proteomics studies report no or only a few brain matrix proteins with altered expression. This study aims to reveal the changes in the brain extracellular matrix by integrating several proteomics-based studies performed with postmortem tissue. In total, 67 matrix proteins with altered expression were collected. By applying a bioinformatic approach, we were able to reveal the dysregulated biological processes. Among them are processes related to the organization of the extracellular matrix, glycosaminoglycans and proteoglycans' metabolism, blood coagulation, and response to injury and oxidative stress. In addition, a protein was found altered in all three diseases-collagen type I alpha 2-and its binding partners further identified. A ClueGO network was created, depicting the GO groups associated with these binding partners, uncovering the processes that may consequently be affected. These include cellular adhesion, cell signaling through membrane receptors, inflammatory processes, and apoptotic cell death in response to oxidative stress. Overall, we were able to associate the contribution of the modification of extracellular matrix components to essential biological processes, highlighting the investment needed on proteomics studies with specific focus on the extracellular matrix in neurodegeneration.
Collapse
Affiliation(s)
- Ana Freitas
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FMUP - Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Miguel Aroso
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA &, LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
52
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
53
|
Sutter PA, Rouillard ME, Alshawi SA, Crocker SJ. Extracellular matrix influences astrocytic extracellular vesicle function in wound repair. Brain Res 2021; 1763:147462. [PMID: 33811843 DOI: 10.1016/j.brainres.2021.147462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Astrocytic injury responses are known to be influenced by the extracellular matrix (ECM). Astrocytes are also recognized as a source of extracellular vesicles (EVs) that can impact the activity and function of other astrocytes and cell types. Whether the ECM influences the function of astrocytic EVs in the context of wound recovery has not been previously studied. We report EVs from astrocytes cultured on varied ECM substrates are sufficient to elicit distinct injury responses in naive astrocytes that recapitulate the effects of the ECM of origin. When compared with wound recovery on control substrates, EVs from ECM-exposed astrocytes elicited accelerated rates of wound recovery that varied based on each ECM. When EVs were collected from IL-1β treated and ECM-exposed astrocyte cultures, we found that IL-1β arrested wound recovery in naive astrocytes treated with EVs from astrocytes cultured on ECM but adding EVs from IL-1β treated Tenascin-c-cultured astrocytes increased wound recovery. To confirm that ECM was a primary influence on these astrocytic EV functions, we tested the contribution of β1-integrin, a major integrin receptor for the ECM molecules tested in this study. We found that the β1-integrin inhibitor Ha2/5, resulted in EVs that significantly attenuated the wound recovery of naive astrocytes. This provides new information on the importance of culture substrates on astrocytic responses, EV functions and injury responses that may impact the understanding of astroglial responses related to ECM compositional differences in diverse physiological states.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Megan E Rouillard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sarah A Alshawi
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States.
| |
Collapse
|
54
|
Attilio PJ, Snapper DM, Rusnak M, Isaac A, Soltis AR, Wilkerson MD, Dalgard CL, Symes AJ. Transcriptomic Analysis of Mouse Brain After Traumatic Brain Injury Reveals That the Angiotensin Receptor Blocker Candesartan Acts Through Novel Pathways. Front Neurosci 2021; 15:636259. [PMID: 33828448 PMCID: PMC8019829 DOI: 10.3389/fnins.2021.636259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) results in complex pathological reactions, where the initial lesion is followed by secondary inflammation and edema. Our laboratory and others have reported that angiotensin receptor blockers (ARBs) have efficacy in improving recovery from traumatic brain injury in mice. Treatment of mice with a subhypotensive dose of the ARB candesartan results in improved functional recovery, and reduced pathology (lesion volume, inflammation and gliosis). In order to gain a better understanding of the molecular mechanisms through which candesartan improves recovery after controlled cortical impact injury (CCI), we performed transcriptomic profiling on brain regions after injury and drug treatment. We examined RNA expression in the ipsilateral hippocampus, thalamus and hypothalamus at 3 or 29 days post injury (dpi) treated with either candesartan (0.1 mg/kg) or vehicle. RNA was isolated and analyzed by bulk mRNA-seq. Gene expression in injured and/or candesartan treated brain region was compared to that in sham vehicle treated mice in the same brain region to identify genes that were differentially expressed (DEGs) between groups. The most DEGs were expressed in the hippocampus at 3 dpi, and the number of DEGs reduced with distance and time from the lesion. Among pathways that were differentially expressed at 3 dpi after CCI, candesartan treatment altered genes involved in angiogenesis, interferon signaling, extracellular matrix regulation including integrins and chromosome maintenance and DNA replication. At 29 dpi, candesartan treatment reduced the expression of genes involved in the inflammatory response. Some changes in gene expression were confirmed in a separate cohort of animals by qPCR. Fewer DEGs were found in the thalamus, and only one in the hypothalamus at 3 dpi. Additionally, in the hippocampi of sham injured mice, 3 days of candesartan treatment led to the differential expression of 384 genes showing that candesartan in the absence of injury had a powerful impact on gene expression specifically in the hippocampus. Our results suggest that candesartan has broad actions in the brain after injury and affects different processes at acute and chronic times after injury. These data should assist in elucidating the beneficial effect of candesartan on recovery from TBI.
Collapse
Affiliation(s)
- Peter J. Attilio
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dustin M. Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Akira Isaac
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Anthony R. Soltis
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aviva J. Symes
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
55
|
Bijelić D, Adžić M, Perić M, Jakovčevski I, Förster E, Schachner M, Andjus PR. Different Functions of Recombinantly Expressed Domains of Tenascin-C in Glial Scar Formation. Front Immunol 2021; 11:624612. [PMID: 33679718 PMCID: PMC7934619 DOI: 10.3389/fimmu.2020.624612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix glycoprotein tenascin-C (TnC) is highly expressed in vertebrates during embryonic development and thereafter transiently in tissue niches undergoing extensive remodeling during regeneration after injury. TnC's different functions can be attributed to its multimodular structure represented by distinct domains and alternatively spliced isoforms. Upon central nervous system injury, TnC is upregulated and secreted into the extracellular matrix mainly by astrocytes. The goal of the present study was to elucidate the role of different TnC domains in events that take place after spinal cord injury (SCI). Astrocyte cultures prepared from TnC-deficient (TnC-/-) and wild-type (TnC+/+) mice were scratched and treated with different recombinantly generated TnC fragments. Gap closure, cell proliferation and expression of GFAP and cytokines were determined in these cultures. Gap closure in vitro was found to be delayed by TnC fragments, an effect mainly mediated by decreasing proliferation of astrocytes. The most potent effects were observed with fragments FnD, FnA and their combination. TnC-/- astrocyte cultures exhibited higher GFAP protein and mRNA expression levels, regardless of the type of fragment used for treatment. Application of TnC fragments induced also pro-inflammatory cytokine production by astrocytes in vitro. In vivo, however, the addition of FnD or Fn(D+A) led to a difference between the two genotypes, with higher levels of GFAP expression in TnC+/+ mice. FnD treatment of injured TnC-/- mice increased the density of activated microglia/macrophages in the injury region, while overall cell proliferation in the injury site was not affected. We suggest that altogether these results may explain how the reaction of astrocytes is delayed while their localization is restricted to the border of the injury site to allow microglia/macrophages to form a lesion core during the first stages of glial scar formation, as mediated by TnC and, in particular, the alternatively spliced FnD domain.
Collapse
Affiliation(s)
- Dunja Bijelić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Mina Perić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Igor Jakovčevski
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Eckart Förster
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Pavle R Andjus
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
56
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
57
|
A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater 2021; 6:2523-2534. [PMID: 33615043 PMCID: PMC7873581 DOI: 10.1016/j.bioactmat.2021.01.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) remains a worldwide challenge. The inflammatory microenvironment is one of main obstacles on inhibiting the recovery of SCI. Using mesenchymal stem cells (MSCs) derived extracellular vesicles to replace MSCs transplantation and mimic cell paracrine secretions provides a potential strategy for microenvironment regulation. However, the effective preservation and controlled release of extracellular vesicles in the injured spinal cord tissue are still not satisfied. Herein, we fabricated an injectable adhesive anti-inflammatory F127-polycitrate-polyethyleneimine hydrogel (FE) with sustainable and long term extracellular vesicle release (FE@EVs) for improving motor functional recovery after SCI. The orthotopic injection of FE@EVs hydrogel could encapsulate extracellular vesicles on the injured spinal cord, thereby synergistically induce efficient integrated regulation through suppressing fibrotic scar formation, reducing inflammatory reaction, promoting remyelination and axonal regeneration. This study showed that combining extracellular vesicles into bioactive multifunctional hydrogel should have great potential in achieving satisfactory locomotor recovery of central nervous system diseases. The novel FE hydrogel was designed for encapsulating the extracellular vesicles (FE@EVs). FE hydrogel exert the capabilities of temperature-responsive, injectable, adhesive and biocompatible. FE hydrogel with sustainable and long-term extracellular vesicle release for improving motor functional recovery after SCI. FE@EVs plays a vital role in pathological process of spinal cord injury in rats.
Collapse
|
58
|
Katarzyna Greda A, Nowicka D. Hyaluronidase inhibition accelerates functional recovery from stroke in the mouse brain. J Neurochem 2021; 157:781-801. [PMID: 33345310 DOI: 10.1111/jnc.15279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Perineuronal nets (PNNs) are presumed to limit plasticity in adult animals. Ischaemic stroke results in the massive breakdown of PNNs resulting in rejuvenating states of neuronal plasticity, but the mechanisms of this phenomenon are largely unknown. As hyaluronic acid (HA) is the structural backbone of PNNs, we hypothesized that these changes are a consequence of the altered expression of HA metabolism enzymes. Additionally, we investigated whether early hyaluronidase inhibition interferes with post-stroke PNN reduction and behavioural recovery. We investigated the mRNA/protein expression of these enzymes in the perilesional, remote and contralateral cortical regions in mice at different time points after photothrombosis, using quantitative real-time polymerase chain reaction and immunofluorescence. A skilled reaching test was employed to test hyaluronidase inhibitor L-ascorbic acid 6-hexadecanoate influence on post-stroke recovery. We found the simultaneous up-regulation of mRNA of HA synthesizing and degrading enzymes in the perilesional area early after stroke, suggesting an acceleration of HA turnover in ischaemic animals. Immunostaining revealed differential cellular localization of enzymes, with hyaluronidase 1 in astrocytes and hyaluronan synthase 2 in astrocytes and neurons, and post-stroke up-regulation of both of them in astrocytes. β-glucuronidase was observed in neurons but post-stroke up-regulation occurred in microglia. Inhibition of hyaluronidase activity early after stroke resulted in improved performance in skilled reaching test, without affecting the numbers of PNNs. These results suggest that after stroke, a substantial reorganization of polysaccharide content occurs, and interfering with this process at early time has a beneficial effect on recovery.
Collapse
Affiliation(s)
- Anna Katarzyna Greda
- Nencki Institute of Experimental Biology PAS, Laboratory of Epileptogenesis, Warsaw, Poland
| | - Dorota Nowicka
- Nencki Institute of Experimental Biology PAS, Laboratory of Epileptogenesis, Warsaw, Poland
| |
Collapse
|
59
|
Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol 2020; 200:101970. [PMID: 33358752 DOI: 10.1016/j.pneurobio.2020.101970] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injuries do not heal properly in contrast to normal tissue repair, in which functional recovery typically occurs. The reason for this dichotomy in wound repair is explained in part by macrophage and microglial malfunction, affecting both the extrinsic and intrinsic barriers to appropriate axonal regeneration. In normal healing tissue, macrophages promote the repair of injured tissue by regulating transitions through different phases of the healing response. In contrast, inflammation dominates the outcome of CNS injury, often leading to secondary damage. Therefore, an understanding of the molecular mechanisms underlying this dichotomy is critical to advance in neuronal repair therapies. Recent studies highlight the plasticity and complexity of macrophages and microglia beyond the classical view of the M1/M2 polarization paradigm. This plasticity represents an in vivo continuous spectrum of phenotypes with overlapping functions and markers. Moreover, macrophage and microglial plasticity affect many events essential for neuronal regeneration after injury, such as myelin and cell debris clearance, inflammation, release of cytokines, and trophic factors, affecting both intrinsic neuronal properties and extracellular matrix deposition. Until recently, this complexity was overlooked in the translation of therapies modulating these responses for the treatment of neuronal injuries. However, recent studies have shed important light on the underlying molecular mechanisms of this complexity and its transitions and effects on regenerative events. Here we review the complexity of macrophages and microglia after neuronal injury and their roles in regeneration, as well as the underlying molecular mechanisms, and we discuss current challenges and future opportunities for treatment.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
60
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
61
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
62
|
Affiliation(s)
- Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| |
Collapse
|
63
|
Girigoswami K, Saini D, Girigoswami A. Extracellular Matrix Remodeling and Development of Cancer. Stem Cell Rev Rep 2020; 17:739-747. [PMID: 33128168 DOI: 10.1007/s12015-020-10070-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
Abstract
The importance of stem cell growth and its fate is highly essential for the use of stem cells in therapy and regeneration. There are conflicting evidences regarding the actual role of stem cells when injected into a patient towards damage recovery and its lifespan inside the body. Tumor microenvironment differs from that of normal cells and may have a role in the growth of stem cells when associated with them. In cancer, the uncontrolled growth of cells remodels the extracellular matrix (ECM). The ECM alteration occurs as the mutated fibroblast cells release growth factors into the ECM which further alters the ECM directly or changes the epithelial cells and then alters the ECM. In this review we will discuss about the components and functions of ECM and how does it differ in cancer cells compared to normal cells. Abnormal dynamics of the ECM and its role in cancer progression will also be discussed. Graphical abstract.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India.
| | - Devender Saini
- Tissue Engineering and Regenerative Medicine, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| |
Collapse
|
64
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
65
|
Roadmap for Stroke: Challenging the Role of the Neuronal Extracellular Matrix. Int J Mol Sci 2020; 21:ijms21207554. [PMID: 33066304 PMCID: PMC7589675 DOI: 10.3390/ijms21207554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.
Collapse
|
66
|
Effects and Mechanisms of Acupuncture Combined with Mesenchymal Stem Cell Transplantation on Neural Recovery after Spinal Cord Injury: Progress and Prospects. Neural Plast 2020; 2020:8890655. [PMID: 33061954 PMCID: PMC7533022 DOI: 10.1155/2020/8890655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a structural event with devastating consequences worldwide. Due to the limited intrinsic regenerative capacity of the spinal cord in adults, the neural restoration after SCI is difficult. Acupuncture is effective for SCI-induced neurologic deficits, and the potential mechanisms responsible for its effects involve neural protection by the inhibition of inflammation, oxidation, and apoptosis. Moreover, acupuncture promotes neural regeneration and axon sprouting by activating multiple cellular signal transduction pathways, such as the Wnt, Notch, and Rho/Rho kinase (ROCK) pathways. Several studies have demonstrated that the efficacy of combining acupuncture with mesenchymal stem cells (MSCs) transplantation is superior to either procedure alone. The advantage of the combined treatment is dependent on the ability of acupuncture to enhance the survival of MSCs, promote their differentiation into neurons, and facilitate targeted migration of MSCs to the spinal cord. Additionally, the differentiation of MSCs into neurons overcomes the problem of the shortage of endogenous neural stem cells (NSCs) in the acupuncture-treated SCI patients. Therefore, the combination of acupuncture and MSCs transplantation could become a novel and effective strategy for the treatment of SCI. Such a possibility needs to be verified by basic and clinical research.
Collapse
|
67
|
Jou IM, Wu TT, Hsu CC, Yang CC, Huang JS, Tu YK, Lee JS, Su FC, Kuo YL. High molecular weight form of hyaluronic acid reduces neuroinflammatory response in injured sciatic nerve via the intracellular domain of CD44. J Biomed Mater Res B Appl Biomater 2020; 109:673-680. [PMID: 32924257 DOI: 10.1002/jbm.b.34731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
Inflammatory response after peripheral nerve injury is required for clearance of tissue debris and effective regeneration. Studies have revealed that hyaluronic acid (HA) may exert different properties depending on their molecular size. High molecular weight HA (>>1,000 kDa; HMW-HA) displays immunosuppressive properties, whereas low molecular weight HA (<800 kDa; LMW-HA) induces proinflammatory responses. The role of HMW-HA interaction with CD44, a major HA receptor, in neuroinflammatory responses has not been fully elucidated. The purpose of this experimental study was to investigate the effects of topical applications of HMW-HA on the sciatic nerve injury in an adult rat model. At the crush site on the sciatic nerve, the recordings of compound muscle action potential (CMAP) and the levels of several proteins related to inflammatory response were assessed at time intervals of 2, 4, and 6 weeks postsurgery. Here, we show that the recovery effect of HMW-HA treatment had significantly shortened latency and increased amplitude of CMAP compared with crushed alone, crushed plus γ-secretase inhibitor with or without HA treatment at 6 weeks after surgery. Our data reveal that HMW-HA could downregulate the expression of IL1-β, TLR4, and MMP-9, whereas these proteins expression were increased when the CD44-ICD activity was inhibited using γ-secretase inhibitor. Our findings demonstrated a novel role of CD44-ICD in HA-mediated recovery of peripheral nerve injury. Clinical relevance: an alternative for the regeneration of peripheral nerve injury.
Collapse
Affiliation(s)
- I-Ming Jou
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Che-Chia Hsu
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Chang Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lung Kuo
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
68
|
Li N, Geng C, Hou S, Fan H, Gong Y. Damage-Associated Molecular Patterns and Their Signaling Pathways in Primary Blast Lung Injury: New Research Progress and Future Directions. Int J Mol Sci 2020; 21:ijms21176303. [PMID: 32878118 PMCID: PMC7504526 DOI: 10.3390/ijms21176303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Primary blast lung injury (PBLI) is a common cause of casualties in wars, terrorist attacks, and explosions. It can exist in the absence of any other outward signs of trauma, and further develop into acute lung injury (ALI) or a more severe acute respiratory distress syndrome (ARDS). The pathogenesis of PBLI at the cellular and molecular level has not been clear. Damage-associated molecular pattern (DAMP) is a general term for endogenous danger signals released by the body after injury, including intracellular protein molecules (HMGB1, histones, s100s, heat shock proteins, eCIRP, etc.), secretory protein factors (IL-1β, IL-6, IL-10, TNF-α, VEGF, complements, etc.), purines and pyrimidines and their derived degradation products (nucleic acids, ATP, ADP, UDPG, uric acid, etc.), and extracellular matrix components (hyaluronic acid, fibronectin, heparin sulfate, biglycan, etc.). DAMPs can be detected by multiple receptors including pattern recognition receptors (PRRs). The study of DAMPs and their related signaling pathways, such as the mtDNA-triggered cGAS-YAP pathway, contributes to revealing the molecular mechanism of PBLI, and provides new therapeutic targets for controlling inflammatory diseases and alleviating their symptoms. In this review, we focus on the recent progress of research on DAMPs and their signaling pathways, as well as the potential therapeutic targets and future research directions in PBLI.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China; (N.L.); (C.G.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Chenhao Geng
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China; (N.L.); (C.G.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China; (N.L.); (C.G.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China; (N.L.); (C.G.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
- Correspondence: (H.F.); (Y.G.)
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China; (N.L.); (C.G.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
- Correspondence: (H.F.); (Y.G.)
| |
Collapse
|
69
|
Li X, Lou X, Xu S, Du J, Wu J. Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723. Biol Res 2020; 53:35. [PMID: 32819442 PMCID: PMC7439692 DOI: 10.1186/s40659-020-00302-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe central nervous system trauma. The present study aimed to evaluate the effect of HIF-1α on inflammation in spinal cord injury (SCI) to uncover the molecular mechanisms of anti-inflammation. RESULTS HIF-1α was reduced in SCI model rats and HIF-1α activation reduced TNF-α, IL-1β, IL-6 and IL-18 levels in SCI model rats. Meanwhile, Circ 0001723 expression was down-regulated and miR-380-3p expression was up-regulated in SCI model rats. In vitro model, down-regulation of Circ 0001723 promoted TNF-α, IL-1β, IL-6 and IL-18 levels, compared with control negative group. However, over-expression of Circ 0001723 reduced TNF-α, IL-1β, IL-6 and IL-18 levels in vitro model. Down-regulation of Circ 0001723 suppressed HIF-1α protein expressions and induced NLRP3 and Caspase-1 protein expressions in vitro model by up-regulation of miR-380-3p. Next, inactivation of HIF-1α reduced the pro-inflammation effects of Circ 0001723 in vitro model. Then, si-NLRP3 also inhibited the pro-inflammation effects of Circ 0001723 in vitro model via promotion of autophagy. CONCLUSIONS We concluded that HIF-1α reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723.
Collapse
Affiliation(s)
- Xigong Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Xianfeng Lou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China.
| | - Junhua Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Junsong Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| |
Collapse
|
70
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
71
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Pentylenetetrazol kindling induces cortical astrocytosis and increased expression of extracellular matrix molecules in mice. Brain Res Bull 2020; 163:120-134. [PMID: 32726668 DOI: 10.1016/j.brainresbull.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Although epilepsy is one of the most common chronic neurological disorders with a prevalence of approximately 1.0 %, the underlying pathophysiology remains to be elucidated. Understanding the molecular and cellular mechanisms involved in the development of epilepsy is important for the development of appropriate therapeutic strategy. In this study, we investigated the effects of status epilepticus on astrocytes, microglia, and extracellular matrix (ECM) molecules in the somatosensory cortex and piriform cortex of mice. Activation of astrocytes was observed in many cortices except the retrosplenial granular cortex after pentylenetetrazol (PTZ)-induced kindling in mice. Activated astrocytes in the cortex were found in layers 1-3 but not in layers 4-6. In the somatosensory and piriform cortices, no change was observed in the number of parvalbumin (PV)-positive neurons and PV-positive neurons covered with perineuronal nets. However, the amount of ECM in the extracellular space increased. The expression of VGLUT1- and GAD67-positive synapses also increased. Thus, in the PTZ-kindling epilepsy mice model, an increase in the number of ECM molecules and activation of astrocytes were observed in the somatosensory cortex and piriform cortex. These results indicate that PTZ-induced seizures affect not only the hippocampus but also other cortical areas. Our study findings may help to develop new therapeutic approaches to prevent seizures or their sequelae.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, 701-0193, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| |
Collapse
|
72
|
Soria FN, Paviolo C, Doudnikoff E, Arotcarena ML, Lee A, Danné N, Mandal AK, Gosset P, Dehay B, Groc L, Cognet L, Bezard E. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat Commun 2020; 11:3440. [PMID: 32651387 PMCID: PMC7351768 DOI: 10.1038/s41467-020-17328-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, exploration of the brain extracellular space (ECS) has made remarkable progress, including nanoscopic characterizations. However, whether ECS precise conformation is altered during brain pathology remains unknown. Here we study the nanoscale organization of pathological ECS in adult mice under degenerative conditions. Using electron microscopy in cryofixed tissue and single nanotube tracking in live brain slices combined with super-resolution imaging analysis, we find enlarged ECS dimensions and increased nanoscale diffusion after α-synuclein-induced neurodegeneration. These animals display a degraded hyaluronan matrix in areas close to reactive microglia. Furthermore, experimental hyaluronan depletion in vivo reduces dopaminergic cell loss and α-synuclein load, induces microgliosis and increases ECS diffusivity, highlighting hyaluronan as diffusional barrier and local tissue organizer. These findings demonstrate the interplay of ECS, extracellular matrix and glia in pathology, unraveling ECS features relevant for the α-synuclein propagation hypothesis and suggesting matrix manipulation as a disease-modifying strategy. The nanoscale organisation of the brain extracellular space can be studied in vivo. Here, the authors investigate how it changes in response to α-synuclein pathology, and identify interactions between microglia and the extracellular matrix.
Collapse
Affiliation(s)
- Federico N Soria
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.,Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain
| | - Chiara Paviolo
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Evelyne Doudnikoff
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Marie-Laure Arotcarena
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Antony Lee
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Noémie Danné
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Amit Kumar Mandal
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France
| | - Philippe Gosset
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076, Bordeaux, France.,Centre National de la Recherche Scientifique, IINS, UMR 5297, 33076, Bordeaux, France
| | - Laurent Cognet
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France. .,Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France. .,Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.
| |
Collapse
|
73
|
Neuroprotective effect of novel celecoxib derivatives against spinal cord injury via attenuation of COX-2, oxidative stress, apoptosisand inflammation. Bioorg Chem 2020; 101:104044. [PMID: 32629287 DOI: 10.1016/j.bioorg.2020.104044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
A novel series of celecoxib derivatives were synthesized and evaluated for cyclooxygenase (COX-1/COX-2) inhibitory activities for benefit in spinal cord injury (SCI). The title compounds were synthesized by conventional methods in good yields and subsequently tested for inhibitory activity against COX-1/COX-2. The most potent COX-2 inhibitor among the tested derivatives was further assayed for protective effect against experimental SCI of Sprague-Dawley rats. The designed compounds showed considerable inhibition of COX-2 as compared to COX-1 revealing compound 7m as most potent inhibitor of COX-2 isoenzyme (IC50 = 0.04 µM). The expression of mitochondrial apoptotic genes (Bcl-2 and Bax) together with COX-2 and iNOS was restored near to normal as evidenced by western blot analysis in SCI rats. Taken altogether, compound 7m was identified as most potent inhibitor of COX-2. It also showed protective action against SCI via attenuation of COX-2, oxidative stress and apoptosis and inflammation in Male Sprague-Dawley rats.
Collapse
|
74
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
75
|
Stem Cell Therapy for Neurogenic Bladder After Spinal Cord Injury: Clinically Possible? Int Neurourol J 2020; 24:S3-10. [PMID: 32482052 PMCID: PMC7285699 DOI: 10.5213/inj.2040150.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Neurogenic bladder (NB) after spinal cord injury (SCI) is a common complication that inhibits normal daily activities and reduces the quality of life. Regrettably, the current therapeutic methods for NB are inadequate. Therefore, numerous studies have been conducted to develop new treatments for NB associated with SCI. Moreover, a myriad of preclinical and clinical trials on the effects and safety of stem cell therapy in patients with SCI have been performed, and several studies have demonstrated improvements in urodynamic parameters, as well as in sensory and motor function, after stem cell therapy. These results are promising; however, further high-quality clinical studies are necessary to compensate for a lack of randomized trials, the modest number of participants, variation in the types of stem cells used, and inconsistency in routes of administration.
Collapse
|
76
|
de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol 2020; 91-92:176-187. [PMID: 32438055 DOI: 10.1016/j.matbio.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Alterations in the composition of the extracellular matrix (ECM) critically regulate the cellular responses in tissue repair, remodeling, and fibrosis. After injury, proteolytic degradation of ECM generates bioactive ECM fragments, named matricryptins, exposing cryptic sites with actions distinct from the parent molecule. Matricryptins contribute to the regulation of inflammatory, reparative, and fibrogenic cascades through effects on several different cell types both in acute and chronic settings. Fibroblasts play a major role in matricryptin generation not only as the main cellular source of ECM proteins, but also as producers of matrix-degrading proteases. Moreover, several matricryptins exert fibrogenic or reparative actions by modulating fibroblast phenotype and function. This review manuscript focuses on the mechanisms of matricyptin generation in injured and remodeling tissues with an emphasis on fibroblast-matricryptin interactions.
Collapse
Affiliation(s)
- Lisandra E de Castro Brás
- The Brody School of Medicine, East Carolina University, Department of Physiology, Greenville 27858 North Carolina.
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
77
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
78
|
Yang T, Dai Y, Chen G, Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 2020; 14:78. [PMID: 32317938 PMCID: PMC7147295 DOI: 10.3389/fncel.2020.00078] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Recovery from spinal cord injury (SCI) remains an unsolved problem. As a major component of the SCI lesion, the glial scar is primarily composed of scar-forming astrocytes and plays a crucial role in spinal cord regeneration. In recent years, it has become increasingly accepted that the glial scar plays a dual role in SCI recovery. However, the underlying mechanisms of this dual role are complex and need further clarification. This dual role also makes it difficult to manipulate the glial scar for therapeutic purposes. Here, we briefly discuss glial scar formation and some representative components associated with scar-forming astrocytes. Then, we analyze the dual role of the glial scar in a dynamic perspective with special attention to scar-forming astrocytes to explore the underlying mechanisms of this dual role. Finally, taking the dual role of the glial scar into account, we provide several pieces of advice on novel therapeutic strategies targeting the glial scar and scar-forming astrocytes.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.,Medical School of Nantong University, Nantong, China
| | - YuJuan Dai
- Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
79
|
Immunolocalization of Keratan Sulfate in Rat Spinal Tissues Using the Keratanase Generated BKS-1(+) Neoepitope: Correlation of Expression Patterns with the Class II SLRPs, Lumican and Keratocan. Cells 2020; 9:cells9040826. [PMID: 32235499 PMCID: PMC7226845 DOI: 10.3390/cells9040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022] Open
Abstract
This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.
Collapse
|
80
|
Li X, Liu R, Yu Z, He D, Zong W, Wang M, Xie M, Wang W, Luo X. Microglial Hv1 exacerbates secondary damage after spinal cord injury in mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30272-2. [PMID: 32087974 DOI: 10.1016/j.bbrc.2020.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The pathological process of spinal cord injury (SCI) is complex, particularly during secondary damage that triggers a multiphasic glial reaction consisting of both detrimental and beneficial effects. Deletion of a novel voltage-gated proton channel (Hv1) functionally expressed in microglia has been shown to confer neuroprotection during ischemic stroke. Here, we hypothesized that microglial Hv1 may also participate in the process of SCI through modulating glial responses. To test this hypothesis, we employed an SCI model in Hv1-knockout (Hv1-/-) and wild type (WT) mice and assessed resulting microglial polarization, accumulation of pro-inflammatory cytokines, astrocytic activation, oligodendrocytic apoptosis, lesion sizes, and demyelinated areas. Compared with post-SCI results in WT mice, post-SCI Hv1-/- mice exhibited an M2-dominant microglial polarization, decreased accumulation of microglia, and reduced production of pro-inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β). Additionally, Hv1-/- mice had significantly attenuated reactive astrogliosis and reduced expression of chondroitin sulphate proteoglycans (CSPGs) after SCI. Furthermore, Hv1 deficiency reduced SCI-induced oligodendrocytic apoptosis, demyelinated areas, and cavity formation. Collectively, our results provide the first evidence suggesting that microglial Hv1 may be a multi-mechanism therapeutic target for the treatment of SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
81
|
Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury. Neurochem Res 2020; 45:1072-1085. [PMID: 32052258 DOI: 10.1007/s11064-020-02984-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a vital role in the process of a variety of retinal ganglion cells (RGCs) degenerative diseases including traumatic optic neuropathy (TON). Retinal microglial activation is believed as a harbinger of TON, and robust microglial activation can aggravate trauma-induced RGCs degeneration, which ultimately leads to RGCs loss. Toll like receptor 4 (TLR4)-triggered inflammation is of great importance in retinal inflammatory response after optic nerve injury. CD11b on macrophage and brain microglia can inhibit TLR4-triggered inflammation. However, the functional role of CD11b in retinal microglia is not well understood. Here, using an optic nerve crush model and CD11b gene deficient mice, we found that CD11b protein expression was mainly on retinal microglia, significantly increased after optic nerve injury, and still maintained at a high level till at least 28 days post crush. Compared with wild type mice, following acute optic nerve injury, CD11b deficient retinae exhibited more exacerbated microglial activation, accelerated RGCs degeneration, less growth associated protein-43 expression, as well as more proinflammatory cytokines such as interleukin-6 and tumor necrosis factor α while less anti-inflammatory factors such as arginase-1 and interleukin-10 production. We conclude that CD11b is essential in regulating retinal microglial activation and neuroinflammatory responses after acute optic nerve injury, which is critical for subsequent RGCs degeneration and loss.
Collapse
|
82
|
Macke EL, Henningsen E, Jessen E, Zumwalde NA, Landowski M, Western DE, Lee WH, Liu C, Gruenke NP, Doebley AL, Miller S, Pattnaik B, Ikeda S, Gumperz JE, Ikeda A. Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in skt Mice. Genetics 2020; 214:121-134. [PMID: 31754016 PMCID: PMC6944401 DOI: 10.1534/genetics.119.302834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022] Open
Abstract
One major aspect of the aging process is the onset of chronic, low-grade inflammation that is highly associated with age-related diseases. The molecular mechanisms that regulate these processes have not been fully elucidated. We have identified a spontaneous mutant mouse line, small with kinky tail (skt), that exhibits accelerated aging and age-related disease phenotypes including increased inflammation in the brain and retina, enhanced age-dependent retinal abnormalities including photoreceptor cell degeneration, neurodegeneration in the hippocampus, and reduced lifespan. By positional cloning, we identified a deletion in chondroitin sulfate synthase 1 (Chsy1) that is responsible for these phenotypes in skt mice. CHSY1 is a member of the chondroitin N-acetylgalactosaminyltransferase family that plays critical roles in the biosynthesis of chondroitin sulfate, a glycosaminoglycan (GAG) that is attached to the core protein to form the chondroitin sulfate proteoglycan (CSPG). Consistent with this function, the Chsy1 mutation dramatically decreases chondroitin sulfate GAGs in the retina and hippocampus. In addition, macrophage and neutrophil populations appear significantly altered in the bone marrow and spleen of skt mice, suggesting an important role for CHSY1 in the functioning of these immune cell types. Thus, our study reveals a previously unidentified impact of CHSY1 in the retina and hippocampus. Specifically, chondroitin sulfate (CS) modification of proteins by CHSY1 appears critical for proper regulation of immune cells of the myeloid lineage and for maintaining the integrity of neuronal tissues, since a defect in this gene results in increased inflammation and abnormal phenotypes associated with age-related diseases.
Collapse
Affiliation(s)
- Erica L Macke
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Erika Henningsen
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Erik Jessen
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Nicholas A Zumwalde
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Daniel E Western
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Che Liu
- Institute for Molecular Virology, University of Wisconsin-Madison, Wisconsin 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin 53706
| | - Nathan P Gruenke
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Anna-Lisa Doebley
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Samuel Miller
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Bikash Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Wisconsin 53706
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Wisconsin 53706
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Wisconsin 53706
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
83
|
Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plast 2019; 2019:8924634. [PMID: 31827499 PMCID: PMC6885262 DOI: 10.1155/2019/8924634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice. Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice. In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures. This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with epilepticus in PTZ-kindled mice.
Collapse
|
84
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
85
|
Gene Expression Profiling of the Extracellular Matrix Signature in Macrophages of Different Activation Status: Relevance for Skin Wound Healing. Int J Mol Sci 2019; 20:ijms20205086. [PMID: 31615030 PMCID: PMC6829210 DOI: 10.3390/ijms20205086] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissue architecture and is a major effector of cell behavior during skin repair and inflammation. Macrophages are involved in all stages of skin repair but only limited knowledge exists about macrophage-specific expression and regulation of ECM components. In this study, we used transcriptome profiling and bioinformatic analysis to define the unique expression of ECM-associated genes in cultured macrophages. Characterization of the matrisome revealed that most genes were constitutively expressed and that several genes were uniquely regulated upon interferon gamma (IFNγ) and dexamethasone stimulation. Among those core matrisome and matrisome-associated components transforming growth factor beta (TGFβ)-induced, matrix metalloproteinase 9 (MMP9), elastin microfibril interfacer (EMILIN)-1, netrin-1 and gliomedin were also present within the wound bed at time points that are characterized by profound macrophage infiltration. Hence, macrophages are a source of ECM components in vitro as well as during skin wound healing, and identification of these matrisome components is a first step to understand the role and therapeutic value of ECM components in macrophages and during wound healing.
Collapse
|
86
|
Wang C, Gong Z, Huang X, Wang J, Xia K, Ying L, Shu J, Yu C, Zhou X, Li F, Liang C, Chen Q. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Am J Cancer Res 2019; 9:7016-7032. [PMID: 31660084 PMCID: PMC6815951 DOI: 10.7150/thno.37601] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Spinal cord injury (SCI) remains a critical clinical challenge. The controlled release of FGF4, a novel neuroprotective factor, from a versatile Laponite hydrogel to the injured site was a promising strategy to promote axon regeneration and motor functional recovery after SCI. Methods: Characterization of Laponite, Laponite/Heparin (Lap/Hep) and Laponite/Heparin loaded with FGF4 (Lap/Hep@FGF4) hydrogels were measured by rheometer. Multiple comprehensive evaluations were used to detect motor functional recovery and the axonal rehabilitation after Lap/Hep@FGF4 treatment in vivo (SCI rat model). Moreover, microtubule dynamic and energy transportation, which regulated axonal regeneration was evaluated by Lap/Hep@FGF4 gel in vitro (primary neuron). Results: FGF4 released from Lap/Hep gel locally achieves strong protection and regeneration after SCI. The Lap/Hep@FGF4 group revealed remarkable motor functional recovery and axonal regrowth after SCI through suppressing inflammatory reaction, increasing remyelination and reducing glial/fibrotic scars. Furthermore, the underlying mechanism of axonal rehabilitation were demonstrated via enhancing microtubule stability and regulating mitochondrial localization after Lap/Hep@FGF4 treatment. Conclusion: This promising sustained release system provides a synergistic effective approach to enhance recovery after SCI underlying a novel mechanism of axonal rehabilitation, and shows a translational prospect for the clinical treatment of SCI.
Collapse
|
87
|
Dysregulation of Hyaluronan Homeostasis During White Matter Injury. Neurochem Res 2019; 45:672-683. [PMID: 31542857 DOI: 10.1007/s11064-019-02879-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.
Collapse
|
88
|
Li SY, Li ZX, He ZG, Wang Q, Li YJ, Yang Q, Wu DZ, Zeng HL, Xiang HB. Quantitative proteomics reveal the alterations in the spinal cord after myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2019; 44:1877-1887. [PMID: 31545482 PMCID: PMC6777674 DOI: 10.3892/ijmm.2019.4341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
There is now substantial evidence that myocardial ischemia‑reperfusion (IR) injury affects the spinal cord and brain, and that interactions may exist between these two systems. In the present study, the spinal cord proteomes were systematically analyzed after myocardial IR injury, in an attempt to identify the proteins involved in the processes. The myocardial IR injury rat model was first established by cross clamping the left anterior descending coronary artery for 30‑min ischemia, followed by reperfusion for 2 h, which resulted in a significant histopathological and functional myocardial injury. Then using the stable isotope dimethyl labeling quantitative proteomics strategy, a total of 2,362 shared proteins with a good distribution and correlation were successfully quantified. Among these proteins, 33 were identified which were upregulated and 57 were downregulated in the spinal cord after myocardial IR injury, which were involved in various biological processes, molecular function and cellular components. Based on these proteins, the spinal cord protein interaction network regulated by IR injury, including apoptosis, microtubule dynamics, stress‑activated signaling and cellular metabolism was established. These heart‑spinal cord interactions help explain the apparent randomness of cardiac events and provide new insights into future novel therapies to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Qing Yang
- College of Life Science, Wuhan University, Wuhan, Hubei 430076, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| |
Collapse
|
89
|
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019; 10:3879. [PMID: 31462640 PMCID: PMC6713740 DOI: 10.1038/s41467-019-11707-7] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury results in severe and irreversible loss of function. The injury triggers a complex cascade of inflammatory and pathological processes, culminating in formation of a scar. While traditionally referred to as a glial scar, the spinal injury scar in fact comprises multiple cellular and extracellular components. This multidimensional nature should be considered when aiming to understand the role of scarring in limiting tissue repair and recovery. In this Review we discuss recent advances in understanding the composition and phenotypic characteristics of the spinal injury scar, the oversimplification of defining the scar in binary terms as good or bad, and the development of therapeutic approaches to target scar components to enable improved functional outcome after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK.
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
90
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2019; 171:41-61. [PMID: 31398392 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
91
|
Toll-like receptor 9 antagonism modulates astrocyte function and preserves proximal axons following spinal cord injury. Brain Behav Immun 2019; 80:328-343. [PMID: 30953770 DOI: 10.1016/j.bbi.2019.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that innate immune receptors play important, yet controversial, roles in traumatic central nervous system (CNS) injury. Despite many advances, the contributions of toll-like receptors (TLRs) to spinal cord injury (SCI) remain inadequately defined. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), administered intrathecally, improves the functional and histopathological outcomes of SCI. However, the molecular and cellular changes that occur at the injury epicenter following ODN 2088 treatment are not completely understood. Following traumatic SCI, a glial scar, consisting primarily of proliferating reactive astrocytes, forms at the injury epicenter and assumes both beneficial and detrimental roles. Increased production of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes inhibits the regeneration of injured axons. Astrocytes express TLR9, which can be activated by endogenous ligands released by damaged cells. It is not yet known how TLR9 antagonism modifies astrocyte function at the glial scar and how this affects axonal preservation or re-growth following SCI. The present studies were undertaken to address these issues. We report that in female mice sustaining a severe mid-thoracic (T8) contusion injury, the number of proliferating astrocytes in regions rostral and caudal to the lesion border increased significantly by 30- and 24-fold, respectively, compared to uninjured controls. Intrathecal ODN 2088 treatment significantly reduced the number of proliferating astrocytes by 60% in both regions. This effect appeared to be, at least partly, mediated through the direct actions of ODN 2088 on astrocytes, since the antagonist decreased proliferation in pure SC astrocyte cultures by preventing the activation of the Erk/MAPK signaling pathway. In addition, CSPG immunoreactivity at the lesion border was more pronounced in vehicle-treated injured mice compared to uninjured controls and was significantly reduced following administration of ODN 2088 to injured mice. Moreover, ODN 2088 significantly decreased astrocyte migration in an in vitro scratch-wound assay. Anterograde tracing and quantification of corticospinal tract (CST) axons in injured mice, indicated that ODN 2088 preserves proximal axons. Taken together, these findings suggest that ODN 2088 modifies the glial scar and creates a milieu that fosters axonal protection at the injury site.
Collapse
|
92
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
93
|
Bas E, Anwar MR, Van De Water TR. TGF β‐1 and WNT Signaling Pathways Collaboration Associated with Cochlear Implantation Trauma‐Induced Fibrosis. Anat Rec (Hoboken) 2019; 303:608-618. [DOI: 10.1002/ar.24064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Esperanza Bas
- Department of OtolaryngologyUniversity of Miami Ear Institute, University of Miami Miller School of Medicine Miami Florida 33136
| | - Mir R. Anwar
- Department of OtolaryngologyUniversity of Miami Ear Institute, University of Miami Miller School of Medicine Miami Florida 33136
| | - Thomas R. Van De Water
- Department of OtolaryngologyUniversity of Miami Ear Institute, University of Miami Miller School of Medicine Miami Florida 33136
| |
Collapse
|
94
|
Dzyubenko E, Manrique-Castano D, Kleinschnitz C, Faissner A, Hermann DM. Role of immune responses for extracellular matrix remodeling in the ischemic brain. Ther Adv Neurol Disord 2018; 11:1756286418818092. [PMID: 30619510 PMCID: PMC6299337 DOI: 10.1177/1756286418818092] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is one of the key components contributing to the devastating outcome of ischemic stroke. Starting with stroke onset, inflammatory processes contribute both to cell damage and tissue remodeling. The early release of alarmins triggers the upregulation of multiple proinflammatory cytokines, resulting in the compromised integrity of the blood–brain barrier. From this moment on, the infiltration of peripheral immune cells, reactive gliosis and extracellular matrix (ECM) alterations become intricately intertwined and act as one unit during the tissue remodeling. While the mechanisms of leukocyte and glia activation are amply reviewed, the field of ECM modification remains as yet under explored. In this review, we focus on the interplay between neuroinflammatory cascades and ECM in the ischemic brain. By summarizing the currently available evidence obtained by in vitro research, animal experimentation and human studies, we aim to propose a new direction for the future investigation of stroke recovery.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany
| |
Collapse
|
95
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices. IBRO Rep 2018; 6:1-17. [PMID: 30582064 PMCID: PMC6293036 DOI: 10.1016/j.ibror.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/24/2018] [Indexed: 02/04/2023] Open
Abstract
In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability.
Collapse
Key Words
- CNS, central nervous system
- CSPG, chondroitin sulfate proteoglycans
- ChABC, chondroitinase ABC
- ECM, extracellular cellular matrix
- Extracellular matrix
- HA, hyaluronic acid
- HABP, hyaluronic acid binding protein
- Hapln1, hyaluronan and proteoglycan link protein 1
- PNN, perineuronal ntes
- Perineuronal nets
- Piriform cortex
- Proteoglycans
- Somatosensory cortex
- WFA, Wisteria floribunda agglutinin
- Wisteria floribunda
- a.u., arbitrary units
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
96
|
Tica J, Didangelos A. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns. Front Neurosci 2018; 12:808. [PMID: 30519154 PMCID: PMC6262295 DOI: 10.3389/fnins.2018.00808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Following spinal cord injury in mammals, maladaptive inflammation, and matrix deposition drive tissue scarring and permanent loss of function. In contrast, axolotls regenerate their spinal cord after severe injury fully and without scarring. To explore previously unappreciated molecules and pathways that drive tissue responses after spinal cord injury, we performed a 4-way intersection of rat and axolotl transcriptomics datasets and isolated shared genes with similar or differential expression at days 1, 3, and 7 after spinal cord injury in both species. Systems-wide differences and similarities between the two species are described in detail using public-domain computational tools and key differentially regulated genes are highlighted. Amongst persistent differential expression in matching neuronal genes (upregulated in axolotls but downregulated in rats) and nucleic acid metabolism genes (downregulated in axolotls but upregulated in rats), we found multiple extracellular matrix genes that were upregulated in both species after spinal cord injury and all time-points (days 1, 3, and 7), indicating the importance of extracellular matrix remodeling in wound healing. Moreover, the archetypal transcription factor SP1, which was consistently upregulated in rats but was unchanged in axolotls, was predicted as a potential transcriptional regulator of classic inflammatory response genes in rats most of which were not regulated in regenerating axolotls. This analysis offers an extensive comparative platform between a non-regenerating mammal and a regenerating urodele after spinal cord injury. To better understand regeneration vs. scarring mechanisms it is important to understand consistent molecular differences as well as similarities after experimental spinal cord injury.
Collapse
Affiliation(s)
- Jure Tica
- Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Athanasios Didangelos
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
97
|
Sanchez S, Lemmens S, Baeten P, Sommer D, Dooley D, Hendrix S, Gou Fabregas M. HDAC3 Inhibition Promotes Alternative Activation of Macrophages but Does Not Affect Functional Recovery after Spinal Cord Injury. Exp Neurobiol 2018; 27:437-452. [PMID: 30429652 PMCID: PMC6221838 DOI: 10.5607/en.2018.27.5.437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
After spinal cord injury (SCI), monocyte derived macrophages play a detrimental role. Histone deacetylases (HDACs) are central epigenetic regulators of macrophage-polarization. We hypothesized that HDAC3 inhibition suppresses the pro-inflammatory macrophage phenotype (M1), promotes the anti-inflammatory phenotype (M2) and improves functional recovery after SCI. Therefore, two inhibitors of HDAC3 were selected, namely scriptaid and RGFP966. The impact on macrophage polarization was studied by investigating the effect on gene and protein expression of selected M1 and M2 markers. We show that scriptaid differentially influences M1 and M2 markers. It increases CD86 and iNOS gene expression and decreases GPR18, CD38, FPR2 and Arg-1 gene expression as well as the production of IL-6 and NO. RGFP966 primarily increased the expression of the M2 markers Arg-1 and Ym1 and reduced the production of IL-6 (M1). RGFP966 and scriptaid reduced the formation of foamy macrophages. Finally, to investigate the impact of HDAC3 inhibition on functional recovery after SCI, we studied the effects of RGFP966 and scriptaid in an in vivo T-cut hemisection SCI model. Histological analyses were performed on spinal cord sections to determine lesion size and astrogliosis, demyelinated area and selected infiltrating immune cells. RGFP966 and scriptaid did not affect functional recovery or histopathological outcome after SCI. In conclusion, these results indicate that specific HDAC3 inhibition with RGFP966 promotes alternative activation of macrophages and reduces the formation of foamy macrophages, but does not lead to a better functional recovery after SCI.
Collapse
Affiliation(s)
- Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Paulien Baeten
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Daniela Sommer
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| | - Myriam Gou Fabregas
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek BE3590, Belgium
| |
Collapse
|
98
|
Allard DE, Wang Y, Li JJ, Conley B, Xu EW, Sailer D, Kimpston C, Notini R, Smith CJ, Koseoglu E, Starmer J, Zeng XL, Howard JF, Hoke A, Scherer SS, Su MA. Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest 2018; 128:4727-4741. [PMID: 30222134 PMCID: PMC6159985 DOI: 10.1172/jci99308] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain-Barre syndrome (GBS) are inflammatory neuropathies that affect humans and are characterized by peripheral nerve myelin destruction and macrophage-containing immune infiltrates. In contrast to the traditional view that the peripheral nerve is simply the target of autoimmunity, we report here that peripheral nerve Schwann cells exacerbate the autoimmune process through extracellular matrix (ECM) protein induction. In a spontaneous autoimmune peripheral polyneuropathy (SAPP) mouse model of inflammatory neuropathy and CIDP nerve biopsies, the ECM protein periostin (POSTN) was upregulated in affected sciatic nerves and was primarily expressed by Schwann cells. Postn deficiency delayed the onset and reduced the extent of neuropathy, as well as decreased the number of macrophages infiltrating the sciatic nerve. In an in vitro assay, POSTN promoted macrophage chemotaxis in an integrin-AM (ITGAM) and ITGAV-dependent manner. The PNS-infiltrating macrophages in SAPP-affected nerves were pathogenic, since depletion of macrophages protected against the development of neuropathy. Our findings show that Schwann cells promote macrophage infiltration by upregulating Postn and suggest that POSTN is a novel target for the treatment of macrophage-associated inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Yan Wang
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Jian Joel Li
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bridget Conley
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Erin W. Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - David Sailer
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Caellaigh Kimpston
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Rebecca Notini
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | | | - Emel Koseoglu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Neurology Department, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Xiaopei L. Zeng
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - James F. Howard
- Department of Neurology, UNC-CH, Chapel Hill, North Carolina, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maureen A. Su
- Department of Microbiology and Immunology and
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
- Department of Pediatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
99
|
Liao C, Zhu X, Zhou L, Wang Z, Liu W, Chen J. Visualize and quantify the structural alteration of the rat spinal cord injury based on multiphoton microscopy. Lasers Med Sci 2018; 34:561-569. [PMID: 30196440 DOI: 10.1007/s10103-018-2630-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
The development of imaging technique to visualize and quantify the structural alteration of the spinal cord injury (SCI) may lead to better understanding and treatments of the injuries. In this work, multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was tentatively applied to quantitatively visualize the cellular microstructures of SCI to demonstrate the feasibility and superiority of MPM in SCI imaging. High-contrast MPM images of normal and injured spinal cord tissue were obtained for comparison. Moreover, the changes of injured spinal cord were characterized by the quantitative analysis of the MPM images. These results showed that MPM combined with quantitative method has the ability to identify the characteristics of spinal cord injury including the changes in the contents of nerve fibers and extracellular matrix. With the advancement of MPM, we believe that this technique has great potential to provide the histological diagnosis for the monitoring and evaluation of SCI.
Collapse
Affiliation(s)
- Chenxi Liao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoqin Zhu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| | - Linquan Zhou
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Zhenyu Wang
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Wenge Liu
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
100
|
Yu B, Gu X. Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Front Med 2018; 13:131-137. [PMID: 30159670 DOI: 10.1007/s11684-018-0642-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|