51
|
Lim HS, Sohn E, Kim YJ, Kim BY, Kim JH, Jeong SJ. Ethanol Extract of Elaeagnus glabra f. oxyphylla Branches Alleviates the Inflammatory Response Through Suppression of Cyclin D3/Cyclin-Dependent Kinase 11p58 Coupled to Lipopolysaccharide-Activated BV-2 Microglia. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of neurodegenerative diseases and is characterized by microglial dysregulation. Here, we explored the beneficial effects of a leaf extract of Elaeagnus glabra f. oxyphylla (EGFO), a native medicinal plant to Korea, South China, Japan, and Taiwan, on neuroinflammation using lipopolysaccharide (LPS)-stimulated BV-2 microglia. Levels of the inflammatory mediators were determined by enzyme-linked immunosorbent assays and reverse transcription–polymerase chain reaction. The phospho levels of mitogen-activated protein kinases, which are key kinase molecules in the inflammatory signaling pathway in microglia, were analyzed by Western blotting. Treatment with EGFO significantly suppressed the LPS-mediated induction of nitric oxide and prostaglandin E2. Consistently, EGFO treatment in LPS-stimulated BV-2 cells markedly reduced the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. The best concentration of EGFO that could reduce TNF-α and IL-6 was 100 μg/mL. EGFO relatively reduced the messenger RNA expression of TNF-α and IL-6 by 0.36 and 0.32-fold ratio, respectively, compared to LPS treatment. Moreover, EGFO markedly reduced the phospho levels of p38 and the c-jun N-terminal kinase. Furthermore, antibody microarray and immunoblotting data revealed that the pharmacological mechanisms driving the antineuroinflammatory action of EGFO involve prevention of the cyclin D3/cyclin-dependent kinase 11p58 (CDK11p58) interaction. In conclusion, our results demonstrate that EGFO alleviates the inflammatory response through the suppression of cyclin D3/CDK11p58 coupling in LPS-activated BV-2 microglia. We propose the potential of EGFO as a novel drug candidate for neurodegenerative diseases by targeting neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eunjin Sohn
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Bu-Yeo Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Soo-Jin Jeong
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
52
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
53
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
54
|
Mollaeva MR, Nikolskaya E, Beganovskaya V, Sokol M, Chirkina M, Obydennyi S, Belykh D, Startseva O, Mollaev MD, Yabbarov N. Oxidative Damage Induced by Phototoxic Pheophorbide a 17-Diethylene Glycol Ester Encapsulated in PLGA Nanoparticles. Antioxidants (Basel) 2021; 10:1985. [PMID: 34943088 PMCID: PMC8750000 DOI: 10.3390/antiox10121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Veronika Beganovskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Sergey Obydennyi
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Dmitry Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| |
Collapse
|
55
|
Dias-Pedroso D, Ramalho JS, Sardão VA, Jones JG, Romão CC, Oliveira PJ, Vieira HLA. Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. Mol Neurobiol 2021; 59:916-931. [PMID: 34797521 DOI: 10.1007/s12035-021-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.
Collapse
Affiliation(s)
| | - José S Ramalho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal. .,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculdade de Ciências e Tecnologia, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
56
|
Cleland NRW, Al-Juboori SI, Dobrinskikh E, Bruce KD. Altered substrate metabolism in neurodegenerative disease: new insights from metabolic imaging. J Neuroinflammation 2021; 18:248. [PMID: 34711251 PMCID: PMC8555332 DOI: 10.1186/s12974-021-02305-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS), are relatively common and devastating neurological disorders. For example, there are 6 million individuals living with AD in the United States, a number that is projected to grow to 14 million by the year 2030. Importantly, AD, PD and MS are all characterized by the lack of a true disease-modifying therapy that is able to reverse or halt disease progression. In addition, the existing standard of care for most NDs only addresses the symptoms of the disease. Therefore, alternative strategies that target mechanisms underlying the neuropathogenesis of disease are much needed. Recent studies have indicated that metabolic alterations in neurons and glia are commonly observed in AD, PD and MS and lead to changes in cell function that can either precede or protect against disease onset and progression. Specifically, single-cell RNAseq studies have shown that AD progression is tightly linked to the metabolic phenotype of microglia, the key immune effector cells of the brain. However, these analyses involve removing cells from their native environment and performing measurements in vitro, influencing metabolic status. Therefore, technical approaches that can accurately assess cell-specific metabolism in situ have the potential to be transformative to our understanding of the mechanisms driving AD. Here, we review our current understanding of metabolism in both neurons and glia during homeostasis and disease. We also evaluate recent advances in metabolic imaging, and discuss how emerging modalities, such as fluorescence lifetime imaging microscopy (FLIM) have the potential to determine how metabolic perturbations may drive the progression of NDs. Finally, we propose that the temporal, regional, and cell-specific characterization of brain metabolism afforded by FLIM will be a critical first step in the rational design of metabolism-focused interventions that delay or even prevent NDs.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kimberley D Bruce
- Endocrinology, Metabolism and Diabetes, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
57
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
58
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:2527-2551. [PMID: 34515874 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
59
|
Critical Role of Mortalin/GRP75 in Endothelial Cell Dysfunction Associated with Acute Lung Injury. Shock 2021; 54:245-255. [PMID: 31490354 DOI: 10.1097/shk.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mortalin/GRP75 (glucose regulated protein 75), a member of heat shock protein 70 family of chaperones, is involved in several cellular processes including proliferation and signaling, and plays a pivotal role in cancer and neurodegenerative disorders. In this study, we sought to determine the role of mortalin/GRP75 in mediating vascular inflammation and permeability linked to the pathogenesis of acute lung injury (ALI). In an aerosolized bacterial lipopolysaccharide inhalation mouse model of ALI, we found that administration of mortalin/GRP75 inhibitor mean kinetic temperature-077, both prophylactically and therapeutically, protected against polymorphonuclear leukocytes influx into alveolar airspaces, microvascular leakage, and expression of pro-inflammatory mediators such as interleukin-1β, E-selectin, and tumor necrosis factor TNFα. Consistent with this, thrombin-induced inflammation in cultured human endothelial cells (EC) was also protected upon before and after treatment with mean kinetic temperature-077. Similar to pharmacological inhibition of mortalin/GRP75, siRNA-mediated depletion of mortalin/GRP75 also blocked thrombin-induced expression of proinflammatory mediators such as intercellular adhesion molecule-1 and vascular adhesion molecule-1. Mechanistic analysis in EC revealed that inactivation of mortalin/GRP75 interfered with the binding of the liberated NF-κB to the DNA, thereby leading to inhibition of downstream expression of adhesion molecules, cytokines, and chemokines. Importantly, thrombin-induced Ca signaling and EC permeability were also prevented upon mortalin/GRP75 inactivation/depletion. Thus, this study provides evidence for a novel role of mortalin/GRP75 in mediating EC inflammation and permeability associated with ALI.
Collapse
|
60
|
Jassim AH, Inman DM, Mitchell CH. Crosstalk Between Dysfunctional Mitochondria and Inflammation in Glaucomatous Neurodegeneration. Front Pharmacol 2021; 12:699623. [PMID: 34366851 PMCID: PMC8334009 DOI: 10.3389/fphar.2021.699623] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1β release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Claire H. Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
61
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
62
|
Hsiao CB, Bedi H, Gomez R, Khan A, Meciszewski T, Aalinkeel R, Khoo TC, Sharikova AV, Khmaladze A, Mahajan SD. Telomere Length Shortening in Microglia: Implication for Accelerated Senescence and Neurocognitive Deficits in HIV. Vaccines (Basel) 2021; 9:721. [PMID: 34358137 PMCID: PMC8310244 DOI: 10.3390/vaccines9070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The widespread use of combination antiretroviral therapy (cART) has led to the accelerated aging of the HIV-infected population, and these patients continue to have a range of mild to moderate HIV-associated neurocognitive disorders (HAND). Infection results in altered mitochondrial function. The HIV-1 viral protein Tat significantly alters mtDNA content and enhances oxidative stress in immune cells. Microglia are the immune cells of the central nervous system (CNS) that exhibit a significant mitotic potential and are thus susceptible to telomere shortening. HIV disrupts the normal interplay between microglia and neurons, thereby inducing neurodegeneration. HIV cART contributes to the inhibition of telomerase activity and premature telomere shortening in activated peripheral blood mononuclear cells (PBMC). However, limited information is available on the effect of cART on telomere length (TL) in microglia. Although it is well established that telomere shortening induces cell senescence and contributes to the development of age-related neuro-pathologies, the effect of HIV-Tat on telomere length in human microglial cells and its potential contribution to HAND are not well understood. It is speculated that in HAND intrinsic molecular mechanisms that control energy production underlie microglia-mediated neuronal injury. TL, telomerase and mtDNA expression were quantified in microglial cells using real time PCR. Cellular energetics were measured using the Seahorse assay. The changes in mitochondrial function were examined by Raman Spectroscopy. We have also examined TL in the PBMC obtained from HIV-1 infected rapid progressors (RP) on cART and those who were cART naïve, and observed a significant decrease in telomere length in RP on cART as compared to RP's who were cART naïve. We observed a significant decrease in telomerase activity, telomere length and mitochondrial function, and an increase in oxidative stress in human microglial cells treated with HIV Tat. Neurocognitive impairment in HIV disease may in part be due to accelerated neuro-pathogenesis in microglial cells, which is attributable to increased oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chiu-Bin Hsiao
- Medicine Institute, School of Medicine, Infectious Diseases, Drexel University, Positive Health Clinic, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Harneet Bedi
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| | - Raquel Gomez
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| | - Ayesha Khan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| | - Taylor Meciszewski
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| | - Ravikumar Aalinkeel
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| | - Ting Chean Khoo
- Department of Physics, University at Albany SUNY, Albany, NY 12222, USA; (T.C.K.); (A.V.S.); (A.K.)
| | - Anna V. Sharikova
- Department of Physics, University at Albany SUNY, Albany, NY 12222, USA; (T.C.K.); (A.V.S.); (A.K.)
| | - Alexander Khmaladze
- Department of Physics, University at Albany SUNY, Albany, NY 12222, USA; (T.C.K.); (A.V.S.); (A.K.)
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; (H.B.); (R.G.); (A.K.); (T.M.); (R.A.)
| |
Collapse
|
63
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021; 12:705920. [PMID: 34249016 PMCID: PMC8262770 DOI: 10.3389/fimmu.2021.705920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence exists that patients with chronic neurological conditions, which includes progressive multiple sclerosis, display pathological changes in neural metabolism and mitochondrial function. However, it is unknown if a similar degree of metabolic dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of chronic active lesions), and (ii) whether these alterations underlie a unique pathogenic phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell metabolism and mitochondrial function govern the function of chronic active microglia and macrophages brain infiltrates and identify new metabolic targets for therapeutic approaches aimed at reducing smoldering neuroinflammation.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
64
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
65
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
66
|
Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, Lavitrano M, Papa M. The Glioblastoma Microenvironment: Morphology, Metabolism, and Molecular Signature of Glial Dynamics to Discover Metabolic Rewiring Sequence. Int J Mol Sci 2021; 22:3301. [PMID: 33804873 PMCID: PMC8036663 DOI: 10.3390/ijms22073301] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | | | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Francesca Gargano
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Michele Cerasuolo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5211401, Israel
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
67
|
Mi Y, Qi G, Brinton RD, Yin F. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxid Redox Signal 2021; 34:611-630. [PMID: 32143551 PMCID: PMC7891225 DOI: 10.1089/ars.2020.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Significance: Alzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. Recent Advances: While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation via metabolic reprogramming of glial cells. Critical Issues: Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. Future Directions: We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, versus unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Department of Neurology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
68
|
Fairley LH, Wong JH, Barron AM. Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Front Immunol 2021; 12:624538. [PMID: 33717134 PMCID: PMC7947196 DOI: 10.3389/fimmu.2021.624538] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-associated terminal neurodegenerative disease with no effective treatments. Dysfunction of innate immunity is implicated in the pathogenesis of AD, with genetic studies supporting a causative role in the disease. Microglia, the effector cells of innate immunity in the brain, are highly plastic and perform a diverse range of specialist functions in AD, including phagocytosing and removing toxic aggregates of beta amyloid and tau that drive neurodegeneration. These immune functions require high energy demand, which is regulated by mitochondria. Reflecting this, microglia have been shown to be highly metabolically flexible, reprogramming their mitochondrial function upon inflammatory activation to meet their energy demands. However, AD-associated genetic risk factors and pathology impair microglial metabolic programming, and metabolic derailment has been shown to cause innate immune dysfunction in AD. These findings suggest that immunity and metabolic function are intricately linked processes, and targeting microglial metabolism offers a window of opportunity for therapeutic treatment of AD. Here, we review evidence for the role of metabolic programming in inflammatory functions in AD, and discuss mitochondrial-targeted immunotherapeutics for treatment of the disease.
Collapse
Affiliation(s)
- Lauren H Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
69
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
70
|
Maher P. Investigations into the Role of Metabolism in the Inflammatory Response of BV2 Microglial Cells. Antioxidants (Basel) 2021; 10:109. [PMID: 33466581 PMCID: PMC7828726 DOI: 10.3390/antiox10010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Although the hallmarks of Alzheimer's disease (AD) are amyloid beta plaques and neurofibrillary tangles, there is growing evidence that neuroinflammation, mitochondrial dysfunction and oxidative stress play important roles in disease development and progression. A major risk factor for the development of AD is diabetes, which is also characterized by oxidative stress and mitochondrial dysfunction along with chronic, low-grade inflammation. Increasing evidence indicates that in immune cells, the induction of a pro-inflammatory phenotype is associated with a shift from oxidative phosphorylation (OXPHOS) to glycolysis. However, whether hyperglycemia also contributes to this shift is not clear. Several different approaches including culturing BV2 microglial cells in different carbon sources, using enzyme inhibitors and knocking down key pathway elements were used in conjunction with bacterial lipopolysaccharide (LPS) activation to address this question. The results indicate that while high glucose favors NO production, pro-inflammatory cytokine production is highest in the presence of carbon sources that drive OXPHOS. In addition, among the carbon sources that drive OXPHOS, glutamine is a very potent inducer of IL6 production. This effect is dampened in the presence of glucose. Together, these results may provide new prospects for the therapeutic manipulation of neuroinflammation in the context of diabetes and AD.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
71
|
Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends Neurosci 2020; 43:854-869. [DOI: 10.1016/j.tins.2020.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
|
72
|
Shippy DC, Ulland TK. Microglial Immunometabolism in Alzheimer's Disease. Front Cell Neurosci 2020; 14:563446. [PMID: 33192310 PMCID: PMC7531234 DOI: 10.3389/fncel.2020.563446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
73
|
Jurga AM, Paleczna M, Kuter KZ. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front Cell Neurosci 2020; 14:198. [PMID: 32848611 PMCID: PMC7424058 DOI: 10.3389/fncel.2020.00198] [Citation(s) in RCA: 523] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cellular markers. This often determines their role in physiology or pathology of brain functioning. The species differences between rodent and human markers add complexity to the whole picture. Furthermore, due to activation, microglia show a broad spectrum of phenotypes ranging from the pro-inflammatory, potentially cytotoxic M1 to the anti-inflammatory, scavenging, and regenerative M2. A precise distinction of specific phenotypes is nowadays essential to study microglial functions and tissue state in such a quickly changing environment. Due to the overwhelming amount of data on multiple sets of markers that is available for such studies, the choice of appropriate markers is a scientific challenge. This review gathers, classifies, and describes known and recently discovered protein markers expressed by microglial cells in their different phenotypes. The presented microglia markers include qualitative and semi-quantitative, general and specific, surface and intracellular proteins, as well as secreted molecules. The information provided here creates a comprehensive and practical guide through the current knowledge and will facilitate the choosing of proper, more specific markers for detailed studies on microglia and neuroinflammatory mechanisms in various physiological as well as pathological conditions. Both basic research and clinical medicine need clearly described and validated molecular markers of microglia phenotype, which are essential in diagnostics, treatment, and prevention of diseases engaging glia activation.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Martyna Paleczna
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Z Kuter
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
74
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
75
|
Sagar MAK, Ouellette JN, Cheng KP, Williams JC, Watters JJ, Eliceiri KW. Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors. NEUROPHOTONICS 2020; 7:035003. [PMID: 32821772 PMCID: PMC7414793 DOI: 10.1117/1.nph.7.3.035003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
Significance: A major obstacle to studying resident microglia has been their similarity to infiltrating immune cell types and the lack of unique protein markers for identifying the functional state. Given the role of microglia in all neural diseases and insults, accurate tools for detecting their function beyond morphologic alterations are necessary. Aims: We hypothesized that microglia would have unique metabolic fluxes in reduced nicotinamide adenine dinucleotide (NADH) that would be detectable by relative changes in fluorescence lifetime imaging microscopy (FLIM) parameters, allowing for identification of their activation status. Fluorescence lifetime of NADH has been previously demonstrated to show differences in metabolic fluxes. Approach: Here, we investigate the use of the label-free method of FLIM-based detection of the endogenous metabolic cofactor NADH to identify microglia and characterize their activation status. To test whether microglial activation would also confer a unique NADH lifetime signature, murine primary microglial cultures and adult mice were treated with lipopolysaccharide (LPS). Results: We found that LPS-induced microglia activation correlates with detected changes in NADH lifetime and its free-bound ratio. This indicates that NADH lifetime can be used to monitor microglia activation in a label-free fashion. Moreover, we found that there is an LPS dose-dependent change associated with reactive microglia lifetime fluxes, which is also replicated over time after LPS treatment. Conclusion: We have demonstrated a label-free way of monitoring microglia activation via quantifying lifetime of endogenous metabolic coenzyme NADH. Upon LPS-induced activation, there is a significant change in the fluorescence lifetime following activation. Together, these results indicate that NADH FLIM approaches can be used as a method to characterize microglia activation state, both in vitro and ex vivo.
Collapse
Affiliation(s)
- Md. Abdul K. Sagar
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Jonathan N. Ouellette
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin P. Cheng
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Justin C. Williams
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Jyoti J. Watters
- University of Wisconsin-Madison, Department of Comparative Biosciences, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
76
|
Harry GJ, Childers G, Giridharan S, Hernandes IL. An association between mitochondria and microglia effector function. What do we think we know? NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2020; 7:150-165. [PMID: 32934971 PMCID: PMC7489447 DOI: 10.20517/2347-8659.2020.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While resident innate immune cells of the central nervous system, the microglia, represent a cell population unique in origin, microenvironment, and longevity, they assume many properties displayed by peripheral macrophages. One prominent shared property is the ability to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS) upon activation by the pro-inflammatory stimuli lipopolysaccharide. This shift serves to meet specific cellular demands and allows for cell survival, similar to the Warburg effect demonstrated in cancer cells. In contrast, normal survelliance phenotype or stimulation to a non-proinflammatory phenotype relies primarily on OXPHOS and fatty acid oxidation. Thus, mitochondria appear to function as a pivotal signaling platform linking energy metabolism and macrophage polarization upon activation. These unique shifts in cell bioenergetics in response to different stimuli are essential for proper effector responses at sites of infection, inflammation, or injury. Here we present a summary of recent developments as to how these dynamics characterized in peripheral macrophages are displayed in microglia. The new insights provided by an increased understanding of metabolic reprogramming in macrophages may allow for translation to the CNS and a better understanding of microglia heterogeneity, regulation, and function.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Gabrielle Childers
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
- Current affiliation: Gabrielle Childers, University of Alabama, Birmingham, AL
| | - Sahana Giridharan
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
- Giridharan, Duke University, Durham, NC
| | - Irisyunuel Lopez Hernandes
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| |
Collapse
|
77
|
Acetamidine-Based iNOS Inhibitors as Molecular Tools to Counteract Inflammation in BV2 Microglial Cells. Molecules 2020; 25:molecules25112646. [PMID: 32517272 PMCID: PMC7321217 DOI: 10.3390/molecules25112646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.
Collapse
|
78
|
Gómez-Budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem Int 2020; 136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
79
|
He K, Liang X, Wei T, Liu N, Wang Y, Zou L, Bai C, Yao Y, Wu T, Kong L, Zhang T, Xue Y, Tang M. A metabolomics study: CdTe/ZnS quantum dots induce polarization in mice microglia. CHEMOSPHERE 2020; 246:125629. [PMID: 31927360 DOI: 10.1016/j.chemosphere.2019.125629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a metabolomic analysis was used to reveal the neurotoxicity of the CdTe/ZnS QDs via microglia polarization. A gas chromatography-mass spectrometer (GC-MS) was applied to uncover the metabonomic changes in microglia (BV-2 cell line) after exposure to 1.25 μM CdTe/ZnS QDs. 11 annotated metabolic pathways (KEGG database) were significantly changed in all exposed groups (3 h, 6 h, 12 h), 3 of them were related to glucose metabolism. The results of the Seahorse XFe96 Analyzer indicated that the CdTe/ZnS QDs increased the glycolysis level of microglia by 86% and inhibited the aerobic respiration level by 54% in a non-hypoxic environment. In vivo study, 3 h after the injection of CdTe/ZnS QDs (2.5 mM) through the tail vein in mice, the concentration of the CdTe/ZnS QDs in hippocampus reached the peak (1.25 μM). The polarization level of microglia (Iba-1 immunofluorescence) increased 2.7 times. In vitro study, the levels of the extracellular TNF-α, IL-1β and NO of BV-2 cells were all increased significantly after a 6 h or 12 h exposure. According to the results of the Cell Counting Kit-8, after a 6 h or 12 h exposure to the CdTe/ZnS QDs, the exposed microglia could significantly decrease the number of neurons (HT-22 cell line). This study proved that CdTe/ZnS QDs could polarize microglia in the brain and cause secondary inflammatory damage to neurons. There are potential risks in the application of the CdTe/ZnS QDs in brain tissue imaging.
Collapse
Affiliation(s)
- Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Linyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
80
|
Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 2020; 329:113310. [PMID: 32289316 DOI: 10.1016/j.expneurol.2020.113310] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/25/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Innate immune responses, particularly activation of macrophages and microglia, are increasingly implicated in CNS disorders. It is now appreciated that the heterogeneity of functions adopted by these cells dictates neuropathophysiology. Research efforts to characterize the range of pro-inflammatory and anti-inflammatory phenotypes and functions adopted by microglia and macrophages are fueled by the potential for inflammatory cells to both exacerbate neurodegeneration and promote repair/disease resolution. The stimulation-based, M1/M2 classification system has emerged over the last decade as a common language to discuss macrophage and microglia heterogeneity across different fields. However, discontinuities between phenotypic markers and function create potential hurdles for the utility of the M1/M2 system in the development of effective immunomodulatory therapeutics for neuroinflammation. A framework to approach macrophage and microglia heterogeneity from a function-based phenotypic approach comes from rapidly emerging evidence that metabolic processes regulate immune cell activation. This concept of immunometabolism, however, is only beginning to unfold in the study of neurodegeneration and has yet to receive much focus in the context of neurotrauma. In this review, we first discuss the current views of macrophage and microglia heterogeneity and limitations of the M1/M2 classification system for neuropathological studies. We then review and discuss the current literature supporting metabolism as a regulator of microglia function in vitro. Lastly, we evaluate the evidence that metabolism regulates microglia and macrophage phenotype in vivo in models of Alzheimer's disease (AD), stroke, traumatic brain injury (TBI) and spinal cord injury (SCI).
Collapse
Affiliation(s)
- Nicholas A Devanney
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Andrew N Stewart
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - John C Gensel
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
81
|
Lauro C, Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front Immunol 2020; 11:493. [PMID: 32265936 PMCID: PMC7099404 DOI: 10.3389/fimmu.2020.00493] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia sustain normal brain functions continuously monitoring cerebral parenchyma to detect neuronal activities and alteration of homeostatic processes. The metabolic pathways involved in microglia activity adapt at and contribute to cell phenotypes. While the mitochondrial oxidative phosphorylation is highly efficient in ATP production, glycolysis enables microglia with a faster rate of ATP production, with the generation of intermediates for cell growth and cytokine production. In macrophages, pro-inflammatory stimuli induce a metabolic switch from oxidative phosphorylation to glycolysis, a phenomenon similar to the Warburg effect well characterized in tumor cells. Modification of metabolic functions allows macrophages to properly respond to a changing environment and many evidence suggest that, similarly to macrophages, microglial cells are capable of a plastic use of energy substrates. Neuroinflammation is a common condition in many neurodegenerative diseases and the metabolic reprograming of microglia has been reported in neurodegeneration. Here we review the existing data on microglia metabolism and the connections with neuroinflammatory diseases, highlighting how metabolic changes contribute to module the homeostatic functions of microglia.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| |
Collapse
|
82
|
Afridi R, Kim JH, Rahman MH, Suk K. Metabolic Regulation of Glial Phenotypes: Implications in Neuron-Glia Interactions and Neurological Disorders. Front Cell Neurosci 2020; 14:20. [PMID: 32116564 PMCID: PMC7026370 DOI: 10.3389/fncel.2020.00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are multifunctional, non-neuronal components of the central nervous system with diverse phenotypes that have gained much attention for their close involvement in neuroinflammation and neurodegenerative diseases. Glial phenotypes are primarily characterized by their structural and functional changes in response to various stimuli, which can be either neuroprotective or neurotoxic. The reliance of neurons on glial cells is essential to fulfill the energy demands of the brain for its proper functioning. Moreover, the glial cells perform distinct functions to regulate their own metabolic activities, as well as work in close conjunction with neurons through various secreted signaling or guidance molecules, thereby constituting a complex network of neuron-glial interactions in health and disease. The emerging evidence suggests that, in disease conditions, the metabolic alterations in the glial cells can induce structural and functional changes together with neuronal dysfunction indicating the importance of neuron-glia interactions in the pathophysiology of neurological disorders. This review covers the recent developments that implicate the regulation of glial phenotypic changes and its consequences on neuron-glia interactions in neurological disorders. Finally, we discuss the possibilities and challenges of targeting glial metabolism as a strategy to treat neurological disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jong-Heon Kim
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
83
|
Qi G, Mi Y, Yin F. Cellular Specificity and Inter-cellular Coordination in the Brain Bioenergetic System: Implications for Aging and Neurodegeneration. Front Physiol 2020; 10:1531. [PMID: 31969828 PMCID: PMC6960098 DOI: 10.3389/fphys.2019.01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
As an organ with a highly heterogenous cellular composition, the brain has a bioenergetic system that is more complex than peripheral tissues. Such complexities are not only due to the diverse bioenergetic phenotypes of a variety of cell types that differentially contribute to the metabolic profile of the brain, but also originate from the bidirectional metabolic communications and coupling across cell types. While brain energy metabolism and mitochondrial function have been extensively investigated in aging and age-associated neurodegenerative disorders, the role of various cell types and their inter-cellular communications in regulating brain metabolic and synaptic functions remains elusive. In this review, we summarize recent advances in differentiating bioenergetic phenotypes of neurons, astrocytes, and microglia in the context of their functional specificity, and their metabolic shifts upon aging and pathological conditions. Moreover, the metabolic coordination between the two most abundant cell populations in brain, neurons and astrocytes, is discussed regarding how they jointly establish a dynamic and responsive system to maintain brain bioenergetic homeostasis and to combat against threats such as oxidative stress, lipid toxicity, and neuroinflammation. Elucidating the mechanisms by which brain cells with distinctive bioenergetic phenotypes individually and collectively shape the bioenergetic system of the brain will provide rationale for spatiotemporally precise interventions to sustain a metabolic equilibrium that is resilient against synaptic dysfunction in aging and neurodegeneration.
Collapse
Affiliation(s)
- Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, United States
- Department of Pharmacology, College of Medicine Tucson, Tucson, AZ, United States
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
84
|
Tu D, Gao Y, Yang R, Guan T, Hong JS, Gao HM. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J Neuroinflammation 2019; 16:255. [PMID: 31805953 PMCID: PMC6896486 DOI: 10.1186/s12974-019-1659-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic dysfunction and neuroinflammation are increasingly implicated in Parkinson's disease (PD). The pentose phosphate pathway (PPP, a metabolic pathway parallel to glycolysis) converts glucose-6-phosphate into pentoses and generates ribose-5-phosphate and NADPH thereby governing anabolic biosynthesis and redox homeostasis. Brains and immune cells display high activity of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP. A postmortem study reveals dysregulation of G6PD enzyme in brains of PD patients. However, spatial and temporal changes in activity/expression of G6PD in PD remain undetermined. More importantly, it is unclear how dysfunction of G6PD and the PPP affects neuroinflammation and neurodegeneration in PD. METHODS We examined expression/activity of G6PD and its association with microglial activation and dopaminergic neurodegeneration in multiple chronic PD models generated by an intranigral/intraperitoneal injection of LPS, daily subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 6 days, or transgenic expression of A53T α-synuclein. Primary microglia were transfected with G6PD siRNAs and treated with lipopolysaccharide (LPS) to examine effects of G6PD knockdown on microglial activation and death of co-cultured neurons. LPS alone or with G6PD inhibitor(s) was administrated to mouse substantia nigra or midbrain neuron-glia cultures. While histological and biochemical analyses were conducted to examine microglial activation and dopaminergic neurodegeneration in vitro and in vivo, rotarod behavior test was performed to evaluate locomotor impairment in mice. RESULTS Expression and activity of G6PD were elevated in LPS-treated midbrain neuron-glia cultures (an in vitro PD model) and the substantia nigra of four in vivo PD models. Such elevation was positively associated with microglial activation and dopaminergic neurodegeneration. Furthermore, inhibition of G6PD by 6-aminonicotinamide and dehydroepiandrosterone and knockdown of microglial G6PD attenuated LPS-elicited chronic dopaminergic neurodegeneration. Mechanistically, microglia with elevated G6PD activity/expression produced excessive NADPH and provided abundant substrate to over-activated NADPH oxidase (NOX2) leading to production of excessive reactive oxygen species (ROS). Knockdown and inhibition of G6PD ameliorated LPS-triggered production of ROS and activation of NF-кB thereby dampening microglial activation. CONCLUSIONS Our findings indicated that G6PD-mediated PPP dysfunction and neuroinflammation exacerbated each other mediating chronic dopaminergic neurodegeneration and locomotor impairment. Insight into metabolic-inflammatory interface suggests that G6PD and NOX2 are potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Dezhen Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Yun Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Ru Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Tian Guan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China.
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
85
|
Hu Y, Mai W, Chen L, Cao K, Zhang B, Zhang Z, Liu Y, Lou H, Duan S, Gao Z. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia 2019; 68:1031-1045. [PMID: 31793691 DOI: 10.1002/glia.23760] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Microglia constantly survey the brain microenvironment and rapidly adopt different phenotypes in response to environmental stimuli. Such dynamic functions require a unique metabolism and bioenergetics. However, little is known about the basic metabolism of microglia and how metabolic changes regulate microglia function. Here, we uncover that microglia activation is accompanied by extensive transcriptional changes in glucose and lipid metabolism-related genes. Using metabolic flux assays, we found that LPS, a prototype of the pathogen-associated molecular patterns (PAMPs), significantly enhanced glycolysis but suppressed oxidative phosphorylation (OXPHOS) in primary cultured microglia. By contrast, ATP, a known damage-associated molecular pattern (DAMPs) that triggers sterile activation of microglia, boosted both glycolysis and OXPHOS. Importantly, both LPS and ATP activated the mechanistic target of rapamycin (mTOR) pathway and enhanced the intracellular reactive oxygen species (ROS). Inhibition of mTOR activity suppressed glycolysis and ROS production in both conditions but exerted different effects on OXPHOS: it attenuated the ATP-induced elevation of OXPHOS, yet had no impact on the LPS-induced suppression of OXPHOS. Further, inhibition of mTOR or glycolysis decreased production of LPS-induced proinflammatory cytokines and ATP-induced tumor necrosis factor-α (TNF-α) and brain derived neurotrophic factor (BDNF) in microglia. Our study reveals a critical role for mTOR in the regulation of metabolic programming of microglia to shape their distinct functions under different states and shed light on the potential application of targeting metabolism to interfere with microglia-mediated neuroinflammation in multiple disorders.
Collapse
Affiliation(s)
- Yaling Hu
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihao Mai
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Lunhao Chen
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Zhang
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijun Liu
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Huifang Lou
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Duan
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
86
|
Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia 2019; 68:1085-1099. [PMID: 31743527 DOI: 10.1002/glia.23753] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Sexual differentiation of the brain during early development likely underlies the strong sex biases prevalent in many neurological conditions. Mounting evidence indicates that microglia, the innate immune cells of the central nervous system, are intricately involved in these sex-specific processes of differentiation. In this review, we synthesize literature demonstrating sex differences in microglial number, morphology, transcriptional state, and functionality throughout spatiotemporal development as well as highlight current literature regarding ontogeny of microglia. Along with vanRyzin et al. in this issue, we explore the idea that differences in microglia imparted by chromosomal or ontogeny-related programming can influence microglial-driven sexual differentiation of the brain, as well as the idea that extrinsic differences in the male and female brain microenvironment may in turn impart sex differences in microglia.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
87
|
Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2019; 184:101719. [PMID: 31704314 DOI: 10.1016/j.pneurobio.2019.101719] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
In the past few years it has become increasingly clear that an understanding of the interaction between metabolism and immune function can provide an insight into cellular responses to challenges. Significant progress has been made in terms of how macrophages are metabolically re-programmed in response to inflammatory stimuli but, to date, little emphasis has been placed on evaluating equivalent changes in microglia. The need to make progress is driven by the fact that, while microglial activation and the cell's ability to adopt an inflammatory phenotype is necessary to fulfil the neuroprotective function of the cell, persistent activation of microglia and the associated neuroinflammation is at the heart of several neurodegenerative diseases. Understanding the metabolic changes that accompany microglial responses may broaden our perspective on how dysfunction might arise and be tempered. This review will evaluate the current literature that addresses the interplay between inflammation and metabolic reprogramming in microglia, reflecting on the parallels that exist with macrophages. It will consider the changes that take place with age including those that have been reported in neurons and astrocytes with the development of non-invasive imaging techniques, and reflect on the literature that is currently available relating to metabolic reprogramming of microglia with age and in neurodegeneration. Finally it will consider the possibility that manipulating microglial metabolism may provide a valuable approach to modulating neuroinflammation.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
88
|
Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR IN BIOMEDICINE 2019; 32:e4164. [PMID: 31437326 PMCID: PMC6817388 DOI: 10.1002/nbm.4164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloé F Najac
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
89
|
dos‐Santos‐Pereira M, Guimarães FS, Del‐Bel E, Raisman‐Vozari R, Michel PP. Cannabidiol prevents LPS‐induced microglial inflammation by inhibiting ROS/NF‐κB‐dependent signaling and glucose consumption. Glia 2019; 68:561-573. [DOI: 10.1002/glia.23738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mauricio dos‐Santos‐Pereira
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Franscisco S. Guimarães
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
- Faculdade de Medicina, Departamento de FarmacologiaUniversidade de São Paulo Ribeirão Preto Brazil
| | - Elaine Del‐Bel
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Rita Raisman‐Vozari
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| | - Patrick P. Michel
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| |
Collapse
|
90
|
Carrillo-Jimenez A, Deniz Ö, Niklison-Chirou MV, Ruiz R, Bezerra-Salomão K, Stratoulias V, Amouroux R, Yip PK, Vilalta A, Cheray M, Scott-Egerton AM, Rivas E, Tayara K, García-Domínguez I, Garcia-Revilla J, Fernandez-Martin JC, Espinosa-Oliva AM, Shen X, St George-Hyslop P, Brown GC, Hajkova P, Joseph B, Venero JL, Branco MR, Burguillos MA. TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Rep 2019; 29:697-713.e8. [PMID: 31618637 DOI: 10.1016/j.celrep.2019.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid β plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Alejandro Carrillo-Jimenez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | | | - Rocio Ruiz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Karina Bezerra-Salomão
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rachel Amouroux
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ping Kei Yip
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Eloy Rivas
- Department of Pathology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Khadija Tayara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Garcia-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Carlos Fernandez-Martin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Maria Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Xianli Shen
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0SP, UK
| | - Guy Charles Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jose Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miguel Ramos Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Miguel Angel Burguillos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| |
Collapse
|
91
|
Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci 2019; 77:48-59. [PMID: 30707928 PMCID: PMC6663660 DOI: 10.1016/j.ijdevneu.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Microglial activation followed by neuroinflammation is a defense mechanism of the brain to eliminate harmful endogenous and exogenous materials including pathogens and damaged tissues, while excessive or chronic neuroinflammation may cause or exacerbate neurodegeneration observed in brain injuries and neurodegenerative diseases. Depending on conditions/environments during activation, microglia acquire distinct phenotypes, such as pro-inflammatory, anti-inflammatory, and disease-associated phenotypes, and show their ability to phagocytose various objects and produce pro-and anti-inflammatory mediators. Prevention of excessive inflammation by regulating the microglia's pro/anti-inflammatory balance is important for alleviating progression of brain injuries and diseases. Among many factors involved in the regulation of microglial phenotypes, cellular energy status plays an important role. Adenosine monophosphate-activated protein kinase (AMPK), which serves as a master sensor and regulator of energy balance, is considered a candidate molecule. Accumulating evidence from adult rodent studies indicates that AMPK activation promotes anti-inflammatory responses in microglia exposed to danger signals or various stressors mainly through inhibition of the nuclear factor κB (NF-κB) signaling and activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) pathway. However, AMPK activation in neurons exposed to stressors/insults may exacerbate neuronal damage if AMPK activation is excessive or prolonged. While AMPK affects microglial activation states and neuronal cell survival rates in both the adult and the developing brain, studies in the developing brain are still scarce, even though activated AMPK is highly expressed especially in the neonatal brain. More in depth studies in the developing brain are important, because neuroinflammation/neurodegeneration occurred during development can result in long-lasting brain damage.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center 550 First Avenue, New York, NY 10016, USA
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai 1468 Madison Avenue, Annenberg 19-201, New York, NY 10029, USA
| |
Collapse
|
92
|
Cotto B, Natarajanseenivasan K, Langford D. HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 2019; 181:101616. [PMID: 31108127 PMCID: PMC6742565 DOI: 10.1016/j.pneurobio.2019.101616] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
The brain is particularly sensitive to changes in energy supply. Defects in glucose utilization and mitochondrial dysfunction are hallmarks of nearly all neurodegenerative diseases and are also associated with the cognitive decline that occurs as the brain ages. Chronic neuroinflammation driven by glial activation is commonly implicated as a contributing factor to neurodegeneration and cognitive impairment. Human immunodeficiency virus-1 (HIV-1) disrupts normal brain homeostasis and leads to a spectrum of HIV-associated neurocognitive disorders (HAND). HIV-1 activates stress responses in the brain and triggers a state of chronic neuroinflammation. Growing evidence suggests that inflammatory processes and bioenergetics are interconnected in the propagation of neuronal dysfunction. Clinical studies of people living with HIV and basic research support the notion that HIV-1 creates an environment in the CNS that interrupts normal metabolic processes at the cellular level to collectively alter whole brain metabolism. In this review, we highlight reports of abnormal brain metabolism from clinical studies and animal models of HIV-1. We also describe diverse CNS cell-specific changes in bioenergetics associated with HIV-1. Moreover, we propose that attention should be given to adjunctive therapies that combat sources of metabolic dysfunction as a mean to improve and/or prevent neurocognitive impairments.
Collapse
Affiliation(s)
- Bianca Cotto
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Kalimuthusamy Natarajanseenivasan
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Dianne Langford
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
93
|
Lauro C, Chece G, Monaco L, Antonangeli F, Peruzzi G, Rinaldo S, Paone A, Cutruzzolà F, Limatola C. Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Front Cell Neurosci 2019; 13:414. [PMID: 31607865 PMCID: PMC6755341 DOI: 10.3389/fncel.2019.00414] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
In the CNS, the chemokine CX3CL1 (fractalkine) is expressed on neurons while its specific receptor CX3CR1 is expressed on microglia and macrophages. Microglia play an important role in health and disease through CX3CL1/CX3CR1 signaling, and in many neurodegenerative disorders, microglia dysregulation has been associated with neuro-inflammation. We have previously shown that CX3CL1 has neuroprotective effects against cerebral ischemia injury. Here, we investigated the involvement of CX3CL1 in the modulation of microglia phenotype and the underlying neuroprotective effect on ischemia injury. The expression profiles of anti- and pro-inflammatory genes showed that CX3CL1 markedly inhibited microglial activation both in vitro and in vivo after permanent middle cerebral artery occlusion (pMCAO), accompanied by an increase in the expression of anti-inflammatory genes. Moreover, CX3CL1 induces a metabolic switch in microglial cells with an increase in the expression of genes related to the oxidative pathway and a reduction in those related to the glycolytic pathway, which is the metabolic state associated to the pro-inflammatory phenotype for energy production. The data reported in this paper suggest that CX3CL1 protects against cerebral ischemia modulating the activation state of microglia and its metabolism in order to restrain inflammation and organize a neuroprotective response against the ischemic insult.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| |
Collapse
|
94
|
Yu H, Jiang X, Lin X, Zhang Z, Wu D, Zhou L, Liu J, Yang X. Hippocampal Subcellular Organelle Proteomic Alteration of Copper-Treated Mice. Toxicol Sci 2019; 164:250-263. [PMID: 29617964 DOI: 10.1093/toxsci/kfy082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Copper neurotoxicity has been implicated in multiple neurological diseases. However, there is a lack of deep understanding on copper neurotoxicity, especially for low-dose copper exposure. In this study, we investigated the effects of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on hippocampal mitochondrial and nuclear proteome in mice by 2-dimensional fluorescence difference gel electrophoresis coupled with MALDI-TOF-MS/MS. Behavioral tests revealed that low-dose copper caused spatial memory impairment, DNA oxidative damage as well as loss of synaptic proteins. Proteomic analysis revealed modulation of 31 hippocampal mitochondrial proteins (15 increased and 16 decreased), and 46 hippocampal nuclear proteins (18 increased and 28 decreased) in copper-treated versus untreated mice. Bioinformatic analysis indicated that these differentially expressed proteins are mainly involved energy metabolism (NDUV1, COX5B, IDH3A, and PGAM1), synapses (complexin-2, synapsin-2), DNA damage (PDIA3), apoptosis (GRP75), and oxidative stress (SODC, PRDX3). Among these differentially expressed proteins, synapsin-2, a synaptic-related protein, was found to be significantly decreased as confirmed by Western-blot analysis. In addition, we found that superoxide dismutase [Cu-Zn] (SODC), a copper ion target protein, was identified to be decreased in copper-treated mice versus untreated mice. We also found that stathmin (STMN1), a microtubule-destabilizing neuroprotein, was significantly decreased in hippocampal nuclei of copper-treated mice versus untreated mice. Taken together, we conclude that low-dose copper exposure causes spatial memory impairment and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome, particularly the proteins related to respiratory chain, synaptic vesicle fusion, axonal/neurtic integrity, and oxidative stress. The change of STMN1 and SODC may represent early novel biomarkers of copper neurotoxicity.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Guangdong, China
| | - Xuemei Lin
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
95
|
Macedo F, Dos Santos LS, Glezer I, da Cunha FM. Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Front Neurosci 2019; 13:342. [PMID: 31068773 PMCID: PMC6491681 DOI: 10.3389/fnins.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a predisposing factor for numerous morbidities, including those affecting the central nervous system. Hypothalamic inflammation is a hallmark of obesity and is believed to participate in the onset and progression of the obese phenotype, by promoting changes in neuronal functions involved in the control of metabolism. The activation of brain immune cells in the hypothalamus, which are represented by microglia and brain macrophages, is associated with obesity and has been the focus of intense research. Despite the significant body of knowledge gathered on this topic, obesity-induced metabolic changes in brain cells involved in innate immune responses are still poorly characterized due, at least in part, to limitations in the existing experimental methods. Since the metabolic state influences immune responses of microglia and other myeloid cells, the understanding and characterization of the effects of cellular metabolism on the functions of these cells, and their impact on brain integrity, are crucial for the development of efficient therapeutic interventions for individuals exposed to a long-term high fat diet (HFD). Here we review and speculate on the cellular basis that may underlie the observed changes in the reactivity and metabolism of the innate immune cells of the brain in diet-induced obesity (DIO), and discuss important points that deserve further investigation.
Collapse
Affiliation(s)
- Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Souza Dos Santos
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
96
|
Paolicelli RC, Angiari S. Microglia immunometabolism: From metabolic disorders to single cell metabolism. Semin Cell Dev Biol 2019; 94:129-137. [PMID: 30954657 DOI: 10.1016/j.semcdb.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Since the observation that obesity-associated low-grade chronic inflammation is a crucial driver for the onset of systemic metabolic disorders such as type 2 diabetes, a number of studies have highlighted the role of both the innate and the adaptive immune system in such pathologies. Moreover, researchers have recently demonstrated that immune cells can modulate their intracellular metabolic profile to control their activation and effector functions. These discoveries represent the foundations of a research area known as "immunometabolism", an emerging field of investigation that may lead to the development of new-generation therapies for the treatment of inflammatory and metabolic diseases. Most of the studies in the field have focused their attention on both circulating white blood cells and leukocytes residing within metabolic tissues such as adipose tissue, liver and pancreas. However, immunometabolism of immune cells in non-metabolic tissues, including central nervous system microglia, have long been neglected. In this review, we highlight the most recent findings suggesting that microglial cells play a central role in metabolic disorders and that interfering with the metabolic profile of microglia can modulate their functionality and pathogenicity in neurological diseases.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland.
| |
Collapse
|
97
|
Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci Rep 2019; 39:BSR20190072. [PMID: 30867255 PMCID: PMC6449521 DOI: 10.1042/bsr20190072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Microglial activation by oleate and palmitate differentially modulates brain inflammatory status. However, the metabolic reprogramming supporting these reactive phenotypes remains unknown. Employing real-time metabolic measurements and lipidomic analysis, we show that both fatty acids promote microglial oxidative metabolism, while lipopolysaccharide (LPS) enhances glycolytic rates. Interestingly, oleate treatment was followed by enrichment in storage lipids bound to polyunsaturated fatty acids (PUFA), in parallel with protection against oxidative imbalance. Palmitate, in turn, induced a distinct lipid distribution defined by PUFA linked to membrane phospholipids, which are more susceptible to lipid peroxidation and inflammatory signaling cascades. This distribution was mirrored by LPS treatment, which led to a strong pro-inflammatory phenotype in microglia. Thus, although both oleate and palmitate preserve mitochondrial function, a contrasting lipid distribution supports differences in fatty acid-induced neuroinflammation. These data reinforce the concept that reactive microglial profiles are achieved by stimulus-evoked remodeling in cell metabolism.
Collapse
|
98
|
Desler C, Lillenes MS, Tønjum T, Rasmussen LJ. The Role of Mitochondrial Dysfunction in the Progression of Alzheimer's Disease. Curr Med Chem 2019; 25:5578-5587. [PMID: 28618998 PMCID: PMC6446443 DOI: 10.2174/0929867324666170616110111] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 11/22/2022]
Abstract
The current molecular understanding of Alzheimer's disease (AD) has still not resulted in successful interventions. Mitochondrial dysfunction of the AD brain is currently emerging as a hallmark of this disease. One mitochondrial function often affected in AD is oxidative phosphorylation responsible for ATP production, but also for production of reactive oxygen species (ROS) and for the de novo synthesis of pyrimidines. This paper reviews the role of mitochondrial produced ROS and pyrimidines in the aetiology of AD and their proposed role in oxidative degeneration of macromolecules, synthesis of essential phospholipids and maintenance of mitochondrial viability in the AD brain.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Meryl S Lillenes
- Healthy Brain Aging Centre (HBAC), Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tone Tønjum
- Healthy Brain Aging Centre (HBAC), Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
99
|
Aldana BI. Microglia-Specific Metabolic Changes in Neurodegeneration. J Mol Biol 2019; 431:1830-1842. [PMID: 30878483 DOI: 10.1016/j.jmb.2019.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The high energetic demand of the brain deems this organ rather sensitive to changes in energy supply. Therefore, even minor alterations in energy metabolism may underlie detrimental disturbances in brain function, contributing to the generation and progression of neurodegenerative diseases. Considerable evidence supports the key role of deficits in cerebral energy metabolism, particularly hypometabolism of glucose and mitochondrial dysfunction, in the pathophysiology of brain disorders. Major breakthroughs in the field of bioenergetics and neurodegeneration have been achieved through the use of in vitro and in vivo models of disease as well as sophisticated neuroimaging techniques in patients, yet these have been mainly focused on neuron and astrocyte function. Remarkably, the subcellular metabolic mechanisms linked to neurodegeneration that operate in other crucial brain cell types such as microglia have remain obscured, although they are beginning to be unraveled. Microglia, the brain-resident immune sentinels, perform a diverse range of functions that require a high-energy expenditure, namely, their role in brain development, maintenance of the neural environment, response to injury and infection, and activation of repair programs. Interestingly, another key mechanism underlying several neurodegenerative diseases is neuroinflammation, which can be associated with chronic microglia activation. Considering that many brain disorders are accompanied by changes in brain energy metabolism and sustained inflammation, and that energy metabolism has a strong influence on the inflammatory responses of microglia, the emerging significance of microglial energy metabolism in neurodegeneration is highlighted in this review.
Collapse
Affiliation(s)
- Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
100
|
1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) Induces the Apoptosis of Dopaminergic Neurons via Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1292891. [PMID: 30984332 PMCID: PMC6431519 DOI: 10.1155/2019/1292891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Several in vitro studies have revealed the neurotoxicity of 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo). However, the underlying mechanism has not been completely elucidated, particularly in vivo. This study was designed to study the neurotoxicity of TaClo in vivo by stereotactically injecting TaClo into the striatum of Wistar rats. After the TaClo injections, rats were subjected to an open field test, and their distance travelled and tracks showed decreasing trends over time. The results of liquid chromatography-mass spectrometry analysis showed that the motor dysfunction of the TaClo-treated rats was accompanied by reduced dopamine levels in the striatum. Based on the diffusion tensor imaging data, the apparent diffusion coefficient of the nigrostriatal pathway was significantly increased, and subsequent histological staining revealed the demyelination of nigrostriatal fibres after the TaClo treatment. TaClo induced a loss of tyrosine hydroxylase-positive cells in the substantia nigra compacta. Regarding the underlying mechanism, TaClo caused oxidative stress in the nigrostriatal system by increasing the production of reactive oxygen species and reducing the mitochondria membrane potential. Meanwhile, the elevated expression of Iba-1, TNF-α, IL-6, Cox-2, and iNOS indicated microglial activation and a strong innate immune response in the nigrostriatal system. In addition, activated caspase-3 levels were increased. Thus, both mitochondrial impairments and the innate immune response are involved in TaClo-induced neurotoxicity.
Collapse
|