51
|
Nagato A, Silva FL, Silva AR, Bezerra FS, Oliveira ML, Belló-Klein A, Cristovao Porto L, Santos Valenca S. Hyperoxia-induced lung injury is dose dependent in Wistar rats. Exp Lung Res 2010; 35:713-28. [PMID: 19895324 DOI: 10.3109/01902140902853184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxygen is indispensable for aerobic respiration. However, the effects of hyperoxia on the lungs are poorly defined. The aim of the present study was to determine the effects of different oxygen concentrations on rat lungs. Rats (n = 6 per group) were exposed to hyperoxia for 90 minutes at 3 different concentrations: 50% (H50%), 75% (H75%), or 100% (H100%). Bronchoalveolar lavage (BAL) was performed and the right lungs were removed for histological analyses. The BAL samples were assayed for lipid peroxidation and antioxidant status using biochemical methods. Hyperoxia induced influxes of macrophages (1.8- to 2.3-fold) and neutrophils (7.0- to 10.2-fold) into the lungs compared to the control group (exposed to normoxia; n = 6). Histological analyses of the hyperoxic groups showed hemorrhagic areas and septal edema. A significant increase (2.2-fold) in lipid peroxidation was observed in the H100% group compared to the control group (P <.05). Glutathione peroxidase and superoxide dismutase activities were reduced to approximately 20% and 40% of the control values, respectively, in all 3 hyperoxic groups, and catalase activity was reduced in both the H75% (-0.6-fold) and H100% (-0.7-fold) groups. These results indicate a harmful effect of hyperoxia on the rat lung, with evidence of oxidant/antioxidant imbalance and histological damage.
Collapse
Affiliation(s)
- Akinori Nagato
- Department of Histology and Embryology, UERJ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, Schnapp LM. Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J 2009; 35:1388-95. [PMID: 20032019 DOI: 10.1183/09031936.00089409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We hypothesised that comparing the protein mixture in bronchoalveolar lavage fluid (BALF) between humans and mice may lead to mechanistic insights into common and divergent pathways that evolved in each species. BALF from four humans and six mice was pooled separately and underwent identical shotgun proteomic analysis. Functional and network analysis was applied to identify overlapping and distinct pathways enriched in the BALF. Follow-up experiments using Western analysis in unpooled BALF samples were performed. We identified 91 unique proteins in human and 117 unique proteins in mouse BALF samples. Functional analysis of the proteins revealed conservation of several key processes between the species, including defence response. Oxidative stress response, however, was selectively enriched only in mouse BALF. Differences in the expression of peroxiredoxin-1, a key member of the defence pathway against oxidative injury, were confirmed between normal human and mouse BALF and in models of lung injury. A computational proteomics approach of mouse and human BALF confirms the conservation of immune and defence-mediated pathways while highlighting differences in response to oxidative stress. These observations suggest that the use of mice models to study human lung disorders should be undertaken with an appreciation of interspecies variability.
Collapse
Affiliation(s)
- S A Gharib
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Shuvaeva TM, Novoselov VI, Fesenko EE, Lipkin VM. [Peroxiredoxins, a new family of antioxidant proteins]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:581-96. [PMID: 19915636 DOI: 10.1134/s106816200905001x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current ideas are discussed about the structures and mechanisms of action of proteins that have been united at present into a family of thiol-specific antioxidants or peroxiredoxins, which protect the cells of different organisms from the action of hydrogen peroxide. Peroxiredoxins fulfill the same function as antioxidant enzymes such as catalases and glutathione-dependent peroxidases; however, their catalytic activity is lower than that of these enzymes. The level of expression of genes of peroxiredoxins is increased in many pathological states accompanied by oxidative stress, and today there is direct evidence for the important role of peroxiredoxins in the vital activity of cells.
Collapse
Affiliation(s)
- T M Shuvaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
54
|
Nrf2 protects against airway disorders. Toxicol Appl Pharmacol 2009; 244:43-56. [PMID: 19646463 DOI: 10.1016/j.taap.2009.07.024] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022]
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.
Collapse
|
55
|
Roede JR, Carbone DL, Doorn JA, Kirichenko OV, Reigan P, Petersen DR. In vitro and in silico characterization of peroxiredoxin 6 modified by 4-hydroxynonenal and 4-oxononenal. Chem Res Toxicol 2009; 21:2289-99. [PMID: 19548352 DOI: 10.1021/tx800244u] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin 6 (PRX6) belongs to the 1-Cys class of peroxiredoxins and is recognized as an important antioxidant protein in tissues such as cardiac muscle, skin, and lung. Preliminary in vivo proteomic data have revealed that PRX6 is adducted by 4-hydroxynonenal (4HNE) in the livers of rats chronically fed an ethanol-containing diet. The goals of this study were to evaluate the in vitro effect of aldehyde adduction on PRX6 peroxidase activity, identify specific sites of aldehyde modification using mass spectrometry, and predict conformational changes due to adduction using molecular modeling. PRX6 was found to be resistant to inactivation via aldehyde modification; however, Western blots of adducted protein revealed that both 4HNE and 4-oxononenal (4ONE) caused extensive cross-linking, resulting in high molecular mass species. Tandem mass spectrometry (ESI-LC-MS/MS) analysis demonstrated multiple sites of modification, but adduction of the active site Cys47 was not observed. Molecular modeling simulations indicated that adduction at Cys91 results in a change in protein active site conformation, which potentially restricts access of 4-HNE to Cys47. The Cys91-Lys209 cross-linked adducts could provide the conformational changes required to inactivate the protein by either restricting access to electrophiles or preventing important amino acid interactions within the catalytic triad.
Collapse
Affiliation(s)
- James R Roede
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box C238, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
56
|
Peroxiredoxin 6 fails to limit phospholipid peroxidation in lung from Cftr-knockout mice subjected to oxidative challenge. PLoS One 2009; 4:e6075. [PMID: 19562038 PMCID: PMC2698990 DOI: 10.1371/journal.pone.0006075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress plays a prominent role in the pathophysiology of cystic fibrosis (CF). Despite the presence of oxidative stress markers and a decreased antioxidant capacity in CF airway lining fluid, few studies have focused on the oxidant/antioxidant balance in CF cells. The aim of the current study was to investigate the cellular levels of reactive oxygen species (ROS), oxidative damage and enzymatic antioxidant defenses in the lung of Cftr-knockout mice in basal conditions and as a response to oxidative insult. The results show that endogenous ROS and lipid peroxidation levels are higher in Cftr−/− lung when compared to wild-type (Cftr+/+) in basal conditions, despite a strong enzymatic antioxidant response involving superoxide dismutases, glutathione peroxidases and peroxiredoxin 6 (Prdx6). The latter has the unique capacity to directly reduce membrane phospholipid hydroperoxides (PL-OOH). A dramatic increase in PL-OOH levels in Cftr−/− lung consecutive to in vivo oxidative challenge by paraquat (PQ) unmasks a susceptibility to phospholipid peroxidation. PQ strongly decreases Prdx6 expression in Cftr−/− mice compared to Cftr+/+. Similar results were obtained after P. aeruginosa LPS challenge. Two-dimensional gel analysis of Prdx6 revealed one main molecular form in basal conditions and a PQ-induced form only detected in Cftr+/+ lung. Mass spectrometry experiments suggested that, as opposed to the main basal form, the one induced by PQ is devoid of overoxidized catalytic Cys47 and could correspond to a fully active form that is not induced in Cftr−/− lung. These results highlight a constitutive redox imbalance and a vulnerability to oxidative insult in Cftr−/− lung and present Prdx6 as a key component in CF antioxidant failure. This impaired PL-OOH detoxification mechanism may enhance oxidative damage and stress-related signaling, contributing to an exaggerated inflammatory response in CF lung.
Collapse
|
57
|
Roede JR, Orlicky DJ, Fisher AB, Petersen DR. Overexpression of peroxiredoxin 6 does not prevent ethanol-mediated oxidative stress and may play a role in hepatic lipid accumulation. J Pharmacol Exp Ther 2009; 330:79-88. [PMID: 19386791 DOI: 10.1124/jpet.109.152983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is implicated in the etiology of many diseases, including alcoholic liver disease (ALD). Peroxiredoxin 6 is a cytosolic peroxidase that has been demonstrated to protect various tissues, such as skin, lung, and cardiac muscle, against acute oxidative insults. Consequently, peroxiredoxin 6 was hypothesized to also protect the liver from oxidative stress generated during the process of chronic ethanol ingestion. To test this, wild-type peroxiredoxin 6 knockout mice (KO), and transgenic peroxiredoxin 6 overexpressing mice (TG) were fed an ethanol-containing diet. Various biomarkers of ALD were assessed, along with the effects of chronic ethanol consumption on the antioxidant defenses. After 9 weeks of ethanol consumption, all backgrounds exhibited elevations of plasma alanine aminotransferase activity, hepatosteatosis, CYP2E1 induction, and lipid peroxidation; however, hepatic triglyceride accumulation seemed to be exacerbated in ethanol-fed TG mice. Differences in antioxidant protein expression and activity in response to chronic ethanol consumption were also observed. Examples include significant inductions of catalase and glutathione transferase activity in ethanol-fed KO and TG mice, along with elevated levels of glutathione peroxidase activity. These alterations in antioxidant defenses could be attributed to either compensatory responses due to the genetic manipulations or ethanol-mediated responses. In conclusion, both ethanol-fed KO and ethanol-fed TG mice developed early stage ALD and peroxiredoxin 6 may play a role in ethanol-mediated hepatic lipid accumulation.
Collapse
Affiliation(s)
- James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | | | | | | |
Collapse
|
58
|
Mitogen-activated protein kinase-mediated phosphorylation of peroxiredoxin 6 regulates its phospholipase A(2) activity. Biochem J 2009; 419:669-79. [PMID: 19140803 DOI: 10.1042/bj20082061] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA(2) (phospholipase A(2)) [aiPLA(2) (acidic calcium-independent PLA(2))] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA(2) activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to approximately 75% increase in aiPLA(2) activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine o-phosphoserine antibodies. in vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA(2) activity. The increased activity was calcium-independent and was abolished by the aiPLA(2) inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA(2) activity.
Collapse
|
59
|
Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A(2) activities. Arch Biochem Biophys 2009; 485:139-49. [PMID: 19236840 DOI: 10.1016/j.abb.2009.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 11/20/2022]
Abstract
Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A(2) (PLA(2)) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA(2) activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO2(3)) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes.
Collapse
|
60
|
Chowdhury I, Mo Y, Gao L, Kazi A, Fisher AB, Feinstein SI. Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic Biol Med 2009; 46:146-53. [PMID: 18973804 PMCID: PMC2646855 DOI: 10.1016/j.freeradbiomed.2008.09.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/22/2008] [Accepted: 09/19/2008] [Indexed: 02/07/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a unique antioxidant enzyme that can reduce phospholipid and other hydroperoxides. A549 cells, a human lung-derived cell line, express both Prdx6 and Nrf2, a transcription factor that binds to antioxidant-response elements (AREs) and promotes expression of antioxidant genes. Treatment of A549 cells with 500 microM H(2)O(2) increased Prdx6 mRNA levels 2.5-fold, whereas treatment with 400 microM H(2)O(2) or 200 microM tert-butylhydroquinone (t-BHQ) triggered a corresponding 2.5-fold increase in reporter gene activity in A549 cells transfected with the pSEAP2:Basic vector (BD Bioscience), containing 1524 nucleotides of the human Prdx6 promoter region. Deletion of a consensus ARE sequence present between positions 357 and 349 before the start of transcription led to a striking decrease in both basal and H(2)O(2)- or t-BHQ-induced activation in A549 cells and H(2)O(2)-induced activation in primary rat alveolar type II cells. Cotransfection with Nrf2 stimulated the Prdx6 promoter in an ARE-dependent manner, whereas it was negatively regulated by Nrf3. siRNA targeting Nrf2 down-regulated reporter gene expression, whereas siRNA targeting the Nrf2 repressor, Keap1, up-regulated it. Binding of Nrf2 to the ARE sequence in chromatin was confirmed by PCR after chromatin immunoprecipitation. These data demonstrate that the ARE within the Prdx6 promoter is a key regulator of basal transcription of the Prdx6 gene and of its inducibility under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ibrul Chowdhury
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | |
Collapse
|
61
|
Roede JR, Stewart BJ, Petersen DR. Decreased expression of peroxiredoxin 6 in a mouse model of ethanol consumption. Free Radic Biol Med 2008; 45:1551-8. [PMID: 18852041 DOI: 10.1016/j.freeradbiomed.2008.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/22/2008] [Accepted: 08/31/2008] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease is multifactorial and oxidative stress is believed to play an intimate role in the initiation and progression of this pathology. The goals of this study were to investigate the effect of chronic ethanol treatment on inducing hepatic oxidative stress and peroxiredoxin 6 expression. After 9 weeks of treatment with an ethanol-containing diet, significant increases in serum ALT activity, liver to body weight ratio, liver triglycerides, CYP2E1 protein expression, and CYP2E1 activity were observed. Chronic ethanol feeding resulted in oxidative stress as evidenced by decreases in hepatic glutathione content and increased deposition of 4-hydroxynonenal and 4-oxononenal protein adducts. In addition, novel findings of decreased PRX6 protein and mRNA and increased levels of carbonylated PRX6 protein were observed in the ethanol-treated animals compared to the pair-fed controls. Lastly, NF-kappaB activity was found to be significantly increased in the ethanol-treated animals. Concurrent with the increase in NF-kappaB activity, decreases in both MEK1/2 and ERK1/2 phosphorylation were also observed in the ethanol-treated animals compared to the pair-fed controls. Together, these data demonstrate that chronic ethanol treatment results in oxidative stress, implicating NF-kappaB activation as an integral mechanism in the negative regulation of PRX6 gene expression in the mouse liver.
Collapse
Affiliation(s)
- James R Roede
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
62
|
Wang Y, Feinstein SI, Fisher AB. Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress. J Cell Biochem 2008; 104:1274-85. [PMID: 18260127 DOI: 10.1002/jcb.21703] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | |
Collapse
|
63
|
Valença SDS, Kloss ML, Bezerra FS, Lanzetti M, Silva FL, Porto LC. [Effects of hyperoxia on Wistar rat lungs]. J Bras Pneumol 2008; 33:655-62. [PMID: 18200365 DOI: 10.1590/s1806-37132007000600008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/09/2007] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To study the effects of short-term exposure to high oxygen concentrations (hyperoxia) on Wistar rat lungs. METHODS Animals were divided into three groups exposed to hyperoxia for 10', 30' and 90' (O10', O30', O90', respectively), together with a control group (exposed to room air). The animals were sacrificed 24 h after exposure. Bronchoalveolar lavage was performed, and the lungs were removed for histological and stereological analysis. RESULTS In the O10', O30', and O90' groups, respectively and in comparison with the controls, we observed an increase in the numbers of macrophages (2169.9 +/- 118.0, 1560.5 +/- 107.0, and 1467.6 +/- 39.0 vs. 781.3 +/- 78.3) and neutrophils (396.3 +/- 35.4, 338.4 +/- 17.3, and 388.7 +/- 11.7 vs. 61.6 +/- 4.2), concomitant with an increase in oxidative damage (143.0 +/- 7.8%, 180.4 +/- 5.6%, and 235.0 +/- 13.7 vs. 100.6 +/- 1.7%). The histological and stereological analyses revealed normal alveoli and alveolar septa in the controls (83.51 +/- 1.20% and 15 +/- 1.21%), in the O10' group (81.32 +/- 0.51% and 16.64 +/- 0.70%), and in the O30' group (78.75 +/- 0.54% and 17.73 +/- 0.26%). However, in the O90' group, inflammatory cell infiltration was observed in the alveoli and alveolar septa. Red blood cells extravasated from capillaries to the alveoli (59.06 +/- 1.22%), with evidence of congestion, hemorrhage, and septal edema (35.15 +/- 0.69%). CONCLUSION Hyperoxia for 90' caused injury of the lung parenchyma, resulting in oxidative damage and inflammatory cell infiltration.
Collapse
Affiliation(s)
- Samuel Dos Santos Valença
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
64
|
Bentley AR, Emrani P, Cassano PA. Genetic variation and gene expression in antioxidant related enzymes and risk of COPD: a systematic review. Thorax 2008; 63:956-61. [PMID: 18566111 DOI: 10.1136/thx.2007.086199] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Observational epidemiological studies of dietary antioxidant intake, serum antioxidant concentration and lung outcomes suggest that lower levels of antioxidant defences are associated with decreased lung function. Another approach to understanding the role of oxidant/antioxidant imbalance in the risk of chronic obstructive pulmonary disease (COPD) is to investigate the role of genetic variation in antioxidant enzymes, and indeed family based studies suggest a heritable component to lung disease. Many studies of the genes encoding antioxidant enzymes have considered COPD or COPD related outcomes, and a systematic review is needed to summarise the evidence to date, and to provide insights for further research. METHODS Genetic association studies of antioxidant enzymes and COPD/COPD related traits, and comparative gene expression studies with disease or smoking as the exposure were systematically identified and reviewed. Antioxidant enzymes considered included enzymes involved in glutathione metabolism, in the thioredoxin system, superoxide dismutases (SOD) and catalase. RESULTS A total of 29 genetic association and 15 comparative gene expression studies met the inclusion criteria. The strongest and most consistent effects were in the genes GCL, GSTM1, GSTP1 and SOD3. This review also highlights the lack of studies for genes of interest, particularly GSR, GGT and those related to TXN. There were limited opportunities to evaluate the contribution of a gene to disease risk through synthesis of results from different study designs, as the majority of studies considered either association of sequence variants with disease or effect of disease on gene expression. CONCLUSION Network driven approaches that consider potential interaction between and among genes, smoke exposure and antioxidant intake are needed to fully characterise the role of oxidant/antioxidant balance in pathogenesis.
Collapse
Affiliation(s)
- A R Bentley
- Division of Nutritional Sciences, 209 Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
65
|
Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 2008; 76:2259-72. [PMID: 18411286 DOI: 10.1128/iai.00059-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
66
|
Han MJ, Herlyn M, Fisher AB, Speicher DW. Microscale solution IEF combined with 2-D DIGE substantially enhances analysis depth of complex proteomes such as mammalian cell and tissue extracts. Electrophoresis 2008; 29:695-705. [DOI: 10.1002/elps.200700337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
67
|
Lee IS, Choi WH, Kim JY, Jeong JY, Kim MJ, Nam JH, Kim JH, Seo SB, Pak JH. Transcriptional regulation of the murine 1-cys peroxiredoxin gene by the B cell-specific activator protein, Pax5. J Cell Biochem 2008; 104:465-76. [DOI: 10.1002/jcb.21638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
Kümin A, Schäfer M, Epp N, Bugnon P, Born-Berclaz C, Oxenius A, Klippel A, Bloch W, Werner S. Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. ACTA ACUST UNITED AC 2007; 179:747-60. [PMID: 18025307 PMCID: PMC2080929 DOI: 10.1083/jcb.200706090] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is a cytoprotective enzyme with largely unknown in vivo functions. Here, we use Prdx6 knockout mice to determine its role in UV protection and wound healing. UV-mediated keratinocyte apoptosis is enhanced in Prdx6-deficient mice. Upon skin injury, we observe a severe hemorrhage in the granulation tissue of knockout animals, which correlates with the extent of oxidative stress. At the ultrastructural level endothelial cells appear highly damaged, and their rate of apoptosis is enhanced. Knock-down of Prdx6 in cultured endothelial cells also increases their susceptibility to oxidative stress, thus confirming the sensitivity of this cell type to loss of Prdx6. Wound healing studies in bone marrow chimeric mice demonstrate that Prdx6-deficient inflammatory and endothelial cells contribute to the hemorrhage phenotype. These results provide insight into the cross-talk between hematopoietic and resident cells at the wound site and the role of reactive oxygen species in this interplay.
Collapse
Affiliation(s)
- Angelika Kümin
- Institute of Cell Biology, Department of Biology, ETH Zurich, Honggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Ho YS, Xiong Y, Ho DS, Gao J, Chua BHL, Pai H, Mieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 2007; 43:1299-312. [PMID: 17893043 PMCID: PMC2196211 DOI: 10.1016/j.freeradbiomed.2007.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 07/21/2007] [Indexed: 01/21/2023]
Abstract
To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H(2)O(2)) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H(2)O(2) treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor alphaplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.
Collapse
Affiliation(s)
- Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Dziubla TD, Shuvaev VV, Hong NK, Hawkins BJ, Madesh M, Takano H, Simone E, Nakada MT, Fisher A, Albelda SM, Muzykantov VR. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 2007; 29:215-27. [PMID: 17950837 DOI: 10.1016/j.biomaterials.2007.09.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/23/2007] [Indexed: 01/28/2023]
Abstract
The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their labile nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable polymer nano-carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, an H(2)O(2)-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 247 kD), peroxidase (MW 42 kD) and xanthine oxidase (XO, MW 300 kD) into approximately 300 nm diameter PNC composed of co-polymers of polyethylene glycol and poly-lactic/poly-glycolic acid (PEG-PLGA) was in the range approximately 10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted enzymatic activity on their PNC diffusible substrates, H(2)O(2) and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell (EC) adhesion molecule-1 delivered active encapsulated catalase to ECs and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities.
Collapse
Affiliation(s)
- Thomas D Dziubla
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, 1 John Morgan Building, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kropotov A, Usmanova N, Serikov V, Zhivotovsky B, Tomilin N. Mitochondrial targeting of human peroxiredoxin V protein and regulation of PRDX5 gene expression by nuclear transcription factors controlling biogenesis of mitochondria. FEBS J 2007; 274:5804-14. [PMID: 17937766 DOI: 10.1111/j.1742-4658.2007.06103.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin V (PRDX5) is a member of the family of mammalian proteins that neutralize reactive oxygen species. The PRDX5 gene is constitutively expressed at a high level in many human tissues, but functional elements of its promoter responsible for a high basal activity in the absence of oxidative stress have still not been identified. Among predicted binding sites for transcription factors in the human PRDX5 promoter are binding sites for nuclear respiratory factor 1 (NFR-1) and nuclear respiratory factor 2 (also called GABPA), which regulate the biogenesis of mitochondria. We constructed luciferase reporter gene plasmids containing stepwise deletions of the PRDX5 promoter and examined their activities in transient transfections. Our results suggest that basal PRDX5 promoter activity mostly depends on NFR-1 and GABPA sites. The latter, in the PRDX5 promoter, were conserved in the six mammalian genomes analyzed (human, chimpanzee, cow, mouse, rat and dog) and a fraction of human PRDX5 associates with the mitochondrial matrix. We also found that the N-terminal 50 amino acids of the full-length human PRDX5 (24 kDa) translated from its first AUG codon targets this protein exclusively to mitochondria. However, the short form of PRDX5 (17 kDa), translated from its second AUG codon, has cytoplasmic and nuclear localization, which is also typical for endogenously expressed protein. Together, our results indicate that high basal expression of the PRDX5 gene is coordinated with the expression of nuclear genes encoding mitochondrial proteins and that the PRDX5 protein might play a major role in permanent defense against reactive oxygen species produced by mitochondria.
Collapse
Affiliation(s)
- Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | | | | | | | |
Collapse
|
72
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
73
|
Prows DR, Hafertepen AP, Winterberg AV, Gibbons WJ, Liu C, Nick TG. Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol Genomics 2007; 30:271-81. [PMID: 17488888 DOI: 10.1152/physiolgenomics.00038.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) and its most severe presentation, acute respiratory distress syndrome, represent a full spectrum of a complex and devastating illness, with associated mortality that still hovers around 30-40%. Even supplemental O2, a routine and necessary therapy for such patients, paradoxically causes lung injury. The detrimental effects of O2 have established hyperoxic ALI (HALI) as a conventional model to study neonatal and adult forms of respiratory distress syndromes in experimental animals. To confront the high ALI mortality problem quite differently, we recently identified a mouse model (sensitive C57BL/6J and resistant 129X1/SvJ mice) to assess the genetic complexity of HALI and to identify genes affecting strain survival differences. Segregation analysis of 840 F2 mice generated from all four possible intercrosses between C57BL/6J and 129X1/SvJ mice demonstrated that survival time is a quantitative trait with decreased penetrance, and significant sex, cross, and parent-of-origin effects. Quantitative trait locus (QTL) analyses of the total F2 population identified three highly significant (named Shali1, Shali2 and Shali3, for Survival to hyperoxic acute lung injury) and one significant (Shali4) linkage. Analysis of F2 subpopulations further identified a male-specific QTL (Shali5). QTL allelic comparisons supported cross and sex effects and were consistent with imprinting. Genome-wide pairwise analysis predicted additive gene-gene interactions between the QTLs and also revealed a significant epistatic interaction with an otherwise unlinked region. QTL results confirmed that both parental strains contribute dominant resistance alleles to their offspring to determine individual HALI susceptibility.
Collapse
Affiliation(s)
- Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
PURPOSE To study the regulation by mitomycin C (MMC) of 1-cys peroxiredoxin (Prx) expression during the corneal wound-healing process and its induction pathway in cultured bovine keratocytes (BKs). METHODS Rat corneas were excised at 4 hours, 12 hours, 1 day, 3 days, and 7 days after photorefractive keratectomy (PRK). Expression of 1-cys Prx in the corneas was examined by Northern blot and immunoblot analyses. Cultured BKs were exposed to 0.02% MMC for 5 minutes and maintained under normal culture conditions for different time periods. Subsequently, levels of 1-cys Prx and extracellular signal-regulated kinase (ERK)1/2 expression were measured by immunoblot analysis using polyclonal 1-cys Prx, ERK1/2, or phospho-ERK1/2 antibodies. To inhibit ERK1/2 activation, the BKs were pretreated with 50 micromol/mL PD98059 for 1 hour before MMC exposure and incubated in complete medium with or without PD98059 for 24 hours. MMC-induced cytotoxicity was determined by colorimetric cell-counting kit-8 assay. RESULTS Increased levels of 1-cys Prx expression were seen in wounded rat corneas at 12 hours after injury and reached the highest level between 1 and 3 days, during which time active proliferation occurred. Induction of 1-cys Prx expression was obvious in proliferating BKs stimulated by growth factors. MMC treatment in cultured BKs resulted in increased expression of 1-cys Prx and phospho-ERK1/2 in a time-dependent manner. Treatment with 50 micromol/mL PD98059 significantly inhibited the active ERK1/2 and 1-cys Prx expression induced by MMC, leading to synergistic cytotoxicity in the BKs. CONCLUSION 1-Cys Prx may function as an important enzyme in cell proliferation during the postinjury corneal wound-healing process. Furthermore, the induction of 1-cys Prx expression through the ERK1/2 signaling pathway may contribute to cellular defense against cytotoxic agents, thus playing an important role in cell survival.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Ophthalmology and Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 137-756, Korea
| | | | | | | |
Collapse
|
75
|
Schremmer B, Manevich Y, Feinstein SI, Fisher AB. Peroxiredoxins in the lung with emphasis on peroxiredoxin VI. Subcell Biochem 2007; 44:317-44. [PMID: 18084901 DOI: 10.1007/978-1-4020-6051-9_15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
All six mammalian peroxiredoxins are expressed in the lung. Peroxiredoxin (Prx) VI is the isoform expressed at the highest level and its lung expression exceeds that for other organs. The predominant location of Prx VI is the cytosol and acidic organelles of Clara cells of the conducting airways and type II epithelial cells and macrophages in the alveoli. Prx I and VI show developmental induction of transcription at birth. PrxVI shares structural homology with other peroxiredoxins exhibiting a thioredoxin fold and a conserved catalytic Cys residue in the N-terminus of the protein. This enzyme is highly inducible by oxidative stress in both the neonatal and adult lung consistent with a role in antioxidant defense. Prx VI has several properties that distinguish its peroxidase activity from other peroxiredoxins: it can reduce phospholipid hydroperoxides in addition to other organic hydroperoxides and H2O2; the electron donor that serves to reduce the oxidized peroxidatic cysteine is not thioredoxin but GSH; instead of homodimerization, heterodimerization with pi-glutathione S-transferase is required for regeneration of the active enzyme. Prx VI also expresses a phospholipase A2 activity that is Ca2+-independent, maximal at acidic pH, and dependent on a serine-based catalytic triad and nucleophilic elbow at the surface of the protein. Models of altered Prx VI expression at the cellular, organ and whole animal levels have demonstrated that Prx VI functions as an important anti-oxidant enzyme with levels of protection that exceed those ascribed to GSH peroxidase (GPx1). The phospholipase A2 activity plays an important role in lung surfactant homeostasis and is responsible for the bulk of the degradation of internalized phosphatidylcholine and its resynthesis by the reacylation pathway. Expression of peroxiredoxins is elevated in several lung diseases including lung cancer, mesothelioma and sarcoidosis, although the mechanism for these alterations is not known. The unique properties of Prx VI enable it to play an important role in lung cell function.
Collapse
Affiliation(s)
- Bruno Schremmer
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
76
|
Tosaki A, Edes I. The role of peroxiredoxins in ischemia-reperfusion-induced cardiac damage. Am J Physiol Heart Circ Physiol 2006; 291:H2586-7. [PMID: 16766639 DOI: 10.1152/ajpheart.00557.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
auf dem Keller U, Kümin A, Braun S, Werner S. Reactive oxygen species and their detoxification in healing skin wounds. J Investig Dermatol Symp Proc 2006; 11:106-11. [PMID: 17069017 DOI: 10.1038/sj.jidsymp.5650001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Injury to the skin initiates a cascade of events, which finally lead to at least partial reconstruction of the wounded tissue. The wound-healing process has been well described at the histological level, but the underlying molecular mechanisms are still poorly defined. To gain insight into these mechanisms we searched for genes, which are regulated by skin injury. Interestingly, some of the genes that we identified encode cytoprotective proteins, in particular enzymes, which detoxify reactive oxygen species (ROS). Since ROS are produced in high amounts at the wound site as a defense against invading bacteria, the expression of these genes is most likely important for the protection of cells against these toxic molecules. In this review, we summarize the results on the expression of cytoprotective genes in wounded skin, and we discuss their possible roles in the wound-healing process.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- Department of Biology, Institute of Cell Biology, ETH Zürich, Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
78
|
Kümin A, Huber C, Rülicke T, Wolf E, Werner S. Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1194-205. [PMID: 17003478 PMCID: PMC1698852 DOI: 10.2353/ajpath.2006.060119] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2006] [Indexed: 12/26/2022]
Abstract
Peroxiredoxin 6 is an enzyme that detoxifies hydrogen peroxide and various organic peroxides. In previous studies we found strongly increased expression of peroxiredoxin 6 in the hyperproliferative epidermis of wounded and psoriatic skin, suggesting a role of this enzyme in epidermal homeostasis. To address this question, we generated transgenic mice overexpressing peroxiredoxin 6 in the epidermis. Cultured keratinocytes from transgenic mice showed enhanced resistance to the toxicity of various agents that induce oxidative stress. However, overexpression of peroxiredoxin 6 did not affect skin morphogenesis or homeostasis. On skin injury, enhancement of wound closure was observed in aged animals. Most importantly, peroxiredoxin 6 overexpression strongly reduced the number of apoptotic cells after UVA or UVB irradiation. These findings demonstrate that peroxiredoxin 6 protects keratinocytes from cell death induced by reactive oxygen species in vitro and in vivo, suggesting that activation of this enzyme could be a novel strategy for skin protection under stress conditions.
Collapse
Affiliation(s)
- Angelika Kümin
- Department of Biology, Institute of Cell Biology, ETH Zurich, Honggerberg, HPM D42, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
79
|
Wang Y, Phelan SA, Manevich Y, Feinstein SI, Fisher AB. Transgenic mice overexpressing peroxiredoxin 6 show increased resistance to lung injury in hyperoxia. Am J Respir Cell Mol Biol 2006; 34:481-6. [PMID: 16399955 PMCID: PMC2644209 DOI: 10.1165/rcmb.2005-0333oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peroxiredoxin 6 (Prd x 6) is a novel peroxidase enzyme that is expressed at a high level in the lung. We tested the hypothesis that transgenic (Tg) mice overexpressing Prd x 6 would exhibit increased resistance to hyperoxia-induced lung injury. Wild-type and Tg mice were exposed to 100% O(2) and evaluated for survival, lung histopathology, total protein, and nucleated cells in bronchoalveolar lavage fluid (BALF), and oxidation of lung protein and lipids. Prd x 6 protein expression and enzyme activity were approximately 3-fold higher in Tg lungs compared with wild-type. Tg mice survived longer during exposure to 100% O(2) (LT(50) 104+/-2.8 h in Tg versus 88.9+/-1.1 h for wild-type). Lung wet/dry weight ratio and total protein and nucleated cell count in lung lavage fluid were significantly greater in wild-type mice at 72 and 96 h of hyperoxia compared with Tg mice. At 96 h of hyperoxia, Tg mice had less epithelial cell necrosis, perivascular edema, and inflammatory cell recruitment by light microscopy, and lower TBARS and protein carbonyls in lung homogenate (P<0.05). These results show that Tg mice have increased defense against lung injury in hyperoxia, providing evidence that Prd x 6 functions as a lung antioxidant enzyme.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, One John Morgan Building, Philadelphia, PA 19104-6068, USA
| | | | | | | | | |
Collapse
|
80
|
Beyea JA, Sawicki G, Olson DM, List E, Kopchick JJ, Harvey S. Growth hormone (GH) receptor knockout mice reveal actions of GH in lung development. Proteomics 2006; 6:341-8. [PMID: 16287172 DOI: 10.1002/pmic.200500168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of growth hormone (GH) and GH receptors (GHRs) in the lung suggests it is an autocrine/paracrine target site for pulmonary GH action and/or an endocrine site of pituitary GH action. Roles for GH in lung growth or pulmonary function are, however, uncertain. The possibility that pituitary and/or pulmonary GH have physiological roles in lung development has therefore been investigated in GHR knockout (KO or -/-) mice, using a proteomics approach to determine if an absence of GH-signaling affects the proteome of the developing lung. More than 600 proteins were detected by 2-DE in the lungs of control [GHR (+/+)] and GHR (-/-) mice at the end of the alveolarization period (at day 14 postnatally). Of these, 39 differed significantly in protein content at the p>0.05 level [6 were of higher abundance in the GHR (-/-) group, 33 were of lower abundance] and 17 differed at the p>0.02 level [5 of higher abundance in the GHR (-/-) group, 12 of lower abundance] and 7 were definitively identified by MS. Vimentin, a protein involved in cellular proliferation, was reduced in content by approximately 75% in the lungs of the GHR (-/-) mice. Three proteins involved in oxidative protection [SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 (Prdx6), and isocitrate dehydrogenase 1] were also of lower content in the GHR (-/-) lungs (by approximately 88%, 81% and 70%, respectively). Prdx6 is also involved in lipid and surfactant metabolism, as is apolipoprotein A-IV, the lung content of which was reduced by approximately 73% in these mice. Proteasome 26S ATPase subunit 4, a protein involved in the non-lysosomal degradation of intracellular proteins, and electron flavoprotein alpha subunit , involved in intracellular metabolism, were also reduced in content in the lungs of the GHR (-/-) mice (by approximately 70% and 49%, respectively). These results therefore suggest that these proteins are normally dependent upon GH signaling, and that GH is normally involved in early lung growth, oxidative protection, lipid and energy metabolism and in proteasomal activity. These roles may reflect endocrine actions of pituitary GH and/or local autocrine/paracrine actions of GH produced within the lung.
Collapse
Affiliation(s)
- Jason A Beyea
- Department of Physiology, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Nuclear factor, erythroid 2 related factor 2 (Nrf2) belongs to the Cap'n'collar/basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants, and chemopreventive agents. After phosphorylation and dissociation from the cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), Nrf2 translocates to the nucleus and binds to an antioxidant response element (ARE). Through transcriptional induction of ARE-bearing genes that encode antioxidant-detoxifying proteins, Nrf2 activates cellular rescue pathways against oxidative injury, inflammation/immunity, apoptosis, and carcinogenesis. ARE-driven genes include direct antioxidants (e.g., GPx), thiol metabolism-associated detoxifying enzymes (e.g., GSTs), stress-response genes (e.g., HO-1), and others (e.g., PSMB5). Application of nrf2 germ-line mutant mice elucidated protective roles for Nrf2 in various models of human disorders in the liver, lung, kidney, brain, and circulation. In the lung, deficiency of nrf2 augmented injury caused by bleomycin and environmental oxidants including hyperoxia, diesel exhaust particles, and cigarette smoke. Microarray analyses of lungs from nrf2-deficient and -sufficient mice identified Nrf2-dependent genes that might be critical in pulmonary protection. Observations from these studies highlight the importance of the Nrf2-antioxidant pathway and may provide new therapeutic strategies for acute respiratory distress syndrome, idiopathic pulmonary fibrosis, cancer, and emphysema in which oxidative stress is implicated.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
82
|
Wang Y, Feinstein SI, Manevich Y, Ho YS, Fisher AB. Peroxiredoxin 6 gene-targeted mice show increased lung injury with paraquat-induced oxidative stress. Antioxid Redox Signal 2006; 8:229-37. [PMID: 16487056 DOI: 10.1089/ars.2006.8.229] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mice with knock-out of peroxiredoxin 6 (Prdx6), a recently described antioxidant enzyme, were evaluated for susceptibility to lung injury with paraquat (PQ) administration. With high dose PQ (30 mg/kg i.p.), all Prdx6-/- mice died (LT50 54 +/- 2.05 h, mean +/- SE) by 4 days, whereas 86% of the wild-type (WT) mice (C57BL/6) survived (n = 14). At 2 days after PQ, lung wet/dry weight ratio increased significantly (p < 0.05) to 7.57 +/- 0.37 in Prdx6-/- mice vs. 5.42 +/- 0.25 in WT mice. Total protein and nucleated cells in bronchoalveolar lavage fluid and TBARS and protein carbonyls in lung homogenate also showed more marked increases in Prdx6-/- mice. At 2.5 days after PQ, light microscopy of WT lungs showed mild injury while Prdx6-/- lungs showed epithelial cell necrosis, perivascular edema, and inflammatory cells. With low dose PQ (12.5 mg/kg), mortality and lung injury were less marked but were significantly greater with Prdx6-/- compared to WT mice. These results show that Prdx6-/- mice have increased susceptibility to lung injury with PQ administration. Thus, Prdx6 protects lungs against PQ toxicity as shown previously for hyperoxia, indicating that it functions as an important lung antioxidant enzyme.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | | | | | |
Collapse
|
83
|
Audi SH, Bongard RD, Krenz GS, Rickaby DA, Haworth ST, Eisenhauer J, Roerig DL, Merker MP. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs. Am J Physiol Lung Cell Mol Physiol 2005; 289:L788-97. [PMID: 15994278 DOI: 10.1152/ajplung.00064.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.
Collapse
Affiliation(s)
- Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Fisher AB, Dodia C, Feinstein SI, Ho YS. Altered lung phospholipid metabolism in mice with targeted deletion of lysosomal-type phospholipase A2. J Lipid Res 2005; 46:1248-56. [PMID: 15772425 DOI: 10.1194/jlr.m400499-jlr200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|