51
|
Lemon grass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem 2013; 151:175-81. [PMID: 24423518 DOI: 10.1016/j.foodchem.2013.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/13/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
The aromatic herb Cymbopogon citratus Stapf is widely used in tropical and subtropical countries in cooking, as a herbal tea, and in traditional medicine for hypertension and diabetes. Some of its properties have been associated with the in vitro antioxidant effect of polyphenols isolated from their aerial parts. However, little is known about C. citratus effects on endothelial cells oxidative injury. Using chromatographic procedures, a polyphenol-rich fraction was obtained from C. citratus (CCF) and their antioxidant properties were assessed by cooper-induced LDL oxidation assay. The main constituents of the active CCF, identified by high-performance liquid chromatography with diode-array detection and mass spectrometry (HPLC-DAD-MS), were chlorogenic acid, isoorientin and swertiajaponin. CCF 10 and 100 μg/ml diminishes reactive oxidative species (ROS) production in human umbilical vein endothelial cell (HUVECs), challenged with high D-glucose (60% inhibition), hydrogen peroxide (80% inhibition) or oxidised low-density lipoprotein (55% inhibition). CCF 10 or 100 μg/ml did not change nitric oxide (NO) production. However, CCF was able to inhibit vasoconstriction induced by the thromboxane A2 receptor agonist U46619, which suggest a NO-independent vasodilatador effect on blood vessels. Our results suggest that lemon grass antioxidant properties might prevent endothelial dysfunction associated to an oxidative imbalance promoted by different oxidative stimuli.
Collapse
|
52
|
Singh R, Kaur N, Kishore L, Gupta GK. Management of diabetic complications: a chemical constituents based approach. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:51-70. [PMID: 24041460 DOI: 10.1016/j.jep.2013.08.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long term hyperglycemia leads to development of complications associated with diabetes. Diabetic complications are now a global health problem without effective therapeutic approach. Hyperglycemia and oxidative stress are important components for the development of diabetic complications. Over the past few decades, herbal medicines have attracted much attention as potential therapeutic agents in the prevention and treatment of diabetic complications due to their multiple targets and less toxic side effects. This review aims to assess the current available knowledge of medicinal herbs for attenuation and management of diabetic complications and their underlying mechanisms. MATERIAL AND METHODS Bibliographic investigation was carried out by scrutinizing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases (SCOPUS, PUBMED, SCIELO, NISCAIR, Google Scholar) to retrieve available published literature. The inclusion criteria for the selection of plants were based upon all medicinal herbs and their active compounds with attributed potentials in relieving diabetic complications. Moreover, plants which have potential effect in ameliorating oxidative stress in diabetic animals have been included. RESULTS Overall, 238 articles were reviewed for plant literature and out of the reviewed literature, 127 articles were selected for the study. Various medicinal plants/plant extracts containing flavonoids, alkaloids, phenolic compounds, terpenoids, saponins and phytosterol type chemical constituents were found to be effective in the management of diabetic complications. This effect might be attributed to amelioration of persistent hyperglycemia, oxidative stress and modulation of various metabolic pathways involved in the pathogenesis of diabetic complications. CONCLUSION Screening chemical candidate from herbal medicine might be a promising approach for new drug discovery to treat the diabetic complications. There is still a dire need to explore the mechanism of action of various plant extracts and their toxicity profile and to determine their role in therapy of diabetic complications. Moreover, a perfect rodent model which completely mimics human diabetic complications should be developed.
Collapse
Affiliation(s)
- Randhir Singh
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana-Ambala, Haryana 133207, India
| | | | | | | |
Collapse
|
53
|
Kapoor R, Rizvi F, Kakkar P. Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases. Apoptosis 2013. [PMID: 23192364 DOI: 10.1007/s10495-012-0781-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress is implicated in hyperglycemia-induced alterations in cell signaling pathways. We examined the toxicity of high glucose in primary rat hepatocytes and its amelioration by naringenin. Incubation of hepatocytes with 40 mM glucose for 1.5 h exhibited significant decrease in cell viability confirmed by MTT reduction and Alamar blue assay. At the same time primary rat hepatocytes exhibited significant decrease in mitochondrial membrane potential indicating organelle dysfunction. Enhanced translocation of Cyt-c from mitochondria to cytosol and AIF/Endo-G from mitochondria to nucleus, activation of caspase-9/3, DNA damage, and chromatin condensation were observed in glucose-stressed hepatocytes, indicating the involvement of mitochondrial pathway in high glucose-induced apoptosis. Transcript levels of antioxidant enzymes were significantly altered along with corresponding changes in their enzymatic activities. The level of intracellular antioxidant glutathione as well as superoxide dismutase, catalase, and glutathione peroxidase activities were observed to be significantly decreased in hepatocytes treated with high concentration of glucose. Naringenin, a flavanone, was effective in preventing loss of cell viability, reactive oxygen species generation, and decline in antioxidant defense. Translocation of AIF, Endo-G, and Cyt-c from mitochondria was also inhibited by naringenin in glucose-stressed cells. Messenger RNA expression of anti-apoptotic and apoptotic genes, externalization of phosphatidyl serine, DNA damage, chromatin condensation, and sub-diploid cell population were effectively altered by naringenin indicating its anti-apoptotic potential in vitro. Our data suggests that naringenin can prevent apoptosis induced by high glucose through scavenging of reactive oxygen species and modulation of mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Radhika Kapoor
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | | | | |
Collapse
|
54
|
Moghaddam HK, Baluchnejadmojarad T, Roghani M, Khaksari M, Norouzi P, Ahooie M, Mahboobi F. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol 2013; 49:820-6. [PMID: 24113841 DOI: 10.1007/s12035-013-8559-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
Abstract
Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinoline alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover, astrocytes are proving critical for normal CNS function, and alterations in their activity and impaired oxidative stress could contribute to diabetes-related cognitive dysfunction. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) as an astrocytic marker. Therefore, we examined the effects of berberine on glial reactivity of hippocampus in streptozotocin (STZ)-induced diabetic rats, using GFAP immunohistochemistry. Lipid peroxidation, superoxide dismutase (SOD) activity, and nitrite levels were assessed as the parameters of oxidative stress. Eight weeks after diabetes induction, we observed increased numbers of GFAP(+) astrocytes immunostaining associated with increased lipid peroxidation, decreased superoxide dismutase activity, and elevated nitrite levels in the hippocampus of STZ-diabetic rats. In contrast, chronic treatment with berberine (50 and 100 mg/kg p.o. once daily) lowered hyperglycemia, reduced oxidative stress, and prevented the upregulation of GFAP in the brain of diabetic rats. In conclusion, the present study demonstrated that the treatment with berberine resulted in an obvious reduction of oxidative stress and GFAP-immunoreactive astrocytes in the hippocampus of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Hamid Kalalian Moghaddam
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran,
| | | | | | | | | | | | | |
Collapse
|
55
|
Chung WY, Benzie IF. Plasma allantoin measurement by isocratic liquid chromatography with tandem mass spectrometry: Method evaluation and application in oxidative stress biomonitoring. Clin Chim Acta 2013; 424:237-44. [DOI: 10.1016/j.cca.2013.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/24/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022]
|
56
|
Motawi TMK, Abou-Seif MA, Bader AMA, Mahmoud MO. Effect of glycemic control on soluble RAGE and oxidative stress in type 2 diabetic patients. BMC Endocr Disord 2013; 13:32. [PMID: 23964833 PMCID: PMC3751778 DOI: 10.1186/1472-6823-13-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/18/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The interaction of advanced glycation end products (AGEs) and its receptor (RAGE) has played an important role in the pathogenesis of diabetes and its complications. A soluble form of RAGE (sRAGE) has been reported as a decoy receptor for AGEs. Oxidative stress is demonstrated in pathological condition such as atherosclerosis and diabetes mellitus. It has been suggested to be involved in the pathogenesis of both macro- and microvascular complications. This study was designed to evaluate the effect of glycemic control on sRAGE and oxidative stress markers in type 2 diabetic patients. METHODS Seventy patients with type 2 diabetes and 20 healthy subjects were recruited into the study. Blood glutathione (GSH) and plasma total nitric oxide (NOx) levels were measured using commercially available colorimetric kits, blood superoxide dismutase (SOD) activity was measured by the method of Marklund and Marklund, and plasma C-peptide, oxidized LDL (ox-LDL), sRAGE, and VCAM-1 levels were measured using competitive ELISA kits. RESULTS Plasma sRAGE levels were significantly lower (p < 0.05) while VCAM-1 levels were significantly higher (p < 0.05) in poorly controlled diabetic patients compared with healthy control. Blood GSH levels were significantly lower in diabetic patients compared with healthy control (p < 0.05). Plasma C-peptide, NOx, ox-LDL levels, and SOD activity were not significantly different in diabetic patients compared with healthy control. Plasma levels of sRAGE were negatively associated with circulating VCAM-1 levels in diabetic patients. CONCLUSION Poor glycemic control decreases plasma sRAGE and increases VCAM-1 levels while good glycemic control improves these abnormalities which provides benefit to diabetic patients.
Collapse
Affiliation(s)
- Tarek MK Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Abou-Seif
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed MA Bader
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
57
|
Antioxidant status of Mauritian subjects with type II diabetes mellitus. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
58
|
Raju I, Kannan K, Abraham EC. FoxO3a Serves as a Biomarker of Oxidative Stress in Human Lens Epithelial Cells under Conditions of Hyperglycemia. PLoS One 2013; 8:e67126. [PMID: 23805295 PMCID: PMC3689697 DOI: 10.1371/journal.pone.0067126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Forkhead box ‘O’ transcription factors (FoxOs) are implicated in the pathogenesis of type2 diabetes and other metabolic diseases. Abnormal activity of FoxOs was reported in the glucose and insulin metabolism. Expression of FoxO proteins was reported in ocular tissues; however their function under hyperglycemic conditions was not examined. Methods Human lens epithelial cell line was used to study the function of FoxO proteins. Immunofluorescence, flow cytometry and Western blotting were employed to detect the FoxO proteins under the conditions of hyperglycemia. Results In this study we examined the role of FoxO3a in hyperglycemia-induced oxidative stress in human lens epithelial cells. FoxO3a protein expression was elevated in a dose- and time-dependent fashion after high glucose treatment. Anti-oxidant defense mechanisms of the lens epithelial cells were diminished as evidenced from loss of mitochondrial membrane integrity and lowered MnSOD after 72 h treatment with high glucose. Taken together, FoxO3a acts as a sensitive indicator of oxidative stress and cell homeostasis in human lens epithelial cells during diabetic conditions. Conclusion FoxO3a is an early stress response protein to glucose toxicity in diabetic conditions.
Collapse
Affiliation(s)
- Ilangovan Raju
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Krishnaswamy Kannan
- Division of Rheumatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Edathara C. Abraham
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
59
|
Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 2013. [DOI: 10.1016/j.bcp.2012.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
60
|
Karimian P, Kavoosi G, Amirghofran Z. Anti-inflammatory effect ofMentha longifoliain lipopolysaccharide-stimulated macrophages: Reduction of nitric oxide production through inhibition of inducible nitric oxide synthase. J Immunotoxicol 2013; 10:393-400. [DOI: 10.3109/1547691x.2012.758679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
61
|
Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol 2013; 2:20-7. [PMID: 24475422 DOI: 10.5812/nephropathol.9093] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023] Open
Abstract
CONTEXT Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. CONCLUSIONS Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.
Collapse
Affiliation(s)
- Majid Tavafi
- Department of Anatomy, Lorestan University of Medical Sciences, Faculty of Medicine, Khoram Abad, Iran
| |
Collapse
|
62
|
Chang CM, Hsieh CJ, Huang JC, Huang IC. Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol 2012; 49 Suppl 1:S171-7. [PMID: 22547264 DOI: 10.1007/s00592-012-0398-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/16/2012] [Indexed: 01/25/2023]
Abstract
In order to investigate whether short- or long-term glycemic fluctuations could induce oxidative stress and chronic inflammation, we evaluated the relationships between glycemic variability, oxidative stress markers, and high-sensitivity C-reactive protein (hs-CRP). We enrolled 34 patients with type 2 diabetes. As a measure of short-term glycemic variability, mean amplitude of glycemic excursions (MAGE) was computed from continuous glucose monitoring system data. For determining long-term glycemic variability, we calculated the standard deviation (SD) of hemoglobin A1c (HbA1c) levels measured over a 2-year period. Levels of oxidative stress markers: 8-iso-prostaglandin F2α (8-iso-PGF2α), thiobarbituric acid-reactive substance (TBARS), 8-hydroxydeoxyguanosine (8-OHdG), and hs-CRP were measured. MAGE was significantly correlated with the SD of HbA1c levels (r = 0.73, p < 0.001) but not with HbA1c level. The levels of hs-CRP, TBARS, 8-OHdG, and 8-iso-PGF2α were significantly correlated with MAGE (r = 0.54, p = 0.001; r = 0.82, p < 0.001; r = 0.70, p < 0.001; r = 0.60, p < 0.001) and the SD of HbA1c levels (r = 0.53, p = 0.001; r = 0.73, p < 0.001; r = 0.69, p < 0.001; r = 0.43, p = 0.01) but not with HbA1c level. Relationships between 8-iso-PGF2α and MAGE or the SD of HbA1c levels remained significant after adjusting for other markers of diabetic control (R(2) = 0.684, R(2) = 0.595, p < 0.001, respectively). Both acute and chronic blood glucose variability can induce oxidative stress and chronic inflammation.
Collapse
Affiliation(s)
- Chih-Min Chang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung City 83305, Taiwan
| | | | | | | |
Collapse
|
63
|
Tocchetti CG, Caceres V, Stanley BA, Xie C, Shi S, Watson WH, O’Rourke B, Spadari-Bratfisch RC, Cortassa S, Akar FG, Paolocci N, Aon MA. GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 2012; 61:3094-105. [PMID: 22807033 PMCID: PMC3501888 DOI: 10.2337/db12-0072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In type 2 diabetes, hyperglycemia and increased sympathetic drive may alter mitochondria energetic/redox properties, decreasing the organelle's functionality. These perturbations may prompt or sustain basal low-cardiac performance and limited exercise capacity. Yet the precise steps involved in this mitochondrial failure remain elusive. Here, we have identified dysfunctional mitochondrial respiration with substrates of complex I, II, and IV and lowered thioredoxin-2/glutathione (GSH) pools as the main processes accounting for impaired state 4→3 energetic transition shown by mitochondria from hearts of type 2 diabetic db/db mice upon challenge with high glucose (HG) and the β-agonist isoproterenol (ISO). By mimicking clinically relevant conditions in type 2 diabetic patients, this regimen triggers a major overflow of reactive oxygen species (ROS) from mitochondria that directly perturbs cardiac electro-contraction coupling, ultimately leading to heart dysfunction. Exogenous GSH or, even more so, the fatty acid palmitate rescues basal and β-stimulated function in db/db myocyte/heart preparations exposed to HG/ISO. This occurs because both interventions provide the reducing equivalents necessary to counter mitochondrial ROS outburst and energetic failure. Thus, in the presence of poor glycemic control, the diabetic patient's inability to cope with increased cardiac work demand largely stems from mitochondrial redox/energetic disarrangements that mutually influence each other, leading to myocyte or whole-heart mechanical dysfunction.
Collapse
Affiliation(s)
- Carlo G. Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Caceres
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian A. Stanley
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chaoqin Xie
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, New York, New York
| | - Sa Shi
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Walter H. Watson
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fadi G. Akar
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, New York, New York
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Dipartimento di Medicina Clinica e Sperimentale, Universita di Perugia, Perugia, Italy
| | - Miguel A. Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Corresponding author: Miguel A. Aon,
| |
Collapse
|
64
|
Liu ML, Dong HY, Zhang B, Zheng WS, Zhao PT, Liu Y, Niu W, Xu DQ, Li ZC. Insulin reduces LPS-induced lethality and lung injury in rats. Pulm Pharmacol Ther 2012; 25:472-7. [DOI: 10.1016/j.pupt.2012.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/12/2012] [Accepted: 09/05/2012] [Indexed: 02/06/2023]
|
65
|
Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in glucose-stimulated human monocyte. Food Chem Toxicol 2012; 50:3079-85. [DOI: 10.1016/j.fct.2012.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 12/24/2022]
|
66
|
The information provided by the adrenal cortical steroids: a hypothesis. J Theor Biol 2012; 311:66-8. [PMID: 22771899 DOI: 10.1016/j.jtbi.2012.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/28/2012] [Indexed: 11/20/2022]
Abstract
We present the hypothesis that in vertebrates their closed blood circulation facilitated the evolution of the adrenal cortex as a central processing unit that provides the rest of the body with information on the effect of changes in the blood glucose and sodium levels on the functioning of the mitochondria, and of sodium transporters in the adrenal cortex. When cells in the glomerulosa can no longer increase the synthesis of aldosterone, the message to the body is that a higher level of sodium in the blood may damage the cells. When the fasiculata cells cannot increase the synthesis of glucorticoids, the message to the body is that their mitochondria cannot produce more ATP, and that higher levels of glucose in the blood may harm the organism.
Collapse
|
67
|
Feng Y, Qi R, Xu M, Shen Z, Li M. Dietary iron supplements may affect stress adaptation and aggravate stress hyperglycemia in a rat model of psychological stress. Nutrition 2012; 28:691-7. [DOI: 10.1016/j.nut.2011.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/06/2011] [Accepted: 09/18/2011] [Indexed: 11/16/2022]
|
68
|
Yelisyeyeva O, Semen K, Zarkovic N, Kaminskyy D, Lutsyk O, Rybalchenko V. Activation of aerobic metabolism by Amaranth oil improves heart rate variability both in athletes and patients with type 2 diabetes mellitus. Arch Physiol Biochem 2012; 118:47-57. [PMID: 22393897 DOI: 10.3109/13813455.2012.659259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of present research was to study the effects of Amaranth oil (AmO) supplementation on aerobic metabolism and heart rate variability (HRV) in type 2 diabetes mellitus patients and in athletes. Several parameters of aerobic metabolism and HRV were assessed. Supplementation with AmO caused mild pro-oxidant activity resulting in improved uptake of oxidative destruction products and modulation of catalase and SOD activity with subsequent development of an antioxidant effect. These findings were very distinct in athletes but less pronounced in diabetics. Redistribution of haemoglobin ligands in athletes indicates involvement of haemoproteins in free radical reactions during AmO supplementation. Improvement in HRV by daily consumption of AmO as observed in both study groups suggested increased production of endogenous oxygen and enhancement of the cardio-respiratory function. The advantage of activation of aerobic metabolism in OS-related disorders resulting in improved self-organization of the living system and hormetic reaction mechanisms are discussed.
Collapse
|
69
|
Singh AB, Guleria RS, Nizamutdinova IT, Baker KM, Pan J. High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. J Cell Physiol 2012; 227:2632-44. [PMID: 21882190 DOI: 10.1002/jcp.23005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Amar B Singh
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | | | | | | | |
Collapse
|
70
|
Kavoosi G, Teixeira da Silva JA, Saharkhiz MJ. Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in lipopolysaccharide-stimulated macrophages. ACTA ACUST UNITED AC 2012; 64:1491-500. [PMID: 22943180 DOI: 10.1111/j.2042-7158.2012.01510.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Zataria multiflora is an aromatic plant that is used in flavouring and preserving foods and also used as an antispasmodic, anaesthetic and antinociceptive agent. In this study, the effects of Z. multiflora essential oil on nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ) production in lipopolysaccharide (LPS)-stimulated macrophages was investigated. METHODS Z. multiflora essential oil was extracted by water-distillation, analysed by GC-MS and then the effect of the essential oil on NO and H(2) O(2) production was investigated. KEY FINDINGS Carvacrol (52%), thymol (16%) and p-cymene (10%) were the main components of the oil. The IC50 (concentration providing 50% inhibition) for reactive oxygen scavenging was estimated to be 5.7, 3 and 4.2 µg/ml for the essential oil, thymol and carvacrol, respectively, while the corresponding IC50 values for reactive nitrogen scavenging were estimated to be 8.6, 4.7 and 6.6 µg/ml. Z. multiflora essential oil, thymol, and carvacrol significantly reduced NO and H(2) O(2) production as well as NO synthase and NADH oxidase activity in LPS-stimulated murine macrophages while p-cymene did not show any antioxidant activity. CONCLUSIONS Z. multiflora essential oil has the potential to be used in the therapy of oxidative damage.
Collapse
Affiliation(s)
- Gholamreza Kavoosi
- Institute of Biotechnology Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
| | | | | |
Collapse
|
71
|
A cross-sectional study of the association between heat shock protein 27 antibody titers, pro-oxidant–antioxidant balance and metabolic syndrome in patients with angiographically-defined coronary artery disease. Clin Biochem 2011; 44:1390-5. [DOI: 10.1016/j.clinbiochem.2011.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 09/10/2011] [Accepted: 09/14/2011] [Indexed: 02/07/2023]
|
72
|
Fröhlich JD, Huppertz B, Abuja PM, König J, Desoye G. Oxygen modulates the response of first-trimester trophoblasts to hyperglycemia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:153-64. [PMID: 22056361 DOI: 10.1016/j.ajpath.2011.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/29/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023]
Abstract
Pregestational diabetes retards early embryonic growth. Placental and fetal growth are closely associated, suggesting that placental growth is also impaired. During the first trimester of gestation, oxygen tension rises steeply, leading to excessive production of reactive oxygen species (ROS), which is exacerbated in diabetes and may affect placental development. We hypothesized that oxygen modifies hyperglycemic effects on ROS formation, resulting in decreased first-trimester trophoblast growth. This was tested using a first trimester trophoblast-derived cell line (ACH-3P). Normoglycemia did not alter ACH-3P proliferation at 2.5%, 8%, and 21% oxygen. Hyperglycemic conditions for up to 3 days reduced cell number by 65% and resulted in cell cycle (G(1)- and S-phase) changes but only at 21% oxygen. Proliferation reduction could be partially restored by an inhibitor of mitogen-activated protein kinase (MAPK) ERK1/2 but not of Akt/PkB. Intracellular ROS elevation under hyperglycemia was oxygen independent, whereas mitochondrial superoxide levels were enhanced under hyperglycemia only at 21% oxygen. Intervention to modulate cytosolic and mitochondrial ROS, using ROS formation inducers and inhibitors, did not alter cell growth under hyperglycemia at 21% oxygen. The combination of hyperglycemia and high oxygen levels (21%) reduces proliferation of human first-trimester trophoblasts in a ROS-independent manner involving MAPK. This may account for reduced placental growth and, therefore, also for embryonic growth during the first-trimester pregestational diabetic pregnancies when the oxygen tension increases.
Collapse
Affiliation(s)
- Julia D Fröhlich
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
73
|
Sen S, Chen S, Feng B, Wu Y, Lui E, Chakrabarti S. American ginseng (Panax quinquefolius) prevents glucose-induced oxidative stress and associated endothelial abnormalities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1110-1117. [PMID: 21840692 DOI: 10.1016/j.phymed.2011.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE Ginseng (Araliaceae), demonstrates widespread biological effects because of its purported antioxidant and other properties. The present study was undertaken to investigate the effects of American ginseng root extract on glucose-induced oxidative stress and associated oxidative damage to human umbilical vein endothelial cells (HUVECs). METHODS Following pretreatment with various concentrations of ginseng (alcoholic extract), HUVECs were incubated with various concentrations of d-glucose ranging from 5 to 25mmol/l for 24h. l-Glucose was used at a concentration of 25mmol/l as a control. RESULTS Glucose-induced oxidative stress detected by intracellular reactive oxygen species accumulation, superoxide anion generation and DNA damage in HUVECs were significantly prevented by ginseng. Treatment of HUVECs with ginseng further led to significant prevention of glucose-induced NF-κB activation. Glucose-induced increase in fibronectin (FN), EDB(+)FN (a splice variant of FN), endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) mRNAs and protein levels were also prevented by ginseng treatment. CONCLUSION These data indicate that American ginseng prevented glucose-induced damage in the HUVECs through its antioxidant properties.
Collapse
Affiliation(s)
- Subhrojit Sen
- Dept. of Pathology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
74
|
Gumieniczek A, Komsta Ł, Chehab MR. Effects of two oral antidiabetics, pioglitazone and repaglinide, on aconitase inactivation, inflammation and oxidative/nitrosative stress in tissues under alloxan-induced hyperglycemia. Eur J Pharmacol 2011; 659:89-93. [DOI: 10.1016/j.ejphar.2010.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/13/2010] [Accepted: 12/09/2010] [Indexed: 11/25/2022]
|
75
|
Kelm DH, Simon R, Kuhlow D, Voigt CC, Ristow M. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats. Proc Biol Sci 2011; 278:3490-6. [PMID: 21490011 DOI: 10.1098/rspb.2011.0465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l(-1) blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators.
Collapse
Affiliation(s)
- Detlev H Kelm
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
76
|
Chu WK, Cheung S, Lau R, Benzie I. Bilberry (Vaccinium myrtillus L.). OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
Marcovecchio ML, Lucantoni M, Chiarelli F. Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabetes Technol Ther 2011; 13:389-94. [PMID: 21299400 DOI: 10.1089/dia.2010.0146] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic hyperglycemia, as assessed by hemoglobin A1c (HbA1c) levels, has been associated with the development of microvascular and macrovascular complications of diabetes. Several studies have shown that acute hyperglycemia can add to the effect of chronic hyperglycemia in inducing tissue damage. Acute hyperglycemia can activate the same metabolic and hemodynamic pathways as chronic hyperglycemia. In particular, it is associated with increased mitochondrial production of reactive oxidant species, which have been suggested as the link between hyperglycemia and the activation of downstream pathways, mediating tissue damage. Studies performed in subjects with diabetes have shown that there is a positive association between HbA1c and both fasting and postprandial glucose levels. However, it appears that the contribution of these two parameters to the total HbA1c concentrations varies according to the degree of metabolic control. Postprandial glucose excursions are predominant in patients with a good or mild glycemic control, whereas the contribution of fasting hyperglycemia is stronger as glycemic control worsens. Glucose variability, like the intra-day glucose fluctuations from peaks to nadirs, is another important parameter, which, mainly in subjects with type 2 diabetes, has emerged as an HbA1c-independent risk factor for the development of vascular complications. Based on the current knowledge on the association not only of HbA1c, but also of fasting and postprandial glucose, with diabetes complications, it is paramount that antidiabetes strategies are directed at improving all these components in order to reduce the burden associated with diabetes.
Collapse
|
78
|
Abstract
Although the state of prediabetes is defined by its role as a diabetes risk factor, it also carries a significant risk of cardiovascular disease, independent of progression to diabetes. Typical diabetic microvascular complications also occur, albeit at low rates, in prediabetes. There is evidence that both glucose-related and glucose-independent mechanisms contribute to these vascular complications. Effective preventive strategies will likely require control of glycemia, as well as other metabolic risk factors. This article reviews some of the proposed mechanisms for the vascular complications of the prediabetic state.
Collapse
Affiliation(s)
- Sofiya Milman
- Division of Endocrinology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210 Street, Bronx, NY 10467, USA
| | | |
Collapse
|
79
|
Lam CS, Benzie IF, Choi SW, Chan LY, Yeung VT, Woo GC. Relationships among Diabetic Retinopathy, Antioxidants, and Glycemic Control. Optom Vis Sci 2011; 88:251-6. [DOI: 10.1097/opx.0b013e318208494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
80
|
Colayco DC, Niu F, McCombs JS, Cheetham TC. A1C and cardiovascular outcomes in type 2 diabetes: a nested case-control study. Diabetes Care 2011; 34:77-83. [PMID: 20937686 PMCID: PMC3005458 DOI: 10.2337/dc10-1318] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes is associated with increased cardiovascular risk. The role of aggressive glycemic control in preventing cardiovascular events is unclear. A nested case-control study design was used to evaluate the association between average A1C and cardiovascular outcomes. RESEARCH DESIGN AND METHODS Adults with type 2 diabetes were identified among members of Kaiser Permanente Southern California. Type 2 diabetes was identified based on ICD-9 diagnosis codes and either A1C >7.5% or prescriptions for hypoglycemic agents. Case subjects were defined based on nonfatal myocardial infarction, nonfatal stroke, or death attributed to cardiovascular events during a 3-year window. Four type 2 diabetes control subjects were matched to each case subject based on age, sex, and index date for the corresponding case. A conditional logistic regression model was used to estimate the odds ratio of cardiovascular events and compare three patient groups based on average A1C measured in the preindex period (≤6, >6-8, >8%). RESULTS A total of 44,628 control subjects were matched to 11,157 case subjects. Patients with an average A1C ≤6% were 20% more likely to experience a cardiovascular event than the group with an average A1C of >6-8% (P < 0.0001). Patients with an average A1C >8% experienced a 16% increase in the likelihood of a cardiovascular event (P < 0.0001). We found evidence of statistical interaction with A1C category and LDL level (P = 0.0002), use of cardiovascular medications (P = 0.02), and use of antipsychotics (P = 0.001). CONCLUSIONS High-risk patients with type 2 diabetes who achieved mean A1C levels of ≤6% or failed to decrease their A1C to <8% are at increased risk for cardiovascular events.
Collapse
Affiliation(s)
- Danielle C Colayco
- University of Southern California School of Pharmacy, Department of Pharmaceutical Economics & Policy, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
81
|
Tavafi M, Ahmadvand H, Tamjidipoor A, Delfan B, Khalatbari AR. Satureja khozestanica essential oil ameliorates progression of diabetic nephropathy in uninephrectomized diabetic rats. Tissue Cell 2010; 43:45-51. [PMID: 21185580 DOI: 10.1016/j.tice.2010.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/17/2010] [Accepted: 11/27/2010] [Indexed: 01/08/2023]
Abstract
Diabetic nephropathy is the common cause of leading to end stage of renal disease (ESRD). Satureja khozestanica essential oil (SKEO) was used as an antioxidant and antidiabetic for the inhibition of diabetic nephropathy. Forty male rats were uninephrectomized and divided in four groups randomly; group one as control, group two diabetic untreatment, groups three and four treatment with SKEO by 250 or 500 ppm in drinking water, respectively. Diabetes was induced in the second, third and fourth groups by alloxan injection subcutaneously. After eight weeks treatment, serum malondialdehyde, serum creatinine and serum urea were measured. The kidney paraffin sections were stained by periodic acid Schiff method. Glomerular volume and glomerular number were estimated by stereological rules. Glomerular sclerosis was studied semi-quantitatively. The means were compared by SPSS 13 software and Mann-Whitney test at p<0.05. Satureja khozestanica essential oil (250 or 500 ppm) significantly inhibited the progression of glomerular hypertrophy, glomerular number loss, glomerulosclerosis, lipid peroxidation, serum urea and creatinine compared with the diabetic untreated group. The level of glomerular number, serum malondialdehyde, serum creatinine and urea in the treated groups was significantly maintained at the same level as that of the control group. In conclusion, satureja essential oil significantly can ameliorate glomerular hypertrophy, loss of glomerular number, glomerulosclerosis and attenuated serum urea and serum creatinine in diabetic rats.
Collapse
Affiliation(s)
- Majid Tavafi
- Department of Anatomy, Lorestan University of Medical Sciences, Faculty of Medicine, Khoram Abad, Iran.
| | | | | | | | | |
Collapse
|
82
|
Abstract
Hyperglycemia is common in critical illness and has been associated with increased morbidity and mortality. An era of tight glucose control began when intensive insulin therapy was shown to improve outcomes in a single-center randomized trial. More recently, with the publication of additional studies, questions have been raised regarding the efficacy and safety of intensive glycemic management. This article will review the biologic mechanisms that may help us understand why and how hyperglycemia and insulin are relevant in critical illness. We will then explore insights gleaned from available clinical trials. Finally, we will discuss specific areas of controversy that relate to the implementation of glycemic control in the intensive care unit, such as the ideal glucose target and the importance of hypoglycemia.
Collapse
Affiliation(s)
- Shyoko Honiden
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
83
|
Liao YH, Qian NS, Zhang Y, Dou KF. Traumatic stress and hepatocyte apoptosis. Shijie Huaren Xiaohua Zazhi 2010; 18:1569-1576. [DOI: 10.11569/wcjd.v18.i15.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trauma can cause stress in organisms and may promote cell apoptosis and lead to pathological damage. A variety of factors are involved in this process. The mechanisms responsible for traumatic stress-induced apoptosis are complex and controversial, especially in non-nervous organs. The liver plays a key role in metabolism and is one of the target organs of severe stress. Stress-induced hyperglycemia, calcium overload, oxidative stress, ischemia/reperfusion, inflammatory response, and immunosuppression caused by traumatic stress may lead to hepatocyte apoptosis. Thus, it is of great significance to explore the relationship between traumatic stress and hepatocyte apoptosis.
Collapse
|
84
|
Gunst J, Schetz M. Clinical benefits of tight glycaemic control: effect on the kidney. Best Pract Res Clin Anaesthesiol 2010; 23:431-9. [PMID: 20108582 DOI: 10.1016/j.bpa.2009.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acute kidney injury is a frequent and life-threatening complication of critical illness. Prevention of this condition is crucial. Two randomized single center trials in critically ill patients have shown a decrease in acute kidney injury by tight glycaemic control, an effect that appears most pronounced in surgical patients. Subsequent randomized trials did not confirm this renoprotective effect. This apparent contradiction is likely explained by methodological differences between studies, including different patient populations, insufficient patient numbers, comparison with a different control group, use of inaccurate blood glucose analyzers, and differences in the degree of reaching the target blood glucose level. The optimal glycaemic target for renoprotection in critical illness remains to be defined. Possible mechanisms underlying the renoprotective effect of tight glycaemic control are prevention of glucose overload and toxicity and the associated mitochondrial damage, an anti-inflammatory or anti-apoptotic effect, prevention of endothelial dysfunction, and an improvement of the lipid profile.
Collapse
Affiliation(s)
- Jan Gunst
- Department and Laboratory of Intensive Care Medicine, University of Leuven, Herestraat 49, 8-3000 Leuven, Belgium.
| | | |
Collapse
|
85
|
Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, Zagar T, Poole CD. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet 2010; 375:481-9. [PMID: 20110121 DOI: 10.1016/s0140-6736(09)61969-3] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Results of intervention studies in patients with type 2 diabetes have led to concerns about the safety of aiming for normal blood glucose concentrations. We assessed survival as a function of HbA(1c) in people with type 2 diabetes. METHODS Two cohorts of patients aged 50 years and older with type 2 diabetes were generated from the UK General Practice Research Database from November 1986 to November 2008. We identified 27 965 patients whose treatment had been intensified from oral monotherapy to combination therapy with oral blood-glucose lowering agents, and 20 005 who had changed to regimens that included insulin. Those with diabetes secondary to other causes were excluded. All-cause mortality was the primary outcome. Age, sex, smoking status, cholesterol, cardiovascular risk, and general morbidity were identified as important confounding factors, and Cox survival models were adjusted for these factors accordingly. FINDINGS For combined cohorts, compared with the glycated haemoglobin (HbA(1c)) decile with the lowest hazard (median HbA(1c) 7.5%, IQR 7.5-7.6%), the adjusted hazard ratio (HR) of all-cause mortality in the lowest HbA(1c) decile (6.4%, 6.1-6.6) was 1.52 (95% CI 1.32-1.76), and in the highest HbA(1c) decile (median 10.5%, IQR 10.1-11.2%) was 1.79 (95% CI 1.56-2.06). Results showed a general U-shaped association, with the lowest HR at an HbA(1c) of about 7.5%. HR for all-cause mortality in people given insulin-based regimens (2834 deaths) versus those given combination oral agents (2035) was 1.49 (95% CI 1.39-1.59). INTERPRETATION Low and high mean HbA(1c) values were associated with increased all-cause mortality and cardiac events. If confirmed, diabetes guidelines might need revision to include a minimum HbA(1c) value. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Craig J Currie
- Department of Medicine, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Gumieniczek A, Krzywdzińska M, Nowak M. Modulation of nitrosative/oxidative stress in the lung of hyperglycemic rabbits by two antidiabetics, pioglitazone and repaglinide. Exp Lung Res 2009; 35:371-9. [PMID: 19842839 DOI: 10.1080/01902140902718536] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The lungs are involved in diabetes in the cause of the complex phenomena diabetes generates. In the present study, hyperglycemia inhibited pulmonary antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione. These effects were accompanied by significant elevation of lipid peroxidation, total nitrites, and nitrotyrosine levels. The study investigated the effects of 2 oral antidiabetics, pioglitazone and repaglinide, on the mentioned parameters. It is concluded that pioglitazone exerts protective effect in the lung by inhibiting nitrosative stress and normalizing the nitrites and nitrotyrosine levels. Administration of repaglinide prevents oxidative and, to a smaller extent, nitrosative changes.
Collapse
Affiliation(s)
- Anna Gumieniczek
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland.
| | | | | |
Collapse
|
87
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
88
|
Hu Y, Liu W, Huang R, Zhang X. Postchallenge plasma glucose excursions, carotid intima-media thickness, and risk factors for atherosclerosis in Chinese population with type 2 diabetes. Atherosclerosis 2009; 210:302-6. [PMID: 20005514 DOI: 10.1016/j.atherosclerosis.2009.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 12/01/2022]
Abstract
AIMS Isolated hyperglycemia is associated with atherosclerosis in individuals with type 2 diabetes, but the relationship between postchallenge glucose excursion and atherosclerosis is less clear. This study examines the relationships between postchallenge glucose spikes (PGS), carotid intima-media thickness (IMT), and traditional risk factors for atherosclerosis in individuals with type 2 diabetes. METHODS A total of 474 individuals with type 2 diabetes who were within the highest or lowest IMT distribution quartile were included. The Student's t-test, one-way analysis of variance (ANOVA), single variate and multivariate analyses were implemented to study the data. An additional healthy control group (n=896) was selected during routine health examination. They were Han nationality and unrelated to the diabetic patients. RESULTS (1) Compared with subjects of healthy control group, the subjects with type 2 diabetes had significantly higher levels of body mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure, triglyceride, total cholesterol, low density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), 120 min postchallenge glucose (PG120), hemoglobin A1c (HbA1c) and IMT (P < or = 0.01) and relatively lower levels of high density lipoprotein cholesterol (HDL-C) (P < or = 0.05). (2) According to the IMT which was measured by B-mode ultrasonography, the patients of type 2 diabetes could be divided into two subgroups: one was the subgroup of IMT > or = P(75) and another was the subgroup of IMT < or = P(25). Compared with subjects of IMT > or = P(25) subgroup, subjects being in the IMT > or = P(75) subgroup exhibited significantly increased age, WHR, diabetes duration, systolic blood pressure, total cholesterol, triglyceride, LDL-C, and significantly decreased HDL-C levels. And among all the plasma glucose variables, except for FPG and PG30, all the other variables (include PG60, PG120, PG180, PGS, HbA1C, under area curve of glucose) showed a significant increase in the IMT>/=P(75) subgroup. (3) A multivariate logistic regression analysis was performed to establish which were independently related with carotid IMT, and the results showed the PGS was identified as the strongest determinant of IMT from all the atherosclerosis risk factors. (4) PGS is significantly correlated to a variety of atherosclerosis risk factors. CONCLUSIONS This study identified several important associations between PGS and known risk factors for atherosclerosis and suggested that PGS is independently related to carotid IMT. Wide postchallenge glucose excursions may contribute to the development of atherosclerosis in individuals with type 2 diabetes, independent of other risk factors.
Collapse
Affiliation(s)
- Yaomin Hu
- Department of Endocrinology, Renji Hospital, Shanghai Jiaotong University, Shanghai 200127, China
| | | | | | | |
Collapse
|
89
|
Abstract
OBJECTIVES Recently, many studies have investigated the immunomodulatory effects of insulin and glucose control in critical illness. This review examines evidence regarding the relationship between diabetes and the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS), reviews studies of lung injury related to glycemic and nonglycemic metabolic features of diabetes, and examines the effect of diabetic therapies. DATA SOURCES AND STUDY SELECTION A MEDLINE/PubMed search from inception to August 1, 2008, was conducted using the search terms acute lung injury, acute respiratory distress syndrome, hyperglycemia, diabetes mellitus, insulin, hydroxymethylglutaryl-CoA reductase inhibitors (statins), angiotensin-converting enzyme inhibitor, and peroxisome proliferator-activated receptors, including combinations of these terms. Bibliographies of retrieved articles were manually reviewed. DATA EXTRACTION AND SYNTHESIS Available studies were critically reviewed, and data were extracted with special attention to the human and animal studies that explored a) diabetes and ALI; b) hyperglycemia and ALI; c) metabolic nonhyperglycemic features of diabetes and ALI; and d) diabetic therapies and ALI. CONCLUSIONS Clinical and experimental data indicate that diabetes is protective against the development of ALI/ARDS. The pathways involved are complex and likely include effects of hyperglycemia on the inflammatory response, metabolic abnormalities in diabetes, and the interactions of therapeutic agents given to diabetic patients. Multidisciplinary, multifaceted studies, involving both animal models and clinical and molecular epidemiology techniques, are essential.
Collapse
|
90
|
Attenuation of hepatic expression and secretion of selenoprotein P by metformin. Biochem Biophys Res Commun 2009; 387:158-63. [PMID: 19576170 DOI: 10.1016/j.bbrc.2009.06.143] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/22/2022]
Abstract
High serum selenium levels have been associated epidemiologically with increased incidence of type 2 diabetes. The major fraction of total selenium in serum is represented by liver-derived selenoprotein P (SeP). This study was undertaken to test for a hypothesized effect of hyperglycemia and the antihyperglycemic drug metformin on hepatic selenoprotein P biosynthesis. Cultivation of rat hepatocytes in the presence of high glucose concentrations (25 mmol/l) resulted in increased selenoprotein P mRNA expression and secretion. Treatment with metformin dose-dependently downregulated SeP mRNA expression and secretion, and suppressed glucocorticoid-stimulated production of SeP. Moreover, metformin strongly decreased mRNA levels of selenophosphate synthetase 2 (SPS-2), an enzyme essential for selenoprotein biosynthesis. Taken together, these results indicate an influence of metformin on selenium metabolism in hepatocytes. As selenoprotein P is the major transport form of selenium, metformin treatment may thereby diminish selenium supply to extrahepatic tissues.
Collapse
|
91
|
Zhang HB, Zhang YA, Wu GZ, Zhou JP, Huang WL, Hu XW. Synthesis and biological evaluation of sulfonylurea and thiourea derivatives substituted with benzenesulfonamide groups as potential hypoglycemic agents. Bioorg Med Chem Lett 2009; 19:1740-4. [PMID: 19216076 DOI: 10.1016/j.bmcl.2009.01.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 01/08/2009] [Accepted: 01/24/2009] [Indexed: 11/24/2022]
Abstract
A novel class of sulfonylurea and thiourea derivatives substituted with benzenesulfonamide groups were designed and synthesized. The target compounds were assayed for the effects on the insulin release of isolated rat pancreatic islets and the glucose transport in adipocytes of rats. Some of them exhibited high potency. Compound 10 also had potent antiplatelet activity and showed an excellent property to protect collagen-epinephrine-induced mice mortality as well as plasma glucose-lowering activity in vivo. The preliminary pharmacological profile of compound 10 showed that it might be useful in the treatment of diabetics with cardiovascular and nephropathy complications.
Collapse
Affiliation(s)
- Hui-Bin Zhang
- Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | | | | | | | | | | |
Collapse
|
92
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
93
|
Benzie IF, Wachtel‐Galor S. Chapter 7 Biomarkers in Long‐Term Vegetarian Diets. Adv Clin Chem 2009. [DOI: 10.1016/s0065-2423(09)47007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
94
|
van Ommen B, Keijer J, Kleemann R, Elliott R, Drevon CA, McArdle H, Gibney M, Müller M. The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. GENES AND NUTRITION 2008; 3:51-9. [PMID: 18850187 DOI: 10.1007/s12263-008-0084-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 05/26/2008] [Indexed: 12/20/2022]
Abstract
In quantifying the beneficial effect of dietary interventions in healthy subjects, nutrition research meets a number of new challenges. Inter individual variation in biomarker values often is larger than the effect related to the intervention. Healthy subjects have a remarkable capacity to maintain homeostasis, both through direct metabolic regulation, metabolic compensation of altered diets, and effective defence and repair mechanisms in oxidative and inflammatory stress. Processes involved in these regulatory activities essentially different from processes involved in early onset of diet related diseases. So, new concepts and approaches are needed to better quantify the subtle effects possibly achieved by dietary interventions in healthy subjects. Apart from quantification of the genotype and food intake (these are discussed in separate reviews in this series), four major areas of innovation are discussed: the biomarker profile concept, perturbation of homeostasis combined with omics analysis, imaging, modelling and fluxes. All of these areas contribute to a better understanding and quantification of the nutritional phenotype.
Collapse
Affiliation(s)
- Ben van Ommen
- Department of BioSciences, TNO-Quality of Life, Zeist, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|